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Abstract

Low-Rank Adaptation (LoRA) methods have demonstrated considerable success
in achieving parameter-efficient fine-tuning (PEFT) for Transformer-based foun-
dation models. These methods typically fine-tune individual Transformer layers
using independent LoRA adaptations. However, directly applying existing LoRA
techniques to convolutional networks (ConvNets) yields unsatisfactory results due
to the high correlation between the stacked sequential layers of ConvNets. To
overcome this challenge, we introduce a novel framework called Correlated Low-
Rank Adaptation (CoLoRA), which explicitly utilizes correlated low-rank matri-
ces to model the inter-layer dependencies among convolutional layers. Addition-
ally, to enhance tuning efficiency, we propose a parameter-free filtering method
that enlarges the receptive field of LoRA, thus minimizing interference from non-
informative local regions. Comprehensive experiments conducted across various
mainstream vision tasks, including image classification, semantic segmentation,
and object detection, illustrate that CoLoRA significantly advances the state-of-
the-art PEFT approaches. Notably, our CoLoRA achieves superior performance
with only 5% of trainable parameters, surpassing full fine-tuning in the image
classification task on the VTAB-1k dataset using ConvNeXt-S. Code is available
at https://github.com/VISION-SJTU/CoLoRA.

1 Introduction

Transformers [1, 2] have significantly advanced the development of large-scale pre-trained foun-
dation models [3, 4, 5] in both natural language processing (NLP) and computer vision. To fully
leverage the capabilities of these pre-trained foundation models, parameter-efficient fine-tuning
(PEFT) [6, 7, 8, 9, 10, 11] has emerged as a prevalent solution. Typically, low-rank adaptation
(LoRA) approaches [12, 13, 14, 15, 16] have demonstrated particular promise in Transformer-based
models such as LLaMA [5] and ViT [2]. By introducing independent low-rank matrices into each
layer, LoRA effectively modulates the global attention maps of Transformers, facilitating efficient
adaptation to downstream tasks while significantly reducing the number of trainable parameters.

Despite its success in Transformers, the application of LoRA to convolutional networks (Con-
vNets) remains largely unexplored. ConvNets are often the preferred architecture for various vision
tasks [17, 18, 19], such as semantic segmentation and object detection, owing to their computational
efficiency and robust inductive bias. However, using LoRA to adapt pre-trained ConvNets for down-
stream vision tasks presents considerable challenges. Unlike Transformers, which utilize inputs with
global receptive fields, ConvNets are designed with sequential convolutional layers that have limited
receptive fields. Directly applying independent LoRA to each convolutional layer, similar to how it
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Figure 1: Adapting a convolutional network ConvNeXt-B [17] pretrained on ImageNet to
ADE20K [20] requires a full-rank tuning of the weight matrix W . The ranks of the weight ma-
trix W ∈ R4d×d and the weight update matrix ∆W ∈ R4d×d of all pwconv1 layers in ConvNeXt-B,
where d specifies channel dimension. We can see that both W and ∆W almost remain consistent
rank d (full-rank) after tuning (a), at the initial (b) or final (c) stages, respectively. Moreover, when
concatenating W and ∆W , the rank is nearly double (2d). As ∆W resides in a totally different
parameter space from W , we cannot adapt ConvNets using layer-independent low-rank matrices.

Figure 2: Fine-tuning the pre-trained ConvNeXt-B [17] on ADE20K [20]. In order to show the high
correlation of adjacent convolutional layers, we compute the mean singular value of their update
matrices ∆W1 (pwconv1) and ∆W2 (pwconv2) during fine-tuning. Note that their correlation be-
comes higher along with the fine-tuning process.

is done for Transformers, results in a high-rank weight update matrix, complicating the fine-tuning
of ConveNets. To illustrate this, we compare the ranks of the weight matrix W and the weight
update matrix ∆W of the ConvNeXt-B [17] model pre-trained on ImageNet-22K and subsequently
adapted to ADE20K. Figure 1 illustrates that the rank of the update matrix remains close to full
throughout training. Fine-tuning ConvNets with such a high-rank update matrix is unlikely to be
efficient. This raises a critical question: Can we overcome the full-rank learning bottleneck in the
fine-tuning of ConvNets and develop an effective LoRA method for ConvNets?

ConvNets hierarchically stack convolutional layers to extract features, resulting in a significantly
higher similarity between adjacent convolutional layers compared to Transformer layers, as high-
lighted by [21]. We observe that introducing independent LoRA into each convolutional layer leads
to suboptimal adaptation performance, primarily because the correlations between adjacent convo-
lutional layers are not accounted for. Therefore, we first examine the relationship between two
adjacent linear layers, represented as Y1 = XW1 and Y2 = Y1W2. According to backpropagation,
the gradients of W1 and W2 share a common term, XT ∂L

∂Y2
, which implies that their weight update

matrices, ∆W1 and ∆W2, are highly correlated. For instance, as illustrated in Figure 2, we ana-
lyze the correlation between two adjacent convolution layers, namely pwconv1 and pwconv2. Their
update matrices, ∆W1 and ∆W2, show a strong correlation throughout the entire tuning procedure.
This correlation has also been explored using the Centered Kernel Alignment (CKA) metric in Ap-
pendix D. Thus, it is essential to consider the correlations between adjacent convolution layers when
fine-tuning on downstream vision tasks.

In contrast to recent research [22, 23, 24] that focuses on tuning Transformer layers with independent
LoRA, our approach explicitly considers the correlation between adjacent convolutional layers using
low-rank matrices. We leverage the hierarchical architecture of ConvNets by updating these adjacent
convolutional layers together through correlated low-rank matrices. Following the back-propagation
rule applicable to adjacent convolution layers, we introduce an innovative weight update strategy (re-
fer to Figure 3(c)) that explicitly binds their updates through shared low-rank matrices. This ensures
that the weight update strategy effectively inherits the full-tuning behavior of the adjacent layers
from a gradient perspective. To enhance the tuning efficiency of ConvNets further, we implement a
filtering-based scheme that expands the receptive field of the shared low-rank matrices, thereby pre-
venting uninformative local regions from dominating the gradients. Based on these strategies, we
propose a novel and high-performance method called Correlated Low-RAnk Adaptation (CoLoRA)
for ConvNets. Experimental results across the mainstream downstream image classification, seman-
tic segmentation, and object detection tasks demonstrate that our CoLoRA significantly surpasses
current state-of-the-art PEFT methods. In summary, we present the following contributions:

2



• We show that fine-tuning pre-trained ConvNets on downstream tasks is a full-rank learn-
ing process. Existing low-rank LoRA methods designed for Transformers cannot achieve
satisfactory results for fine-tuning ConvNets.

• We propose correlated LoRA for fine-tuning ConvNets. We propose a novel weight update
strategy to update adjacent convolution layers together.

• We conduct extensive validation on the classification, segmentation, and detection tasks.
The proposed CoLoRA for ConvNets performs favorably against the state-of-the-art meth-
ods.

2 Related Work

Parameter-efficient fine-tuning. PEFT [25] has emerged as a practical alternative to full fine-
tuning, especially for adapting large-scale pre-trained models to downstream tasks while minimiz-
ing computational overhead. Current PEFT methods can be broadly classified into three categories:
prompt tuning [26], adapter-based methods [27, 27], and LoRA-based approaches [7, 28]. Prompt
tuning techniques [26, 29, 30, 31] introduce learnable visual prompts for tuning pre-trained foun-
dation models on downstream vision tasks. Among these, visual prompt tuning (VPT) is recog-
nized as a highly parameter-efficient approach, though it may struggle with larger domain gaps
or more complex downstream vision tasks, such as dense prediction. Recent adapter-based meth-
ods [27, 32, 33, 25, 34, 35] have gained traction by inserting lightweight bottleneck layers into each
Transformer block, and have been extensively studied in both NLP and computer vision. For in-
stance, the notable Mona [27] incorporates multi-scale adapters into the Swin Transformer [36] to
enhance adaptation abilities to image recognition. Further research [37, 38, 39] investigates the po-
tential of parallel networks, which adapt deep features using lightweight side modules. Meanwhile,
LoRA [6] has gained popularity due to its effectiveness and efficiency. By integrating trainable
low-rank matrices into each layer of Transformers, LoRA achieves performance comparable to full
fine-tuning while significantly reducing the number of trainable parameters. In particular, LoRA
effectively modulates the global attention maps of Transformer-based models by injecting indepen-
dent low-rank matrices into each layer, which contributes to its flexibility and efficacy in tuning.
Despite the considerable success of LoRA-based approaches in both NLP [7, 14] and vision Trans-
formers [28], their applicability to ConvNets remains largely uncharted.

LoRA and its variants. LoRA [6] approximates the full tuning of pre-trained foundation models
by employing layer-independent low-rank matrices. Recent studies have demonstrated that initial-
ization schemes, weight update strategies, and rank values significantly influence LoRA’s perfor-
mance [7, 14, 10, 40, 41, 42, 22, 23, 15, 9, 43, 44]. The standard approach of Vanilla LoRA utilizes
zero and random initializations for its low-rank matrices, which inherits a highly random tuning
property. Meng et al. [7] propose that initializing LoRA with principal components derived from
pre-trained weights leads to faster and more effective convergence. Concurrently, LoRA-GA [14]
seeks to align LoRA weight initialization with the gradients from full tuning. In terms of weight up-
dates, RsLoRA [40] introduces a rank-stable update strategy by reevaluating the impact of scaling
factors. Subsequently, Liu et al. [41] break down the weight update matrix into two distinct compo-
nents: magnitude and direction. Fan et al. [10] further enhance adaptation by integrating SVD-based
initialization with a mixture of experts [45, 46] (MoE). An alternative avenue of exploration involves
high-rank LoRA methods, such as SURMs [42] and HiRA [22], which aim to directly address the
limitations imposed by the low-rank assumption through the introduction of higher-rank updates and
more sophisticated fusion mechanisms.

Most PEFT methods have been developed within the framework of Transformer-based architectures,
which benefit from their modular structure and self-attention mechanisms. However, convolutional
networks [17, 18] continue to dominate many practical deployment scenarios due to their efficiency
and robust inductive biases [18]. Recent attempts [47, 32] have merely adapted Transformer-based
adaptation techniques for ConvNets, neglecting the unique characteristics of convolution, such as its
strong correlation in hierarchical feature extraction. Furthermore, the full-rank property of weight
updates in convolution layers, as demonstrated in Figure 1, poses additional challenges to the low-
rank assumption that underlies most existing PEFT methods. Our work addresses this gap by ex-
plicitly modeling the correlation between adjacent convolution layers during tuning, providing a
principled and efficient PEFT solution specifically designed for ConvNets.
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Figure 3: An intuitive comparison among full fine-tuning, existing LoRA, and the proposed CoL-
oRA. (a) Full fine-tuning requires adjusting all parameters, resulting in substantial computational
overhead. (b) Implementing independent full-rank LoRA within convolutional networks leads to
a large number of tunable parameters. (c) In contrast, our CoLoRA facilitates low-rank tuning by
capitalizing on the correlations between adjacent layers.

3 CoLoRA: Correlated Low-Rank Adaptation for ConvNets

3.1 Preliminaries

The LoRA approach [6] has emerged as a sophisticated and theoretically-grounded technique for
parameter-efficient fine-tuning of large models [8, 33, 15, 48]. In essence, LoRA decomposes the
update of a pre-trained weight W0 ∈ Rd×d′

into low-rank matrices, as illustrated in Figure 3(b),
where d and d′ represent the input and output feature dimensions, respectively. Mathematically, the
update weight with respect to W0 is expressed as ∆W = sAB, where A ∈ Rd×r, B ∈ Rr×d′

,
r ≪ min(d, d′) defines the rank, and s serves as a scaling factor.

A useful way to understand LoRA is by comparing the gradient of W in full tuning with the corre-
sponding gradient induced by LoRA [10]. Let gW denote the gradient with respect to W during full
tuning. We can first compute the gradients with respect to A and B using the following formulas:
gA = sgWBT and gB = sATgW . The equivalent gradient of W can then be expressed as:

g̃W = sgAB + sAgB = s2(gWBTB +AATgW ). (1)

Since B is initialized to 0 and A is randomly initialized (typically using kaiming_uniform [49])
with independently and identically distributed (i.i.d.) elements (mean 0 and variance σ2

A), the equiva-
lent gradient in Eq. (1) can be approximated as s2rσ2

AgW (for further details, see [10]). By selecting
sexpect =

1√
rσA

, LoRA can effectively match the full tuning scenario at the outset. However, we con-
tend that there is a dilemma in choosing a single value of s that can simultaneously align with both
the expectation and variance of gW .

Lemma 3.1 If A ∈ Rd×r is initialized using the Kaiming uniform method with variance σA, then
we have Var[AAT ] ≈ rσ4

A1d, where 1d denotes a d× d matrix with all elements equal to 1.

The proof is included in Appendix A. Assuming that all elements in gW are i.i.d. and share a
distribution of N (0, σ2), we can calculate the variance of the elements in g̃W as Var[g̃W ]ij ≈
s4rdσ4

Aσ
2. Consequently, using a scaling factor s = 1√

rσA
will amplify the variance by a factor of

d
r , leading to unstable tuning when the rank is small. A suitable variance matching scaling factor is
derived as svar =

1
4√
rdσA

.

3.2 Decomposing Weight Update in Adjacent Layers

Let us begin by examining two adjacent fully connected layers, which can be viewed as a straight-
forward pair of adjacent 1× 1 convolutional layers. The relationships are defined as follows:

Y1 = XW1 + b1,

Y2 = Y1W2 + b2, (2)
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where X ∈ RN×d represents the input with a batch size of N and a dimensionality of d. The weight
matrices are defined as W1 ∈ Rd×d′

and W2 ∈ Rd′×d′′
, while b1 and b2 denote the corresponding

bias terms.

Existing LoRA-based approaches [6, 7, 10] operate under the assumption that the weight matrix W
can be updated using low-rank matrices, as illustrated in Figure 3(b). When incorporating LoRA
updates into Eq. (2), we arrive at independent updates: ∆W1 = s1A1B1 and ∆W2 = s2A2B2.
However, it is important to note that the updates ∆W1 and ∆W2 are inherently correlated dur-
ing back-propagation. This correlation implies that stacking independent LoRA layers struggles to
replicate the behavior of full training and may even undermine the hierarchical feature extraction ca-
pabilities of ConvNets. We examine this correlation from the perspective of gradients. In particular,
the backward propagation rule applied to Eq. (2) yields the following relationships:

∂L
∂W2

= Y T
1

(
∂L

∂Y2

)
= WT

1 XT

(
∂L

∂Y2

)
︸ ︷︷ ︸
correlated

+ [b1, · · · , b1]N

(
∂L

∂Y2

)
︸ ︷︷ ︸

independent

, (3)

∂L
∂W1

= XT

(
∂L

∂Y1

)
=

︷ ︸︸ ︷
XT

(
∂L

∂Y2

)
WT

2 . (4)

The above equations illustrate that the weight update process in consecutive layers can be decom-
posed into two components: a correlated component (the blue part in Eqs. (3) and (4)) and an
independent component. This motivates us to represent the weight updates in adjacent layers in a
general form:

∆W1 = SWT
2 + P1, ∆W2 = WT

1 S + P2, (5)

where S is shared between layers, P1 and P2 are specific updates for each layer.

3.3 Correlated Low-Rank Adaptation

Similar to LoRA, the quantities S, P1, and P2 in Eq. (5) can be decomposed into low-rank matrices,
leading to the proposed CoLoRA formulation:

∆W1 = sAsBsW
T
2 + s1A1B1, ∆W2 = sWT

1 AsBs + s2A2B2, (6)

In this formulation, s1 and s2 are layer-specific scaling factors, while s is shared across layers. The
matrices As ∈ Rd×rs and Bs ∈ Rrs×d′′

are shared low-rank matrices with a rank of rs. Conversely,
A1 ∈ Rd×rl , B1 ∈ Rrl×d′

, and A2 ∈ Rd′×rl , B2 ∈ Rrl×d′′
are layer-specific low-rank matrices

with a rank of rl. Typically, we constrain r = rs + rl. The advantages of CoLoRA are at least three-
fold: first, it emulates the correlated updates of gradient descent for sequential layers as described
in Eqs. (3) and (4). Second, by explicitly incorporating pre-trained weights into the tuning update
in Eq. (6), it effectively guides the optimization direction compared to vanilla LoRA. Third, CoL-
oRA is potentially more parameter-efficient than vanilla LoRA. Specifically, LoRA requires a total
of r(d+2d′+d′′) parameters, whereas CoLoRA introduces rs(d+d′′)+rl(d+2d′+d′′) parameters,
yielding a saving of 2rsd′ trainable parameters. For instance, using a ConvNeXt backbone where
d′ = 4d = 4d′′, CoLoRA achieves a reduction of 8rsd parameters (40% when rs = d/2).

Scaling factor. For the independent updates outlined in Eq. (6), we find that the sexpect discussed
in section 3.1 is effective for both layers. Consequently, we utilize non-trainable scaling factors
defined as s1 = 1/

√
rl(σA1 + σB1) and s2 = 1/

√
rl(σA2 + σB2). However, when it comes to the

layer-sharing update, we notice that sexpect
2 can lead to divergent loss values when fine-tuning on

datasets with significant domain gaps, such as Retinopathy sub-task in the VTAB-1k [50] benchmark.
Therefore, we employ a variance-matching scaling factor svar, as defined in section 3.1, for the
shared low-rank matrices. Our experiments in image classification, object detection, and semantic
segmentation indicate that the configuration of these scaling factors facilitates a stable tuning process
while ensuring satisfactory performance.

2BsW
T
2 and WT

1 As in Eq. (6) denote alternative low-rank B and A matrices, respectively.
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3.4 Integrating CoLoRA into ConvNets

Our CoLoRA framework is designed to work effectively with every pair of adjacent layers. In this
section, we will detail the integration of CoLoRA into standard ConvNets. Specifically, we aim to
tackle two critical challenges: (1) the spatial issue of incorporating LoRA into convolutional kernels,
which refers to the detrimental gradients that can backpropagate from local irrelevant regions to the
LoRA weights, as illustrated in Figure 4, and (2) determining the proper locations for applying
CoLoRA within a ConvNet, such as a vanilla ResNet.

The spatial issue of LoRA in ConvNets. The convolution kernel, denoted as W ∈ Rd×d′×k×k(k >
1), consists of d input channels and d′ output channels and operates on local k × k regions. During
the forward pass of a ConvNet, the convolution kernel is applied across each local region in a sliding-
window fashion. Consequently, the gradients are backpropagated from all local k× k regions of the
output feature to the LoRA weights, as highlighted by the green and red boxes in Figure 4. How-
ever, many of these local regions may contain irrelevant information as underlined in the red boxes
in Figure 4. Gradients backwarded from such regions can interfere with the adaptation process.

Enlarging the receptive fields of the LoRA weights is a straightforward approach to reduce the im-
pact of irrelevant gradients [32]. However, implementing this naively can lead to an excessive num-
ber of tunable parameters, scaling as O(rdk2). In this section, we propose a refined edge-preserving
filtering technique that does not require any training. Given a feature map F ∈ RC×H×W , we
employ channel-wise filtering as follows:

F̃c,h,w =
1

Zc,h,w

∑
(δh,δw)∈Ω

ks(δh, δw)kr(Fc,h,w, Fc,h+δh,w+δw)Fc,h+δh,w+δw, (7)

LoRA weights

Pre-trained 

weights

+ ×

Irrelevant

regions with

noise

𝑊

harmful gradients
useful gradients

useful gradients
✗
✓

Filte
ring

✓

Figure 4: Spatial issues arising
from applying LoRA to convolution
kernels.

where ks(·, ·) represents a spatial filtering kernel, such as a
Gaussian kernel e−(δh2+δw2)/(2σ2

s) with variance σ2
s , which

can be computed in parallel across all spatial windows Ω. On
the other hand, kr(·, ·) denotes a range kernel, which typi-
cally cannot be processed in parallel. Drawing inspiration
from the work of [51], which uses a raised cosine function
for O(1) Bilateral filtering, we adopt a simple range kernel
defined as kr(x, y) = cos(γc(x− y)) = cos(γcx) cos(γcy) +
sin(γcx) sin(γcy). This formulation allows us to compute spa-
tial filtering on cos(γcF ) ⊙ F and sin(γcF ) ⊙ F to achieve
edge-preserving filtering that expands receptive fields while
suppressing noise within features. Further details are avail-
able in Appendix E. Note that γc is a channel-wise scaling
factor designed to constrain γc(Fc,h,w − Fc,h+δh,w+δw) ∈
[−π/2, π/2], ensuring that the range kernel applies greater weights to similar pixels, which helps
preserve distinct edges. Specifically, we calculate γc as π

2(maxFc−minFc+ϵ) , where ϵ = 10−5 is in-
troduced to avoid division by zero. In practice, we apply our filtering method to features compressed
by the low-rank matrix A to curtail the computational burden associated with this filtering technique.

Where to apply CoLoRA? We adapt CoLoRA to mimic the weight update behavior of two con-
secutive layers. ConvNets such as ResNet-50 [52], consist of numerous sequential convolutional
layers, and they are constructed from fundamental residual blocks. In this context, we implement
our CoLoRA within each residual block by pairing every two adjacent convolutional layers from the
bottom up, while using vanilla LoRA on the remaining layer that cannot be paired.

4 Experiments

Setup. We investigate the effectiveness of the proposed CoLoRA on two families of ConvNets:
ResNet [52] and the more contemporary ConvNeXt [17]. For fine-tuning these ConvNets on various
downstream tasks, we utilize the official ImageNet-22K pre-trained ResNet and ConvNeXt model
series. Our evaluation encompasses a range of vision tasks, including classification on the large-
scale visual adaptation benchmark VTAB-1k [50], object detection on the MS-COCO [53] dataset,
and segmentation on the ADE20K [20] benchmark. Notably, VTAB-1k comprises 19 tasks that span
a diverse array of categories, including seven NATURAL, four SPECIALIZED, and eight STRUC-

6



Table 1: Average top-1 accuracy on the VTAB-1k benchmark of three runs (See Appendix I for
details on standard deviation). The best results among PEFT methods are in bold.
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ResNet-50

FT 23.5M 89.49 30.82 64.41 89.35 84.43 31.00 82.51 85.31 91.83 80.94 73.82 43.27 55.21 45.67 80.18 41.93 80.59 26.54 48.21 64.50
Conv-Adapter [32] 1.4M 86.98 27.22 64.40 82.21 88.98 32.67 51.31 78.59 88.20 75.29 73.80 35.94 44.98 35.40 41.50 15.29 69.95 14.72 38.21 55.03
PiSSA [7] 1.2M 88.12 26.74 62.93 85.85 89.13 32.71 63.32 81.59 90.25 78.47 73.82 48.61 49.16 38.21 52.62 22.29 73.70 18.05 39.43 58.68
HiRA [22] 1.2M 87.00 27.97 63.99 82.39 89.20 32.28 53.31 79.07 89.10 75.42 73.85 40.98 46.69 35.10 45.70 16.94 71.31 13.53 44.05 56.20
CoLoRA (ours) 1.0M 89.12 29.98 62.82 87.51 88.87 32.38 75.31 82.60 92.16 81.08 74.30 54.04 53.95 42.05 76.42 37.18 79.98 22.58 48.81 63.74

ConvNeXt-S

FT 49.5M 91.33 65.60 74.17 98.74 90.36 49.02 92.30 87.95 95.98 85.98 76.83 91.06 66.58 55.10 92.75 62.41 83.88 39.96 46.91 76.15
Conv-Adapter 2.8M 90.94 68.52 75.37 99.12 91.13 49.91 90.35 85.75 94.89 84.04 75.30 87.82 66.06 48.68 94.11 61.30 85.04 37.29 49.14 75.51
PiSSA [7] 3.0M 90.93 69.22 75.62 99.06 91.29 51.96 90.27 85.79 95.45 85.56 75.56 91.51 67.04 51.35 94.47 61.47 82.79 37.24 49.15 76.09
HiRA 3.0M 90.71 70.85 76.30 99.27 92.12 53.56 86.39 84.29 94.85 84.91 75.85 79.64 63.95 47.33 79.60 56.35 82.32 25.85 42.13 72.96
CoLoRA (ours) 2.6M 91.60 66.34 75.00 98.89 90.43 49.94 92.08 87.51 96.00 85.95 77.13 91.71 65.57 54.59 92.94 62.28 83.82 40.71 48.95 76.39

TURED tasks. These benchmarks provide a comprehensive study for evaluating the proposed CoL-
oRA in comparison to state-of-the-art techniques. All experiments are conducted on NVIDIA A800
GPUs using the PyTorch [54] framework, supported by APEX [55] for mixed precision training.

We compare CoLoRA with several recent PEFT methods: 1) Conv-Adapter [32], which is specif-
ically designed for ConvNets and incorporates lightweight adapters into intermediate K × K con-
volution layers (K > 1). 2) PiSSA [7], which introduces an improved LoRA initialization scheme
by decomposing pre-trained weights into principal tunable components and frozen residual parts. 3)
HiRA [22], the latest high-rank tuning method, which constructs high-rank weight updates from low-
rank matrices using the Hadamard product, i.e., ∆W = W ⊙ (BA). To ensure a fair comparison,
we align the number of tunable parameters across different methods by adjusting the ranks of B and
A. Specifically, we define the rank r as r = C/γ, following [32], where C represents the channel
number and γ is a compression factor. Moreover, we adopt existing training-free LoRA merging
techniques [24, 56] to enhance the adaptation ability of CoLoRA. Further details on complexity
analysis and training configurations can be found in section 4.5, Appendix F, and Appendix H.

4.1 Evaluation on Vision Adaptation Benchmark

Ours

Figure 5: Evolution of segmenta-
tion mIoU with the 160k training
schedule.

We begin by examining the effectiveness of CoLoRA on the
VTAB-1k benchmark, utilizing ResNet-50 and ConvNeXt-S
as backbones. We set the compression factor to γ = 16 and
ensure that the ranks of the shared and layer-specific matri-
ces are equal, i.e., rs = rl. This configuration results in
approximately 1.0M trainable parameters for ResNet-50 and
2.6M for ConvNeXt-S, savings 0.2M and 0.4M parameters
compared to PiSSA and HiRA, respectively. The average top-
1 accuracy results from three runs are reported in Table 1,
where CoLoRA demonstrates the highest adaptation perfor-
mance among all PEFT methods. When using ResNet-50 as
the backbone, CoLoRA achieves average accuracy gains of
8.71%, 5.06%, and 7.54% over Conv-Adapter, PiSSA, and
HiRA, respectively. CoLoRA even surpasses full-tuning per-
formance with ConvNeXt-S, while recent methods experience
significant performance degradation. These results highlight
the considerable advantages of mimicking the correlation of
weight updates.

4.2 Comparison on Semantic Segmentation

We opt for ConvNeXt-S and ConvNeXt-B as backbones for our evaluations on semantic segmen-
tation. Following the mainstream 160k training schedule on ADE20K [20], we utilize the MM-
Segmentation [57] framework, employing UPerNet [58] for semantic prediction at a resolution of
512 × 512. The mean Intersection over Union (mIoU) metric is calculated using the default single-
scale regime. While a multi-scale evaluation paradigm can enhance mIoU, it also incurs a greater
computational burden. We denote the configuration with γ = 16 and rs = rl as CoLoRA, and
a stronger configuration with γ = 8 and rs = 4rl to reduce parameters as CoLoRA†. Further
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Table 2: Quantitative comparison of different PEFT methods on object detection (COCO) and se-
mantic segmentation (ADE20K) tasks. The best results are in bold.

Backbone Method #Param Object Detection (COCO) Semantic Segmentation
(ADE20K)

APbox@0.5 APbox@0.75 APbox APmask mIoU

ConvNeXt-S

FT 49.5M 70.0 52.5 47.5 43.0 49.87
Conv-Adapter [32] (CVPRW’24) 2.8M 65.7 45.5 41.9 39.3 46.51
PiSSA [7] (NeurIPS’24) 3.0M 65.8 45.8 41.8 39.6 46.56
HiRA [22] (ICLR’25) 3.0M 65.3 44.7 41.2 39.1 47.02
CoLoRA (ours) 2.6M 66.8 47.9 43.6 40.3 48.28

ConvNeXt-B

FT 87.6M 71.4 54.2 49.1 44.1 50.99
Conv-Adapter [32] (CVPRW’24) 6.3M 68.7 49.2 44.9 41.2 48.73
PiSSA [7] (NeurIPS’24) 5.3M 68.3 48.6 44.2 41.3 47.91
HiRA [22] (ICLR’25) 5.3M 67.6 47.6 43.5 40.8 48.41
CoLoRA (ours) 4.6M 69.9 51.8 47.0 42.9 49.55
CoLoRA† (ours) 5.7M 70.7 52.3 47.5 43.3 50.65

Table 3: Ablation studies on our contributions and designs. “Spatial Conv” denotes convolution
layers with kernel size larger than 1, while “Channel Conv” specifies the 1× 1 convolution layers.

Backbone Spatial Conv Channel Conv Correlated LoRA Merging LoRA mIoU

ConvNeXt-S

LoRA - 7 7 46.30
LoRA + Filtering - 7 7 47.04
LoRA + Filtering LoRA 7 7 47.14
LoRA + Filtering LoRA ✓ 7 48.00
LoRA + Filtering LoRA ✓ ✓ 48.28

details can be found in the Appendix H. A quantitative comparison is presented in Table 2, where
all recent PEFT methods, including Conv-Adapter, PiSSA, and HiRA, experience significant per-
formance degradation compared to the full-tuning scenario. Notably, our CoLoRA demonstrates
an improvement of 1.26 and 0.82 mIoU over the previous best methods with ConvNeXt-S and
ConvNeXt-B backbones, respectively. Additionally, our CoLoRA†, with slight 1.1M extra param-
eters, achieves an mIoU of 50.65, surpassing the current top-performing method by 1.92 mIoU,
almost comparable to full-tuning. Remarkably, we achieve 51.13 mIoU with only 19M tunable pa-
rameters (γ = 4, rs = 2/3rl), thereby slightly outperforming full-tuning by an impressive 0.14
mIoU gap. More results are available in the Appendix J. These findings underscore the superior-
ity of our CoLoRA and its considerable potential to match or even exceed full-tuning performance.
Figure 5 illustrates the evolution of mIoU throughout the entire tuning process of various methods us-
ing ConvNeXt-S. Our CoLoRA consistently achieves higher mIoU during the entire tuning process,
indicating superior convergence compared to other methods.

4.3 Experiments on Object Detection
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Figure 6: Investigation of the di-
mension compression factor.

In this section, we present experiments on object detection uti-
lizing the standard Faster R-CNN framework [59]. We select
ConvNeXt-S and ConvNeXt-B as our backbone architectures.
All methods are implemented within the MMDetection frame-
work [60], adhering to a standard 1x schedule over 12 epochs.
As in section 4.2, we train two variants of the proposed method:
CoLoRA and CoLoRA†. The performance metrics include
APemail1 , APemail2 , APbox, and APmask, as detailed in Table 2. Typ-
ically, we adopt a single-scale evaluation regime for metric com-
putation. From Table 2, it is evident that Conv-Adapter, PiSSA,
and HiRA experience significant performance degradation com-
pared to full tuning. For instance, using ConvNeXt-B as the
backbone, the high-rank tuning method, HiRA, shows a decline
of 5.6 in APbox. Even with a more effective LoRA initialization,
PiSSA fails to deliver satisfactory performance. Conversely, in-
corporating adapters into convolution layers, specifically Conv-
Adapter, yields only marginal improvements over PiSSA and HiRA. In contrast, our CoLoRA results
in a notable enhancement in performance. Particularly, CoLoRA† achieves a 2.6 APbox gain over the
best-performing method, Conv-Adapter, while also reducing the parameter count by 0.6M. These
findings underscore the significance of emulating correlated weight updates in fine-tuning ConvNets.
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4.4 Extend CoLoRA to Vision Transformer on Fine-grained Classification

We further extend the proposed CoLoRA framework to the Vision Transformer (ViT) architecture
by fine-tuning a pre-trained ViT-B model initialized with MAE [3]. The results, summarized in Ta-
ble 4, present top-1 accuracies on two fine-grained classification benchmarks, CUB-200-2011 [61]
and FGVC-Aircraft [62]. As shown, CoLoRA consistently outperforms PiSSA and HiRA, demon-
strating superior adaptability within transformer-based architectures.

4.5 Complexity Analysis

Table 4: Quantitative results of tuning a ViT-
B backbone on two fine-grained classification
benchmarks, CUB-200-2011 and FGVC-Aircraft.

Datasets FT PiSSA HiRA CoLoRA

CUB-200-2011 79.24 74.70 51.97 75.61
FGVC-Aircraft 79.30 72.40 34.32 72.79

To mitigate the computational overhead intro-
duced by the filtering strategy in Eq. (7), we
apply torch.jit.script for operator-level
optimization and omit gradient computations
from the trigonometric kernels in Eq. (7) to sim-
plify the backward pass. A comprehensive com-
plexity analysis comparing PiSSA, HiRA, and
CoLoRA is presented in Table 5. All LoRA-
based variants demonstrate reduced training
memory consumption and shorter training time
compared to full fine-tuning (FT). Notably, the additional cost introduced by the bilateral filtering
module is negligible (e.g., 1.509s vs. 1.527s per iteration). It is also observed that, under mixed-
precision training, removing the filtering module may slightly increase GPU memory usage due to
precision conversion overhead. During inference, the weight-merging property of LoRA ensures
identical runtime across all variants, indicating that the filtering mechanism in CoLoRA does not
compromise inference efficiency. Collectively, these observations validate the computational effi-
ciency and practical feasibility of the optimized CoLoRA framework.

Table 5: Training and inference complexity analysis of the proposed CoLoRA, evaluated on the
MS-COCO dataset using a ConvNeXt-S backbone.

Methods FT PiSSA HiRA CoLoRA CoLoRA
(w/o filtering)

Training GPU memory (MiB) 18418 14648 14536 15042 16488
Per-step training time (s) 1.747 1.426 1.501 1.527 1.509

Inference time (s) 0.108 0.108 0.108 0.108 0.108

4.6 Ablation Studies

In this section, we perform ablation studies to validate the effectiveness of our contributions and
designs. All experiments are conducted using the ADE20K semantic segmentation benchmark, fea-
turing ConvNeXt-S as our backbone. We use ConvNeXt-S with LoRA applied exclusively to the
depth convolution layers as our baseline, as suggested by a recent study [32].

Does filtering improve performance? We incorporate our filtering method detailed in Eq. (7) into
the baseline. As indicated in Table 3, this adjustment increases the mIoU from 46.30 to 47.04,
yielding a gain of 0.74 mIoU. This finding demonstrates that expanding the receptive field of LoRA
weights positively influences the tuning of ConvNets.

Where should low-rank adaptation be applied? Recently, Conv-Adapter [32] proposed tuning
solely the spatial convolution layers while leaving the 1× 1 convolution layers untouched. Notably,
adjacent 1×1 convolution layers operate as an inverted bottleneck design within the ConvNeXt [17]
architecture. This design through MobileNetV2 [18] has been widely explored in advanced Con-
vNets [19, 63]. We hypothesize that tuning the 1 × 1 convolution layers could yield additional
performance gains. However, as illustrated in Table 3, applying LoRA to these layers results in only
a modest 0.1 mIoU improvement, which aligns with the results of Conv-Adapter. To explore this
contradiction further, we conducted a full tuning of all 1 × 1 convolution layers in ConvNeXt-S
while keeping the other layers frozen. This configuration achieves an mIoU of 50.45, exceeding the
performance of full-tuning (49.87 in Table 2). Hence, we conclude that the 1 × 1 convolution lay-
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ers exhibit significant potential for tuning. However, this potential cannot be effectively harnessed
through layer-independent LoRA or adapters.

Impact of correlated weight updates. We show that the potential of the inverted bottleneck can
be effectively harnessed through the proposed correlated weight update method (as detailed in sec-
tion 3.3). As shown in Table 3, we improve the mean mIoU from 47.14 to 48.00 using the correlated
LoRA update. We achieve an impressive mIoU of 50.65 while only tuning 5.7M parameters, out-
performing the Conv-Adapter, which still lags behind full-tuning despite having approximately 50%
more tunable parameters (39.40M; refer to [32] for further details).

Impact of Periodically Merging LoRA Weights. Figure 1 illustrates that tuning pre-trained mod-
els for downstream tasks closely resembles a nearly full-rank learning process. In this study, we
leverage the current LoRA merging technique [24] to enhance the rank of ∆W . Specifically, we
periodically merge the weight updates computed via Eq. (6) into the pre-trained weights,and subse-
quently re-initialize the LoRA matrices. Following the suggestions of [24], we reset the optimizer
and implement a restart warmup schedule to stabilize the tuning process. This approach yields a
noticeable improvement of 0.28 mIoU on ConvNeXt-S, as depicted in Table 3.

Analysis on various dimension compression factors. We analyze the effect of the compression
factor, γ. A smaller value of γ generally results in higher-rank weight updates with an increased
number of tunable parameters. Figure 6 visualizes the ratio of tunable parameters alongside the
mIoU metric for different γ. Notably, full-rank tuning can be achieved with a tunable parameter
ratio of 75% (< 1) due to the phenomenon of parameter sharing. Empirically, this full-rank tuning
yields a segmentation mIoU of 49.5, which is comparable to the full-tuning. Furthermore, even at
a compression factor of γ = 32, the proposed CoLoRA framework surpasses the performance of
Conv-Adapter by a margin of 1.67 mIoU, despite utilizing only 1.4M tunable parameters, which is
less than half of the parameters for Conv-Adapter. When progressively reducing γ from 32 to 8, we
consistently observe an increase in mIoU from 48.2 to 48.8. Moreover, maintaining γ within the
range of [1, 32] systematically results in enhanced convergence when compared to state-of-the-art
methods as shown in Figure 5.

Table 6: Effect of rs.

rs
rs+rl

0 50% 1

mIoU 47.14 48.28 47.60

Analysis on the rank of As and Bs. We explore how perfor-
mance metrics vary under different correlation strengths as delin-
eated in Eq. (6). For our experiments, we maintain a fixed compres-
sion factor at γ = 16 while modifying the ratio rs

rs+rl
. An increase in

this ratio signifies a stronger correlation. As demonstrated in Table 6,
we identify that the exclusive correlation of LoRA updates produces
a mean mIoU of 47.60. The optimal mIoU is attainable through the
combined application of both correlated and layer-specific LoRA updates, as this strategy effectively
emulates the gradient behavior outlined in Eq. (4).

5 Conclusion

This paper presents CoLoRA, an innovative and highly PEFT methodology designed for the adap-
tation of pre-trained ConvNets across a variety of downstream applications. Rather than solely
incorporating independent LoRA to each layer in ConvNets, the proposed method focuses on em-
ulating the correlated weight update behavior between adjacent layers. In addition, we introduce
a parameter-free filtering strategy aimed at the seamless integration of correlated weight updates
within ConvNets. Through extensive experiments encompassing large-scale classification, semantic
segmentation, and object detection, we demonstrate that CoLoRA significantly outperforms existing
PEFT approaches.

6 Limitations

Despite its effectiveness, CoLoRA still has several limitations. First, this work primarily focuses
on adapting pre-trained vision backbones for various downstream vision tasks, leaving its poten-
tial on emerging vision-language model-based perception tasks, such as visual question answering
and visual grounding unexplored. In addition, this study mainly investigates 2D vision scenarios.
Extending CoLoRA to 3D domains may introduce new challenges and opportunities, further broad-
ening the scope and impact of this research.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contributions are briefly discussed in the Abstract, and then carefully
elaborated in Section 1. Both the Abstract and Section 1 precisely articulate the scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: Please see Section 6 for details on the limitations. We also include a complex-
ity analysis in section 4.5 and Appendix F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Please refer to Sections 3.2 and 3.3 for assumptions and theoretical results for
the proposed correlated low-rank adaptation. Please see Section 3.4 for theoretical results
on the proposed filtering technique. Sections A and E include details of theoretical proof
and derivation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: We use the publicly-accessable datasets VTAB-1k [50], MS-COCO [53] and
ADE20K [20]. In Section 4, we carefully present the settings of our CoLoRA, as well as
compared methods. In Section H, we provide details of model architecture, optimizer, learn-
ing rate scheduler, etc. The code is available at https://github.com/VISION-SJTU/
CoLoRA.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our experiments are based on publicly-accessable datasets VTAB-1k [50],
MS-COCO [53] and ADE20K [20]. Notably, we implement all methods under the public
MM-classification, MM-segmentation, and MM-detection framework. We have provided
the detailed configuration of these methods in Sections G and H. Our code is available at
https://github.com/VISION-SJTU/CoLoRA.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Sections 4, G and H for experimental settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: As stated in Section 4.1, we run all methods on VTAB-1k three times. We
report the standard deviation concerning the top-1 accuracy in Section I. We do not report
the standard deviation results on ADE20K and MS-COCO datasets considering resource
limitations. In practice, fine-tuning Convnext-S / ConvNext-B on ADE20K requires one
NVIDIA A800 GPU and about two days for training. Furthermore, fine-tuning ConvNext-
S / ConvNext-B on MS-COCO requires two NVIDIA A800 GPUs and about 2.5 days for
training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please find details in Sections 4 and H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We only use publicly available datasets and models. We believe that there
exists no societal impact in this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We only use publicly available datasets and models. Also, we do not foresee
any high risk of misuse of this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credited them in appropriate ways. We carefully cite the original papers
that produced the datasets in Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
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Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components. We only use LLM such as GPT-4 for
grammar checking and expression re-writing to make the paper easily understood.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Proof of Lemma 3.1

Suppose all elements in A ∈ Rd×r are i.i.d., initialized with the uniform distribution U(−a, a).
Typically, we have E[Aij ] = 0 and Var[Aij ] = E[A2

ij ] =
1
3a

2. Notably, we have σ2
Aij

= 1
3a

2.
Denote the matrix multiplication result as T = AAT ; then we can calculate

E[Tij ] = E[
r∑

k=1

AikAjk] =

r∑
k=1

E[AikAjk] =

{
0 i ̸= j,

rσ2
A. else

(8)

Therefore, we have E[AAT ] = rσ2
AId, where Id denotes the d×d identity matrix. Next, we analyze

the variance of the elements in T . For the off-diagonal elements of T , we have

Var[Tij ] =

r∑
k=1

E[A2
ikA

2
jk] = rσ4

A, s.t., i ̸= j. (9)

For the diagonal elements, we have

Var[Tii] =

r∑
k=1

E[A4
ik]− E[A2

ik]
2 =

4

5
rσ4

A, (10)

where we can compute E[A4
ik] =

1
a

∫ a

0
x4dx = 1

5a
4 = 9

5σ
4
A. Summarizing the above results, we

obtain the variance of AAT as

Var[Tij ] =

{
rσ4

A i ̸= j,
4
5rσ

4
A else.

(11)

In this paper, we approximate Var[T ] ≈ rσ4
A1d, where 1d means a d × d matrix with all elements

being 1. The approximation error in terms of the Frobenius norm can be formed as

Err = ||Var[T ]− rσ4
A1d||2F =

1

25
r2dσ8

A. (12)

Note that with kaiming_uniform initialization where a ∝ 1/
√
d, the approximation error Err ∝

r2/d3. Hence, we have
Err

||Var[T ]||2F
≈ 1

25

r2/d3

d2r2/d4
=

1

25d
. (13)

It is evident that Err/||Var[T ]||2f is independent of the rank r and is inversely proportional to the
channel dimension d. When d is large (e.g., 96, 192, 384, 768 for ConvNeXt-B), we can approximate
Var[AAT ] ≈ rσ4

A with a maximum relative error of 1/(25× 96) ≈ 0.04%.

B Tuning with Various LoRA Ranks

To provide a more rigorous justification for the high-rank tuning strategy of LoRA, we conduct
experiments by fine-tuning ConvNeXt-B using PiSSA under varying ranks. For convolutional net-
works, the rank is parameterized by a channel compression factor γ, where r = d/γ and d denotes
the number of channels.

Table 7: Tuning ConvNeXt-B on ADE20K with
different ranks of PiSSA.

γ 1 2 4 8 20

#Params (tunable) 104.8M 52.5M 26.3M 13.2M 5.3M
Param ratio (tunable) 120% 60% 30% 15% 6%
mIoU 50.1 50.6 49.9 49.1 47.6

Notably, γ = 1 corresponds to full-rank adap-
tation. It is worth mentioning that LoRA intro-
duces over-parameterization when r = 1 due
to the decomposition ∆W = sBA, resulting
in more trainable parameters than the original
full-rank weight. Quantitative results are sum-
marized in Table 7. Specifically, performance
peaks at r = 2, while both under- and over-
parameterization lead to degradation. Increas-
ing γ consistently reduces mIoU from 50.6 to 47.6. These findings validate that independent LoRA
tuning on ConvNeXt-B benefits from high-rank adaptation, whereas performance deteriorates under
tight parameter constraints. This analysis will be incorporated into the revised manuscript to further
substantiate our argument.
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Figure 7: CKA analysis for ConvNeXt-B and ViT-B/16. (a) shows CKA similarities among all 36
blocks. (b) presents CKA similarties among all 36 pwconv1 and pwconv2 layers. (c) examines
CKA similarities among all 12 blocks within ViT-B/16.

C More Evidence on Weight Update Correlation in ConvNets

In this section, we provide additional evidence to investigate the correlation between adjacent convo-
lution layers. Specifically, we select the ConvNeXt backbone and examine the correlation between
the adjacent pwconv1 and pwconv2 layers. We denote their convolution weights as W1 and W2,
respectively. To demonstrate that the updates of W1 and W2 are highly correlated, we compute ∆W
by subtracting the old weight Wold from the new weight Wnew, i.e., ∆W = Wnew −Wold. Typically,
Wold and Wnew correspond to the weights saved from the previous and current epochs, respectively.
For ADE20K, model weights are checkpointed every 16K iterations, while for MS-COCO, weights
are saved after every epoch.

Since both W1 and W2 exhibit full-rank update behavior, we assess their correlation by computing
the mean of the singular values of ∆W1 and ∆W2. If their mean singular values exhibit similar
trends throughout the fine-tuning process, it indicates that the update weight matrices for W1 and
W2 are highly correlated.

Figure 8 presents the mean singular values of ∆W1 and ∆W2 throughout the fine-tuning process
on ADE20K. Specifically, we analyze the weights of the pwconv1 and pwconv2 layers across all
residual blocks in ConvNeXt-B. It can be observed that nearly all adjacent pwconv1 and pwconv2
layers exhibit strong correlation in their update behavior.

Figure 9 shows the mean singular values of ∆W1 and ∆W2 throughout the fine-tuning process on
MS-COCO. Specifically, we analyze the weights of the pwconv1 and pwconv2 layers across all
residual blocks in ConvNeXt-S. It can be observed that nearly all adjacent pwconv1 and pwconv2
layers exhibit strong correlation. The sharp drop in mean singular values is attributed to the learning
rate scaling in the standard 1× schedule. The results in Figures 8 and 9 collectively demonstrate that
adjacent convolution layers exhibit high correlation during fine-tuning on downstream tasks such as
semantic segmentation and object detection.

D Centered Kernel Alignment Analysis

In this section, we further investigate the correlation between adjacent layers or blocks within Con-
vNets and ViTs. We employ the Centered Kernel Alignment (CKA) metric [64] to quantify the
similarity between specific layer or block pairs. The CKA metric offers the following advantages:

• CKA is invariant to orthogonal transformations and scaling.

• CKA remains applicable even when the compared features have different dimensionalities,
whereas metrics such as the Frobenius inner product cannot be used in such cases.

• CKA has been widely adopted to analyze the representational behaviors of ConvNets and
Vision Transformers (ViTs) [21].

We first select a pre-trained ConvNeXt-B model consisting of 36 convolutional blocks. As shown
in Figure 7(a), the CKA scores across all blocks reveal that long-range block pairs exhibit lower
similarity, whereas adjacent blocks consistently show higher similarity. This indicates that nearby
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Figure 8: Correlation between pwconv1 and pwconv2 layers in all 36 residual blocks. We fully
fine-tune the pre-trained ConvNeXt-B on ADE20K.

convolutional blocks are strongly correlated. Furthermore, we employ CKA to analyze the similarity
between two adjacent convolutional layers pwconv1 and pwconv2 as illustrated in Figure 7(b). The
results show that these paired layers exhibit high similarity, suggesting strong correlation between
adjacent convolutional layers. Based on these findings, we infer that such inter-layer correlations
persist during downstream fine-tuning as well.

We extend the CKA to a pre-trained ViT-B/16 model and provide the result in Figure 7(c). It is
obvious that the correlation strength within Transformer blocks are weaker than convolution blocks,
suggesting lower correlation strength at the fine-tuning process.

E Details of Filtering-based Strategy

We first recall in Section 3.4 that the filtering process can be formulated as

F̃c,h,w =
1

Zc,h,w

∑
(δh,δw)∈Ω

ks(δh, δw)kr(Fc,h,w, Fc,h+δh,w+δw)Fc,h+δh,w+δw, (14)

where ks(δh, δw) denotes a spatial kernel, whereas kr(Fc,h,w, Fc,h+δh,w+δw) represents a range
kernel in the context of image filtering. Without the range kernel kr, the above Eq. (14) can be
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Figure 9: Correlation between pwconv1 and pwconv2 layers in all 36 residual blocks. We fully
fine-tune the pre-trained ConvNeXt-S on MS-COCO.

simplified as

F̃c,h,w =
1

Zc,h,w

∑
(δh,δw)∈Ω

ks(δh, δw)Fc,h+δh,w+δw =

[
Conv(

ks
Zc

, Fc)

]
h,w

, (15)

where the normalization factor Zc =
∑

δh,δw ks(δh, δw) is spatially invariant. Conv(K,X) means a
convolution operation on X utilizing a kernel K. Eq. (15) indicates that a channel-wise filtering on
deep features can be expressed as a depthwise convolution operation, which can be rapidly computed
with the help of existing algorithm.

However, with the range kernel kr(·, ·), Eq. (14) requires a double-loop process through all (h,w)
coordinates. In this paper, we utilize a special range kernel kr(x, y) = cos(γc(x − y)) =
cos(γcx) cos(γcy) + sin(γcx) sin(γcy), where γc is a constant to constrain that γc(x − y) ∈
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[−π/2, π/2]. Incorporating this range kernel into Eq. (14), we derive

F̃c,h,w =
1

Zc,h,w

∑
(δh,δw)∈Ω

ks(δh, δw)kr(Fc,h,w, Fc,h+δh,w+δw)Fc,h+δh,w+δw,

=
1

Zc,h,w

∑
(δh,δw)∈Ω

ks(δh, δw) cos γcFc,h,w cos γcFc,h+δh,w+δwFc,h+δh,w+δw

+
1

Zc,h,w

∑
(δh,δw)∈Ω

ks(δh, δw) sin γcFc,h,w sin γcFc,h+δh,w+δwFc,h+δh,w+δw

=
[cos γcF ⊙ Conv(ks, cos γcF ⊙ F )]h,w + [sin γcF ⊙ Conv(ks, sin γcF ⊙ F )]h,w

Zc,h,w
, (16)

where the ⊙ means the element-wise multiplication. Specifically, the normalization factor is

Zc,h,w =
∑

(δh,δw)∈Ω

ks(δh, δw) cos γcFc,h,w cos γcFc,h+δh,w+δw

+
∑

(δh,δw)∈Ω

ks(δh, δw) sin γcFc,h,w sin γcFc,h+δh,w+δw

= [cos γcF ⊙ Conv(ks, cos γcF ) + sin γcF ⊙ Conv(ks, sin γcF )]h,w . (17)

Combining Eqs. (16) and (17), we obtain the final simplified form of Eq. (14) as follows:

F̃c =
cos γcF ⊙ Conv(ks, cos γcF ⊙ F ) + sin γcF ⊙ Conv(ks, sin γcF ⊙ F )

cos γcF ⊙ Conv(ks, cos γcF ) + sin γcF ⊙ Conv(ks, sin γcF ) + ϵ
, (18)

where we set ϵ = 10−5 to avoid division by zero. As shown in Eq. (18), only four depthwise
convolution operations are required to compute Eq. (14), eliminating the need for time-consuming
for-loops. For implementation, we employ a fixed Gaussian spatial kernel ks with a window size of
11 and a standard deviation of σ = 1.0. Consequently, Eq. (18) contains no trainable parameters,
and gradients need not be computed for this filtering process.

Table 8: Complexity analysis of different LoRA methods. Here, r denotes the rank of matrices A and
B, #Params represents the number of trainable parameters in LoRA matrices, and FLOPs measure
the computational complexity of LoRA modulation during both training and inference phases.

Method Rank r #Params FLOPs (train) FLOPs (inference)

LoRA r r(d+ 2d′ + d′′) (hwd′ + rd′ + d′)(d+ d′′) hwd′(d+ d′′)
PiSSA r r(d+ 2d′ + d′′) (hwd′ + rd′ + d′)(d+ d′′) hwd′(d+ d′′)
HiRA r r(d+ 2d′ + d′′) (hwd′ + rd′ + 2d′)(d+ d′′) hwd′(d+ d′′)

CoLoRA (ours) rl + rs = r r(d+ d′′) + 2rld
′ (hwd′ + rd′ + 2d′ + rsd

′)(d+ d′′) hwd′(d+ d′′)

F Computational Complexity Analysis

The computational complexity of CoLoRA stems from both the proposed correlated low-rank adap-
tation process and the filtering technique.

Complexity of correlated low-rank adaptation. We analyze the complexity of two sequential
1 × 1 convolutional layers as described in Section 3. This analysis can be extended to arbitrary
convolution layers. Consider an input feature X ∈ Rhw×d (with spatial dimensions rearranged for
simplicity), where d denotes the channel dimension and h,w represent its spatial resolution. The
feature X is processed by two weight matrices W1 ∈ Rd×d′

and W2 ∈ Rd′×d′′
. For clarity, we omit

the analysis of bias terms as they are independent of LoRA. The vanilla LoRA modifies the feature
X through

Y1 = X(W1 + s1A1B1), (19)
Y2 = Y1(W2 + s2A2B2), (20)
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where A1 ∈ Rd×r, B1 ∈ Rr×d′
, A2 ∈ Rd′×r, and B2 ∈ Rr×d′′

are low-rank matrices with
rank r, while s1 and s2 denote scaling factors. We contend that such layer-independent LoRA
formulations fail to capture inter-layer correlations, which are particularly crucial for effectively fine-
tuning convolutional networks. To overcome this limitation, we propose CoLoRA, which transforms
the feature X through

Y1 = X(W1 + s1A1B1 + sAsBsW
T
2 ) (21)

Y2 = Y1(W2 + s2A2B2 + sWT
1 AsBs), (22)

where we incorporate shared low-rank matrices As ∈ Rd×rs and Bs ∈ Rrs×d′′
to explicitly model

correlations between adjacent layers. To efficiently compute AsBsW
T
2 in Eq. (22), we first compute

C = BsW
T
2 followed by the product AsC, leveraging the low-rank property rs ≪ min{d, d′, d′′}.

The computation of WT
1 AsBs follows an analogous procedure. Table 8 compares the computational

complexity of LoRA, PiSSA, HiRA, and our proposed CoLoRA.

During training, CoLoRA introduces an additional computational cost of rsd′(d+ d′′) FLOPs com-
pared to existing HiRA methods. Note that since rs ≪ min{hw, d, d′, d′′}, this overhead is negligi-
ble in practice. Furthermore, due to CoLoRA’s weight decomposition formulation, we can directly
incorporate the weight update matrices into the base weights W1 and W2 after training completion.
Consequently, CoLoRA introduces no additional computational overhead during inference.

Complexity of filtering technique. As demonstrated in Eq. (18), the filtering operation can be
efficiently implemented using four depthwise convolutions. To optimize computational efficiency,
we apply the filtering process exclusively to features compressed by the LoRA matrix A. This design
yields an overall computational complexity of O(hwk2r), where k denotes the window size (k = 11
in our implementation).

G Details of Selected Pre-trained Backbones

In Table 9, we present the specifications of the pre-trained ConvNets backbones used in our study.

Table 9: Details of selected pre-trained backbones in this paper.
Backbones Pre-train dataset #Params Feature dim. Public url

ResNet-50 ImageNet-1K 23.5M 2048 https://docs.pytorch.org/vision/main/models.html (v2)
ConvNeXt-S ImageNet-22K 49.5M 768 https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_1k_384.pth
ConvNeXt-B ImageNet-22K 87.6M 1024 https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth

H Training Configurations

We conduct experiments by training ResNet-50, ConvNeXt-S, and ConvNeXt-B models on mul-
tiple downstream vision tasks. The detailed training configurations are provided in this sec-
tion. The basic experimental configurations employed in our study are summarized in Tables 10
and 11. Notably, our implementation follows the official configurations from https://github.
com/facebookresearch/ConvNeXt.

Basic configuration. The baseline configuration employs consistent hyperparameters across dif-
ferent downstream tasks and PEFT methods (with potential exceptions for MS-COCO, as detailed
below). Tables 10 and 11 present the complete specifications of baseline hyperparameters and train-
ing configurations.

Training configuration on VTAB-1k. For VTAB-1k classification tasks, our processing pipeline
consists of a Global Average Pooling (GAP) layer, followed by normalization and a linear classi-
fier head. We optimize the models using standard cross-entropy loss. Each VTAB-1k sub-task is
fine-tuned with a batch size of 32 for 100 epochs. In addition to the trainable low-rank matrices,
we optimize all bias terms and normalization layers in the backbone network. Unlike existing ap-
proaches such as Conv-Adapter that perform grid search to identify optimal hyperparameters for
individual sub-tasks, we maintain consistent hyperparameter settings across all sub-tasks. The spe-
cific configurations for each PEFT method are detailed below:
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Table 10: Basic configuration for ResNet-50.
Hyper-parameter Setting

Optimizer AdamW
Learning rate 1e-4
Weight decay 0.05

Layer weight decay Number of layers is 16. Decay rate is 0.99
Linear warmup 1500 steps with ratio 1e-6

Mixed precision training APEX

Table 11: Basic configuration for ConvNeXt (ConvNeXt-S and ConvNeXt-B).
Hyper-parameter Setting

Optimizer AdamW
Learning rate 1e-4
Weight decay 0.05

Stage-wise decay Number of stages is 4. Decay rate is 0.9
Linear warmup 1500 steps with ratio 1e-6

Mixed precision training APEX

• Conv-Adapter. We utilize the official Conv-Adapter implementation from https://
github.com/Hhhhhhao/Conv-Adapter. As Conv-Adapter exclusively applies trainable
adapters to spatial convolution layers with kernel sizes greater than 1, we set its channel
compression factor to γ = 4 to maintain parameter count comparability with other methods.
This configuration results in Conv-Adapter having the highest rank among all compared
methods’ low-rank matrices.

• PiSSA. We employ the official PiSSA implementation from https://github.com/
GraphPKU/PiSSA. PiSSA is applied to all 1×1 convolutional layers, as directly reshaping
convolution kernels from shape [C_out, C_in, k, k] to [C_out, C_in*k^2] for stan-
dard LoRA application would compromise the network’s inherent inductive bias. In prac-
tice, we set γ = 20 to maintain parameter count consistency with other methods. Following
established LoRA practices, we use a default scaling factor configuration of α/r = 2 as
recommended in recent literature.

• HiRA. We adapt the official HiRA implementation from https://github.com/
hqsiswiliam/hira for convolutional networks. Following the same approach as with
PiSSA, we restrict HiRA application exclusively to 1×1 convolutional layers. To maintain
parameter count consistency, we set γ = 20 and utilize the theoretically derived scaling
factors sexpect presented in Section 3.1.

Training configuration on ADE20K. For ADE20K segmentation, we employ both a primary de-
coder head and an auxiliary head. The primary decoder head is optimized using cross-entropy loss
(weight = 1.0) and incorporates deep features from all four network stages in both ResNet-50 and
ConvNeXt architectures. In contrast, the auxiliary head employs only third-stage features and is
trained with a reduced cross-entropy loss weight of 0.4.

For both full fine-tuning and PEFT approaches, we employ the standard 160k iteration schedule. Us-
ing a batch size of 16, we perform evaluations at 16k-iteration intervals. In addition to the introduced
trainable low-rank matrices, we optimize all bias terms and normalization layers. The PEFT method
configurations for ADE20K segmentation remain identical to those used for VTAB-1k classification.

Training configuration on MS-COCO. We conduct object detection experiments using the Faster
R-CNN framework, adopting the configuration from https://github.com/SwinTransformer/
Swin-Transformer-Object-Detection/tree/master/configs/_base_/models.
Our implementation differs from Table 11 in three key aspects: (1) a learning rate of
2 × 10−4, (2) a standard 500-iteration warmup period, and (3) a batch size of 16 dis-
tributed across two NVIDIA A800 GPUs. Following the standard 1x training schedule
(https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/
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Table 12: Average top-1 accuracy on the VTAB-1k NATURAL benchmark across three independent
runs. The highest-performing PEFT method for each task is highlighted in bold.

Backbone Method #Param Caltech101 CIFAR-100 DTD Flowers102 Pets Sun397 SVHN Average

ResNet-50

FT 23.5M 89.49±0.19 30.82±0.16 64.41±0.67 89.35±0.34 84.43±0.46 31.00±0.17 82.51±0.03 67.43±0.29
Conv-Adapter [32] 1.4M 86.98±0.13 27.22±0.32 64.40±0.59 82.21±0.19 88.98±0.08 32.67±0.06 51.31±0.78 61.97±0.31
PiSSA [7] 1.2M 88.12±0.26 26.74±0.49 62.93±0.15 85.85±0.91 89.13±0.05 32.71±0.27 63.32±0.30 64.11±0.35
HiRA [22] 1.2M 87.00±0.18 27.97±0.07 63.99±0.30 82.39±0.26 89.20±0.14 32.28±0.14 53.31±0.64 62.31±0.25
CoLoRA (ours) 1.0M 89.12±0.24 29.98±0.48 62.82±0.74 87.51±0.25 88.87±0.45 32.38±0.57 75.31±0.78 66.57±0.50

ConvNeXt-S

FT 49.5M 91.33±0.55 65.60±0.32 74.17±0.05 98.74±0.10 90.36±0.22 49.02±0.19 92.30±0.13 80.22±0.22
Conv-Adapter [32] 2.8M 90.94±0.45 68.52±0.36 75.37±0.40 99.12±0.07 91.13±0.09 49.91±0.06 90.35±0.36 80.76±0.26
PiSSA [7] 3.0M 90.93±0.12 69.22±0.40 75.62±0.10 99.06±0.04 91.29±0.16 51.96±0.29 90.27±0.29 81.19±0.20
HiRA [22] 3.0M 90.71±0.24 70.85±0.20 76.30±0.11 99.27±0.00 92.12±0.07 53.56±0.14 86.39±0.10 81.31±0.12
CoLoRA (ours) 2.6M 91.60±0.11 66.34±0.55 75.00±0.60 98.89±0.06 90.43±0.27 49.94±0.33 92.08±0.21 80.61±0.31

Table 13: Average top-1 classification accuracy on the VTAB-1k SPECIALIZED benchmark across
three experimental trials. Top-performing PEFT methods are indicated in bold.

Backbone Method #Param Camelyon EuroSAT Resisc45 Retinopathy Average

ResNet-50

FT 23.5M 85.31±0.61 91.83±0.34 80.94±0.11 73.82±0.20 82.98±0.35
Conv-Adapter [32] 1.4M 78.59±0.28 88.20±0.44 75.29±0.23 73.80±0.06 78.97±0.25
PiSSA [7] 1.2M 81.59±0.58 90.25±0.55 78.47±0.56 73.82±0.15 81.03±0.46
HiRA [22] 1.2M 79.07±0.10 89.10±0.03 75.42±0.11 73.85±0.02 79.36±0.07
CoLoRA (ours) 1.0M 82.60±0.58 92.16±0.20 81.08±0.26 74.30±0.19 82.54±0.31

ConvNeXt-S

FT 49.5M 87.95±0.45 95.98±0.06 85.98±0.75 76.83±0.27 86.69±0.38
Conv-Adapter [32] 2.8M 85.75±0.75 94.89±0.16 84.04±0.24 75.30±0.22 84.99±0.34
PiSSA [7] 3.0M 85.79±0.07 95.45±0.09 85.56±0.15 75.56±0.26 85.59±0.14
HiRA [22] 3.0M 84.29±0.20 94.85±0.07 84.91±0.06 75.85±0.12 84.97±0.11
CoLoRA (ours) 2.6M 87.51±0.07 96.00±0.12 85.95±0.15 77.13±0.12 86.65±0.11

master/configs/_base_/schedules/schedule_1x.py), we train models on MS-COCO
for 12 epochs with learning rate adjustments at the 8th and 11th epochs. The PEFT method
configurations for object detection remain consistent with those used for VTAB-1k classification
and ADE20K segmentation.

I More Details on VTAB-1k Benchmark

We present comprehensive quantitative results on the VTAB-1k benchmark, including the average
top-1 accuracy and its standard deviation in Tables 12 to 14. All methods were evaluated on VTAB-
1k across three independent runs. Notably, the proposed CoLoRA significantly outperforms existing
PEFT methods in the NATURAL, SPECIALIZED, and STRUCTURED categories with ResNet-
50 as the backbone. When using ConvNeXt-S, CoLoRA achieves the highest top-1 accuracy in
the SPECIALIZED and STRUCTURED categories, compared to state-of-the-art PEFT methods.
Furthermore, CoLoRA surpasses full fine-tuning in the STRUCTURED category, highlighting its
superior adaptation capability. Consequently, CoLoRA outperforms full fine-tuning on VTAB-1k
with ConvNeXt-S as the backbone.

J Scaling CoLoRA on ADE20K

In this section, we investigate the relationship between the number of tunable parameters and adap-
tation performance. Using the ConvNeXt-B backbone, we evaluate different values for γ and the
rank ratio rs/(rs + rl). Note that full fine-tuning of ConvNeXt-B on ADE20K achieves 50.99
mIoU. The results, presented in Table 15, demonstrate that CoLoRA with merely 19.5M tunable
parameters (compared to 87.6M for full fine-tuning) not only matches but surpasses full fine-tuning
performance, reaching 51.13 mIoU. This remarkable performance highlights CoLoRA’s potential
for efficiently fine-tuning pre-trained ConvNets across diverse downstream tasks.
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Table 14: Average top-1 accuracy across three runs on the VTAB-1k STRUCTURED benchmark.
The highest-performing PEFT method is highlighted in bold.

Backbone Method #Param Clevr-Count Clevr-Dist DMLab dSpr-Loc dSpr-Ori KITTI-Dist sNORB-Azim sNORB-Elev Average

ResNet-50

FT 23.5M 43.27±0.58 55.21±0.48 45.67±0.14 80.18±0.82 41.93±0.56 80.59±1.11 26.54±0.16 48.21±1.55 52.70±0.67
Conv-Adapter [32] 1.4M 35.94±0.05 44.98±1.55 35.40±0.36 41.50±0.62 15.29±0.95 69.95±1.04 14.72±0.12 38.21±0.79 37.00±0.67
PiSSA [7] 1.2M 48.61±0.29 49.16±0.63 38.21±0.46 52.62±1.11 22.29±0.32 73.70±1.19 18.05±0.61 39.43±0.89 42.76±0.69
HiRA [22] 1.2M 40.98±0.31 46.69±0.72 35.10±0.40 45.70±0.26 16.94±0.23 71.31±0.75 13.53±0.27 44.05±0.31 39.29±0.41
CoLoRA (ours) 1.0M 54.04±3.25 53.95±0.86 42.05±0.39 76.42±1.33 37.18±0.53 79.98±0.77 22.58±0.47 48.81±1.23 51.88±1.10

ConvNeXt-S

FT 49.5M 91.06±0.40 66.58±0.60 55.10±0.37 92.75±0.49 62.41±0.77 83.88±0.17 39.96±0.68 46.91±0.18 67.33±0.46
Conv-Adapter [32] 2.8M 87.82±0.65 66.06±0.62 48.68±0.67 94.11±0.25 61.30±0.47 85.04±0.46 37.29±0.54 49.14±0.45 66.18±0.52
PiSSA [7] 3.0M 91.51±0.54 67.04±0.90 51.35±0.49 94.47±0.30 61.47±0.65 82.79±0.07 37.24±0.46 49.15±0.05 66.88±0.43
HiRA [22] 3.0M 79.64±3.01 63.95±0.39 47.33±0.48 79.60±2.20 56.35±0.97 82.32±0.77 25.85±0.25 42.13±0.26 59.65±1.04
CoLoRA (ours) 2.6M 91.71±0.18 65.57±0.08 54.59±0.61 92.94±0.52 62.28±0.88 83.82±0.40 40.71±0.67 48.95±0.40 67.57±0.47

Table 15: Quantitative evaluation of CoLoRA scaling effects on ConvNeXt-B for ADE20K adapta-
tion.

γ 16 8 8 4 4 4 2 2
rs/(rs + rl) 0.5 0.8 0.5 0.8 0.5 0.4 0.9 0.8

#Params 4.6M 5.7M 8.8M 11.1M 17.3M 19.5M 17.7M 21.9M
mIoU 49.55 50.65 50.86 50.86 50.96 51.13 50.38 51.06
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