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Abstract001

Instruction tuning has empowered large lan-002
guage models (LLMs) to achieve remarkable003
performance, yet its success heavily depends004
on the availability of large-scale, high-quality005
instruction-response pairs. To meet this de-006
mand, various methods have been developed007
to synthesize data at scale. However, current008
methods for scaling up data generation often009
overlook a crucial aspect: the alignment be-010
tween instructions and responses. We hypoth-011
esize that the quality of instruction-response012
pairs is determined not by the individual qual-013
ity of each component, but by the degree of014
mutual alignment. To address this, we pro-015
pose a Mutual Alignment Framework (MAIN)016
which enforces coherence between instruc-017
tions and responses through mutual constraints.018
We demonstrate that MAIN generalizes well019
across model architectures and sizes, achieving020
state-of-the-art performance on LLaMA, Mis-021
tral, and Qwen models across diverse bench-022
marks. This work underscores the critical role023
of instruction-response alignment in enabling024
generalizable and high-quality instruction tun-025
ing for LLMs. All code is available from our026
anonymous repository.027

1 Introduction028

Large Language Models have demonstrated un-029

precedented capabilities in comprehending human030

intent and performing cross-task generalization031

through contextual learning(Brown et al., 2020).032

A key breakthrough in aligning model behaviors033

with human expectations is primarily attributed to034

instruction tuning, a supervised learning paradigm035

that bridges the gap between pre-trained models’036

latent knowledge and explicit task requirements037

(Ouyang et al., 2022). Through multi-task training038

on (instruction, response) pairs, this approach en-039

ables systematic knowledge elicitation while main-040

taining task-agnostic generalization (Chung et al.,041

Figure 1: This figure illustrates a common interaction
where a person and a dog adjust their behaviors to align
instruction with response, evolving through repeated
interactions to achieve mutual understanding.

2024). The effectiveness of this process is signifi- 042

cantly influenced by the availability of high-quality 043

instruction-response pairs at scale. In essence, the 044

quality of data used in instruction tuning is crit- 045

ical to determining the performance and overall 046

effectiveness of the model. 047

Instruction-tuning methods currently follow two 048

primary approaches. The first involves engaging 049

domain experts (Köpf et al., 2024; Conover et al., 050

2023; Bach et al., 2022) to manually create instruc- 051

tions for specific tasks, ensuring high precision but 052

facing challenges related to scalability and cost. 053

The second approach (Wang et al., 2022a; Peng 054

et al., 2023) leverages LLMs to generate responses 055

based on given prompts. Although this approach is 056

more scalable, it risks introducing inaccuracies or 057

hallucinations (Zhang et al., 2023). 058

Recent research has explored an alternative: 059

leveraging human-written documents as typical 060

responses and using LLMs to infer user instruc- 061

tions (Köksal et al., 2023; Li et al., 2023a; Chen 062

et al., 2024; Nguyen et al., 2024), a process known 063
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as instruction back-translation. These approaches064

primarily focused on making the generated data065

resemble human data, without considering the in-066

herent relationship between the instruction and the067

response. We contend that the alignment between068

the instruction and the response is also essential.069

As shown in Figure 1, the interaction between a070

person and a dog illustrates the bidirectional nature071

of training. Both the person and the dog adjust072

their behaviors to achieve mutual alignment. Sim-073

ilar to how a good command to a dog is one that074

elicits a proper response, generating an instruction-075

response pair must be aligned for optimal effective-076

ness. The quality of the instruction is validated by077

the response it triggers, and the same logic applies078

in reverse. Generating a high-quality pair requires079

careful alignment through mutual interaction. The080

instruction must clearly guide the response, while081

the response should accurately reflect the instruc-082

tion, ensuring that both are mutually reinforcing.083

The interdependence between instructions and084

responses introduces a dual-variable optimization085

problem, where enhancing one component ne-086

cessitates adjusting the other simultaneously, as087

neither can be optimized in isolation. Draw-088

ing inspiration from the alternating update strat-089

egy used in Expectation-Maximization (EM) al-090

gorithms (Moon, 1996), we propose MAIN, a091

framework for synthesizing high-quality data. This092

framework iteratively optimizes both instructions093

and responses, progressively reinforcing their mu-094

tual alignment. Through this co-adaptive process,095

the alignment between instruction-response pairs096

improves substantially, which we believe will sig-097

nificantly boost the model’s performance. Further-098

more, we propose a straightforward but effective099

filtering strategy, mutual filter, which selects pairs100

with superior alignment, ultimately boosting the101

quality of the fine-tuning dataset.102

To validate the effectiveness of our proposed103

MAIN framework, we conducted extensive eval-104

uations by fine-tuning models with instruction-105

response pairs generated by MAIN across mul-106

tiple benchmarks. Experimental results demon-107

strate substantial improvements in output prefer-108

ence, instruction-following capability, and reason-109

ing ability. Specifically, for the LLaMA-2-7B110

model, our framework achieves a 5.85% increase111

in output preference compared to Dog Instruct112

(Chen et al., 2024), and a 3.60% improvement113

in instruction-following ability over Better Align-114

ment (Nguyen et al., 2024). Furthermore, addi-115

tional analyses, including experiments on filtering 116

strategies and GPT-4-based pairwise evaluations of 117

instruction alignment, confirm that MAIN’s mutual 118

alignment enhances the coherence and quality of 119

instruction-response pairs. Our primary contribu- 120

tions are as follows: 121

• We emphasize the critical importance of 122

mutual alignment between instructions 123

and responses in synthesizing high-quality 124

instruction-tuning data. 125

• We propose MAIN, a mutual alignment frame- 126

work that reinforces the inner connection be- 127

tween instructions and responses, and develop 128

a straightforward but efficient data filtering 129

method. 130

• We conduct extensive evaluations across di- 131

verse model families and parameter scales, 132

showing that MAIN outperforms existing 133

methods in enhancing instruction tuning ef- 134

fectiveness. 135

2 Methodology 136

In this section, we present our proposed Mutual 137

Alignment Framework, designed to enhance in- 138

struction tuning performance by establishing and 139

strengthening the intrinsic alignment between in- 140

structions and responses. 141

2.1 Preliminary 142

Data The framework utilizes two primary 143

datasets: a limited set of high-quality, human- 144

annotated instruction-response pairs seed data 145

Dseed = {(I,R)} and a larger collection of unla- 146

beled responses Dunlabeled = {Ru}, extracted from 147

web corpus. 148

Models The forward model Mf := p(R|I) is de- 149

signed to follow instructions, generating responses 150

given instructions, while the reverse model Mr := 151

p(I|R) learns to generate instructions given re- 152

sponses. 153

2.2 Data Synthesis Framework: MAIN 154

We present our data synthesis framework, MAIN, 155

illustrated in Figure 2. Given a base language 156

model, a small set of high-quality seed pairs, and 157

a large collection of unlabeled responses, MAIN 158

constructs a high-quality training dataset through 159

three tightly coupled stages: Mutual Alignment, 160

Data Augmentation, and Data Curation. 161
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Figure 2: An overview of the data synthesis process, including mutual alignment, data augmentation, and data
curation, aimed at creating high-quality, well-aligned instruction-response pairs from both seed and unlabeled data.

• Mutual Alignment: This step is to obtain a162

reverse model Mr := p(I|R) from the seed163

data Dseed based on the base model Mbase.164

This step would align the internal relationship165

between instruction and response.166

• Data Augmentation: With the reverse model167

Mr trained in the previous step, we apply it168

to the unlabeled response data Dunlabeled to169

generate corresponding pseudo-instructions.170

This yields a set of candidate pairs Daug =171

{(Ru, Î
′)}, expanding the data space beyond172

the original seed data.173

• Data Curation: Not all augmented pairs are174

equally reliable. To select high-quality exam-175

ples, we apply our mutual filter, which uses176

both the forward and reverse models to as-177

sess alignment consistency. Only examples178

that meet mutual alignment criteria are re-179

tained. These filtered pairs, combined with the180

original seed data, form the final fine-tuning181

dataset: Dfilter = filter(Daug) ∪ Dseed.182

2.3 Mutual Alignment183

Achieving strong alignment between instructions184

and responses is critical for effective instruction185

tuning. However, establishing a robust relationship186

between these two components presents a challeng-187

ing dual-variable problem, as neither direction can188

be optimized in isolation. Inspired by the itera-189

tive principles of the Expectation-Maximization190

algorithm, we propose mutual alignment that treats191

instruction-to-response and response-to-instruction192

generation as complementary tasks, modeled as193

a forward generation process and a reverse gen- 194

eration process, respectively. By alternately opti- 195

mizing one direction while regulating the other, 196

our method iteratively minimizes discrepancies 197

until convergence is reached, ultimately yield- 198

ing a model that produces highly aligned instruc- 199

tion–response pairs. 200

An overview of our approach is provided in Fig- 201

ure 3, and Algorithm 1 details the iterative opti- 202

mization process. 203

Algorithm 1 Mutual Alignment

Input: Seed data Dseed = {(I,R)}, Unlabeled
data Dunlabeled = {Ru}, Base model Mbase,
Number of iterations N

Output: Reverse model MN
r , forward model MN

f

1: Initialize M0
f ←Mbase, M0

r ←Mbase
2: for k = 0 to N − 1 do
3: Generate Î from R in Dseed using Mk

r

4: Build training set Df = {(Î , R)} ∪ Dseed
5: Update Mk

f on Df by minimizing loss Lf
(Equation (2)) to obtain Mk+1

f

6: Generate pseudo-responses R̂ from I in
Dseed using Mk+1

f

7: Build training set Dr = {(R̂, I)} ∪ Dseed
8: Update Mk

r on Dr by minimizing loss Lr
(Equation (4)) to obtain Mk+1

r

9: end for
10: Return MN

r and MN
f

Forward Model Alignment. To capture the 204

alignment from responses to instructions, we let 205
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Figure 3: An overview of our method for iteratively aligning instructions and responses through mutual optimization.

the forward model learn the distribution that the206

reverse model simulates. Specifically, at each it-207

eration k, the reverse model generates synthetic208

instructions Î for the responses, forming a target209

distribution that reflects how instructions should210

ideally relate to responses. The forward model is211

then trained to approximate this distribution.212

Î = Mk
r (R), ∀R ∈ Dseed. (1)213

These synthetic pairs (Î , R) are merged with the214

original seed data (I,R) to form the training set.215

The forward model is then updated to Mk+1
f by216

optimizing a weighted loss function:217

Lf = α · L(Î , R) + (1− α) · L(I,R). (2)218

The first loss term L(Î , R) aligns the forward219

model with the synthetic instructions generated by220

the reverse model, ensuring that the forward model221

learns how responses correspond to instructions as222

modeled by the reverse model. The second loss223

term L(I,R) maintains consistency with the origi-224

nal human-annotated instructions, thereby prevent-225

ing the forward model from overfitting to synthetic226

data. The parameter α controls the balance be-227

tween synthetic and human-annotated instructions,228

with its dynamic adjustment described in Dynamic229

Weighting. This process encourages the forward230

model to adapt to the instruction distribution in-231

duced by the reverse model.232

Reverse Model Alignment. Similarly, the re-233

verse model is trained to capture the alignment234

from instruction to response as guided by the for-235

ward model. The reverse model now is updated236

based on the latest forward model Mk+1
f that gen- 237

erates synthetic responses R̂ conditioned on the 238

seed instructions: 239

R̂ = Mk+1
f (I), ∀I ∈ Dseed. (3) 240

And it is optimized using similar weighted loss 241

function: 242

Lr = α · L(R̂, I) + (1− α) · L(R, I). (4) 243

Dynamic Weighting To balance the influence 244

of synthetic and seed data, we adopt a dynamic 245

weighting strategy that adaptively adjusts their con- 246

tributions during training. The weighting coef- 247

ficient α ∈ [0, 1] controls this balance, where 248

static settings may lead to suboptimal outcomes: 249

over-reliance on synthetic data can introduce noise, 250

while overemphasis on seed data may hinder gener- 251

alization. To address this, we update α at each step 252

based on the relative loss of the two data sources. 253

For forward model training, the update rule is: 254

α =
L(Î , R)

L(Î , R) + L(I,R)
. (5) 255

This formulation ensures that the contribution of 256

synthetic data is modulated according to its train- 257

ing loss, enabling the model to incorporate novel 258

patterns from synthetic pairs while preserving the 259

stability offered by seed data. 260

2.4 Data Augmentation 261

Following mutual alignment optimization, we ex- 262

pand the training corpus by generating synthetic 263

instructions for unlabeled responses. Specifically, 264
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for each unlabeled response Ru ∈ Dunlabeled, the265

reverse model generates a corresponding synthetic266

instruction Î ′, forming a set of candidate instruc-267

tion–response pairs {(Ru, Î
′)}. These pairs ap-268

proximate how users might naturally formulate in-269

structions for the given responses. However, as270

the quality of generated pairs may vary, a subse-271

quent curation step is required to ensure alignment272

consistency and data reliability.273

2.5 Data Curation274

To further improve data alignment, we introduce275

an effective filtering mechanism. We assume that276

high-quality instruction-response pairs should be277

well-aligned, where the predicted instruction gen-278

erated by the reverse model can be decoded by279

the forward model to recover the response, which280

should closely resemble the original. This process281

is akin to the interaction between an encoder and282

a decoder (Cho et al., 2014). Thus, we select the283

most well-aligned pairs. Using the candidate pairs284

{Ru, Î
′} from the Augmentation stage, we then285

employ the forward model to generate synthetic286

responses R̂′ based on Î ′:287

R̂′ = MN
f (Î ′). (6)288

We compute the Cross-Entropy between the syn-289

thetic responses R̂′ and the original unlabeled re-290

sponses Ru:291

LCE(R̂
′, Ru) = −

∑
i

log p(R̂′ | Î ′, Ru). (7)292

Candidate pairs are sorted in ascending order by293

their values, and only those with the smallest val-294

ues—indicating the highest degree of mutual align-295

ment are retained.:296

Dfilter =
[
filter(Daug),Dseed

]
(8)297

This straightforward mechanism, relying solely on298

our mutual alignment model, effectively curates a299

high-quality subset of data for fine-tuning.300

3 Experiment301

3.1 Experimental Setup302

Data. The seed data consists of 3,200 human-303

annotated (instruction, response) examples from304

the Open Assistant dataset (Köpf et al., 2024), serv-305

ing as a reliable baseline for fine-tuning. The un-306

labeled data is Falcon RefinedWeb (Penedo et al.,307

2023) that is a massive English web dataset con-308

taining raw responses without paired instructions.309

We sampled 502k segments.310

Mutual Alignment Framework. For mutual 311

alignment experiments, we adopt LLaMA-2-7B as 312

the base model, and additionally evaluate the gen- 313

eralization of our approach on Mistral and Qwen 314

models. In each iteration, both the forward and 315

reverse models are trained for one epoch. We use a 316

learning rate of 1×10−5 with a linear decay sched- 317

ule. The adaptation weight α is dynamically up- 318

dated according to Equation 5. The batch size is set 319

to 32. For data curation, we select the top 16,800 320

instruction-response pairs from the unlabeled set 321

based on cross-entropy scores and combine them 322

with the seed data to form the final fine-tuning 323

dataset. 324

Base model & fine-tuning. We use the pre- 325

trained LLaMA, Mistral and Qwen as the base 326

models respectively. Detailed hyperparameter con- 327

figurations are provided in Appendix A. 328

3.2 Benchmarks 329

To evaluate our framework, we conduct experi- 330

ments across three benchmarks that assess different 331

aspects of model performance. 332

AlpacaEval. We assess output preference using 333

805 instructions from the AlpacaEval dataset (Li 334

et al., 2023b). Model outputs are compared against 335

text-davinci-003 in a pairwise setting, with GPT-4- 336

based judgments determining win rates. 337

IFEval. Instruction-following ability is evaluated 338

with IFEval (Zhou et al., 2023), which reports accu- 339

racy across four metrics: Prompt-level Strict (P-S), 340

Instruction-level Strict (I-S), Prompt-level Loose 341

(P-L), Instruction-level Loose (I-L) ensuring a com- 342

prehensive assessment of instruction adherence. 343

OpenLLM. Reasoning ability is measured via 344

the Open LLM Leaderboard (Beeching et al., 345

2023) using the Language Model Evaluation 346

Harness (Gao et al., 2023). We evaluate on 347

ARC (Clark et al., 2018), HellaSwag (Zellers 348

et al., 2019), Winogrande (Sakaguchi et al., 2021), 349

MMLU (Hendrycks et al., 2020), and Truth- 350

fulQA (Lin et al., 2021). 351

3.3 Baselines 352

We compare our framework to several baseline ap- 353

proaches, fine-tuned on 3.2k seed data and 16.8k 354

generated data from Falcon-RefinedWeb dataset. 355
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Longform. This method (Köksal et al., 2023)356

prompts a large language model to generate in-357

structions for human-written texts.358

Humpback. This method (Li et al., 2023a) is a359

two-stage curation process that filters and selects360

high-quality pairs before fine-tuning.361

Dog Instruct. This method (Chen et al., 2024)362

involves a post-processing step that refines the re-363

sponses to align with standard AI-generated output.364

Better Alignment. This method (Nguyen et al.,365

2024) generates instructions via back-translation,366

then filters pairs to obtain high-quality response.367

4 Experimental Results368

This section presents the experimental results, in-369

cluding quantitative results, an ablation study, data370

alignment analysis and a case study, to assess the371

effectiveness of our approach.372

4.1 Quantitative Results373

We conduct experiments across three benchmarks,374

each assessing a different aspect of the MAIN: Al-375

pacaEval evaluates output preference, IFEval mea-376

sures instruction-following ability, and OpenLLM377

tests reasoning capability, with additional experi-378

ments detailed in Appendix B379

Output Preference. As shown in Table 1, our380

method achieves the highest win rate in AlpacaEval381

dataset, surpassing the leading baseline. Specifi-382

cally, on Llama-2-7B, our method achieves a win383

rate of 58.20%, representing a 5.85% improvement384

over the best baseline Dog Instruct (Chen et al.,385

2024). On Mistral-7B, our method outperforms386

Better alignment (Nguyen et al., 2024) by 3.15%,387

reaching a win rate of 48.94% compared to 45.79%.388

On Qwen2.5-14B, MAIN achieves the highest win389

rate of 71.30%. These results confirm that our390

MAIN method enhances instruction-response align-391

ment more effectively than previous approaches,392

leading to outputs that better align with human ex-393

pectations.394

Instruction Following. Table 1 illustrates the re-395

sults of our method in IFEval dataset where MAIN396

achieves state-of-the-art performance across all397

three model backbones. Compared to the best-398

performing baseline, our approach achieves con-399

sistent improvements across all evaluation metrics.400

Specifically, on Llama-2-7B, we see an increase of401

2.59% in P-S and 3.42% in I-S. For Mistral-7B, we402

observe a 5.12% improvement in P-S and a 4.84% 403

improvement in I-S over Better alignment (Nguyen 404

et al., 2024). For Qwen2.5-14B, MAIN also leads 405

with a +2.07% and +2.99% gain in P-S and I-S re- 406

spectively. These results highlight the crucial role 407

of enhanced data alignment in fine-tuning, which 408

allows our model to better interpret and respond 409

to user instructions, thereby driving its superior 410

performance in instruction-following tasks. 411

Reasoning Ability. As shown in Table 1, our 412

method demonstrates strong improvements in rea- 413

soning and factual accuracy across multiple down- 414

stream tasks. On Llama-2-7B, our approach shows 415

a 2.02% improvement over the best baseline, Bet- 416

ter Alignment, on ARC-Challenge and a 1.63% 417

improvement on TruthfulQA. In particular, ARC- 418

Challenge benefits from our method’s ability to 419

better capture common-sense reasoning patterns, 420

which likely leads to more accurate responses. On 421

Mistral-7B, the most significant improvements are 422

observed in TruthfulQA, where our method outper- 423

forms Better Alignment by 5.03%, and in MMLU, 424

with a 2.65% increase. We further include eval- 425

uation on Qwen2.5-14B, which follows a similar 426

trend. These benchmarks that require accurate fac- 427

tual recall and complex reasoning, show how our 428

method strengthens the model’s ability to provide 429

correct and contextually appropriate answers. 430

4.2 Ablation Study 431

We conduct additional ablation study to analyze the 432

impact of our filtering strategy. Further ablation 433

experiments are provided in Appendix C. 434

Filtering Stragety. Effective filtering is critical 435

for improving alignment quality by removing noisy 436

or misaligned instruction–response pairs. Table 2 437

compares models trained with no filtering, score- 438

based filtering, and our proposed mutual-filter 439

method. Among these, our mutual-filter achieves 440

the highest win rate and delivers the most consis- 441

tent gains in instruction-following accuracy. 442

In contrast, score-based filtering provides little 443

benefit and even underperforms compared to unfil- 444

tered data. This is due to the score-based approach, 445

used in Humpback (Li et al., 2023a) and Better 446

Alignment (Nguyen et al., 2024), relying on a rank- 447

ing model fine-tuned on seed data rather than a 448

dedicated scoring model. Without a clear optimiza- 449

tion objective for instruction-response alignment, 450

it struggles to identify high-quality pairs, leading 451

to suboptimal fine-tuning. 452
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Base Model Method Output preference Instruction following Reasoning ability

AlpacaEval
IFEval

ARC_C MMLU HellaSwag Winogrande TruthfulQA
P-S I-S P-L I-L

Llama-2-7B

Humpback (Li et al., 2023a) 41.02 15.46 26.42 18.39 29.91 55.90 44.91 79.42 73.32 44.48
Longform (Köksal et al., 2023) 35.64 15.23 26.10 17.56 29.29 55.72 45.02 78.98 73.21 45.07
Dog Instruct(Chen et al., 2024) 52.35 15.52 28.17 19.40 32.01 56.06 45.62 79.89 74.13 45.77

Better Alignment (Nguyen et al., 2024) 50.37 16.82 27.70 19.69 31.52 55.92 45.84 80.33 74.12 45.30
MAIN 58.20 20.22 31.17 23.36 35.37 57.08 45.47 81.22 74.51 47.40

∆ over Best Result +5.85 +3.40 +3.00 +3.67 +3.36 +1.02 -0.37 +0.89 +0.38 +1.63

Mistral-7B

Humpback (Li et al., 2023a) 40.48 17.19 28.05 20.88 32.37 54.01 49.26 79.12 73.24 45.48
Longform (Köksal et al., 2023) 37.62 16.98 27.89 20.75 32.10 53.98 48.12 78.25 71.60 44.88
Dog Instruct(Chen et al., 2024) 45.34 18.23 28.48 21.32 33.47 53.15 49.10 79.07 73.21 45.98

Better Alignment(Nguyen et al., 2024) 45.79 18.35 29.45 21.49 34.10 54.20 50.28 78.37 71.48 44.73
MAIN 48.94 23.47 34.29 26.60 38.84 55.12 52.93 79.38 72.38 49.76

∆ over Best Result +3.15 +5.12 +4.84 +5.11 +4.74 +0.92 +2.65 +0.31 -0.86 +3.78

Qwen2.5-14B

Humpback (Li et al., 2023a) 49.83 69.45 79.92 74.28 82.25 65.25 77.04 83.81 78.91 57.63
Longform (Köksal et al., 2023) 45.42 69.12 79.37 74.05 82.46 65.12 76.92 83.04 76.55 55.72
Dog Instruct (Chen et al., 2024) 50.27 72.83 81.89 76.64 84.72 64.71 78.33 84.19 79.12 56.34

Better Alignment (Nguyen et al., 2024) 53.93 71.37 81.55 76.32 84.14 65.36 78.01 84.25 79.63 55.91
MAIN 61.30 74.90 84.03 79.93 87.61 66.93 80.26 84.07 80.72 59.49

∆ over Best Result +7.37 +2.07 +2.14 +2.29 +2.89 +1.57 +1.93 -0.18 +1.09 +3.15

Table 1: Benchmarking results of different methods on Llama-2-7B, Mistral-7B and Qwen2.5-14B using Falcon
RefinedWeb dataset given same data quantity (20k samples). ∆ over Best Result quantify improvements relative to
the strongest baseline method across evaluation categories.

Our mutual filter, by leveraging mutual-453

alignment models, directly favors instruction-454

response pairs with strong coherence. By elimi-455

nating misaligned samples without requiring ad-456

ditional supervision, it ensures a more effective457

training dataset, resulting in improved instruction-458

following and generalization capabilities.459

Filtering Method Win Rate P-S I-S P-L I-L

Ours w/o filtering 56.40 19.41 23.11 29.74 34.17
Ours w/ score-based filtering 55.26 17.63 20.21 29.11 33.72
Ours w/ mutual filter 58.20 20.22 23.36 31.17 35.37

Table 2: Performance evaluation of LLaMA-2-7B fine-
tuned on the Falcon-RefinedWeb dataset (20K samples)
under three filtering conditions. All conditions operate
on instruction-response pairs generated by the same
reverse model.

4.3 Data Alignment Analysis460

We assessed the alignment quality of instructions461

generated by our MAIN method compared to base-462

lines using blind pairwise evaluations conducted by463

GPT-4. Specifically, we randomly selected 1000464

responses from the Falcon RefinedWeb dataset. For465

each response, GPT-4 evaluated two candidate in-466

structions—one from MAIN and one from a base-467

line—in random order to avoid positional bias. We468

then calculated Win, Tie, and Loss rates based on469

GPT-4’s judgments: Win indicates GPT-4 preferred470

MAIN, Tie indicates no clear preference, and Loss471

indicates GPT-4 preferred the baseline. Using the472

Qwen2.5-14B as the base model, MAIN consis-473

tently outperformed all baselines, with win rates 474

ranging from 61.7% to 81.6%, demonstrating supe- 475

rior instruction alignment capability (see Table 3). 476

The evaluation prompt used by GPT-4 is detailed 477

in Appendix F. 478

Baseline Win Rate Tie Rate Loss Rate ∆

Humpback 69.3% 18.6% 12.1% +56.2%
Longform 81.6% 8.6% 8.8% +72.8%
Dog Instruct 61.7% 15.1% 23.2% +38.5%
Better Alignment 64.7% 12.4% 22.9% +41.8%

Table 3: GPT-4 pairwise evaluation comparing MAIN
with four baseline methods on instruction alignment
quality. Each comparison is based on 1000 examples
sampled from the Falcon RefinedWeb dataset. ∆ de-
notes the win rate margin of MAIN over each baseline.

4.4 Case Study 479

As shown in Figure 4, the two examples, both ex- 480

tracted from unlabeled data, illustrate the effective- 481

ness of our approach. In the first case, the MAIN 482

instruction explicitly requests specific details about 483

the victim, the shooter, and the events surrounding 484

the shooting, providing clear guidance for the re- 485

sponse. In contrast, the baseline instruction is more 486

general, asking for a brief article about the shooting 487

without specifying key details. In the second case, 488

the MAIN instruction emphasizes a critical event: 489

a wave of car burglaries in the suburbs, while the 490

baseline instruction remains vague, simply request- 491

ing a summary of events in suburban areas. 492

In both cases, MAIN Instructions are more fo- 493

7



Figure 4: Method Comparison for Instruction Generation: A Case Study on the Effectiveness of Reverse Model
Approaches in Aligning Instructions with Responses

cused and specific, resulting in responses that are494

better aligned with the intended context. In con-495

trast, the baseline instructions are more general.496

These examples demonstrate that our method gen-497

erates instructions that are more closely aligned498

with the responses.499

5 Related Work500

5.1 Instruction Tuning501

Instruction tuning fine-tunes pre-trained LLMs502

on instruction-response pairs, enabling models to503

generalize across tasks without task-specific fine-504

tuning (Wei et al., 2021; Mishra et al., 2021; Wang505

et al., 2022b). Subsequent work (Mishra et al.,506

2021; Sanh et al., 2021) focused on cross-task gen-507

eralization through diverse inputs.508

5.2 Data Generation509

Effective instruction tuning relies on large-scale,510

high-quality datasets, typically generated in two511

ways: human-crafted or model-generated.512

Human-Crafted Data Datasets curated by do-513

main experts, like OpenAssistant Conversations514

(Köpf et al., 2024) and Databricks Dolly-15k515

(Conover et al., 2023), are high quality but costly.516

Crowd-sourced platforms like ShareGPT (Chiang517

et al., 2023) also contribute valuable data, espe-518

cially user-uploaded conversations.519

Model-Generated Data To reduce manual anno-520

tation costs, methods like Self-Instruct (Wang et al.,521

2022a) and Alpaca-GPT4 (Peng et al., 2023) gener- 522

ate instruction-response pairs automatically. How- 523

ever, issues like hallucinations (Zhang et al., 2023) 524

persist. New approaches, such as Better Align- 525

ment (Nguyen et al., 2024) and Dog-Instruct(Chen 526

et al., 2024), pair human responses with inferred 527

instructions to reduce hallucinations and improve 528

scalability. Our proposed MAIN builds on this by 529

iteratively optimizing instruction-response align- 530

ment to ensure high-quality data. 531

6 Conclusion 532

In this paper, we highlight the critical role of 533

instruction-response alignment in instruction tun- 534

ing for LLMs. We introduce the Mutual Align- 535

ment Framework, which iteratively optimizes both 536

instructions and responses to improve their coher- 537

ence, along with a mutual filtering strategy to se- 538

lect high-quality pairs. Experiments across multi- 539

ple benchmarks show that our framework enables 540

state-of-the-art performance. These findings high- 541

light the importance of mutual alignment in instruc- 542

tion tuning and offer a new perspective for refining 543

instruction-response pairs, paving the way for more 544

effective and principled instruction tuning in future 545

LLM development. 546

Limitations 547

Our experiments cover a broad range of model 548

families and parameter scales, demonstrating the 549

robustness of the proposed framework across ar- 550

8



chitectures and sizes. However, we have not yet551

evaluated MAIN on very large models due to re-552

source limit, which may exhibit qualitatively differ-553

ent behaviors. This limits our ability to fully assess554

the potential of mutual alignment at extreme scales.555

Investigating its effectiveness in such settings re-556

mains an important direction for future work.557
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A Training Details729

Hyperparameter Assignment
Computing Infrastructure 8 A100-80GB GPUs
Number of epochs 2
Batch size per GPU 64
Maximum sequence length 1024
Maximum learning rate 2e-5
Optimizer Adam
Adam epsilon 1e-8
Adam beta weights 0.9, 0.999
Learning rate scheduler warmup linear
Weight decay 0.1
Warmup steps 100
Learning rate decay linear

Table 4: Hyperparameters used in the experiments.

Training is conducted with hyperparameters730

aligned to established supervised fine-tuning (SFT)731

practices (Zhou et al., 2024; Touvron et al., 2023).732

The learning rate is set to 2× 10−5, with a weight733

decay of 0.1, a batch size of 64, and a dropout rate734

of 0.1. Additionally, each iterative phase of train-735

ing is limited to one epoch. For text generation,736

we apply nucleus sampling (Holtzman et al., 2019)737

with a temperature (T ) of 0.7 and a top-p value of738

0.9. These settings balance diversity and relevance739

in the generated outputs. More hyperparameters740

listed in Table 4741

B Generalization Results742

Table 5 presents extended results that demonstrate743

both the scalability across varying model sizes744

across diverse architectures of our MAIN method.745

These capabilities are evidenced by MAIN’s en-746

hanced performance compared to the baseline747

(Nguyen et al., 2024) on the IFEval benchmark748

when evaluated on models such as Qwen2.5-3B749

and LLaMA-2-13B.750

Model Method P-S (%) I-S (%) P-L (%) I-L (%)

Qwen2.5-3B
Baseline 32.13 35.98 44.02 47.10
MAIN 35.78 39.12 47.42 51.21

LLaMA-2-13B
Baseline 16.12 18.72 28.54 30.20
MAIN 18.98 22.63 30.87 34.85

Table 5: Comparative instruction-following perfor-
mance of MAIN and Baseline on the IFEval dataset
across diverse models.

Further evaluations in Table 6 demonstrate that751

our MAIN framework consistently outperforms752

Baseline (Nguyen et al., 2024) across diverse NLP 753

benchmarks (BLEU, ROUGE-L, SQuADv2). 754

Base Model Method BLEU ROUGE-L SQuADv2 (EM / F1)

Llama-2-7B
Baseline 43.94 43.82 10.82 / 19.62
MAIN 47.37 46.39 12.99 / 21.30

Mistral-7B
Baseline 40.75 39.41 14.53 / 21.72
MAIN 43.15 44.70 17.11 / 23.49

Table 6: Comparative performance of MAIN and Base-
line on diverse NLP benchmarks.

C Ablations 755

Training iterations. To analyze the impact of it- 756

eration count N , we vary N from 1 to 20 and eval- 757

uate its effect on AlpacaEval and IFEval dataset. 758

As shown in Table 7, increasing N initially im- 759

proves performance, as iterative refinement enables 760

the forward and reverse models to progressively 761

align their outputs, enhancing instruction-response 762

consistency. 763

However, beyond a certain point, performance 764

begins to decline. Excessive iterations reinforce 765

suboptimal patterns leading to overfitting. This un- 766

derscores the necessity of selecting an optimal N 767

that balances refinement and generalization. Our re- 768

sults emphasize the importance of properly tuning 769

N to maximize the benefits of mutual alignment. 770

Iterations N Win Rate

N = 1 50.11
N = 2 55.72
N = 3 58.20
N = 4 55.89
N = 5 55.60
N = 10 54.41
N = 15 54.29
N = 20 54.52

Table 7: Ablation study on the effect of iteration count
N . We analyze the influence of varying the number
of training iterations (N = 1, 2, 3, 4, 5, 10, 15, 20) on
Llama-2-7B fine-tuned on Falcon-RefinedWeb.
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Figure 5: Evaluation of dynamic weighting strategies on
LLaMA-2-7B training, comparing fixed and adaptive
α values using the Falcon-RefinedWeb dataset, with
performance assessed on AlpacaEval and IFEval.

Dynamic Weighting. Balancing the contribution771

of aligned instruction-response pairs is crucial for772

achieving both strong alignment and robust gen-773

eralization. The weighting parameter α controls774

this balance during training by adjusting the rel-775

ative influence of synthetic and seed data. To776

evaluate its effectiveness, we compare fixed val-777

ues (α = 0.3, 0.5, 0.7, 0.8, 1.0) with our adaptive778

approach (α = Dynamic), which continuously up-779

dates α throughout training.780

As shown in Figure 5, increasing α generally im-781

proves instruction-following ability and output pref-782

erence by emphasizing well-aligned pairs. How-783

ever, excessively high α makes the model overly re-784

liant on generated instruction-response pairs, lead-785

ing to unstable training and degraded performance.786

To mitigate this, our dynamic weighting strategy787

adaptively balances aligned and seed data, prevent-788

ing instability while maintaining strong alignment.789

The results show that this approach significantly im-790

proves output preference and instruction-following.791

D Detailed Benchmark Settings792

We have evaluated our method under both few-shot793

and zero-shot conditions. Specifically, tasks such794

as ARC_C, HellaSwag, Winogrande, and MMLU795

were tested with a few-shot setup, whereas Al-796

pacaEval, TruthfulQA, and IFEval benchmarks797

were evaluated under zero-shot conditions. De-798

tailed settings and results are provided in Table 8799

Dataset Metric Number of Shots

ARC_C Acc_norm 25
TruthfulQA Mc2 Zero-shot
Winogrande Acc 5
HellaSwag Acc 10
MMLU Acc_norm 5
AlpacaEval Win_rate Zero-shot
IFEval P-S, etc. Zero-shot

Table 8: Evaluation settings and key metrics for bench-
mark datasets under few-shot and zero-shot conditions.

E Computational Cost Analysis 800

This section details the computational demands 801

of our proposed method MAIN. While MAIN in- 802

volves an iterative training process, the overall com- 803

pute cost is carefully managed to remain modest. 804

In each iteration, only one model is trained for 805

a single epoch on the seed data, while the other 806

performs inference—a lightweight operation. Typ- 807

ically, three iterations suffice for convergence, re- 808

sulting in six training epochs across the forward 809

and reverse models. In comparison, baseline meth- 810

ods (Li et al., 2023a; Nguyen et al., 2024) also train 811

a reverse model and a ranking model for a similar 812

number of epochs. We summarize estimated GPU 813

hours in Table 9. 814

Method Models Trained Inference Needed GPU Hours

Baseline Ranking model +
Reverse model

No 5.0

MAIN (Ours) Forward model +
Reverse model

Yes 5.3

Table 9: Estimated computational cost comparison for
MAIN against baselines.
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F GPT-4 Evaluation Prompt815

The following table presents the exact prompt used816

to instruct GPT-4 during blind pairwise compar-817

isons:818

GPT-4 Pairwise Evaluation Prompt

Please act as an expert evaluator of instruction-
response alignment. You are given a response
and two candidate instructions: Instruction A
and Instruction B. Your task is to decide which
instruction is better aligned with the response.
Evaluate based on the following aspects:
- Alignment between instruction and response
- logical consistency
- natural language fluency
Please output only one of the following:
A win — if Instruction A is clearly better aligned
with the response.
B win — if Instruction B is clearly better aligned
with the response.
Tie — if both instructions are equally good or
equally poor.

Table 10: Prompt template used in GPT-4 pairwise eval-
uation of instruction-response alignment.
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