
Scientific Language Models for Biomedical
Knowledge Base Completion: An Empirical Study

Anonymous Author(s)
Affiliation
Address
email

Abstract

Biomedical knowledge graphs (KGs) hold rich information on entities such as1

diseases, drugs, and genes. Predicting missing links in these graphs can boost many2

important applications, such as drug design and repurposing. Recent work has3

shown that general-domain language models (LMs) can serve as “soft” KGs, and4

that they can be fine-tuned for the task of KG completion. In this work, we study5

scientific LMs for KG completion, exploring whether we can tap into their latent6

knowledge to enhance biomedical link prediction. We evaluate several domain-7

specific LMs, fine-tuning them on datasets centered on drugs and diseases that8

we represent as KGs and enrich with textual entity descriptions. We integrate the9

LM-based models with KG embedding models, using a router method that learns10

to assign each input example to either type of model and provides a substantial11

boost in performance. Finally, we demonstrate the advantage of LM models in12

the inductive setting with novel scientific entities. Our datasets and code are made13

publicly available.114

1 Introduction15

Understanding complex diseases such as cancer, HIV, and COVID-19 requires rich biological,16

chemical, and medical knowledge. This knowledge plays a vital role in the process of discovering17

therapies for these diseases — for example, identifying targets for drugs [20] requires knowing18

what genes or proteins are involved in a disease, and designing drugs requires predicting whether a19

drug molecule will interact with specific target proteins. In addition, to alleviate the great costs of20

designing new drugs, drug repositioning [22] involves identification of existing drugs that can be21

re-purposed for other diseases. Due to the challenging combinatorial nature of these tasks, there is22

need for automation with machine learning techniques. Given the many links between biomedical23

entities, recent work [6, 7] has highlighted the potential benefits of knowledge graph (KG) data24

representations, formulating the associated tasks as KG completion problems — predicting missing25

links between drugs and diseases, diseases and genes, and so forth.26

The focus of KG completion work — in the general domain, as well as in biomedical applications27

— is on using graph structure to make predictions, such as with KG embedding (KGE) models and28

graph neural networks [40, 10]. In parallel, recent work in the general domain has explored the use29

of pretrained language models (LMs) as “soft” knowledge bases, holding factual knowledge latently30

encoded in their parameters [25, 26]. An emerging direction for using this information for the task of31

KG completion involves fine-tuning LMs to predict relations between pairs of entities based on their32

textual descriptions [39, 17, 35, 12]. In the scientific domain, this raises the prospect of using LMs33

trained on millions of research papers to tap into the scientific knowledge that may be embedded in34

1Redacted for anonymity.
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score
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Figure 1: Our main methods for biomedical KG completion: (a) LM fine-tuning; (b) KGE models;
(c) an approach that combines both; and (d) using an LM to impute missing entities in a KGE model.

their parameters. While this text-based approach has been evaluated on general domain benchmarks35

derived from WordNet [23] and Freebase [5], to our knowledge it has not been applied to the task of36

scientific KG completion.37

Our contributions. We perform an extensive study of LM-based KG completion in the biomedical38

domain, focusing on three datasets centered on drugs and diseases, two of which have not been39

used to date for the KG completion task. To enable exploration of LM-based models, we collect40

missing entity descriptions, obtaining them for over 35k entities across all datasets. We evaluate a41

range of KGE models and domain-specific scientific LMs pretrained on different biomedical corpora42

[3, 19, 1, 15]. We conduct analyses of predictions made by both types of models and find them to43

have complementary strengths, echoing similar observations made in recent work in the general44

domain [35] and motivating integration of both text and graph modalities. Unlike previous work, we45

train a router that selects for each input instance which type of model is likely to do better, finding46

it to often outperform average-based ensembles. Integration of text and graph modalities provides47

substantial relative improvements of 13–36% in mean reciprocal rank (MRR), and routing across48

multiple LM-based models further boosts results. Finally, we demonstrate the utility of LM-based49

models when applied to entities unseen during training, an important scenario in the rapidly evolving50

scientific domain. Our hope is that this work will encourage further research into using scientific51

LMs for biomedical KG completion, tapping into knowledge embedded in these models and making52

relational inferences between complex scientific concepts.53

2 Task and Methods54

We begin by presenting the KG completion task and the approaches we employ for predicting missing55

links in biomedical KGs. An overview of our approaches is illustrated in Figure 1.56

2.1 KG Completion Task57

Formally, a KG consists of entities E , relations R, and triples T representing facts. Each triple58

(h, r, t) ∈ T consists of head and tail entities h, t ∈ E and a relation r ∈ R. An entity can be one of59

many types, with the type of an entity e denoted as T (e). In our setting, each entity is also associated60

with some text, denoted as text(e) for e ∈ E . The task of KG completion or link prediction involves61

receiving a triple (h, r, ?) (where ? can replace either the head or tail entity) and scoring all candidate62

triples {(h, r, t′) | t′ ∈ S} such that the correct entity that replaces ? has the highest score. Each KG63

completion model in our experiments learns a function f that computes a ranking score s = f(x)64

for a given triple x = (h, r, t). Models are trained to assign a high ranking score to correct positive65

triples from the set of known facts T and a low ranking score to triples that are likely to be incorrect.66

To do so, we use the max-margin loss function. We also explore the inductive setting, with nodes not67

seen during training time (see Appendix B.2).68
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2.2 Methods69

KG embedding (KGE) models. For each entity e ∈ E and each relation r ∈ R, KG embedding70

(KGE) models learn a vector representation E(e) ∈ Rm and R(r) ∈ Rn. For a given triple (h, r, t),71

each model computes the ranking score f(h, r, t) as a simple function of these embeddings. We72

include a variety of different KGE models in our experiments, including TransE [8], DistMult [38],73

ComplEx [33], and RotatE [30].74

LM-based models. KGE methods do not capture the rich information available from textual descrip-75

tions of nodes. To address this limitation, previous KG completion approaches have incorporated76

textual representations [32, 36], most recently with approaches such as KG-BERT [39] that fine-tune77

the BERT language model (LM) [13] for the task of KG completion. Our focus in this work is on LMs78

pretrained on corpora of biomedical documents (e.g., PubMedBERT [15]; see Appendix C.1.2 for full79

details). To score a triple using an LM, we use a cross-encoder approach [17] (Fig. 1a), where we en-80

code the text of the head and tail entities together as v = LM([CLS] text(h) [SEP] text(t) [SEP]),81

where v is the contextualized representation of the [CLS] token at the last layer. We use the approach82

of Kim et al. [17] and incorporate two additional losses for each LM: a binary triple classification83

loss to identify if a triple is positive or negative, and a multi-class relation classification loss.284

2.3 Integrating KGE and LM: Model Averaging vs. Routing85

We study integration of graph-based and text-based methods (Figure 1c), exploring whether learning to86

route input instances adaptively to a single model can improve performance over previous approaches87

that compute a weighted average of ranking scores [35]. We also explore the more general setup of88

combining more than two models. More formally, for a given triple x = (h, r, t), let φ(x) be its feature89

vector. We can learn a function g(φ(x)) that outputs a set of weights α = [α1, . . . , αk],
∑

i αi =90

1, αi > 0 ∀i. These weights can be used to perform a weighted average of the ranking scores91

{s1, . . . , sk} for a set of k models we wish to combine, such that the final ranking score is s =92 ∑
i αisi. We use a variety of graph-, triple-, and text-based features to construct the feature vector93

φ(x) (full list in Appendix C.1.3 , Table 6). For the function g(·), we experiment with an input-94

dependent weighted average that outputs arbitrary weights α and a router that outputs a constrained95

α such that αi = 1 for some i and αj = 0,∀j 6= i (i.e., α is a one-hot vector). In practice, we96

implement the router as a classifier which selects a single KG completion model for each example by97

training it to predict which model will perform better. For the input-dependent weighted average we98

train a multilayer perceptron (MLP) using the max-margin ranking loss.99

3 Experiments and Results100

3.1 Datasets101

We use three datasets in the biomedical domain that cover a range of sizes comparable to existing102

general domain benchmarks, each pooled from a broad range of biomedical sources. Our datasets103

include RepoDB [9], a collection of drug-disease pairs intended for drug repositioning research;104

MSI (multiscale interactome; [28]), a recent network of diseases, proteins, genes, drug targets,105

and biological functions; and Hetionet [16], a heterogeneous biomedical knowledge graph which106

following Alshahrani et al. [2] we restrict to interactions involving drugs, diseases, symptoms, genes,107

and side effects.3 In order to apply LMs to each dataset, we scrape entity names (when not provided108

by the original dataset) as well as descriptions from the original online sources used to construct each109

KG (see Table 3 in the appendix). While Hetionet has previously been explored for the task of KG110

completion as link prediction (though not LMs) [2, 7], to our knowledge neither RepoDB nor MSI111

have been represented as KGs and used for evaluating KG completion models.112

3.2 Link Prediction Results113

We report performance in Table 1. For each LM that has been fine-tuned for KG completion, we add114

the prefix “KG-” (e.g., KG-PubMedBERT). While LMs perform competitively with KGE models115

2See details in Appendix C.
3More information on each dataset is available in Appendix A.1.
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RepoDB Hetionet MSI
MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10

KGE

ComplEx 62.3 71.1 85.6 45.9 53.6 77.8 40.3 44.3 57.5
DistMult 62.0 70.4 85.2 46.0 53.5 77.8 29.6 34.1 53.6
RotatE 58.8 65.9 79.8 50.6 58.2 79.3 32.4 35.3 49.8
TransE 60.0 68.6 81.1 50.2 58.0 79.8 32.7 36.5 53.8

LM (fine-tuned)

RoBERTa 51.7 60.3 82.3 46.4 53.6 76.9 30.1 33.3 50.6
SciBERT 59.7 67.6 88.5 50.3 57.1 79.1 34.2 37.9 55.0
BioBERT 58.2 65.8 86.8 50.3 57.5 79.4 33.4 37.1 54.8
Bio+ClinicalBERT 55.7 64.0 84.1 43.6 49.1 72.6 32.6 36.1 53.5
PubMedBERT-abs 60.8 70.7 89.5 50.8 58.0 80.0 34.3 38.0 55.3
PubMedBERT-full 59.9 69.3 88.8 51.7 58.7 80.8 34.2 37.7 55.1

Two models
(router)

Best pair of KGE 62.2 70.4 83.7 56.1 65.5 85.4 45.2 50.6 66.2
Best KGE + LM 70.6 80.3 94.3 59.7 68.6 87.2 48.5 54.4 70.1

Two models
(input-dep. avg.)

Best pair of KGE 65.2 74.3 87.6 65.3 75.3 90.2 39.8 44.9 62.0
Best KGE + LM 65.9 74.4 91.5 70.3 78.7 92.2 40.6 44.6 61.2

Three models
(router)

2 KGE + 1 LM 72.7 81.6 95.2 62.6 71.7 89.4 50.9 57.1 73.2
1 KGE + 2 LM 72.1 82.5 95.7 62.1 71.9 89.5 51.2 57.0 73.0

Table 1: KG completion results. Underlined values denote the best result within a model category,
while bold values denote the best result for each dataset.
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Figure 2: Test set MRR for all pairs of models, using an MLP router. The best combination of a KGE
model and KG-PubMedBERT always outperforms the best pair of KGE models.

and even outperform some, they generally do not match the best KGE model on RepoDB and MSI.116

This echoes results in the general domain for link prediction on subsets of WordNet and Freebase117

[39, 35]. Combining each class of models boosts results by a large relative improvement of 13–36%118

in MRR across datasets. Moreover, the best-performing combination always includes a KGE model119

and KG-PubMedBERT rather than two KGE models (Fig. 2 in the appendix), showing the unique120

benefit of using LMs to augment models relying on KG structure alone.121

Routing vs. Averaging We also compare the router and input-dependent weighted average ap-122

proaches of integrating a pair of models, with the router-based approach outperforming on RepoDB123

and MSI. This presents routing as a promising alternative for integrating KGE and LM models. The124

three-model combinations provide the best performance for RepoDB and MSI.125

4 Conclusion and Discussion126

We perform the first empirical study of scientific language models (LMs) applied to biomedical127

knowledge graph (KG) completion. We evaluate domain-specific biomedical LMs, fine-tuning them128

to predict missing links in KGs that we construct by enriching biomedical datasets with textual entity129

descriptions. We find that LMs and more standard KG embedding models have complementary130

strengths, and propose a routing approach that integrates the two by assigning each input example to131

either type of model to boost performance. We also demonstrate the utility of LMs in the inductive132

setting with entities not seen during training, an important scenario in the scientific domain. Our133

findings provide a promising direction for biomedical knowledge completion tasks, and for literature-134

based scientific discovery [31, 14].135
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[10] David Chang, Ivana Balažević, Carl Allen, Daniel Chawla, Cynthia Brandt, and161

Andrew Taylor. Benchmark and Best Practices for Biomedical Knowledge Graph162

Embeddings. In 19th SIGBioMed Workshop on Biomedical Language Processing,163

pages 167–176, 2020.164

[11] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. KDD,165

2016.166

[12] Daniel Daza, Michael Cochez, and Paul T. Groth. Inductive Entity Representations167

from Text via Link Prediction. In WWW, 2021.168

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-169

training of Deep Bidirectional Transformers for Language Understanding. In NAACL-170

HLT, 2019.171

[14] Vishrawas Gopalakrishnan, Kishlay Jha, Wei Jin, and Aidong Zhang. A survey on172

literature based discovery approaches in biomedical domain. Journal of biomedical173

informatics, 93:103141, 2019.174

[15] Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu,175

Tristan Naumann, Jianfeng Gao, and Hoifung Poon. Domain-Specific Language Model176

Pretraining for Biomedical Natural Language Processing. arXiv:2007.15779, 2020.177

[16] Daniel S. Himmelstein and Sergio E. Baranzini. Heterogeneous Network Edge Pre-178

diction: A Data Integration Approach to Prioritize Disease-Associated Genes. PLoS179

Computational Biology, 11, 2015.180

[17] Bosung Kim, Taesuk Hong, Youngjoong Ko, and Jungyun Seo. Multi-Task Learning181

for Knowledge Graph Completion with Pre-trained Language Models. In COLING,182

2020.183

[18] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In184

ICLR, 2015.185

5



[19] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho186

So, and Jaewoo Kang. BioBERT: a pre-trained biomedical language representation187

model for biomedical text mining. Bioinformatics, 36:1234 – 1240, 2020.188

[20] Mark A Lindsay. Target discovery. Nature Reviews Drug Discovery, 2(10):831–838,189

2003.190

[21] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer191

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly192

Optimized BERT Pretraining Approach. arXiv:1907.11692, 2019.193

[22] Huimin Luo, Min Li, Mengyun Yang, Fang-Xiang Wu, Yaohang Li, and Jianxin Wang.194

Biomedical data and computational models for drug repositioning: a comprehensive195

review. Briefings in bioinformatics, 22(2):1604–1619, 2021.196

[23] George A. Miller. WordNet: a lexical database for English. Commun. ACM, 38:39–41,197

1995.198

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,199

G. Louppe, P. Prettenhofer, R. Weiss, J. Vanderplas, A. Passos, D. Cournapeau,200

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.201

J. Mach. Learn. Res., 12:2825–2830, 2011.202

[25] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexan-203

der H. Miller, and Sebastien Riedel. Language Models as Knowledge Bases? In204

EMNLP, 2019.205

[26] Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim Rocktäschel, Yuxiang Wu,206

Alexander H Miller, and Sebastian Riedel. How Context Affects Language Models’207

Factual Predictions. In AKBC, 2020.208

[27] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using209

Siamese BERT-Networks. In EMNLP, 2019.210

[28] Camilo Ruiz, Marinka Zitnik, and Jure Leskovec. Identification of disease treatment211

mechanisms through the multiscale interactome. Nature communications, 2021.212

[29] Michael Schlichtkrull, Thomas Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov,213

and Max Welling. Modeling Relational Data with Graph Convolutional Networks. In214

ESWC, 2018.215

[30] Zhiqing Sun, Zhihong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge Graph216

Embedding by Relational Rotation in Complex Space. In ICLR, 2019.217

[31] Don R. Swanson. Fish oil, Raynaud’s syndrome, and undiscovered public knowledge.218

Perspectives in biology and medicine, 30(1):7–18, 1986.219

[32] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury,220

and Michael Gamon. Representing Text for Joint Embedding of Text and Knowledge221

Bases. In EMNLP, 2015.222

[33] Théo Trouillon, Johannes Welbl, S. Riedel, Éric Gaussier, and Guillaume Bouchard.223

Complex Embeddings for Simple Link Prediction. In ICML, 2016.224

[34] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-225

based Multi-Relational Graph Convolutional Networks. In ICLR, 2020.226

[35] Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, and Yi Chang.227

Structure-Augmented Text Representation Learning for Efficient Knowledge Graph228

Completion. In WWW, 2021.229

[36] Zhigang Wang and Juan-Zi Li. Text-Enhanced Representation Learning for Knowledge230

Graph. In IJCAI, 2016.231

[37] Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. Representation232

Learning of Knowledge Graphs with Entity Descriptions. In AAAI, 2016.233

[38] Bishan Yang, Wen tau Yih, Xiadong He, Jianfeng Gao, and Li Deng. Embedding234

Entities and Relations for Learning and Inference in Knowledge Bases. In ICLR, 2015.235

6



[39] Liang Yao, Chengsheng Mao, and Yuan Luo. KG-BERT: BERT for Knowledge Graph236

Completion. arXiv:1909.03193, 2019.237

[40] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side238

effects with graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.239

7



#Positive Edges

Dataset #Entities #Rel Train Dev. Test Avg. Desc.
Length

RepoDB 2,748 1 5,342 667 668 49.54
Hetionet (our subset) 12,733 4 124,544 15,567 15,568 44.65

MSI 29,959 6 387,724 48,465 48,465 45.13

WN18RR 40,943 11 86,835 3,034 3,134 14.26
FB15k-237 14,541 237 272,115 17,535 20,466 139.32

Table 2: Statistics for our datasets and a sample of general domain benchmarks.

Dataset Link Sources

RepoDB http://apps.chiragjpgroup.org/repoDB/ DrugBank
UMLS

Hetionet https://github.com/hetio/hetionet

DrugBank
Disease Ontology
Entrez
SIDER
MeSH

MSI https://github.com/snap-stanford/multiscale-interactome

DrugBank
Gene Ontology
Entrez
UMLS

Table 3: Links and sources of entity names and descriptions for each dataset.

A Dataset Construction240

A.1 Sources241

While Hetionet has previously been explored for the task of KG completion as link prediction242

using KGE models (though not LMs) [2, 7], to our knowledge neither RepoDB nor MSI have been243

represented as KGs and used for evaluating KG completion models despite the potential benefits of244

this representation [6], especially in conjunction with textual information.245

RepoDB Drugs in RepoDB have statuses including approved, terminated, withdrawn, and sus-246

pended. We restrict our KG to pairs in the approved category.247

Hetionet was constructed using data from various publicly-available scientific repositories. Follow-248

ing Alshahrani et al. [2], we restrict the KG to the treats, presents, associates, and causes relation249

types. This includes interactions between drugs and the diseases they treat, diseases and their symp-250

toms, diseases and associated genes, and drugs and their side effects. We use this subset of the full251

Hetionet dataset to avoid scalability issues that arise when training large Transformer-based language252

models, inspired by benchmark datasets such as FB15K [8], a subset of the Freebase knowledge base.253

MSI includes diseases and the proteins they perturb, drug targets, and biological functions designed254

to discover drug-disease treatment pairs through the pathways that connect them via genes, proteins,255

and their functions. We include all entities and relation types in the dataset.256

We collect each of the datasets from the links listed in Table 3. For missing entity names and all257

descriptions, we write scripts to scrape the information from the resources listed above using the258

entity identifiers provided by each of the datasets.259

8



A.2 Transductive Splits260

We construct an 80%/10%/10% training/development/test transductive split for each KG by removing261

edges from the complete graph while ensuring that all nodes remain in the training graph. We also262

construct inductive splits, where each positive triple in the test test has one or both entities unseen263

during training.264

To construct transductive splits for each dataset, we begin with the complete graph, and repeat the265

following steps:266

1. Randomly sample an edge from the graph.267

2. If the degree of both nodes incident to the edge is greater than one, remove the edge.268

3. Otherwise, replace the edge and continue.269

The above steps are repeated until validation and test graphs have been constructed of the desired size270

while ensuring that no entities are removed from the training graph. We construct 80%/10%/10%271

training/validation/test splits of all datasets.272

A.3 Inductive Splits273

To construct inductive splits for each dataset, we follow the procedure outlined in the “Technical274

Details” section of the appendix of Daza et al. [12]. We similarly construct a 80%/10%/10%275

training/validation/test split of each dataset in the inductive setting.276

A.4 Negative Validation/Test Triples277

A.5 Evaluation278

At test time, each positive triple is ranked against a set of negatives constructed by replacing either279

the head or tail entity by a fixed set of entities of the same type. When constructing the edge split280

for each of the three datasets, we generate a fixed set of negatives for every positive triple in the281

validation and test sets, each corresponding to replacing the head or tail entity with an entity of the282

same type and filtering out negatives that appear as positive triples in either the training, validation, or283

test set. For each positive triple, we use its rank to compute the mean reciprocal rank (MRR), Hits@3284

(H@3), and Hits@10 (H@10) metrics.285

In order to perform a ranking-based evaluation for each dataset in both the transductive and inductive286

settings, we generate a set of negative triples to be ranked against each positive triple. To generate287

negative entities to replace both the head and tail entity of each validation and test positive, we follow288

the procedure below:289

1. Begin with the set of all entities in the knowledge graph.290

2. Remove all entities that do not have the same entity type as the entity to be ranked against in291

the positive triple.292

3. Remove all entities that would result in a valid positive triple in either the training, validation,293

or test sets.294

4. Randomly sample a fixed set of size m from the remaining set of entities.295

We use a value of m = 500 for RepoDB and MSI, and a value of m = 80 for Hetionet (due to296

the constraints above, the minimum number of valid entities remaining across positive triples for297

Hetionet was 80). Using a fixed set of entities allows for fair comparison when assessing performance298

of subsets of the test set, such as when examining the effect of subsets where descriptions are present299

for neither, one, or both entities (Table 7).300

B Results301

Since the gradient boosted decision trees (GBDT) router achieves the best validation set performance302

in most cases across classifiers and integration methods, we use this method for combinations of303

more than two models, such as multiple LMs with a single KGE model.304
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Relation RotatE better KG-PubMedBERT better

Disease
presents
Symptom

Disease: mediastinal cancer; a cancer
in the mediastinum.
Symptom: hoarseness; a deep or rough
quality of voice.

Disease: stomach cancer; a gastroin-
testinal cancer in the stomach.
Symptom: weight loss; decrease in ex-
isting body weight.

Compound
treats
Disease

Compound: methylprednisolone; a
prednisolone derivative glucocorticoid
with higher potency.
Disease: allergic rhinitis; a rhinitis that
is an allergic inflammation and irritation
of the nasal airways.

Compound: altretamine; an alkylating
agent proposed as an antineoplastic.
Disease: ovarian cancer; a female re-
productive organ cancer that is located
in the ovary.

Compound
causes
Side Effect

Compound: cefaclor; semi-synthetic,
broad-spectrum anti-biotic derivative of
cephalexin.
Side Effect: tubulointerstitial nephri-
tis; no description

Compound: perflutren; a diagnos-
tic medication to improve contrast in
echocardiograms.
Side Effect: palpitations; irregular
and/or forceful beating of the heart.

Table 4: Examples from Hetionet where one model ranks the shown positive pair considerably higher
than the other. LMs often perform better when there is semantic relatedness between head and tail
text, but can be outperformed by a KGE model when head/tail entity text is missing or unrelated.
Entity descriptions cut to fit.

Figure 3: Fraction of test set examples where each model performs better.

Interpreting model routing. We compute average feature gain for all datasets, using a GBDT305

router implemented with XGBoost [11] (see Fig. 5 in the appendix). We find that the most salient306

features are the ranking scores output by each model, which is intuitive as these scores reflect each307

model’s confidence. Graph features like node degree and PageRank also factor into the classifier’s308

predictions, as well as textual features such as entity text length and edit distance between entity309

names. General concepts such as Hypertensive disease and Infection of skin and/or subcutaneous310

tissue are central nodes for which we observe KGE models to often do better. KGE models also311

tend to do better on entities with short, non-descriptive names (e.g., P2RY14 ), especially when no312

descriptions are available. Generally, these patterns are not clear-cut, and non-linear or interaction313

effects likely exist. It remains an interesting challenge to gain deeper understanding into the strengths314

and weaknesses of LM-based and graph-based models.315

B.1 Comparing model errors.316

By examining a selected set of examples in Table 4, we can observe cases where information in text317

provides LMs an advantage and where a lack of context favors KGE models.318

KG-PubMedBERT is able to make connections between biomedical concepts – like the fact that319

a disease that affects the stomach might cause weight loss – and align related concepts expressed320

with different terminology – like connecting antineoplastic with cancer (a type of neoplasm), or321

recognizing that an echocardiogram is a technique for imaging the heart. In contrast, RotatE offers322

an advantage when the descriptions do not immediately connect the two terms (mediastinal cancer,323

hoarseness), where a description may be too technical or generic to be informative (methylpred-324
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RepoDB Hetionet MSI
MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10

DKRL 15.6 15.9 28.2 17.8 18.5 31.9 13.3 14.1 22.4
KG-PubMedBERT 38.8 43.4 67.5 21.6 22.3 42.8 20.2 21.7 32.2
ComplEx 0.8 0.4 1.6 3.6 0.7 2.8 0.5 0.1 0.4
NN-ComplEx, frozen LM 20.1 22.3 31.2 18.1 18.4 32.8 15.8 16.9 23.4
NN-ComplEx, fine-tuned 26.9 30.3 39.4 13.9 12.9 25.5 14.6 15.4 21.4

Table 5: Inductive KG completion results. NN-ComplEx refers to the version of ComplEx with unseen
entity embeddings replaced using an LM to find the 1-nearest neighbor, either with PubMedBERT
frozen or fine-tuned for KG completion (KG-PubMedBERT).

nisolone, allergic rhinitis), or where no description is available (cefaclor, tubulointerstitial nephritis).4325

Furthermore, Fig. 3 shows that KG-PubMedBERT outperforms the best KGE model on a substantial326

fraction of the test set examples for each dataset.5 These observations motivate an approach that327

leverages the strengths of both types of models by identifying examples where each model might do328

better, which leads to our results for model integration.329

B.2 Inductive KG Completion330

KGE models are limited to the transductive setting where all entities seen during evaluation have331

appeared during training. Inductive KG completion is important in the biomedical domain, where332

we may want to make predictions on novel entities such as emerging biomedical concepts or333

drugs/proteins mentioned in the literature that are missing from existing KGs. Due to their ability to334

form compositional representations from entity text, LMs are well-suited to this setting. In addition335

to using LMs fine-tuned for KGC, we try a simple technique using LMs to“fill in” missing KGE336

embeddings without explicitly using the LM for prediction (Fig. 1d).337

For our inductive KG completion experiments, we use ComplEx as the KGE model and KG-338

PubMedBERT as our LM-based model, and compare the performance of each method to ComplEx339

with entity embeddings imputed using the method described in Section B.2. We use either the340

untrained PubMedBERT or the fine-tuned KG-PubMedBERT as the LM for retrieving nearest-341

neighbor (NN) entities (see examples in Table 9 in the appendix). We also compare to DKRL [37],342

which constructs entity representations from text using a CNN encoder and uses the TransE scoring343

function. We use PubMedBERT’s token embeddings as input to DKRL and train with the same344

multi-task loss. While other methods for inductive KG completion exist, such as those based on graph345

neural networks [29, 34, 4], they require the unseen entity to have known connections to entities that346

were seen during training in order to propagate information needed to construct the new embedding.347

In our inductive experiments, we consider the more challenging setup where every test set triple348

has at least one entity with no known connections to entities seen during training, such that graph349

neural network-based methods cannot be applied. This models the phenomenon of rapidly emerging350

concepts in the biomedical domain, where a novel drug or protein may be newly studied and discussed351

in the scientific literature without having been integrated into existing knowledge bases.352

As seen in Table 5, ComplEx unsurprisingly performs poorly as it attempts link prediction with353

random embeddings for unseen entities. DKRL does substantially better, with KG-PubMedBERT354

further increasing MRR with a relative improvement of 21% (Hetionet) to over 2x (RepoDB). Our355

strategy for replacing ComplEx embeddings for unseen entities performs comparably to or better356

than DKRL in most cases, with untrained PubMedBERT encodings generally superior to using357

KG-PubMedBERT’s encodings. In either case, this simple strategy for replacing the untrained entity358

embeddings of a KGE model shows the ability of an LM to augment a structure-based method for359

KG completion that is typically only used in the transductive setting, even without using the LM to360

compute ranking scores.361

4Table 7 in the appendix shows the drop in performance when one or both entities are missing descriptions.
5See MRR breakdown by relation type in Fig. 4 in the appendix.
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C Training362

C.1 Transductive Setting363

For all individual models, we train the models on the training set of each dataset while periodically364

evaluating on the validation set. We save the model with the best validation set MRR, then use that365

model to evaluate on the test set. We also perform hyperparameter tuning for all models, and use366

validation set MRR to select the final set of hyperparameters for each model.367

C.1.1 Knowledge Graph Embeddings368

We use the max-margin ranking loss for all KGE methods. We use a batch size of 512 for all models.369

We train models for 10,000 steps (958 epochs) on RepoDB, 50,000 steps (205 epochs) on Hetionet,370

and 50,000 steps (66 epochs) on MSI. We evaluate on the validation set every 500 steps for RepoDB371

and 5,000 steps for Hetionet and MSI. We use the Adam optimizer for training. We perform a372

hyperparameter search over the following values:373

• Embedding dimension: 500, 1000, 2000374

• Margin for max-margin loss: 0.1, 1375

• Learning rate: 1e-3, 1e-4376

• Number of negative samples per positive: 128, 256377

• Parameter for L3 regularization of embeddings: 1e-5, 1e-6378

C.1.2 Language Models379

Pretrained scientific LMs. We explore various pretrained LMs, with their initialization, vocabulary,380

and pretraining corpora described below. In particular, we study a range of LMs trained on different381

scientific and biomedical literature, and also on clinical notes.382

• BioBERT [19] Initialized from BERT and using the same general domain vocabulary, with addi-383

tional pretraining on the PubMed repository of scientific abstracts and full-text articles.384

• Bio+ClinicalBERT [1] Initialized from BioBERT with additional pretraining on the MIMIC-III385

corpus of clinical notes.386

• SciBERT [3] Pretrained from scratch with a domain-specific vocabulary on a sample of the387

Semantic Scholar corpus, of which biomedical papers are a significant fraction but also papers from388

other scientific domains.389

• PubMedBERT [15] Pretrained from scratch with a domain-specific vocabulary on PubMed. We390

apply two versions of PubMedBERT, one trained on PubMed abstracts alone (PubMedBERT-391

abstract) and the other on abstracts as well as full-text articles (PubMedBERT-fulltext).392

We also use RoBERTa [21] – pretrained from scratch on the BookCorpus, English Wikipedia,393

CC-News, OpenWebText, and Stories datasets – as a strongly-performing general domain model394

for comparison. For all LMs, we follow Kim et al. [17] and use the multi-task loss consisting of395

binary triple classification, multi-class relation classification, and max-margin ranking loss, with396

a margin of 1 for the max-margin loss. For triple classification, given the correct label y ∈ {0, 1}397

(positive or negative triple) we apply a linear layer to the [CLS] token representation v to output398

the probability p of the triple being correct as p = σ(Wtriplev), and use the binary cross entropy399

loss Ltriple(x) = −y log(p) − (1 − y) log(1 − p). For relation classification over R relation types,400

we apply a linear layer to v to calculate a probability distribution q over relation classes with401

q = softmax(Wrelv), and use the cross entropy loss with one-hot vector y ∈ {0, 1}R as the correct402

relation label: Lrel(x) = −
∑R

i=1 yi log qi. The final loss is the equally-weighted sum of all three403

losses: L(x) = Lrank(x) + Ltriple(x) + Lrel(x).404

We train for 40 epochs on RepoDB, and 10 epochs on Hetionet and MSI. We evaluate on the validation405

set every epoch for RepoDB, and three times per epoch for Hetionet and MSI. For RepoDB, Hetionet,406

and MSI we use 32, 16, and 8 negative samples per positive, respectively. We use the Adam optimizer407

for training. We perform a hyperparameter search over the following values:408
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• Batch size: 16, 32409

• Learning rate: 1e-5, 3e-5, 5e-5410

C.1.3 Integrated Models411

Global weighted average. For the global weighted average, we compute ranking scores for positive412

and negative examples as the weighted average of ranking scores output by all KG completion models413

being integrated. Specifically, for a set of ranking scores s1, . . . , sk output by k models for an example,414

we learn a set of weights α = [α1, . . . , αk] to compute the final ranking score as s =
∑k

i=1 αisi,415

where the same weight vector α is used for all examples. We search for each αi over the grid [0.05,416

0.95] with steps of 0.05, ensuring that all αi’s sum to 1. We choose values that maximize validation417

set MRR, then apply them to the test set.418

Router. For the router-based method, we train a classifier to select a single model out of a set of419

KG completion models to use for computing ranking scores for a positive example and its associated420

negatives. The class to be predicted for a particular example corresponds to which model performs421

best on that example (i.e., gives the best rank), with an additional class for examples where all models422

perform the same. We explore a number of different classifiers, including logistic regression, decision423

tree, gradient boosted decision tree (GBDT), and multilayer perceptron (MLP), finding that GBDT424

and MLP classifiers perform the best. As input to the classifier, we use a diverse set of features425

computed from each positive example (listed in Table 6) as well as each model’s ranking score for the426

positive example. Classifiers are trained on the validation set and evaluated on the test set for each427

dataset. We additionally perform hyperparameter tuning over the following values for each classifier:428

429

Logistic regression:430

• Penalty: L1, L2431

• Regularization parameter: 9 values evenly log-spaced between 1e-5 and 1e3432

Decision tree:433

• Max depth: 2, 4, 8434

• Learning rate: 1e-1, 1e-2, 1e-3435

GBDT:436

• Number of boosting rounds: 100, 500, 1000437

• Max depth: 2, 4, 8438

• Learning rate: 1e-1, 1e-2, 1e-3439

MLP:440

• Number of hidden layers: 1, 2441

• Hidden layer size: 128, 256442

• Batch size: 64, 128, 256443

• Learning rate: 1e-1, 1e-2, 1e-3444

We perform five-fold cross-validation on the validation set and use validation set accuracy to choose445

the best set of hyperparameters for each classifier. We use Scikit-Learn [24] to implement the446

logistic regression and MLP classifiers, and XGBoost [11] to implement the decision tree and GBDT447

classifiers, using default parameters other than the ones listed above.448

Input-dependent weighted average. The input-dependent weighted average method of integrating449

KG completion models operates similarly to the global weighted average, except that the set of weights450

can vary for each positive example and are a function of its feature vector (the same set of weights451

is used for all negative examples used to rank against each positive example). We train an MLP to452

output a set of weights that are then used to compute a weighted average of ranking scores for a set453
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of KG completion models. The MLP is trained on the validation set and evaluated on the test set for454

each dataset. We use the max-margin ranking loss with a margin of 1. In order to compare to the455

MLP trained as a router, we train the MLP using the Adam optimizer [18] for 200 epochs with early456

stopping on the training loss and a patience of 10 epochs (the default settings for an MLP classifier in457

Scikit-Learn). We perform a hyperparameter search over the following values (matching the values458

for the MLP router where applicable):459

• Number of hidden layers: 1, 2460

• Hidden layer size: 128, 256461

• Batch size: 64, 128, 256462

• Learning rate: 1e-1, 1e-2, 1e-4463

• Number of negatives (for max-margin loss): 16, 32464

We select the best hyperparameters by MRR on a held-out portion of the validation set.465

Features for integrated models. Both the router and input-dependent weighted average methods466

of model integration use a function to outputs weights based on a feature vector of an example.467

A complete list of the features used by each method can be found in Table 6. We also use the468

ranking score for the positive example from each KG completion model being integrated as additional469

features.470

entity type length of text in chars.
relation type presence of word “unknown” in name/desc.
head/tail node in-/out-degree missing desc.
head/tail node PageRank number/ratio of punctuation/numeric chars.
Adamic-Adar index of edge tokens-to-words ratio of entity name/desc.
edit dist. between head/tail entity names

Table 6: Complete list of features used by router classifiers.

C.2 Inductive Setting471

C.2.1 Inductive Nearest Neighbor Baseline472

Given a set of entities E for which a KGE model has trained embeddings and a set of unknown entities473

U , for each e ∈ E ∪U we encode its text using an LM to form ve = LM([CLS] text(e) [SEP]),∀e ∈474

E ∪ U , where ve is the [CLS] token representation at the last layer. We use the cosine similarity475

between embeddings to replace each unseen entity’s embedding with the closest trained embedding476

as E(u) = E(argmax
e∈E

cos-sim(ve, vu)) where e is of the same type as u, i.e., T (e) = T (u).477

C.2.2 Knowledge Graph Embeddings and Language Models478

For the KGE and LM models, we follow the same training procedure for the inductive splits as for479

the transductive splits. We perform hyperparameter tuning over the same grids of hyperparameters,480

periodically evaluate on the validation set and save the checkpoint with the best validation set MRR,481

and use the set of hyperparameters corresponding to the highest validation set MRR to evaluate on482

the test set.483

C.2.3 DKRL484

In addition to the KGE and LM-based methods, we also train DKRL [37] for inductive KG completion485

as another text-based baseline for comparison. DKRL uses a two-layer CNN encoder applied to486

the word or subword embeddings of an entity’s textual description to construct a fixed-length entity487

embedding. To score a triple, DKRL combines its entity embeddings constructed from text with a488

separately-learned relation embedding using the TransE [8] scoring function. The original DKRL489

model uses a joint scoring function with structure-based and description-based components; we490

restrict to the description-based component as we are applying DKRL in the inductive setting. We491

use PubMedBERT subword embeddings at the input layer of the CNN encoder, encode entity names492
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Figure 4: Test set MRR for the best KGE model compared to KG-PubMedBERT broken down by
relation type for Hetionet and MSI.

and descriptions, and apply the same multi-task loss as for the LM-based models. To apply the triple493

classification and relation classification losses, for head and tail entity embeddings h and t, we apply494

a separate linear layer for each loss to the concatenated vector [h; t; |h− t|], following previous work495

on models that use a bi-encoder to construct entity or sentence representations [35, 27]. We use the496

same number of training epochs and number of negatives per positive for DKRL as for the LM-based497

methods on each dataset. We use a batch size of 64, and perform a hyperparameter search over the498

following values:499

• Learning rate: 1e-3, 1e-4, 1e-5500

• Embedding dimension: 500, 1000, 2000501

• Parameter for L2 regularization of embeddings: 0, 1e-3, 1e-2502

D Additional Results503

D.1 Transductive Setting, Individual Models504

Missing entity descriptions. Table 7 shows test set MRR for KG-PubMedBERT on each dataset505

broken down by triples with either both, one, or neither entities having available descriptions. Across506

datasets, performance clearly degrades when fewer descriptions are available to provide context for507

the LM to generate a ranking score.508

#entities with
desc. in pair MRR

RepoDB Hetionet MSI
None N/A 25.6 25.1
One 59.5 43.6 25.4
Both 63.7 52.6 37.3

Table 7: Effect of descriptions on KG-PubMedBERT test set MRR.

Relation-level performance. Figure 4 shows test set MRR broken down by relation for the datasets509

with multiple relation types (Hetionet and MSI). KG-PubMedBERT performs better on all relation510

types except compound-side effect for Hetionet, and on the function-function relation for MSI.511

D.2 Transductive Setting, Integrated Models512

D.3 Inductive Setting513
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RepoDB Hetionet MSI
Global avg. 70.4 55.8 42.1
Input-dep. avg. 65.9 70.3 40.6
Router 70.6 59.7 48.5

Table 8: Test set MRR for the best pair of a KGE model and KG-PubMedBERT for different methods
of model integration.

Figure 5: Feature importances for GBDT router for a selection of most important features. Ranking
scores output by each model tend to be the most important, with other graph- and text-based features
also contributing.

Imputation Model
with Better Ranking

Unseen
Entity

KG-PubMedBERT
nearest neighbors

PubMedBERT
nearest neighbors

PubMedBERT eye redness skin burning sensation, skin
discomfort

conjunctivitis, throat sore

ecchymosis gas, thrombophlebitis petechiae, macule

estrone vitamin a,
methyltestosterone estriol, calcitriol

KG-PubMedBERT keratoconjunctivitis conjunctivitis allergic,
otitis externa

enteritis, parotitis

malnutrition dehydration, anaemia meningism,
wasting generalized

congestive
cardiomyopathy

diastolic dysfunction,
cardiomyopathy

carcinoma breast,
hypertrophic
cardiomyopathy

Table 9: Samples of unseen entities and their nearest neighbors found by KG-PubMedBERT and
PubMedBERT, for test set examples in the Hetionet inductive split where the PubMedBERT neighbor
performs better than the KG-PubMedBERT neighbor (first three) and vice versa (last three). Each
LM offers a larger improvement per example when its nearest neighbor is more semantically related
to the unseen entity.
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