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Abstract

Large language models (LLMs) demonstrate001
significant reasoning capabilities, especially002
through step-by-step reasoning paths. How-003
ever, their proficiency in mathematical reason-004
ing remains limited. We generalize the Re-005
inforcement Learning from Human Feedback006
(RLHF) framework by integrating per-step re-007
ward signals in order to enhance LLMs’ rea-008
soning abilities. This approach differs from009
traditional outcome-based models by offering010
step-wise guidance during learning. Experi-011
ments on MATH and PRM800K datasets show012
that our process-supervised RLHF significantly013
improves reasoning accuracy over its outcome-014
based counterpart, marking a notable advance-015
ment in LLMs for complex reasoning tasks.016

1 Introduction017

Recent studies have highlighted the potential of018

large language models (LLMs) in developing rea-019

soning capabilities, in particular by constructing020

intermediate reasoning steps (Nye et al., 2021; Wei021

et al., 2022; Kojima et al., 2022; Lewkowycz et al.,022

2022). These steps bridge the gap between input023

and output, effectively breaking down complex rea-024

soning tasks into simpler, more manageable ones.025

Despite these advancements, multi-step mathe-026

matical reasoning remains a challenging area for027

LLMs, with frequent logical errors being a primary028

concern. A particularly persistent problem is the029

error propagation issue, where initial inaccuracies030

in reasoning steps lead to further errors, resulting in031

incorrect conclusions (Shen et al., 2021). To miti-032

gate this, researchers proposed “rescoring” models033

to assess LLM outputs (Cobbe et al., 2021; Ue-034

sato et al., 2022; Lightman et al., 2023). These035

models, which evaluate either the entire reason-036

ing path (“outcome-based”) or each reasoning step037

(“process-based”), have shown promise in enhanc-038

ing LLM reasoning performance. However, their039

effectiveness is often constrained by the need to040

Prompt

(a) Outcome-supervised RLHF (OutcomeRLHF).

Prompt

(b) Process-supervised RLHF (ProcessRLHF, this work).

Figure 1: OutcomeRLHF vs. ProcessRLHF in multi-
step reasoning. The former assesses the final result,
while the latter evaluates each step, providing immediate
feedback to guide the model towards the correct path.

generate a large number of (diverse) candidate out- 041

puts, with the quality of these outputs critically 042

dependent on the LLM’s reasoning ability. This 043

limitation can lead to suboptimal ranking and un- 044

derutilization of the scoring models’ full potential. 045

An alternative approach, which we employ, use 046

these scoring models to guide self-improvement 047

of LLMs during the training phase rather than 048

post-processing. We generalize the widely-used 049

Reinforcement Learning from Human Feedback 050

(RLHF) framework (Christiano et al., 2017; Ziegler 051

et al., 2019; Böhm et al., 2019; Stiennon et al., 052

2020; Ouyang et al., 2022) by integrating process- 053

based rewards (Fig. 1b), which better fits multi-step 054

reasoning. This generalization marks a notable 055

shift from the traditional RLHF (Ouyang et al., 056

2022), which operates on outcome-based rewards 057

(Fig. 1a). We make the following contributions: 058

• We propose ProcessRHLF by integrating 059

process-based supervision. 060

• We propose two types of process reward mod- 061

els to utilize various stepwise reward signals. 062

• Experiments on MATH and PRM800K 063

datasets show that processRLHF signifi- 064

cantly improves reasoning accuracy over its 065

outcome-based counterpart. 066
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Problem x and Solution y = (y(1),y(2),y(3),y(4),y(5),y(6))

x : How many positive whole-number divisors does 196 have?
y(1): First prime factorize 196 = 22 · 72.
y(2): The prime factorization of any divisor of 196 cannot include

any primes other than 2 and 7.
y(3): We can choose either 0, 1, or 2 as the exponent of 2

in the prime factorization of a divisor of 196.
y(4): Similarly, we may choose 0, 1, or 2 as the exponent of 7.
y(5): In total, there are 3× 3 = 9 possibilities

for the prime factorization of a divisor of 196.
y(6): Distinct prime factorizations correspond to distinct integers,

so there are 9 divisors of 196.

Table 1: Illustration of Multi-Step Reasoning in the
MATH Dataset. The model is trained to demarcate the
final answer with a box for clear evaluation. The content
within the final boxed area is extracted as the model’s
predicted solution for the problem.

2 Problem Formalization067

In multi-step reasoning tasks, we define a rea-068

soning problem as a sequence of tokens x =069

(x1, x2, . . . , xm), where each xi denotes the i-th070

element or token of the input problem. The pri-071

mary objective for the model in this context is072

to process the given input x and generate a co-073

herent and logically structured sequence of rea-074

soning steps. This sequence is denoted as y =075

(y(1),y(2), . . . ,y(T )), where T represents the total076

number of reasoning steps. Each individual reason-077

ing step, y(t), t = 1, 2, . . . , T , is composed of a078

series of tokens y(t)1 , y
(t)
2 , . . . , y

(t)
nt , where y

(t)
i cor-079

responds to the i-th token within the t-th step, and080

nt denotes the number of tokens in this step. The081

final solution or conclusion of the reasoning task is082

encapsulated in the last step y(T ).083

Typically, a pre-trained language model (LM),084

pθ, is used to predict the reasoning steps y from a085

given problem x, aiming to learn the conditional086

probability pθ(y | x), with parameters θ. The opti-087

mization involves Supervised Fine-Tuning (SFT)088

on a dataset Dxy of problem-reasoning pairs, by089

maximizing their log-likelihood:090

max
θ

∑
(x,y)∈Dxy

log pθ(y | x). (1)091

3 RL for Multi-Step Reasoning092

Multi-step reasoning tasks can be alternatively con-093

ceptualized within a Reinforcement Learning (RL)094

framework, where the task is viewed as a sequence095

of decision-making steps. In this formulation, the096

reasoning process is represented as a trajectory097

τ =
{
(s(1), a(1)), (s(2), a(2)), . . . , (s(T ), a(T ))

}
,098

where each state-action pair corresponds to a step099

in the reasoning process. The state s(t) at step t100

encapsulates the problem x and all preceding rea- 101

soning steps y(1), . . . ,y(t−1), thus s(1) = x, and 102

s(t) = (x,y(1), . . . ,y(t−1)) for t > 1. The action 103

a(t) at each step is the generation of the current 104

reasoning step y(t) . For notational convenience, 105

we introduce y<t to represent all preceding rea- 106

soning steps up to but not including step t (i.e., 107

y(1), . . . ,y(t−1)), and y≤t to denote all steps up to 108

and including step t (i.e., y(1), . . . ,y(t)). 109

After the SFT phase (Eq. 1), the RL is employed 110

to further enhance the model’s performance from 111

utilizing learned reward models. 112

3.1 Baseline: Outcome-Supervised RLHF 113

In the OutcomeRLHF (Ouyang et al., 2022), there 114

is an Outcome Reward Model (ORM) Rϕ, trained 115

on a human preference dataset Dxy± consisting of 116

tuples (x,y+,y−). Here, x represents a reasoning 117

problem, y+ is the preferred model output, and y− 118

is the non-preferred output, as adjudged by human 119

evaluators. The ORM’s role is to assign a singular, 120

comprehensive score to each reasoning trajectory. 121

The training objective of the ORM is defined as: 122

max
ϕ

∑
(x,y+,y−)∈Dxy±

log σ
(
Rϕ(x,y+)−Rϕ(x,y−)

)
123
124

where σ is the sigmoid function, and Rϕ(x,y) rep- 125

resents the ORM’s output score for a given problem 126

x and its reasoning steps y, parameterized by ϕ. 127

With a collection of unlabeled reasoning prob- 128

lems Dx, we optimize the model pθ to maximize 129

the expected reward across all potential trajectories 130

derived from the model, with the objective 131

max
θ

∑
x∈Dx

Ey∼pθ(y|x) [Rϕ(x,y)] . (2) 132

This is typically done via policy optimization al- 133

gorithms, such as Proximal Policy Optimization 134

(Schulman et al., 2017). 135

3.2 Our Process-Supervised RLHF 136

To enhance the supervisory signal during RL, 137

we propose employing a Process Reward Model 138

(PRM) Rϕ, which evaluates the immediate out- 139

comes of each action, providing step-by-step feed- 140

back. The PRM assigns a reward for each state- 141

action pair (s(t), a(t)) as Rϕ(x,y
≤t). Given a set 142

of unlabeled reasoning questions Dx, we optimize 143

model pθ to maximize the expectation of accumu- 144

lated rewards of all possible trajectories: 145

max
θ

∑
x∈Dx

Ey∼pθ(y|x)

[∑
t

Rϕ(x,y
≤t)

]
(3) 146
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Prompt

(a) PRM via Step-wise Binary Classification (PRM-step).

Prompt

(b) PRM via Alternative Steps Comparison (PRM-alt).

Figure 2: Proposed methods for constructing Process
Reward Models (PRMs). (a) PRM-step: each step of
the reasoning process is annotated with a binary label to
indicate its correctness. The PRM is trained to predict
these labels. (b) PRM-alt: training samples are con-
structed from reasoning sequences with a shared prefix,
followed by divergent alternative steps. The PRM is
trained to rank these alternatives correctly.

where y≤t = (y(1),y(2), . . . ,y(t)), and for time147

step t, the model will get an instance reward148

Rϕ(x,y
≤t). This objective is also optimized using149

policy optimization algorithms. We refer this new150

framework as ProcessRLHF.151

The effectiveness of ProcessRLHF on multi-step152

reasoning tasks greatly depends on the design and153

implementation of reward models. Below we ex-154

plore two methods for constructing such models.155

Learning Process Reward Model via Step-wise156

Binary Classification. In the first method, hu-157

man preferences are provided as step-wise annota-158

tions (Fig. 2a). The dataset Dxyl includes tuples159

(x,y, l), where alongside a problem x and a rea-160

soning trajectory y, there is a sequence of binary161

labels l = (l1, l2, . . . , lT ). These labels indicate162

the correctness of each step, with lt = 1 signify-163

ing correctness. The reward model Rϕ is trained164

to classify these labels accurately, maximizing the165

negative binary cross-entropy (or equivalently, min-166

imizing the binary cross-entropy):167

max
ϕ

∑
(x,y,l)∈Dxyl

∑
t

[
lt log σ

(
Rϕ(x,y

≤t)
)

168

+ (1−lt) log
(
1−σ

(
Rϕ(x,y

≤t)
))]

169
170

Here, Rϕ(x,y
≤t) calculates the reward for the t-th171

step given the problem x and the reasoning tra-172

jectory up to that step y≤t, with ϕ representing173

the model parameters. We refer the reward model174

learned by this approach as PRM-step.175

Learning Process Reward Model via Alterna-176

tive Step Comparison. The second method lever-177

ages comparisons of alternative reasoning steps for178

the same preceding steps (Fig. 2b). The dataset179

D
xy≤

±
contains tuples (x,y≤t

+ ,y≤t
− ). Here, x is180

the problem statement, while y≤t
+ and y≤t

− are two181

reasoning trajectories with the same prefix up to 182

step t−1, but diverging at step t (i.e., y<t
+ = y<t

− 183

and y
(t)
+ ̸= y

(t)
− ). We train the model Rϕ to fa- 184

vor the preferred reasoning path y≤t
+ over the non- 185

preferred y≤t
− by maximizing: 186

max
ϕ

∑
(x,y≤t

+ ,y≤t
− )∈D

xy
≤
±

log σ
(
Rϕ(x,y

≤t
+ )−Rϕ(x,y

≤t
− )

)
187
188

In this formulation, Rϕ(x,y
≤t) computes the re- 189

ward for the t-th step based on the problem x and 190

the trajectory up to that step y≤t, with ϕ as the 191

parameter set. We refer the reward model learned 192

by this method as PRM-alt. 193

4 Experiments and Results 194

4.1 Datasets 195

Our experiments employ two datasets. The pri- 196

mary dataset is the MATH dataset (Hendrycks 197

et al., 2021), complemented by the PRM800K 198

dataset (Lightman et al., 2023), which provides 199

step-level human preference annotations on solu- 200

tions derived from the MATH dataset: 201

MATH. This dataset contains 12,500 high school 202

math competition problems, each with a detailed 203

step-by-step solution. See Tab. 1 for an example 204

problem with reasoning steps. 205

PRM800K. This dataset contains around 206

800,000 step-level correctness labels for 75,000 207

model-generated solutions to 12,000 problems 208

from the MATH dataset. 209

We further constructed the following derived 210

datasets for different training phases and models: 211

• SFT set Dxy & RLHF set Dx: We split the 212

MATH dataset into 12,000 training and 500 213

test problems, in line with Lightman et al. 214

(2023). Dxy contains 10,000 problems with 215

their solutions for training, and Dx contains 216

the remaining 2,000 problems for evaluation. 217

• ORM set Dxy± contains 200K pairs of pair- 218

wise comparison data from the PRM800K 219

dataset for training the outcome reward model. 220

• PRM-step set Dxyl contains 200K step-level 221

correctness annotations from PRM800K for 222

training the process reward model via step- 223

wise binary classification. 224

• PRM-alt set D
xy≤

±
contains 200K anno- 225

tated comparisons of alternative steps from 226

PRM800K for training process reward model 227

via alternative step comparison. 228
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4.2 Evaluation Metrics229

We use two primary metrics, Preference Accuracy230

and Exact Match Accuracy. Preference Accuracy231

is the proportion of correctly predicted instances232

within the test data, which assesses the performance233

of different reward models (RMs). The criteria for234

“correct prediction”, however, varies according to235

the type of RM being evaluated:236

• ORM: For a comparison pair (x,y+,y−),237

the prediction is correct if the model scores238

higher on the preferred solution over the non-239

preferred one: Rϕ(x,y+) > Rϕ(x,y−).240

• PRM-step: For a step annotation (x,y≤t, lt),241

the prediction is correct if the score aligns242

with the step label: Rϕ(x,y
≤t)(lt− 0.5) > 0.243

• PRM-alt: For comparison pair (x,y≤t
+ ,y≤t

− ),244

the prediction is correct if the model scores245

higher for the preferred steps over non-246

preferred ones: Rϕ(x,y
≤t
+ ) > Rϕ(x,y

≤t
− ).247

On the other hand, to evaluate the learned rea-248

soning model pθ, we test it on the test set of the249

MATH dataset using the Exact Match Accuracy,250

which compares the normalized predicted answer251

with the correct answer (Hendrycks et al., 2021).252

4.3 Model and Experimental Setups253

In our experiments, we utilized the Llama2-70B254

model (Touvron et al., 2023) as both the initial255

agent pθ and the reward models. For reward mod-256

els, their final linear prediction layer randomly ini-257

tialized prior to training. The agent model was258

initially fine-tuned on the SFT dataset Dxy to es-259

tablish our SFT baseline model. Subsequently, sep-260

arate reward models were trained on the ORM,261

PRM-step, and PRM-alt training datasets to derive262

the respective reward models. These models were263

then utilized to further tune the SFT baseline model264

on the RLHF dataset Dx for evaluation.265

In RL training, we use the outcome-supervised266

RL objective (Eq. 2) for an ORM, and the process-267

supervised RL objective (Eq. 3) for a PRM.268

4.4 Results269

Reward Models Tab. 2 compares Preference Ac-270

curacy between three reward models. Despite the271

different training conditions and objectives of these272

models, making a direct comparison provides in-273

sights into the training complexity of reward mod-274

els. PRMs are generally easier to train than ORMs,275

as they assess individual steps rather than the entire276

process, impacting their training complexity.277

Reward Model Preference Accuracy
ORM 61.0
PRM-step (ours) 73.5
PRM-alt (ours) 79.4

Table 2: Preference Accuracies (%) of reward models.

Model EM
SFT 20.4
SFT + OutcomeRLHF w/ ORM 22.4
SFT + ProcessRLHF w/ PRM-step 23.6
SFT + ProcessRLHF w/ PRM-alt 23.8

Table 3: Exact Match (%) across models, comparing
SFT, OutcomeRLHF, and our proposed ProcessRLHF.

Reasoning Models Tab. 3 lists the Exact Match 278

(EM) Accuracy of various models. Despite the 279

lower Preference Accuracy of the ORM compared 280

to the PRMs, as noted in the previous section, inte- 281

grating ORM with outcome-supervised RLHF still 282

enhances the SFT baseline. Moreover, our process- 283

supervised RLHF approach, when combined with 284

PRMs, achieves an even greater improvement over 285

the SFT baseline. Interestingly, both types of PRMs 286

(step-wise supervision, “PRM-step”, and alterna- 287

tive step comparison, “PRM-alt”) demonstrate sim- 288

ilar levels of enhancement over SFT. 289

5 Related Work 290

Recent advancements in large language models 291

(LLMs) have made significant strides in multi-step 292

reasoning tasks. The recent “chain of thought” 293

prompting has transformed LLMs from simple 294

question-and-answer systems to sophisticated rea- 295

soning tools capable of complex problem-solving 296

(Nye et al., 2021; Wei et al., 2022). This approach 297

has been further enhanced by techniques that en- 298

courage structured responses through zero-shot 299

reasoning (Kojima et al., 2022) and by integrat- 300

ing self-consistency mechanisms for better perfor- 301

mance across reasoning benchmarks (Wang et al., 302

2023). Additionally, specialized finetuning has im- 303

proved LLMs’ capabilities in mathematical reason- 304

ing (Lewkowycz et al., 2022), highlighting their 305

growing sophistication and versatility. 306

6 Conclusions and Future Work 307

We generalize RLHF to integrate stepwise reward 308

signals during training. This ProcessRLHF ap- 309

proach showed improved accuracy over traditional 310

OutcomeRLHF on MATH and PRM800K datasets, 311

indicating its potential in complex reasoning tasks. 312

In the future, we plan to test this method across 313

various datasets to confirm and possibly boost its 314

effectiveness in diverse domains. 315
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7 Limitations316

Requirement for Stepwise Annotation. Unlike317

traditional RLHF, which requires only a single an-318

notation per sample, our approach requires detailed319

step-level annotations for each sample. This could320

potentially increase both the cost and time required321

to obtain sufficient supervisory data, making the322

process more resource-intensive compared to tradi-323

tional methods.324

Comparison Fairness. Ensuring fairness in com-325

parison presents a challenge, particularly in control-326

ling the extent of supervision each method receives.327

There’s no straightforward metric to measure the328

exact amount of supervision absorbed by each ap-329

proach (i.e., ORM, PRM-step, PRM-alt). In our330

experiments, we controlled the number of annota-331

tions across all methods to be roughly the same.332

However, developing a method to accurately quan-333

tify the supervision each approach benefits from334

remains an open area for further research.335

Evaluation Thoroughness. For an ideal assess-336

ment, our methods should be tested across a337

broader range of models and datasets. Unfortu-338

nately, due to computational resource constraints,339

our evaluation was limited to the specific settings340

outlined in this paper. Expanding the scope of our341

testing to include additional models and datasets342

would significantly enhance the robustness of our343

findings.344

Ethics Statement345

We believe that the work presented in this study346

does not exacerbate existing biases within the347

datasets and pretrained large language models uti-348

lized. Consequently, we anticipate no ethical issues349

arising from our research.350
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