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Abstract

Large language models (LLMs) demonstrate
significant reasoning capabilities, especially
through step-by-step reasoning paths. How-
ever, their proficiency in mathematical reason-
ing remains limited. We generalize the Re-
inforcement Learning from Human Feedback
(RLHF) framework by integrating per-step re-
ward signals in order to enhance LLMs’ rea-
soning abilities. This approach differs from
traditional outcome-based models by offering
step-wise guidance during learning. Experi-
ments on MATH and PRM80O0K datasets show
that our process-supervised RLHF significantly
improves reasoning accuracy over its outcome-
based counterpart, marking a notable advance-
ment in LLMs for complex reasoning tasks.

1 Introduction

Recent studies have highlighted the potential of
large language models (LLMs) in developing rea-
soning capabilities, in particular by constructing
intermediate reasoning steps (Nye et al., 2021; Wei
et al., 2022; Kojima et al., 2022; Lewkowycz et al.,
2022). These steps bridge the gap between input
and output, effectively breaking down complex rea-
soning tasks into simpler, more manageable ones.
Despite these advancements, multi-step mathe-
matical reasoning remains a challenging area for
LLMs, with frequent logical errors being a primary
concern. A particularly persistent problem is the
error propagation issue, where initial inaccuracies
in reasoning steps lead to further errors, resulting in
incorrect conclusions (Shen et al., 2021). To miti-
gate this, researchers proposed “rescoring” models
to assess LLM outputs (Cobbe et al., 2021; Ue-
sato et al., 2022; Lightman et al., 2023). These
models, which evaluate either the entire reason-
ing path (“outcome-based”) or each reasoning step
(“process-based”), have shown promise in enhanc-
ing LLM reasoning performance. However, their
effectiveness is often constrained by the need to

— — @
D ==
<LH¥%’DHU o
(a) Outcome-supervised RLHF (OutcomeRLHF).
S =} S

l Prompt < ir }9_> @4.[ _F
(b) Process-supervised RLHF (ProcessRLHF, this work).

Figure 1: OutcomeRLHF vs. ProcessRLHF in multi-
step reasoning. The former assesses the final result,
while the latter evaluates each step, providing immediate
feedback to guide the model towards the correct path.

generate a large number of (diverse) candidate out-
puts, with the quality of these outputs critically
dependent on the LL.M’s reasoning ability. This
limitation can lead to suboptimal ranking and un-
derutilization of the scoring models’ full potential.
An alternative approach, which we employ, use
these scoring models to guide self-improvement
of LLMs during the training phase rather than
post-processing. We generalize the widely-used
Reinforcement Learning from Human Feedback
(RLHF) framework (Christiano et al., 2017; Ziegler
et al., 2019; Bohm et al., 2019; Stiennon et al.,
2020; Ouyang et al., 2022) by integrating process-
based rewards (Fig. 1b), which better fits multi-step
reasoning. This generalization marks a notable
shift from the traditional RLHF (Ouyang et al.,
2022), which operates on outcome-based rewards
(Fig. 1a). We make the following contributions:

* We propose ProcessRHLF by integrating
process-based supervision.

* We propose two types of process reward mod-
els to utilize various stepwise reward signals.

* Experiments on MATH and PRMS800K
datasets show that processRLHF signifi-
cantly improves reasoning accuracy over its
outcome-based counterpart.



Problem x and Solution y = (y(,y® y® y® v ()
x : How many positive whole-number divisors does 196 have?

yM: First prime factorize 196 = 22 - 72.

y®): The prime factorization of any divisor of 196 cannot include
any primes other than 2 and 7.

y(S): We can choose either 0, 1, or 2 as the exponent of 2
in the prime factorization of a divisor of 196.

y®: Similarly, we may choose 0, 1, or 2 as the exponent of 7.

y(5): In total, there are 3 x 3 = 9 possibilities
for the prime factorization of a divisor of 196.

y(®): Distinct prime factorizations correspond to distinct integers,
so there are @ divisors of 196.

Table 1: Illustration of Multi-Step Reasoning in the
MATH Dataset. The model is trained to demarcate the
final answer with a box for clear evaluation. The content
within the final boxed area is extracted as the model’s
predicted solution for the problem.

2 Problem Formalization

In multi-step reasoning tasks, we define a rea-
soning problem as a sequence of tokens x =
(z1,22,...,Tm), where each x; denotes the i-th
element or token of the input problem. The pri-
mary objective for the model in this context is
to process the given input x and generate a co-
herent and logically structured sequence of rea-
soning steps. This sequence is denoted as y =
(y(l), y(2), ce y(T)), where 1" represents the total
number of reasoning steps. Each individual reason-
ing step, y(,t = 1,2,...,T, is composed of a
series of tokens ygt), yét), . ,y,(lt), where y( )
responds to the i-th token within the ¢-th step, and
n; denotes the number of tokens in this step. The
final solution or conclusion of the reasoning task is
encapsulated in the last step y(7).

Typically, a pre-trained language model (LM),
Do, is used to predict the reasoning steps y from a
given problem x, aiming to learn the conditional
probability py(y | x), with parameters . The opti-
mization involves Supervised Fine-Tuning (SFT)
on a dataset Dy, of problem-reasoning pairs, by
maximizing their log-likelihood:

max Y logpp(y | ). ()

(x,y)Eny
3 RL for Multi-Step Reasoning

Multi-step reasoning tasks can be alternatively con-
ceptualized within a Reinforcement Learning (RL)
framework, where the task is viewed as a sequence
of decision-making steps. In this formulation, the
reasoning process is represented as a trajectory
T o= { D, aM), (52, a?), . ’(S(T)’a(T))}’
where each state- actlon pair corresponds to a step
in the reasoning process. The state s(*) at step ¢

encapsulates the problem x and all preceding rea-
soning steps y(I, ...,y thus sV = x, and
s = (x,yW, ..., y® 1) fort > 1. The action
a® at each step is the generation of the current
reasoning step y(*) . For notational convenience,
we introduce y <! to represent all preceding rea-
soning steps up to but not including step ¢ (i.e.,
yO . y® 1) and y=! to denote all steps up to
and including step ¢ (i.e., yO o y®),

After the SFT phase (Eq. 1), the RL is employed
to further enhance the model’s performance from
utilizing learned reward models.

3.1 Baseline: Outcome-Supervised RLHF

In the OutcomeRLHF (Ouyang et al., 2022), there
is an Outcome Reward Model (ORM) R, trained
on a human preference dataset Dy, consisting of
tuples (x,y+,y-). Here, x represents a reasoning
problem, y is the preferred model output, and y_
is the non-preferred output, as adjudged by human
evaluators. The ORM’s role is to assign a singular,
comprehensive score to each reasoning trajectory.
The training objective of the ORM is defined as:

mgx Z loga<R¢(x,y+) - R¢(x,y_)>
(%,y+,Y-)EDxy .
where o is the sigmoid function, and R4 (x,y) rep-
resents the ORM’s output score for a given problem
x and its reasoning steps y, parameterized by ¢.
With a collection of unlabeled reasoning prob-
lems Dy, we optimize the model py to maximize
the expected reward across all potential trajectories
derived from the model, with the objective

max > Bypyio [Ro(x¥)]. ()
x€Dx

This is typically done via policy optimization al-
gorithms, such as Proximal Policy Optimization
(Schulman et al., 2017).

3.2 Our Process-Supervised RLHF

To enhance the supervisory signal during RL,
we propose employing a Process Reward Model
(PRM) Ry, which evaluates the immediate out-
comes of each action, providing step-by-step feed-
back. The PRM assigns a reward for each state-
action pair (s, a()) as Ry(x,y="). Given a set
of unlabeled reasoning questions Dy, we optimize
model pg to maximize the expectation of accumu-
lated rewards of all possible trajectories:

max Z Eypo(ylx) Zqu X y<t)] 3)
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(b) PRM via Alternative Steps Comparison (PRM-alt).

Figure 2: Proposed methods for constructing Process
Reward Models (PRMs). (a) PRM-step: each step of
the reasoning process is annotated with a binary label to
indicate its correctness. The PRM is trained to predict
these labels. (b) PRMe-alt: training samples are con-
structed from reasoning sequences with a shared prefix,
followed by divergent alternative steps. The PRM is
trained to rank these alternatives correctly.

where y=t = (y1),y® .. y®), and for time
step ¢, the model will get an instance reward
Ry(x,y="). This objective is also optimized using
policy optimization algorithms. We refer this new
framework as ProcessRLHF.

The effectiveness of ProcessRLHF on multi-step
reasoning tasks greatly depends on the design and
implementation of reward models. Below we ex-
plore two methods for constructing such models.

Learning Process Reward Model via Step-wise
Binary Classification. In the first method, hu-
man preferences are provided as step-wise annota-
tions (Fig. 2a). The dataset Dyy includes tuples
(x,y,1), where alongside a problem x and a rea-
soning trajectory y, there is a sequence of binary
labels 1 = (Iy,l2,...,l7). These labels indicate
the correctness of each step, with [y = 1 signify-
ing correctness. The reward model Ry, is trained
to classify these labels accurately, maximizing the
negative binary cross-entropy (or equivalently, min-
imizing the binary cross-entropy):

<t
mgx Z Z [lt logo (Ry(x,y="))
(%,y,)EDxy1 t
+ (1-=1y) log(l —0 (R¢(X, yét)))}

Here, R, (x,y=?) calculates the reward for the ¢-th
step given the problem x and the reasoning tra-
jectory up to that step y=!, with ¢ representing
the model parameters. We refer the reward model
learned by this approach as PRM-step.

Learning Process Reward Model via Alterna-
tive Step Comparison. The second method lever-
ages comparisons of alternative reasoning steps for
the same preceding steps (Fig. 2b). The dataset
nyi contains tuples (X,yft,yét). Here, x is

the problem statement, while yft and yft are two

reasoning trajectories with the same prefix up to
step ¢t —1, but diverging at step ¢ (i.e., yT' = y=*
and ygf) #* y(_t)). We train the model Ry to fa-
vor the preferred reasoning path yft over the non-

preferred y<!_ by maximizing:

Z loga<R¢(x,y§t) — R¢(X7yét)>

<t _ <t
(xy3 y=")eD, <

In this formulatiori;, Ry(x,y=") computes the re-
ward for the ¢-th step based on the problem x and
the trajectory up to that step y=!, with ¢ as the
parameter set. We refer the reward model learned
by this method as PRM-alt.

max
o

4 Experiments and Results

4.1 Datasets

Our experiments employ two datasets. The pri-
mary dataset is the MATH dataset (Hendrycks
et al., 2021), complemented by the PRM800OK
dataset (Lightman et al., 2023), which provides
step-level human preference annotations on solu-
tions derived from the MATH dataset:

MATH. This dataset contains 12,500 high school
math competition problems, each with a detailed
step-by-step solution. See Tab. 1 for an example
problem with reasoning steps.

PRMS800K. This dataset contains around
800,000 step-level correctness labels for 75,000
model-generated solutions to 12,000 problems
from the MATH dataset.

We further constructed the following derived
datasets for different training phases and models:

* SFT set Dy, & RLHF set Dy: We split the
MATH dataset into 12,000 training and 500
test problems, in line with Lightman et al.
(2023). Dyy contains 10,000 problems with
their solutions for training, and Dy contains
the remaining 2,000 problems for evaluation.

* ORM set Dyy, contains 200K pairs of pair-
wise comparison data from the PRM80OK
dataset for training the outcome reward model.

* PRM-step set D,y contains 200K step-level
correctness annotations from PRMS800K for
training the process reward model via step-
wise binary classification.

e PRM-alt set D V< contains 200K anno-
Xyx

tated comparisons of alternative steps from
PRMB8O00K for training process reward model
via alternative step comparison.



4.2 Evaluation Metrics

We use two primary metrics, Preference Accuracy
and Exact Match Accuracy. Preference Accuracy
is the proportion of correctly predicted instances
within the test data, which assesses the performance
of different reward models (RMs). The criteria for
“correct prediction”, however, varies according to
the type of RM being evaluated:

* ORM: For a comparison pair (X,y+,y—),
the prediction is correct if the model scores
higher on the preferred solution over the non-
preferred one: Ry(x,y+) > Ry(x,y-).

» PRM-step: For a step annotation (x, y=t, 1;),
the prediction is correct if the score aligns
with the step label: Ry(x,y=")(l; —0.5) > 0.

* PRM-alt: For comparison pair (x, yft, yét),
the prediction is correct if the model scores
higher for the preferred steps over non-
preferred ones: Ry(x, yf) > Ry(x, y=h.

On the other hand, to evaluate the learned rea-
soning model pg, we test it on the test set of the
MATH dataset using the Exact Match Accuracy,
which compares the normalized predicted answer
with the correct answer (Hendrycks et al., 2021).

4.3 Model and Experimental Setups

In our experiments, we utilized the Llama2-70B
model (Touvron et al., 2023) as both the initial
agent py and the reward models. For reward mod-
els, their final linear prediction layer randomly ini-
tialized prior to training. The agent model was
initially fine-tuned on the SFT dataset Dy, to es-
tablish our SFT baseline model. Subsequently, sep-
arate reward models were trained on the ORM,
PRM-step, and PRM-alt training datasets to derive
the respective reward models. These models were
then utilized to further tune the SFT baseline model
on the RLHF dataset Dy for evaluation.

In RL training, we use the outcome-supervised
RL objective (Eq. 2) for an ORM, and the process-
supervised RL objective (Eq. 3) for a PRM.

4.4 Results

Reward Models Tab. 2 compares Preference Ac-
curacy between three reward models. Despite the
different training conditions and objectives of these
models, making a direct comparison provides in-
sights into the training complexity of reward mod-
els. PRMs are generally easier to train than ORMs,
as they assess individual steps rather than the entire
process, impacting their training complexity.

Reward Model  Preference Accuracy
ORM 61.0
PRM-step (ours) 73.5
PRM-alt (ours) 79.4

Table 2: Preference Accuracies (%) of reward models.

Model EM
SFT 20.4
SFT + OutcomeRLHF w/ ORM 224
SFT + ProcessRLHF w/ PRM-step  23.6
SFT + ProcessRLHF w/ PRM-alt 23.8

Table 3: Exact Match (%) across models, comparing
SFT, OutcomeRLHF, and our proposed ProcessRLHF.

Reasoning Models Tab. 3 lists the Exact Match
(EM) Accuracy of various models. Despite the
lower Preference Accuracy of the ORM compared
to the PRMs, as noted in the previous section, inte-
grating ORM with outcome-supervised RLHF still
enhances the SFT baseline. Moreover, our process-
supervised RLHF approach, when combined with
PRMs, achieves an even greater improvement over
the SFT baseline. Interestingly, both types of PRMs
(step-wise supervision, “PRM-step”, and alterna-
tive step comparison, “PRM-alt”) demonstrate sim-
ilar levels of enhancement over SFT.

5 Related Work

Recent advancements in large language models
(LLMs) have made significant strides in multi-step
reasoning tasks. The recent “chain of thought”
prompting has transformed LLMs from simple
question-and-answer systems to sophisticated rea-
soning tools capable of complex problem-solving
(Nye et al., 2021; Wei et al., 2022). This approach
has been further enhanced by techniques that en-
courage structured responses through zero-shot
reasoning (Kojima et al., 2022) and by integrat-
ing self-consistency mechanisms for better perfor-
mance across reasoning benchmarks (Wang et al.,
2023). Additionally, specialized finetuning has im-
proved LLMs’ capabilities in mathematical reason-
ing (Lewkowycz et al., 2022), highlighting their
growing sophistication and versatility.

6 Conclusions and Future Work

We generalize RLHF to integrate stepwise reward
signals during training. This ProcessRLHF ap-
proach showed improved accuracy over traditional
OutcomeRLHF on MATH and PRM800OK datasets,
indicating its potential in complex reasoning tasks.
In the future, we plan to test this method across
various datasets to confirm and possibly boost its
effectiveness in diverse domains.



7 Limitations

Requirement for Stepwise Annotation. Unlike
traditional RLHF, which requires only a single an-
notation per sample, our approach requires detailed
step-level annotations for each sample. This could
potentially increase both the cost and time required
to obtain sufficient supervisory data, making the
process more resource-intensive compared to tradi-
tional methods.

Comparison Fairness. Ensuring fairness in com-
parison presents a challenge, particularly in control-
ling the extent of supervision each method receives.
There’s no straightforward metric to measure the
exact amount of supervision absorbed by each ap-
proach (i.e., ORM, PRM-step, PRM-alt). In our
experiments, we controlled the number of annota-
tions across all methods to be roughly the same.
However, developing a method to accurately quan-
tify the supervision each approach benefits from
remains an open area for further research.

Evaluation Thoroughness. For an ideal assess-
ment, our methods should be tested across a
broader range of models and datasets. Unfortu-
nately, due to computational resource constraints,
our evaluation was limited to the specific settings
outlined in this paper. Expanding the scope of our
testing to include additional models and datasets
would significantly enhance the robustness of our
findings.

Ethics Statement

We believe that the work presented in this study
does not exacerbate existing biases within the
datasets and pretrained large language models uti-
lized. Consequently, we anticipate no ethical issues
arising from our research.
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