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Abstract

Large language models (LLMs) have shown001
complementary strengths in various tasks and002
instances, motivating the research of ensem-003
bling LLMs to push the frontier leveraging the004
wisdom of the crowd. Existing work achieves005
this objective via training the extra reward006
model or fusion model to select or fuse all can-007
didate answers. However, these methods pose008
a great challenge to the generalizability of the009
trained models. Besides, existing methods use010
the textual responses as communication media,011
ignoring the rich information in the inner rep-012
resentations of neural networks. Therefore, we013
propose a training-free ensemble framework014
DEEPEN, averaging the probability distribu-015
tions outputted by different LLMs. A key chal-016
lenge in this paradigm is the vocabulary dis-017
crepancy between heterogeneous LLMs, which018
hinders the operation of probability distribution019
averaging. To address this challenge, DEEPEN020
maps the probability distribution of each model021
from the probability space to a universe relative022
space based on the relative representation the-023
ory, and performs aggregation. Then, the result024
of aggregation is mapped back to the proba-025
bility space of one LLM via a search-based in-026
verse transformation to determine the generated027
token. We conduct experiments on the ensem-028
ble of various LLMs of 6B to 70B. Experimen-029
tal results show that DEEPEN achieves consis-030
tent improvements across six popular bench-031
marks involving subject examination, reason-032
ing and knowledge-QA, proving the effective-033
ness of our approach1.034

1 Introduction035

With the scaling of model capacities and data vol-036

umes, generative large language models (LLMs)037

have shown impressive language understanding038

and generation abilities, shedding light for artificial039

general intelligence (Zhao et al., 2023; OpenAI,040

1Our code will be released soon.
B means corresponding author.

2023; Jiang et al., 2023a; Touvron et al., 2023). 041

Due to diversities of data sources, model archi- 042

tectures, and training recipes, LLMs have differ- 043

ent strengths and weaknesses in various tasks and 044

cases. Therefore, recent research has explored the 045

ensemble of LLMs to exploit the complementary 046

potential (Jiang et al., 2023b; Lu et al., 2023). 047

Existing work employs a two-stage process for 048

LLM ensemble, where each LLM first generates 049

candidate answers independently, and then the fi- 050

nal answer is derived by either selecting or fusing 051

these candidates, corresponding to selection-based 052

and fusion-based ensemble approaches. Selection- 053

based ensemble leverages an extra trained reward 054

model to score all candidates and select the best 055

one (Jiang et al., 2023b; Wang et al., 2024; Shnitzer 056

et al., 2024; Lu et al., 2023), which fails to achieve 057

collaboration between LLMs. Fusion-based en- 058

semble trains a fusion model to generate a better 059

answer according to all candidates (Jiang et al., 060

2023b) or adopt the LLM to perform fusion (Du 061

et al., 2023). However, these methods either pose 062

a great challenge to the generalizability of the re- 063

ward model and the fusion model or incur a non- 064

trivial computation cost and inference latency for 065

communication. Besides, existing research enables 066

collaboration via conveying the textual responses 067

between LLMs while ignoring the rich information 068

(e.g., confidence) in the inner representations. 069

One ideal solution to this dilemma is predic- 070

tion fusion (Bisk et al., 2020; Garmash and Monz, 071

2016). For LLM ensemble, prediction fusion works 072

at each decoding step, averaging the probability 073

distributions from different LLMs to determine the 074

generated token. This paradigm is not only training- 075

free, making it more general, but also leverages 076

the inner representations (i.e., probability distribu- 077

tions) as communication media between LLMs. An 078

essential assumption for prediction fusion is that 079

the ensemble models share a common vocabulary. 080

However, this assumption often does not hold due 081
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to the heterogeneity of LLMs caused by different082

vocabulary sizes and tokenizer models.083

In this work, we tackle this key challenge via084

drawing upon the cross-model invariance of rela-085

tive representation, which represents each token086

using the embedding similarities of this token to087

a set of anchor tokens (Moschella et al., 2023).088

Specifically, we propose an ensemble framework089

DEEPEN (Deep Parallel Ensemble), which en-090

ables prediction fusion for heterogeneous LLMs.091

DEEPEN transforms the probability distribution092

from the heterogeneous probability space to a ho-093

mogeneous relative space, using a matrix formed094

by the relative representation of all tokens. We re-095

fer to this matrix as a relative representation matrix.096

Next, DEEPEN aggregates the relative representa-097

tions of all probability distributions in the relative098

space, to obtain the representation containing the099

comprehensive decision on the tokens to generate.100

Finally, the result of aggregation are transformed101

back to the probability space of one of the ensemble102

LLMs using a search-based inverse transformation103

to determine the generated token.104

Although our approach can apply on the ensem-105

ble of any number of LLMs, we mainly prove its106

effectiveness on the 2-model and 3-model ensem-107

ble. Our experiments involve various LLMs of 6B108

to 70B, and consider dense models and the MoE109

model Mixtral. Experimental results demonstrate110

that DEEPEN achieves consistent improvement on111

six widely-used benchmarks.112

2 Theoretical Analysis113

In this section, we first introduce relative represen-114

tation and then illustrate the theoretical support for115

our methodology.116

2.1 Relative Representation117

Previous study discovers that despite the misalign-118

ment between latent spaces of different neural net-119

works, the embedding similarity between samples120

do not change across models (Moschella et al.,121

2023; He and Ozay, 2022; Park et al., 2019).122

Specifically, Moschella et al. (2023) propose rela-123

tive representation, which represents each sample124

x(i) by the embedding similarities to a set of anchor125

samples A. Formally:126

rx(i) = (cos(ex(i) , ea(1)), ..., cos(ex(i) , ea(|A|))),
(1)127

where e(∗) denotes the embedding of samples, also128

is absolute representation. Note that x(i) and an-129

LLama2-13B

LLama2-7B 
(Homogeneous Model)

Mistral-7B 
(Heterogeneous Model)

Relative Representation 

Consistency=75.2Rela
tive R

epres
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on 
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Figure 1: Visualizations for relative representations be-
tween homogeneous models and between and hetero-
geneous models. PCA is applied only for visualization.
Red block indicate the representation of tokens that only
appear in the vocabulary of Mistral. Relative represen-
tation consistency is obtained by calculating the cosine
similarity between the relative representations of the
same token in different models.

chors A are identically distributed. 130

It is empirically discovered that relative represen- 131

tation possesses cross-model invariance, i.e., the 132

relative representation of the same sample keeps 133

invariant across different models, which lays the 134

theoretical foundation for our work to ensemble 135

heterogeneous LLMs. 136

2.2 Theoretical Support for DEEPEN 137

Averaging probability distribution (i.e., prediction 138

fusion) is an effective method to achieve the co- 139

ordination between various neural networks. The 140

underlying mechanism is to interpolate the output 141

semantics (i.e., the semantic that model intends to 142

express) in the probability space. However, vocab- 143

ulary discrepancy isolates these target semantics in 144

semantic spaces with different basis vectors, hin- 145

dering the interpolation. To tackle this challenge, 146

we aim to enable the cross-model alignment for 147

target semantics, i.e., find a transformation to trans- 148

form the target semantic into a universal space. 149

To this effect, we propose to represent the target 150

semantic with the convex combination of relative 151

representations of all tokens where the weight is 152

the probability assigned to the token. 153

Definition of target semantics in relative space. 154

Formally, given the absolute representation of the 155
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Figure 2: Overview of DEEPEN.

output semantic p(t) and the relative representation156

matrix R ∈ R|V |×|A| where V is the vocabulary157

and A ⊆ V is the anchor token set. The i-th row158

of R is the relative representation of word w(i):159

R[i] = (cos(ew(i) , ea(1)), ..., cos(ew(i) , ea(|A|))),
(2)160

and the relative representation of the target seman-161

tic p(t) is defined as:162

r(t) = p(t) ·R (3)163

Model-invariance of relative representation of164

target semantic. Next, we illustrate why this165

representation scheme could align the output se-166

mantics isolated in heterogeneous absolute spaces.167

First, considering two LLMs θA and θB with the168

same vocabulary (e.g., LLaMA2-7B and LLaMA2-169

13B). When expressing the same target semantic,170

these models output the same probability distri-171

bution (i.e., absolute representation) p(t)
A and p

(t)
B .172

Besides, they have the same (highly similar in prac-173

tice) relative representation matrix due the vocab-174

ulary consistency and cross-model invariance of175

relative representation. Therefore, the induced rel-176

ative representations of output semantics are also177

the same:178

r
(t)
A = p

(t)
A ·RA = p

(t)
B ·RB = r

(t)
B . (4)179

Then, let’s consider a language model θC with a180

different vocabulary (e.g., Mistral). Based on the181

fact that different LLMs share mass tokens in their182

vocabularies, the vocabulary of model θC is iden-183

tical to adding and removing partial tokens to the184

vocabulary of θB , which leads to p
(t)
B ̸= p

(t)
C and185

RB ̸= RC . However, in our study, we discover186

that this change to vocabularies has not incurred187

significant influence on the relative representation188

of the unchanged tokens (i.e., the common tokens 189

between θB and θC), as shown in Fig. 1. Therefore, 190

we assume that the local change in the vocabulary 191

could hardly influence the relative space. This hy- 192

pothesis is strict but reasonable as the semantic 193

does not change with the tokenizer intuitively. 194

3 Methodology 195

In this section, we first introduce the overall pro- 196

cess of our ensemble framework DEEPEN and then 197

describe the three parts of DEEPEN in detail. 198

3.1 Overview 199

Given N models to ensemble, DEEPEN first con- 200

structs their transformation matrices (i.e., relative 201

transformations) mapping the probability distribu- 202

tions from the heterogeneous absolute spaces into 203

the relative space (§3.2). At each decoding step, 204

all models perform the prediction and output N 205

probability distributions. These distributions are 206

transformed into the relative space and aggregated 207

(§3.3). Finally, the result of aggregation is trans- 208

formed back into the absolute space of one of the 209

ensembling models, and is used to determine the 210

generated token (§3.4). 211

3.2 Construction of Relative Transformation 212

Given N models to ensemble, DEEPEN first finds 213

out the intersection of vocabularies of all models, 214

i.e., common token set C, and samples a subset or 215

uses the full set of common tokens as the anchor 216

token set A ⊆ C. Next, for each model, DEEPEN 217

calculates embedding similarities of each token to 218

the anchor words, obtaining the relative represen- 219

tation matrix R (as shown in Eq.4). Finally, to 220

overcome the relative representation degeneration 221

of outlier words, which will be introduced later, we 222
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perform normalization on the relative representa-223

tion of all tokens by a softmax operation so that it224

becomes a probability distribution. We denote the225

normalized representation matrix R̂:226

R̂[i] = softmax(R[i]). (5)227

Anchor Selection. The choice of anchor tokens228

is crucial for the relative representation capabil-229

ity. Previous research discovers that the capabil-230

ity improves as the number of anchor words in-231

creases (Moschella et al., 2023). Therefore, we em-232

ploy the full set of common words between LLMs233

as the anchor words. It is also empirically proved234

that this method achieves more stable performance235

on downstream tasks.236

Normalization of relative representation matrix.237

In DEEPEN, the relative representation of each238

token is normalized by the softmax operation to239

avoid the relative representation degeneration of240

outlier words, which are referred to as words that241

are far away from other words (including the an-242

chors) and become distinguishable in relative space243

since for being zero vectors. The softmax operation244

effectively resolves this problem by making each245

relative representation a probabilistic distribution246

instead of a zero vector.247

3.3 Aggregation in Relative Space248

At each decoding step, once each model θi outputs249

the probability distribution pi, DEEPEN transforms250

pi into the relative representation ri using the nor-251

malized relative representation matrix:252

ri = Pi · R̂i, (6)253

and aggregate all relative representations to obtain254

the aggregated relative representation:255

r =
N∑
i=1

ri. (7)256

Note that we adopt the most simple method of ag-257

gregation (i.e., averaging) to make our framework258

more general in this work. But it could be inte-259

grated with other sophistic technologies of output260

fusion (e.g., stacking (Wolpert, 1992))261

3.4 Inverse Transformation of Relative262

Representations263

To decide the emitted token according to the result264

of aggregation, DEEPEN aims to transform it from265

the relative space back to the absolute space of one 266

of ensembling models (main model). In practice, 267

we select the model with the best performance on 268

the validation set as the main model, which often 269

achieves better ensemble performance. To enable 270

this inverse transformation, we adopt a research 271

strategy, which finds out the absolute representa- 272

tion that the relative representation of which is iden- 273

tical to the aggregated relative representation. This 274

search problem is formulated as: 275

p(i) = argmin
p′
(i)

∈ P(i)

ℓ(p′
(i) × R̂, r), (8) 276

where P(i) denotes the absolute space of model θi, 277

and ℓ(·) is the loss function to measure the distance 278

between two relative representations. In this work, 279

we adopt the KL-divergence since for its stability 280

in our experiments. 281

This search is conducted under the guidance of 282

the gradient of the divergence between relative rep- 283

resentations with respect to the absolute representa- 284

tion. Specifically, the start point is initialized with 285

the main model’s original absolute representation 286

p(i), and use the gradient of the loss in Eq.8 with 287

respect to P′
(i): 288

p′
(i) = p′

(i) − η × ∂ℓ

∂P′(i)
, (9) 289

where η is an important hyperparameter named as 290

the relative ensemble learning rate. This search 291

process is iterated for T = 5 steps, where T is 292

named as the number of relative ensemble learning 293

steps. 294

Finally, we use the updated absolute representa- 295

tion p′
(i) to determine the emitted token. 296

4 Experiments 297

4.1 Experimental Setup 298

Benchmarks. Although DEEPEN is a task- 299

agnostic approach, which could apply on any NLP 300

task or even beyond NLP, we mainly conduct ex- 301

periments on six benchmarks, which could be cate- 302

gorized as three kinds of tasks: 303

• Comprehensive Examination: (1) MMLU (5- 304

shot) (Hendrycks et al., 2021), which covers 57 305

subjects that humans learn across STEM, the 306

humanities, and the social sciences and ranges 307

in difficulty from an elementary level to an ad- 308

vanced professional level, and (2) ARC-C (0- 309

shot) (Clark et al., 2018), which consists of a 310
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Models MMLU ARC-C

dev test dev test

Individual Models

Yi-6B 61.19 63.24 72.72 73.33
Mistral-7B 60.80 62.07 73.88 74.10
SkyWork-13B 58.65 61.21 67.08 66.50

Top-2 Ensemble

DEEPEN 63.61 65.69 77.73 75.89
∆ +2.42 +2.45 +3.85 +1.79

Top-3 Ensemble

PAIRRANKER – 63.77 – 70.85
GENFUSER – 37.59 – 58.21

DEEPEN 63.25 65.25 78.09 77.09
∆ +2.06 +2.01 +4.21 +2.99

Table 1: Results on comprehensive examination.

Models GSM8K PIQA

dev test dev test

Individual Models

LLaMA2-70B 68.67 65.73 70.54 71.27
Mixtral-8×7B 66.67 63.84 70.90 71.88

DEEPEN 69.67 67.33 73.54 75.10
∆ +1.00 +1.60 +2.64 +3.22

Table 2: Results on reasoning tasks.

collection of natural science questions authored311

for standardized tests.312

• Reasoning Capabilities: (1) GSM8K (Cobbe313

et al., 2021) (4-shot), which is a dataset of high314

quality problems at the grade school math level,315

and (2) PIQA (Bisk et al., 2020), which is a com-316

monsense reasoning dataset.317

• Knowledge Capacities: (1) TrivialQA (5318

shot) (Joshi et al., 2017), which consists of319

Trivia enthusiast authored question-answer pairs,320

and (2) NaturalQuestions (5-shot) (Kwiatkowski321

et al., 2019), which is a QA corpus consists of322

queries issued to the Google search engine.323

Evaluation. For all benchmarks, we follow the324

test scripts of OpenCompass2. Specifically, on the325

multiple-choice tasks (MMLU, ARC-C, and BBH),326

the option with the highest likelihood is selected to327

calculate the accuracy. On the free-form generation328

2https://opencompass.org.cn/

Models TriviaQA NQ

dev test dev test

Individual Models

LLaMA2-13B 72.74 73.57 21.56 28.67
Mistral-7B 70.47 72.58 19.94 27.67
InternLM-20B 64.11 65.90 19.50 26.09

Top-2 Ensemble

DEEPEN 74.79 75.13 21.81 30.17
∆ +2.05 +1.56 +0.25 +1.50

Top-3 Ensemble

PAIRRANKER – 70.27 – 26.9
GENFUSER – 1.87 – 0.17

DEEPEN 74.10 74.92 23.50 30.81
∆ +1.36 +1.35 +1.94 +2.14

Table 3: Results on knowledge-intensive QA Tasks. NQ
refers to NaturalQuestion.

tasks (GSM8K, TrivialQA and NaturalQuestions), 329

we calculate the exact match (EM) accuracy. 330

Individual models. Based on the key principles 331

of ensemble learning (Sagi and Rokach), the syn- 332

ergy is created only in cases where individual mod- 333

els possess comparable performance to each other. 334

Therefore, on each task type, we select three LLMs 335

that have achieved promising results on the Open- 336

Compass leaderboard and whose performance is as 337

close to each other as possible. On the challenge 338

reasoning task, we conduct experiments for the en- 339

semble of two large-scale LLMs: LLaMA2-70B 340

and Mixtral-8×7B. 341

Hyperparameters. In this work, we select all of 342

the common tokens between LLMs as the anchor 343

tokens to build the relative spaces, i.e., A = C. In 344

the decoding of relative representation, we search 345

the optimal relative learning rate (Eq. 9) from 0.0 346

to 0.3 with an interval of 0.05. We set the number 347

of relative ensemble learning steps T = 5. 348

Comparative methods. We also compare our 349

ensemble framework DEEPEN with the selection- 350

based ensemble method PAIRRANKER, which is a 351

reward model to score each response of LLMs and 352

the fusion-based ensemble method GENFUSER, 353

which is a generative model to fuse multiple can- 354

didate responses. Both models are from LLM- 355

Blender framework Jiang et al. (2023b) and are 356

trained on the constructed instruction tuning dataset 357

MixInstruct. 358

5
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Figure 3: Effect of the number of anchor words. The
x-axis indicates the number of anchor words randomly
sampled from the common words.

4.2 Results359

The main results are shown in Tab 1,2, and 3, from360

which we have drawn the following observations:361

DEEPEN achieves consistent improvements over362

the individual models across all benchmarks.363

These results prove that our framework indeed364

enables collaboration between LLMs via aggre-365

gating the target semantics behind the output366

probability distributions. Specifically, the en-367

semble of top-2 models achieves the improve-368

ments of +1.5(NQ)∼+3.22(PIQA) on test sets and369

+0.25(NQ)∼+3.85(ARC-C) on validation sets in370

terms of accuracy. Through the ensemble of top-3371

models, DEEPEN gains a further improvement over372

ensembling top-2 models. As shown in Tab. 1, the373

improvement is increased from +1.79 to +2.99 after374

the joining of the third-ranked model on ARC-C.375

Collaboration with models significantly worse376

could lead to degeneration. As the results in377

Tab 3, the ensemble of top-3 models underper-378

forms than the one of top-2 models on TrivialQA.379

This degeneration is reasonable due to the signifi-380

cant performance gap (-6.68) between the third-381

ranked model (InternLM-20B) and the second-382

ranked models (Mistral-7B) on this benchmark.383

DEEPEN shows excellent generalizability. As384

we can see, Both PAIRRANKER and GENFUSER385

perform poorly on each benchmark, which is386

caused by the serious distribution shift from their387

training data to the test data. Instead, DEEPEN388

works well under the training-free setting.389

Methods MMLU-Dev TrivialQA-Dev

ACC ∆ ACC ∆

Baseline 61.19 – 72.74 –
DEEPEN 63.61 +2.42 74.79 +2.05

w/o. Rel-Norm 60.73 -0.46 72.95 +0.21

Table 4: Ablation study of normalization on the relative
representation matrix to the ensembling performance
on the development sets. Baseline refers to as the best
single model on each benchmark. DEEPEN refers the
performance of ensembling top-2 models in the bench-
mark.

Pe
rc

en
ta

ge
0

0.1

0.2

0.3

0-0.1 0.2-0.3 0.4-0.5

0.03

0.13

0.310.31

0.21

0.01

0-0.1 0.2-0.3 0.4-0.5

0.14

0.290.28

0.22

0.07

0.01

Yi-6B Mistral-7B

0.1 0.2 0.3 0.4 0.50.0 0.1 0.2 0.3 0.4 0.50.0 1.01.0

Cosine Similarity

Figure 4: Distance distribution to nearest neighbor
words. The distance is measured by calculating the
cosine similarity between words.

5 Analysis 390

Towards better understanding DEEPEN, we con- 391

duct a series of analyses on the relative transfor- 392

mation and the algorithm of relative representation 393

decoding. 394

5.1 Analysis on Relative Transformation 395

Effect of anchor selection. We demonstrate 396

the impact of different numbers of anchor words 397

through experiments with the top-2 ensemble mod- 398

els on the MMLU and ARC-C benchmarks. As 399

shown in Fig. 3, we observe that an increased num- 400

ber of anchor words does not necessarily translate 401

into improved performance for LLMs in down- 402

stream tasks. Fortunately, selecting the full set 403

of common words as anchors could achieve stable 404

promising performance. 405

Effect of normalization on relative representa- 406

tion matrix. To demonstrate the importance of 407

normalization on the relative representation matrix 408

to the ensemble performance, we conduct an ab- 409

lation analysis. The result is shown in Tab. 4, the 410

ensemble struggles to achieve improvements due 411

to the ineffective representation of outlier words, 412

i.e., words distant to other words. The proportion 413

of outlier words can be derived from the distribu- 414
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RELR (η) 0.05 0.10 0.15 0.20 0.25 0.30

MMLU +2.42 +1.57 +1.77 +1.96 +1.31 +1.31

TrivialQA +1.31 +2.05 +1.63 +1.94 +1.82 +1.26

Table 5: Sensitivity analysis of relative ensemble learn-
ing rate (RELR). We report the improvements of en-
sembling top-2 models over the best individual models.

Baseline TrivQA NQ ARC-C MMLU

TrivialQA 72.74 72.90 72.13 69.35 70.70
NQ 21.56 21.56 21.88 21.81 21.62
ARC-C 59.32 69.32 71.97 73.76 73.26
MMLU 55.10 59.98 61.02 61.86 61.42

Table 6: Cross-distribution validation of relative ensem-
ble learning rate (η). We report the performance of
ensembling LLaMA2-13B and Mistral-7B. Each row
indicates the test set used to evaluate performance. Each
column indicates the development set used to search the
optimal value of RELR.

tion of distance to nearest neighbor words, which415

is illustrated in Fig. 4. As illustrated, a remarkable416

proportion (> 30%) of words are distant from other417

words, i.e., cosine similarity to its nearest neighbor418

word is less than 0.3. Through the normalization419

operation, the target semantics that intend to emit420

outlier words could be prevented from becoming421

zero vectors by relative transformation.422

5.2 Analysis of Reverse Transformation423

As described in §3.4, the relative representation424

of the aggregated target semantic is transformed425

back to the absolute space of the main model via a426

search-based algorithm. There are two important427

factors (relative ensemble learning rate and num-428

ber of search steps) in this reverse transformation,429

which are comprehensively analyzed, respectively.430

Analysis of relative ensemble learning rates.431

As shown in Tab. 5, the performance of DEEPEN432

is sensitive to the value of relative ensemble learn-433

ing rate (η), which is abbreviated by RELR. This434

observation motivates us to measure the generality435

of this hyperparameter. Specifically, we illustrate436

the cross-distribution performance of the searched437

optimal value of η in Tab. 6. As observed, the opti-438

mal value of RELR varies across different datasets,439

which suggests that the inverse transformation from440

relative space to absolute space requires adaptive441

mapping modes.442

4.0E-07

8.7E-07

1.3E-06

1.8E-06

2.3E-06

𝜂=0.05
𝜂=0.10
𝜂=0.15
𝜂=0.20
𝜂=0.25
𝜂=0.30

63.25

62.50

61.75

0 1 3 5 10

63.61

61.19

L
os

s o
f E

ns
em

bl
e 

L
ea

rn
in

g

A
cc

ur
ac

y

Relative Ensemble Learning Steps ( T )

Figure 5: Effect of different number of relative ensemble
learning steps.

Models MMLU-Dev ARC-C-Dev

INDIV DEEPEN INDIV DEEPEN

Yi-6B 61.19 63.61 (+2.42) 72.72 77.55 (+4.83)
Mistral-7B 60.80 64.46 (+3.66) 73.88 77.73 (+3.85)

Table 7: Performance of DEEPEN with choosing differ-
ent main models on the development sets. INDIV refers
to as individual models. The result of DeePEn indicates
the performance of using the model of this row as the
main model.

Effect of iteration steps in relative ensemble 443

learning. To give a deep view of the dynamics 444

of the inverse transformation in DEEPEN, we re- 445

port the performance change along with different 446

numbers of relative ensemble learning steps (T ). 447

Besides, the dynamics of loss of relative ensemble 448

learning (ℓ in Eq. 8)is also reported. As shown in 449

Fig. 5, on the one hand, more steps of relative en- 450

semble learning significantly lead to lower losses. 451

However, the loss is hard to reach zero, i.e., under- 452

fitting. On the other hand, increasing the number 453

of steps of relative ensemble learning will cause 454

the performance to increase first and then decrease. 455

The reason behind the performance drop could be 456

that in the early stage of optimization, the focus 457

of optimization is on updating the high-probability 458

tokens. In the later stage of optimization, since the 459

probabilities of all words will be adjusted equally, 460

the low-probability tokens will be interfered with, 461

thus affecting the performance. Therefore, it is rec- 462

ommended to set a modest value of step number 463

(e.g., T = 5). 464

Choice of main model. In the process of inverse 465

transformation, DEEPEN maps the relative aggre- 466

gated representation to the absolute space of the 467

main model. Ideally, we expected the results of 468

inverse transformation to keep invariant with the 469

choice of main model. However, this objective is 470

hard to achieve due to the underfitting observed in 471
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Models MMLU-Dev MMLU-Test

INDIV VANIL DEEPEN INDIV VANIL DEEPEN

LLaMA1 43.26
45.48

44.37 43.70
45.01

44.22
LLaMA2 42.28 45.94 42.99 45.31

Table 8: Comparison to vanilla prediction average
(VANIL) on the ensemble of LLMs with the same vo-
cabulary.

the search process. Therefore, we illustrate the per-472

formance gap of choosing different main models in473

Tab. 7. As the results shown on ARC-C, changing474

the main model from the first-ranked Mistral-7B to475

the second-rank Yi-6B, the ensemble performance476

is decreased slightly from 77.73 to 77.55. Interest-477

ingly, changing the main model from the rank-1478

Yi-6B to the rank-2 Mistral-7B on MMLU, the per-479

formance is actually improved from 63.63 to 64.46,480

which indicates that Mistral-7B benefits more than481

Yi-6B from collaboration. Even so, choosing dif-482

ferent main models does not significantly affects483

the ensemble performance.484

5.3 Comparison to Vanilla Prediction Average485

To compare our DEEPEN with vanilla prediction486

average, we conduct an experiment for ensembling487

two LLMs with the same vocabulary and compa-488

rable performance on MMLU, i.e., LLaMA2-7B489

and LLaMA1-13B. As shown in Tab. 8, the perfor-490

mance of DEEPEN is comparable, even better than,491

that of the vanilla prediction average. Theoretically,492

the performance of the vanilla prediction average493

is the performance upper-bound of DEEPEN. The494

reason that DEEPEN could excel over the vanilla495

one on MMLU is the under-fitting in the inverse496

transformation process, which leads to the weights497

to aggregate the target semantics of different mod-498

els not being a uniform distribution (i.e., (0.5, 0.5)).499

For example, in Tab. 8, the weights for LLaMA1500

and LLaMA2 could be (0.6, 0.4), where the weight501

of the main model is larger than the other model.502

6 Related Work503

Existing work of LLM ensemble could be divided504

into selection-based and fusion-based ensemble.505

Selection-based ensemble. Rerank is an intuitive506

solution to utilize multi-model strengths. Specif-507

ically, Jiang et al. (2023b) takes the first step to-508

wards ensembling LLMs, proposing PAIRRANKER509

for pairwise comparison on candidate outputs and510

achieving improvements on the self-constructed 511

instruction dataset. To overcome the huge compu- 512

tation costs of multi-LLM inference, several works 513

have explored to train a router to predict the best- 514

performing model out of a fixed set of LLMs for 515

the given input (Wang et al., 2024; Shnitzer et al., 516

2024; Lu et al., 2023). 517

Fusion-based ensemble. Towards a synergy be- 518

tween LLMs, Jiang et al. (2023b) propose GEN- 519

FUSER, trained to generate an improved response 520

to capitalize on the strengths of multiple candidates. 521

Furthermore, Du et al. (2023) design a debate-like 522

prompt strategy to ask the LLM to refine its answer 523

after reading peer models’ answers. However, this 524

prompt-based method incurs substantial computa- 525

tion costs and inference latency for LLM commu- 526

nication. Specifically, considering the ensemble of 527

N LLMs, the communication leads to the encoding 528

of N × L tokens and decoding of L tokens, where 529

L denotes the average length of answers. 530

Different from the training-dependent ensemble 531

methods which pose a great challenge to the gen- 532

eralizability of the trained reward model or fusion 533

model, our DEEPEN is training-free, making it 534

more general. Compared to debate-like prompt 535

strategy, DEEPEN has higher computation effi- 536

ciency and achieves more stable improvements.We 537

place the comparison experiments with Debate in 538

Appendix A.1. 539

A contemporaneous work to us is FuseLLM, 540

which propose a method of vocabulary mapping 541

to enable knowledge distillation between hetero- 542

geneous LLMs. Even though FuseLLM works for 543

knowledge distillation, it hardly achieve improve- 544

ment under the training-free setting of ensemble 545

learning, as the experimental results shown in A.2. 546

7 Conclusion 547

In this work, we propose a training-free LLMs col- 548

laboration framework DEEPEN, which averages 549

the probability distributions of models with hetero- 550

geneous vocabularies. To the best of our knowl- 551

edge, we are the first to effectively enable the aggre- 552

gation of heterogeneous probability distributions. 553

We believe our research can motivate further re- 554

search on the LLMs collaboration, model reuse, 555

and knowledge distillation. In the future, we are 556

planning to experiment with DEEPEN on the en- 557

semble between LLMs and generative expert lan- 558

guage models (e.g., machine translation models) 559

due to their complementary knowledge. 560
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8 Limitations561

Different from previous LLM ensemble methods,562

our DEEPEN is uniquely designed for the ensemble563

of white-box LLMs due to necessitating authoriza-564

tion of the output probability distribution. Besides,565

DEEPEN assigns equal weights to each individual566

model, which fails to deal with the interference567

caused by the poor-performing model. This prob-568

lem motivates us to introduce ensemble strategies569

like stacking technology (Wolpert, 1992).570
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A Comparison with More Baselines699

A.1 DEEPEN vs. Debate700

We compare our DEEPEN with the debate-like701

prompt strategy (Du et al., 2023) on the ARC-C702

benchmark in Tab. 9. As we can see, Debate works703

only on the CoT(Wei et al., 2022) setting while704

underperforming on the setting without CoT. Note705

that DEEPEN achieve a larger improvement (+1.79)706

over a stronger baseline (74.10), which indicate the707

superiority. Besides, DEEPEN incurs less compu-708

tation cost than Debate. Specifically, the cost of709

DEEPEN is estimated as (N+2T −1)×|V |×|A|,710

and the cost of Debate is estimated as N ×L× |θ|.711

Last but not least, DEEPEN leads to less inference712

latency than Debate.713

A.2 DEEPEN vs. FuseLLM714

To achieve a fair comparison to FuseLLM, we re-715

implement their vocabulary mapping method with716

the released code under the ensemeble learning717

setting. Specifically, on ARC-C, the probability718

distribution outputted by Yi-6B is mapped in the719

vocabulary of Mistral-7B. Then, we averaged the720

mapped probability distribution and the probabil-721

ity distribution outputted by Mistral-7B. Finally,722

the averaged distribution is used to determine the723

emitted token. As the results in Tab. 9, FuseLLM724

hardly achieve improvements under the setting of725

ensemble learning. The most essential difference726

is that FuseLLM uses the literal similarity to en-727

able the token alignment while DEEPEN leverages728

the relative representation to enable the probability729

distribution aggregation.730
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Models ARC-C-Test

Acc (w/o. CoT) Acc (w. CoT) Communication Cost Inference Latency

Mistral-7B 74.10 67.86 0 1x
Yi-6B 73.33 70.60 0 1x

Debate 73.25 (-0.85) 72.20 (+1.4) 14B×L 2x
FuseLLM 74.10 (+0.00) – 0.20B×L 1.0x
DEEPEN 75.89 (+1.79) – 0.85B×L 1.25x

Table 9: Comparison with previous debate-like prompt strategy and FuseLLM in terms of performance (Accuracy),
computation cost for communication, and inference latency. L represents the average length of generated response.
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