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Abstract

Evaluating large language models (LLMs) is increasingly costly, motivating meth-1

ods to speed up evaluation by compressing benchmark datasets. Benchmark2

prediction aims to select a small subset of evaluation points and predict overall3

performance from that subset. We systematically assess 11 benchmark prediction4

methods across 19 benchmarks. First, we identify a strong baseline: take a random5

sample and fit a regression to predict the missing entries, which outperforms most6

existing methods and challenges the need for careful subset selection. Second, we7

show that all methods rely on model similarity: performance degrades markedly8

when extrapolating to stronger models than those used for training, where few meth-9

ods beat a simple sample average. We introduce an augmented inverse propensity10

weighting (AIPW) estimator that consistently improves over the random sample11

average under both interpolation and extrapolation, though gains remain modest12

and still depend on similarity. This shows that benchmark prediction fails just13

when it is most needed: at the evaluation frontier, where the goal is to evaluate new14

models of unknown capabilities.15

1 Introduction16

Computational cost is a major bottleneck in evaluating recent generative models. For example,17

evaluating a single 176B model on HELM required 4,200 GPU hours [35]; even large organizations18

report heavy costs on BIG-bench [17]. This has prompted work on efficient LLM evaluation through19

benchmark prediction: finding a subset of data points to evaluate on and predicting benchmark20

performance from these evaluations. The simplest method is the random sample mean: evaluate n21

evaluation points and average, which gives an additive approximation up to error O(1/
√
n). Recent22

work aims to improve this by selecting an informative core set and learning mappings from core set23

to full-benchmark performance. See the discussion of related work in Appendix A.24

We systematically study the strengths and limits of these methods by evaluating 11 benchmark25

prediction methods across 19 benchmarks with at least 83 models each. Models are split into26

source models (full performance data available) and target models (performance data for no more27

than 50 points). Methods must estimate target models’ mean performance using this constraint.28

Effectiveness is measured by average estimation gap-the absolute difference between true and29

estimated performances.30

Many methods work well on similar models, but a simple baseline works best. In the interpolation31

regime (source and target models from same distribution), a remarkably simple method works32

best: RANDOM-SAMPLING-LEARN-random sampling followed by regression modeling-reduces33

the estimation gap by 37% compared to basic random sampling, outperforming most sophisticated34

methods. This suggests that the manner of core-set selection is relatively unimportant; rather, the key35

to success is modeling the correlation between core-set and full-benchmark performances.36
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Figure 1: Estimation gap (equation 1) versus real accuracy on ImageNet. Gray shows source model
accuracy range. Left: source models randomly sampled across all models. Right: source models
sampled from models with lower than 80% accuracy.

Methods fail at the evaluation frontier. In the extrapolation regime (target models all better than37

source models), effectiveness drops sharply. Most methods fail to beat naive random sampling when38

evaluating new, better models-precisely when efficient evaluation is most needed (Figure 1, right).39

AIPW is an overlooked exception to the rule. We introduce augmented inverse propensity weighting40

(AIPW) to benchmark prediction. Unlike other methods, AIPW consistently outperforms random41

sampling in both interpolation and extrapolation settings. However, as illustrated in Figure 1 (right),42

even AIPW sees diminishing improvements as target models’ accuracies exceed those of the sources.43

Benchmark prediction relies on model similarity. Our further study reveals that benchmark44

prediction methods rely heavily on model similarity [38]: methods that beat RANDOM-SAMPLING do45

so mainly for targets similar to sources, while accuracy on disimilar models deteriorates. In contrast,46

RANDOM-SAMPLING exhibits neutral correlation.47

2 What is Benchmark Prediction?48

Problem formulation. A benchmark is defined as (D,F , s) where D is the dataset with N data49

points, F is the model set, and s is the evaluation metric. For any model f ∈ F and data point50

z = (x, y) ∈ D, we define notation as follows.51

• s(f, z) denotes performance of f on point z, for example, 1[f(x) = y] for accuracy.52

• s̄(f,D′) = 1
|D′|

∑
z∈D′ s(f, z) denotes average performance on subset D′ ⊂ D.53

• s(f,D′) denotes the vectorized performance of f on D′ ⊂ D, and s(F ′, z) denotes the vectorized54

performances of all models in F ′ ⊂ F on data point z.55

• S(F ′,D′) denotes the performance matrix for models F ′ ⊂ F on points D′ ⊂ D.56

Given source models F (s) ⊂ F with known full performance S(F (s),D) and target models F (t) =57

F \ F (s) evaluated on only n≪ N points, benchmark prediction aims to estimate s̄(f,D) for each58

f ∈ F (t) by: ① selecting core-set C ⊂ D with |C| = n, and ② learning estimator h to minimize:59

estimation gap:
1

|F (t)|
∑

f∈F(t)

∣∣s̄(f,D)− h
[
s(f, C), S(F (s),D)

]∣∣ . (1)

Previous benchmark prediction methods:60

• RANDOM-SAMPLING: pick C at random; return the mean on C.61

• ANCHOR-POINTS-WEIGHTED [60]: k-medoids to select C; return weighted sum by cluster density.62

• ANCHOR-POINTS-PREDICTOR [60]: as above, then linear regression from s(f, C) to s̄(f,D).63

• P-IRT [43]: as above, replace regression with the Item Response Theory (IRT) model.64

• GP-IRT [43]: combine P-IRT with Anchor-Points-Weighted aggregation.65

New methods introduced:66
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Figure 2: The estimation gaps (↓) for target models (equation 1) under the interpolation split, where
source and target models are identically distributed. Each target is evaluated on n = 50 data points.
The estimation gap reduction (↓) over RANDOM-SAMPLING is shown in parentheses. A negative
reduction means that the method achieves a lower gap than RANDOM-SAMPLING. % is omitted.

• RANDOM-SAMPLING-LEARN: pick C at random; Ridge regression from s(f, C) to s̄(f,D).67

• RANDOM-SEARCH-LEARN: run RANDOM-SAMPLING-LEAR 10,000 times; select best C and h.68

• LASSO: Lasso regression with sparsity constraint number of non-zero weights ≤ n.69

• DOUBLE-OPTIMIZE: gradient descent for joint core-set and regression optimization.70

• PCA: use random C; impute target scores with PCA assuming S(F ,D) is low-rank.71

• AIPW [48]: train regression g to predict s(f, z) from s(F (s), z) for every f . The idea is to use the72

predicted performance ŝ(f, z) = g[s(F (s), z)] as a proxy score of s(f, z) and “debias” as follows73

hAIPW(f) = s̄(f, C) + 1

1 + n
N−n

(
1

N − n

∑
z∈D−C

ŝ(f, z)− 1

n

∑
z∈C

ŝ(f, z)

)
. (2)

AIPW is a consistent estimator for s̄(f,D)[19]. Compared to RANDOM-SAMPLING, it reduces esti-74

mator variance by a factor of up to 1
1+ n

N
ρ(ŝ(f, z), s(f, z))2 [14]. See more details in Appendix B.75

3 Experiments76

We examine the 11 benchmark prediction methods under both interpolation and extrapolation settings.77

We select 19 benchmarks from HELM-Lite [35], OpenLLM [16], GLUE [61] and ImageNet [51], each78

with at least 83 models. See more details in Appendix C.79

Estimation gap reduction under interpolation. For each benchmark, we randomly select 75% of80

models as source models F (s) with full performance scores S(F (s),D) available. The remaining81

25% serve as target models F (t), each evaluated on only n = 50 data points. We report average82

estimation gap across all target models in 100 random trials. See standard errors in Appendix D.83

Figure 2 shows that compared to RANDOM-SAMPLING, most methods effectively reduce the estima-84

tion gap, with nine of ten achieving more than 20% average reduction across benchmarks. The simple85

baseline RANDOM-SEARCH-LEARN performs best with 42.1% average reduction, outperforming the86

previous state-of-the-art GP-IRT (29.9% average reduction) on nearly all benchmarks.87
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Figure 3: The estimation gaps (↓) for target models (equation 1) under extrapolation split, where
source models are the lowest-performing 50%, and target models are the top 30%. Each target
model is evaluated on n = 50 data points. We also report the estimation gap reduction (↓) over
RANDOM-SAMPLING in parentheses. A negative reduction implies that the method achieves a lower
estimation gap than RANDOM-SAMPLING. % is omitted.

Core-set selection does not significantly enhance effectiveness. RANDOM-SAMPLING-LEARN88

achieves 37.2% average reduction using only Ridge regression on random samples, performing89

comparably to RANDOM-SEARCH-LEARN despite the latter’s 10,000 optimization iterations. It also90

surpasses methods with sophisticated subset selection like DOUBLE-OPTIMIZE and GP-IRT. These91

suggest the primary driver of success is learning to predict the mean rather than core-set selection.92

Estimation gap increase under extrapolation. We then examine all 11 methods under extrapola-93

tion. Models are ranked by full benchmark performance s̄(f,D). The bottom 50% become source94

models, while the top 30% serve as target models, reflecting real-world scenarios where developers95

assess improved models based on existing inferior ones.96

Figure 3 reveals striking differences from interpolation. While RANDOM-SAMPLING’s estimation97

gap remains similar (4.6% vs 4.8%), all other methods deteriorate significantly. The previously98

best RANDOM-SEARCH-LEARN now shows 185.1% increase in estimation gap versus RANDOM-99

SAMPLING, performing worse across all benchmarks. Only AIPW still outperforms RANDOM-100

SAMPLING (in 18/19 benchmarks) as it is a consistent estimator, though its advantage shrinks from101

-30.4% to -12.6% reduction.102

This contrast underscores most methods’ heavy reliance on source-target similarity. See a deeper103

analysis of model similarity and ablation studies in Appendix D. While traditional machine learning104

emphasizes in-domain performance, benchmarking aims to identify superior new models, making105

extrapolation more relevant than interpolation. The decline in benchmark prediction effectiveness106

under extrapolation calls for more caution.107

4 Conclusion108

Our findings suggest that while benchmark prediction techniques can be useful in specific scenarios,109

their reliance on similarity between source and target models poses a risk of misestimating the110

performance of new models. This underscores the importance of applying these methods with111

caution, especially for evaluating models that significantly deviate from previous ones. See more112

detailed discussion in Appendix E.113
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NeurIPS Paper Checklist313

1. Claims314

Question: Do the main claims made in the abstract and introduction accurately reflect the315

paper’s contributions and scope?316

Answer: [Yes]317

Justification: See Section 1.318

Guidelines:319

• The answer NA means that the abstract and introduction do not include the claims320

made in the paper.321

• The abstract and/or introduction should clearly state the claims made, including the322

contributions made in the paper and important assumptions and limitations. A No or323

NA answer to this question will not be perceived well by the reviewers.324

• The claims made should match theoretical and experimental results, and reflect how325

much the results can be expected to generalize to other settings.326

• It is fine to include aspirational goals as motivation as long as it is clear that these goals327

are not attained by the paper.328

2. Limitations329

Question: Does the paper discuss the limitations of the work performed by the authors?330

Answer: [Yes]331

Justification: See Appendix F.332

Guidelines:333

• The answer NA means that the paper has no limitation while the answer No means that334

the paper has limitations, but those are not discussed in the paper.335

• The authors are encouraged to create a separate "Limitations" section in their paper.336

• The paper should point out any strong assumptions and how robust the results are to337

violations of these assumptions (e.g., independence assumptions, noiseless settings,338

model well-specification, asymptotic approximations only holding locally). The authors339

should reflect on how these assumptions might be violated in practice and what the340

implications would be.341

• The authors should reflect on the scope of the claims made, e.g., if the approach was342

only tested on a few datasets or with a few runs. In general, empirical results often343

depend on implicit assumptions, which should be articulated.344

• The authors should reflect on the factors that influence the performance of the approach.345

For example, a facial recognition algorithm may perform poorly when image resolution346

is low or images are taken in low lighting. Or a speech-to-text system might not be347

used reliably to provide closed captions for online lectures because it fails to handle348

technical jargon.349

• The authors should discuss the computational efficiency of the proposed algorithms350

and how they scale with dataset size.351

• If applicable, the authors should discuss possible limitations of their approach to352

address problems of privacy and fairness.353

• While the authors might fear that complete honesty about limitations might be used by354

reviewers as grounds for rejection, a worse outcome might be that reviewers discover355

limitations that aren’t acknowledged in the paper. The authors should use their best356

judgment and recognize that individual actions in favor of transparency play an impor-357

tant role in developing norms that preserve the integrity of the community. Reviewers358

will be specifically instructed to not penalize honesty concerning limitations.359

3. Theory assumptions and proofs360

Question: For each theoretical result, does the paper provide the full set of assumptions and361

a complete (and correct) proof?362

Answer: [NA]363
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Justification: This paper is mainly an empirical work and doesn’t provide many new364

theoretical results.365

Guidelines:366

• The answer NA means that the paper does not include theoretical results.367

• All the theorems, formulas, and proofs in the paper should be numbered and cross-368

referenced.369

• All assumptions should be clearly stated or referenced in the statement of any theorems.370

• The proofs can either appear in the main paper or the supplemental material, but if371

they appear in the supplemental material, the authors are encouraged to provide a short372

proof sketch to provide intuition.373

• Inversely, any informal proof provided in the core of the paper should be complemented374

by formal proofs provided in appendix or supplemental material.375

• Theorems and Lemmas that the proof relies upon should be properly referenced.376

4. Experimental result reproducibility377

Question: Does the paper fully disclose all the information needed to reproduce the main ex-378

perimental results of the paper to the extent that it affects the main claims and/or conclusions379

of the paper (regardless of whether the code and data are provided or not)?380

Answer: [Yes]381

Justification: See Appendix C and the code.382

Guidelines:383

• The answer NA means that the paper does not include experiments.384

• If the paper includes experiments, a No answer to this question will not be perceived385

well by the reviewers: Making the paper reproducible is important, regardless of386

whether the code and data are provided or not.387

• If the contribution is a dataset and/or model, the authors should describe the steps taken388

to make their results reproducible or verifiable.389

• Depending on the contribution, reproducibility can be accomplished in various ways.390

For example, if the contribution is a novel architecture, describing the architecture fully391

might suffice, or if the contribution is a specific model and empirical evaluation, it may392

be necessary to either make it possible for others to replicate the model with the same393

dataset, or provide access to the model. In general. releasing code and data is often394

one good way to accomplish this, but reproducibility can also be provided via detailed395

instructions for how to replicate the results, access to a hosted model (e.g., in the case396

of a large language model), releasing of a model checkpoint, or other means that are397

appropriate to the research performed.398

• While NeurIPS does not require releasing code, the conference does require all submis-399

sions to provide some reasonable avenue for reproducibility, which may depend on the400

nature of the contribution. For example401

(a) If the contribution is primarily a new algorithm, the paper should make it clear how402

to reproduce that algorithm.403

(b) If the contribution is primarily a new model architecture, the paper should describe404

the architecture clearly and fully.405

(c) If the contribution is a new model (e.g., a large language model), then there should406

either be a way to access this model for reproducing the results or a way to reproduce407

the model (e.g., with an open-source dataset or instructions for how to construct408

the dataset).409

(d) We recognize that reproducibility may be tricky in some cases, in which case410

authors are welcome to describe the particular way they provide for reproducibility.411

In the case of closed-source models, it may be that access to the model is limited in412

some way (e.g., to registered users), but it should be possible for other researchers413

to have some path to reproducing or verifying the results.414

5. Open access to data and code415

Question: Does the paper provide open access to the data and code, with sufficient instruc-416

tions to faithfully reproduce the main experimental results, as described in supplemental417

material?418
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Answer: [Yes]419

Justification: We release our codes in the supplemental materials.420

Guidelines:421

• The answer NA means that paper does not include experiments requiring code.422

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/423

public/guides/CodeSubmissionPolicy) for more details.424

• While we encourage the release of code and data, we understand that this might not be425

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not426

including code, unless this is central to the contribution (e.g., for a new open-source427

benchmark).428

• The instructions should contain the exact command and environment needed to run to429

reproduce the results. See the NeurIPS code and data submission guidelines (https:430

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.431

• The authors should provide instructions on data access and preparation, including how432

to access the raw data, preprocessed data, intermediate data, and generated data, etc.433

• The authors should provide scripts to reproduce all experimental results for the new434

proposed method and baselines. If only a subset of experiments are reproducible, they435

should state which ones are omitted from the script and why.436

• At submission time, to preserve anonymity, the authors should release anonymized437

versions (if applicable).438

• Providing as much information as possible in supplemental material (appended to the439

paper) is recommended, but including URLs to data and code is permitted.440

6. Experimental setting/details441

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-442

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the443

results?444

Answer: [Yes]445

Justification: See Appendix C.446

Guidelines:447

• The answer NA means that the paper does not include experiments.448

• The experimental setting should be presented in the core of the paper to a level of detail449

that is necessary to appreciate the results and make sense of them.450

• The full details can be provided either with the code, in appendix, or as supplemental451

material.452

7. Experiment statistical significance453

Question: Does the paper report error bars suitably and correctly defined or other appropriate454

information about the statistical significance of the experiments?455

Answer: [Yes]456

Justification: See Appendix D.457

Guidelines:458

• The answer NA means that the paper does not include experiments.459

• The authors should answer "Yes" if the results are accompanied by error bars, confi-460

dence intervals, or statistical significance tests, at least for the experiments that support461

the main claims of the paper.462

• The factors of variability that the error bars are capturing should be clearly stated (for463

example, train/test split, initialization, random drawing of some parameter, or overall464

run with given experimental conditions).465

• The method for calculating the error bars should be explained (closed form formula,466

call to a library function, bootstrap, etc.)467

• The assumptions made should be given (e.g., Normally distributed errors).468

• It should be clear whether the error bar is the standard deviation or the standard error469

of the mean.470
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• It is OK to report 1-sigma error bars, but one should state it. The authors should471

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis472

of Normality of errors is not verified.473

• For asymmetric distributions, the authors should be careful not to show in tables or474

figures symmetric error bars that would yield results that are out of range (e.g. negative475

error rates).476

• If error bars are reported in tables or plots, The authors should explain in the text how477

they were calculated and reference the corresponding figures or tables in the text.478

8. Experiments compute resources479

Question: For each experiment, does the paper provide sufficient information on the com-480

puter resources (type of compute workers, memory, time of execution) needed to reproduce481

the experiments?482

Answer: [Yes]483

Justification: See Appendix D.484

Guidelines:485

• The answer NA means that the paper does not include experiments.486

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,487

or cloud provider, including relevant memory and storage.488

• The paper should provide the amount of compute required for each of the individual489

experimental runs as well as estimate the total compute.490

• The paper should disclose whether the full research project required more compute491

than the experiments reported in the paper (e.g., preliminary or failed experiments that492

didn’t make it into the paper).493

9. Code of ethics494

Question: Does the research conducted in the paper conform, in every respect, with the495

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?496

Answer: [Yes]497

Justification: Authors have reviewed the NeurIPS Code of Ethics.498

Guidelines:499

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.500

• If the authors answer No, they should explain the special circumstances that require a501

deviation from the Code of Ethics.502

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-503

eration due to laws or regulations in their jurisdiction).504

10. Broader impacts505

Question: Does the paper discuss both potential positive societal impacts and negative506

societal impacts of the work performed?507

Answer: [Yes]508

Justification: See Appendix F.509

Guidelines:510

• The answer NA means that there is no societal impact of the work performed.511

• If the authors answer NA or No, they should explain why their work has no societal512

impact or why the paper does not address societal impact.513

• Examples of negative societal impacts include potential malicious or unintended uses514

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations515

(e.g., deployment of technologies that could make decisions that unfairly impact specific516

groups), privacy considerations, and security considerations.517

• The conference expects that many papers will be foundational research and not tied518

to particular applications, let alone deployments. However, if there is a direct path to519

any negative applications, the authors should point it out. For example, it is legitimate520

to point out that an improvement in the quality of generative models could be used to521
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generate deepfakes for disinformation. On the other hand, it is not needed to point out522

that a generic algorithm for optimizing neural networks could enable people to train523

models that generate Deepfakes faster.524

• The authors should consider possible harms that could arise when the technology is525

being used as intended and functioning correctly, harms that could arise when the526

technology is being used as intended but gives incorrect results, and harms following527

from (intentional or unintentional) misuse of the technology.528

• If there are negative societal impacts, the authors could also discuss possible mitigation529

strategies (e.g., gated release of models, providing defenses in addition to attacks,530

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from531

feedback over time, improving the efficiency and accessibility of ML).532

11. Safeguards533

Question: Does the paper describe safeguards that have been put in place for responsible534

release of data or models that have a high risk for misuse (e.g., pretrained language models,535

image generators, or scraped datasets)?536

Answer: [NA]537

Justification: This paper doesn’t release any new data or model.538

Guidelines:539

• The answer NA means that the paper poses no such risks.540

• Released models that have a high risk for misuse or dual-use should be released with541

necessary safeguards to allow for controlled use of the model, for example by requiring542

that users adhere to usage guidelines or restrictions to access the model or implementing543

safety filters.544

• Datasets that have been scraped from the Internet could pose safety risks. The authors545

should describe how they avoided releasing unsafe images.546

• We recognize that providing effective safeguards is challenging, and many papers do547

not require this, but we encourage authors to take this into account and make a best548

faith effort.549

12. Licenses for existing assets550

Question: Are the creators or original owners of assets (e.g., code, data, models), used in551

the paper, properly credited and are the license and terms of use explicitly mentioned and552

properly respected?553

Answer: [Yes]554

Justification: All used models and datasets are well cited in Section 3.555

Guidelines:556

• The answer NA means that the paper does not use existing assets.557

• The authors should cite the original paper that produced the code package or dataset.558

• The authors should state which version of the asset is used and, if possible, include a559

URL.560

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.561

• For scraped data from a particular source (e.g., website), the copyright and terms of562

service of that source should be provided.563

• If assets are released, the license, copyright information, and terms of use in the564

package should be provided. For popular datasets, paperswithcode.com/datasets565

has curated licenses for some datasets. Their licensing guide can help determine the566

license of a dataset.567

• For existing datasets that are re-packaged, both the original license and the license of568

the derived asset (if it has changed) should be provided.569

• If this information is not available online, the authors are encouraged to reach out to570

the asset’s creators.571

13. New assets572

Question: Are new assets introduced in the paper well documented and is the documentation573

provided alongside the assets?574
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Answer: [NA]575

Justification: This paper doesn’t provide new assets.576

Guidelines:577

• The answer NA means that the paper does not release new assets.578

• Researchers should communicate the details of the dataset/code/model as part of their579

submissions via structured templates. This includes details about training, license,580

limitations, etc.581

• The paper should discuss whether and how consent was obtained from people whose582

asset is used.583

• At submission time, remember to anonymize your assets (if applicable). You can either584

create an anonymized URL or include an anonymized zip file.585

14. Crowdsourcing and research with human subjects586

Question: For crowdsourcing experiments and research with human subjects, does the paper587

include the full text of instructions given to participants and screenshots, if applicable, as588

well as details about compensation (if any)?589

Answer: [NA]590

Justification: This paper doesn’t involve crowd-sourcing experiments.591

Guidelines:592

• The answer NA means that the paper does not involve crowdsourcing nor research with593

human subjects.594

• Including this information in the supplemental material is fine, but if the main contribu-595

tion of the paper involves human subjects, then as much detail as possible should be596

included in the main paper.597

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,598

or other labor should be paid at least the minimum wage in the country of the data599

collector.600

15. Institutional review board (IRB) approvals or equivalent for research with human601

subjects602

Question: Does the paper describe potential risks incurred by study participants, whether603

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)604

approvals (or an equivalent approval/review based on the requirements of your country or605

institution) were obtained?606

Answer: [NA]607

Justification: This paper doesn’t involve crowd-sourcing experiments.608

Guidelines:609

• The answer NA means that the paper does not involve crowdsourcing nor research with610

human subjects.611

• Depending on the country in which research is conducted, IRB approval (or equivalent)612

may be required for any human subjects research. If you obtained IRB approval, you613

should clearly state this in the paper.614

• We recognize that the procedures for this may vary significantly between institutions615

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the616

guidelines for their institution.617

• For initial submissions, do not include any information that would break anonymity (if618

applicable), such as the institution conducting the review.619

16. Declaration of LLM usage620

Question: Does the paper describe the usage of LLMs if it is an important, original, or621

non-standard component of the core methods in this research? Note that if the LLM is used622

only for writing, editing, or formatting purposes and does not impact the core methodology,623

scientific rigorousness, or originality of the research, declaration is not required.624

Answer: [NA]625
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Justification: The core method development in this research does not involve LLMs.626

Guidelines:627

• The answer NA means that the core method development in this research does not628

involve LLMs as any important, original, or non-standard components.629

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)630

for what should or should not be described.631
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A Related Work632

Evaluating large language models (LLMs) has become increasingly costly as these models grow633

in size and capabilities [35, 16, 65, 68]. These costs manifest in several ways. First, the collection634

and annotation of evaluation data can require significant resources [66]. To mitigate these costs,635

researchers have turned to methods such as using LLMs-as-judges [21, 23] or employing active636

labeling [32, 31, 10, 12, 70] to generate evaluation data and labels. However, these savings come637

with drawbacks. For instance, LLM-as-a-judge does not produce reliable evaluation outcomes, as638

judge models tend to prefer models similar to them, and have other biases [63, 42, 14, 7].639

Another significant cost in LLM benchmarking arises from the model inference itself. Generating640

responses with LLMs can be time-consuming [35, 68, 53], and common inference time scaling641

techniques [57, 24, 54, 33] may exacerbate this issue. The success of scaling laws [29, 50] in642

predicting model performance has fueled interest in the development of benchmark prediction643

techniques [60, 43, 44, 40, 41], which aim to estimate benchmark performance by evaluating LLMs644

on a limited set of data 1.645

The key idea underpinning benchmark prediction is that not all evaluation examples carry the same646

amount of information [49]. It is hypothesized that a smaller core set of examples can represent647

the entire test set, allowing for accurate estimation of overall benchmark performance [60]. This648

is similar to efficient model training approaches, which aim to identify a subset of training data649

that enable performance comparable to training on the full dataset [52, 69]. Indeed, a popular650

benchmark prediction method, k-medoids clustering, is a classical approach to core-set selection for651

training [15]. However, it is important to recognize that the objectives of training and evaluation differ652

significantly. While training focuses on minimizing empirical risk and enhancing model performance,653

evaluation seeks to provide an unbiased estimation of a model’s performance to facilitate fair model654

comparison [40]. Our work challenges the assumption that core-set selection is the key to the success655

of benchmark prediction by introducing competitive methods that do not rely on core-set selection.656

Many existing approaches treat benchmark prediction as a learning problem, aiming to predict a657

model’s overall performance based on its performance on a subset of data [60, 43, 34, 30, 45]. Despite658

promising results, previous work has highlighted limitations in terms of estimation variance [36].659

Going further, we highlight that most benchmark prediction methods rely on model similarity, with660

estimation performance deteriorating when target models deviate from familiar source models.661

1Unlike bandit literature [68, 53], which focuses on identifying the best model from a pool, benchmark
prediction is more challenging as it seeks to forecast overall benchmark performance for any new model.
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B Details of Benchmark Prediction Methods662

B.1 Problem Formulation663

We repeat the notation and the problem formulation here for the reader’s convenience.664

• A benchmark is represented as a triplet (D,F , s).665

• D represents the benchmark data with |D| = N data points. A data point is referred to as z ∈ D,666

where z = (x, y), x refers to the query and y refers to the ground truth answer.667

• F refers to all potential models that can be evaluated on the benchmark.668

• s represents the metric of the benchmark.669

– s(f, z) refers to the performance of any f ∈ F on any data point z ∈ D. For example,670

s(f, z) = 1[f(x) = y] if the benchmark uses standard accuracy as the metric.671

– s̄(f,D′) = 1
|D′|

∑
z∈D′ s(f, z) represents the average performance of f ∈ F on any D′ ⊂ D.672

– s(f,D′) = {s(f, z)}z∈D′ represents the vectorized performance of f ∈ F on all data points673

in D′ ⊂ D, and s(F ′, z) = {s(f, z)}f∈F ′ represents the vectorized performances of all674

models in F ′ ⊂ F on data point z ∈ D.675

– S(F ′,D′) = {s(f,D′)}f∈F ′ = {s(F ′, z)}Tz∈D′ as the performance matrix of all models in676

F ′ ⊂ F on all data points in D′ ⊂ D.677

• F (s) = {f1, . . . , fM} ⊂ F refers to a set of source models, whose performances on every data678

point of the benchmark S(F (s),D) are known.679

• The rest of the models are referred to as target models F (t) = F \ F (s), which can only be680

evaluated on at most n≪ N data points to save computational costs.681

Benchmark prediction with fewer data aims to estimate s̄(f,D) for every f ∈ F (t) with only n data682

points. In practice, benchmark prediction often involves two steps: ① identifying a representative683

core-set C ⊂ D with |C| = n data points, and ② learning a performance estimator h to estimate the684

average performance on the full benchmark based on the core-set. Formally, the goal of benchmark685

prediction is to find C and h to minimize the estimation gap over target models,686

estimation gap:
1

|F (t)|
∑

f∈F(t)

∣∣s̄(f,D)− h
[
s(f, C), S(F (s),D)

]∣∣ . (3)

For simplicity, in the remainder of the paper, we will denote the estimated performance of target687

model f ∈ F (t) as h(f), instead of explicitly writing h[s(f, C), S(F (s),D)].688

B.2 Benchmark Prediction Methods689

Previous methods In this paper, we examine five widely-used benchmark prediction methods,690

• RANDOM-SAMPLING randomly samples a subset as C and directly returns the mean performance,691

hRANDOM-SAMPLING(f) = s̄(f, C) . (4)

If the benchmark metric s is standard accuracy, the gap |s̄(f, C)−s̄(f,D)| is bounded byO(
√
1/n)692

with high probability based on Hoeffding’s inequality.693

• ANCHOR-POINTS-WEIGHTED [60] treats benchmark prediction as a k-medoids clustering prob-694

lem. The selected medoids are used as C, and a weight vector θ ∈ Rn is calculated as the695

normalized cluster size of each medoid. The final estimate for any target model f ∈ F (t) is696

hANCHOR-POINTS-WEIGHTED(f) = s(f, C)Tθ . (5)

• ANCHOR-POINTS-PREDICTOR [60] extends ANCHOR-POINTS-WEIGHTED. Instead of directly697

returning the weighted sum, a linear regression model g[s(f, C)] is learned to predict s(f,D−C).698

hANCHOR-POINTS-PREDICTOR(f) = ḡ[s(f, C)] (6)

where g = argmin
g′

1

M

∑
f∈F(s)

∥s(f,D − C)− g′[s(f, C)]
∥∥2
2

, (7)

where we note that g[s(f, C)] is a (N − n) dimensional vector and we use ḡ[s(f, C)] as its mean.699
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• P-IRT [43] extends ANCHOR-POINTS-PREDICTOR by replacing the regression model g in700

equation 7 with an Item Response Theory (IRT) model. Following the notation for ANCHOR-701

POINTS-PREDICTOR, we estimate performance for any f ∈ F (t) as follows:702

hP-IRT(f) =
N − n

N
ḡ[s(f, C)] + n

N
s̄(f, C) . (8)

• GP-IRT [43] further generalizes P-IRT by combining its estimation with ANCHOR-POINTS-703

WEIGHTED as a weighted sum,704

hGP-IRT(f) = λhANCHOR-POINTS-WEIGHTED(f) + (1− λ)hP-IRT(f) , (9)

where λ is chosen heuristically to control the error of P-IRT.705

New methods We introduce six methods that have not yet been applied to benchmark prediction.706

• RANDOM-SAMPLING-LEARN randomly samples a subset as C and adopts a Ridge regression707

model g for estimation as follows,708

hRANDOM-SAMPLING-LEARN(f) = g[s(f, C)] (10)

where g = argmin
g′

1

M

∑
f∈F(s)

∣∣s̄(f,D)− g′[s(f, C)]
∣∣ . (11)

• RANDOM-SEARCH-LEARN performs RANDOM-SAMPLING-LEARN for 10,000 times and selects709

the best-performing subset as C based on cross-validation. A Ridge regression model g is then710

trained and used in the same way as RANDOM-SELECTION-LEARN.711

• LASSO trains a Lasso regression model with weights θ ∈ RN as follows,712

hLASSO(f) = s(f, C)TθC (12)

where θ = argmin
θ′

1

n

∑
z∈C

[
s(f,D)Tθ′ − s̄(f,D)

]2
+ λ∥θ′∥1 , (13)

where λ is selected so that only n dimensions of θ are non-zero and θC is the non-zero slice of θ.713

• DOUBLE-OPTIMIZE optimizes both a subset selection vector π ∈ RN and a linear regression714

model with weights θ ∈ RN with gradient descent as follows,715

hDOUBLE-OPTIMIZE(f) = [s(f,D) · TopMask(π;n)]Tθ (14)

where π,θ = argmin
π′,θ′

{
[s(f,D) · TopMask(π′;n)]Tθ′ − s̄(f,D)

}2
, (15)

where · refers to the bitwise multiplication between two vectors, and TopMask(π′;n) replaces716

the top n largest values of π′ with 1s and the rest with 0s. We directly pass the gradient on717

TopMask(π′;n) to π′ during optimization following the Straight-Through technique [27, 3].718

• Principal Component Analysis (PCA) treats benchmark prediction as a matrix completion problem.719

This method assumes the performance matrix S(F ,D) is of low rank. By randomly sampling a720

subset as C, this methods conducts PCA to impute the missing values for target models [59, 6]. As721

a more intuitive view, one could also take the acquired principal components as model capability722

indicators [50], i.e., the (M × k) PCA-transformed scores indicate the k-capabilities of each723

model, while the (k ×N) principal components represent the capability requirements for each724

data point. We select k among {2, 5, 10, 20} through cross-validation. The Pseudo codes are in725

Algorithm 1.726

• Augmented inverse propensity weighting (AIPW) [48]: Inspired by the application of prediction727

powered inference [2, 1] to the LLM-as-a-judge setting [5, 14], we apply a more general AIPW728

estimator to benchmark prediction. We train a Ridge regression model g for every target model f ,729

which predicts the point-wise performance s(f, z) based on s(F (s), z). Formally,730

g = argmin
g′

1

n

∑
z∈C

[
g′[s(F (s), z)]− s(f, z)

]2
. (16)
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The idea behind the AIPW estimator is to use the predicted performance ŝ(f, z) = g[s(F (s), z)]731

as a proxy score to estimate s̄(f,D) and ”debias” that estimator as follows732

hAIPW(f) = s̄(f, C) + 1

1 + n
N−n

(
1

N − n

∑
z∈D−C

ŝ(f, z) − 1

n

∑
z∈C

ŝ(f, z)

)
. (17)

Unlike the other learning-based baselines, AIPW is a consistent estimator for s̄(f,D)[19].733

Compared to RANDOM-SAMPLING, it reduces estimator variance by a factor of up to734
1

1+ n
N
ρ(ŝ(f, z), s(f, z))2 [14], where ρ is the Pearson correlation coefficient. Recent research [37]735

shows that AIPW estimator will outperform random sampling if and only if the correlation between736

ŝ(f, z) and s(f, z) is above a certain level that depends on n.737

Algorithm 1 PCA Impute Process
1: Input: Data matrix with missing values
2: Parameters: number of components k, max iteration max_iter, stopping threshold tol
3: Output: Imputed data matrix
4: Step 1: Initialization
5: Compute initial values for missing entries using column means
6: Step 2: Iterative Imputation
7: for iteration← 1 to max_iter do
8: PCA Decomposition:
9: Perform PCA retaining k components

10: Transform data to the lower-dimensional space
11: Reconstruct the data from the lower-dimensional space
12: Evaluate Convergence:
13: Compute the norm of differences between imputed and original values at missing entries
14: if norm < tol then
15: Break the loop
16: end if
17: Update Imputed Values:
18: Replace missing values with reconstructed values
19: end for
20:
21: return Fully imputed data matrix
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C Additional Experiment Setup738

We select a diverse range of benchmarks from the following sources2.739

• HELM-Lite benchmarks [35]:740

– OpenbookQA [39]: N = 500 data points.741

– GSM8K [9]: N = 1000 data points.742

– LegalBench [22]: N = 2047 data points.743

– Math [26]: N = 437 data points.744

– MedQA [28]: N = 1000 data points.745

– MMLU [25]: N = 567 data points.746

We obtain the per-data point performances of |F| = 83 models from the official leaderboard. Note747

that Helm-Lite often only uses a subset of the original testing set for each benchmark to save748

compute.749

• GLUE benchmarks [61]:750

– MRPC [13]: N = 408 data points.751

– RTE [11, 18, 4]: N = 277 data points.752

– SST-2 [55]: N = 872 data points.753

– MNLI [64]: N = 9815 data points.754

– QNLI [46]: N = 5463 data points.755

We use the per-data performances of |F| = 87 models provided by AnchorPoint3 [60].756

• OpenLLM benchmarks [16]:757

– IFEval [67]: N = 541 data points.758

– Math [26]: N = 894 data points. Only level 5 MATH questions are used in OpenLLM.759

– MMLU-Pro [62]: N = 12032 data points.760

– Arc-Challenge [8]: N = 1172 data points.761

– BBH [58]: N = 5761 data points.762

– GPQA [47]: N = 1192 data points.763

– MUSR [56]: N = 756 data points.764

We use |F| = 448 models provided by Huggingface 4 and collect their performance scores.765

• ImageNet [51]: We collect |F| = 110 models from Pytorch Hub 5 and evaluate them on ImageNet766

with N = 50, 000 data points.767

For simplicity, we report the overall average accuracy directly for MMLU, MMLU-Pro, and BBH, rather768

than the weighted average accuracy computed across sub-tasks. Alternatively, one could apply769

benchmark predictions separately to each sub-task and then calculate the weighted average accuracy.770

2Since P-IRT and GP-IRT requires s(f, z) to be binary, we only use benchmarks with accuracy as metric.
3The provided score file for QQP is broken so we exclude it.
4https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#
5https://pytorch.org/vision/stable/models.html#classification
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Figure 4: The Pearson correlation between normalized per-model estimation gap (equation 20) and
model similarity (equation 18). Negative correlation indicates that target models that are dissimilar to
source models tend to have larger estimation gap, and vice versa.

D Additinoal Experiment Results771

D.1 Reliance on Model Similarity772

In this subsection, we investigate the extent to which benchmark prediction methods rely on the773

similarity between target and source models.774

Model similarity. We follow previous works [38, 20] and define the model similarity of target775

model f to all source models F (s) as follows,776

S(f,F (s),D) = 1

M

∑
f ′∈F(s)

cobs − cexp
1− cexp

. (18)

Here, cexp = s̄(f,D)s̄(f ′,D) + (1− s̄(f,D))(1− s̄(f ′,D)) measures the chance agreement rate,777

i.e., the expected probability of {s(f, z) = s(f ′, z)} if s(f, z) is independent of s(f ′, z). In contrast,778

cobs = 1
N

∑
z∈D 1[s(f, z) = s(f ′, z)] is the observed agreement rate. For simplicity, we use S(f)779

to denote S(f,F (s),D) in the remainder of the paper. S(f) quantifies how similar the performance780

pattern of the target model f is to all source models F (s), with a higher value indicating greater781

similarity [20].782

We aim to examine the correlation between model similarity and estimation gap. However, we783

note that the estimation depends on the standard deviation of s(f, z). Since we use accuracy as the784

metric in our experiment, s(f, z) is Bernoulli with parameter pf = s̄(f,D) and standard deviation785

σf =
√
pf (1− pf ). By randomly sampling n data points as C, Chebyshev’s inequality ensures that786

|s̄(f, C)− s̄(f,D)| < σf/
√
αn (19)

with probability at least (1− α). In other words, the performance of target models with lower σf is787

easier to estimate with the same amount of data. Thus, the standard deviation of the basic estimation788

gap could potentially confound the observed correlation between model similarity and estimation gap.789

Consider the method RANDOM-SAMPLING, whose estimation does not depend on source models.790

If all target models with low σf coincidentally have high S(f), while those with high σf have low791
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S(f), then a spurious correlation between estimation gap and model similarity to target models could792

appear even for RANDOM-SAMPLING. To prevent this, we define the normalized estimation gap as793

normalized estimation gap for f : E(f) = 1

σf
|s̄(f,D)− h(f)| . (20)

Then we measure the Pearson correlation between model similarity in equation 18 and the normalized794

estimation gap in equation 20.795

Results. The results are shown in Figure 4. A clear negative correlation between model similarity796

and estimation gap emerges for almost all benchmark prediction methods except for RANDOM-797

SAMPLING. In particular, the best-performing method under the interpolation model split, RANDOM-798

SAMPLING-LEARN, exhibits a negative correlation below -0.2 in 13/19 benchmarks. Despite its799

asymptotic unbiasedness, we also find negative correlations for AIPW. This is perhaps unsurprising:800

While AIPW is consistent independent of how well its regression model g[s(F (s), z)] predicts801

s(f, z), its variance depends precisely on that prediction quality. If the predictions are good, AIPW802

improves substantially over RANDOM-SAMPLING, while there is no improvement when predictions803

are fully uninformative. But intuitively, predicting s(f, z) is harder when f is very different from the804

models F (s) used for training the predictor g[s(F (s), z)].805
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Table 1: Ablation study on the core-set size n. We report the estimation gap averaged over all
benchmarks. % is neglected for each metric. The lowest estimation gap in each column is highlighted
in bold.

Interpolation Extrapolation
n = 10 n = 20 n = 50 n = 100 n = 200 n = 10 n = 20 n = 50 n = 100 n = 200

RANDOM-SAMPLING 11.0 7.7 4.8 3.3 2.1 10.7 7.4 4.6 3.1 2.0
RANDOM-SAMPLING-LEARN 5.4 4.2 2.9 2.1 1.5 17.6 15.8 13.6 12.1 11.1

PCA 6.6 5.2 3.7 2.8 2.1 19.9 17.6 14.9 12.2 9.3
AIPW 8.3 5.4 3.3 2.3 1.8 9.6 6.5 4.0 2.8 2.0

RANDOM-SEARCH-LEARN 4.5 3.7 2.7 2.0 1.4 16.0 14.4 12.8 11.8 11.1
LASSO 7.8 6.1 3.6 2.6 2.2 22.0 19.3 16.6 15.3 14.6

DOUBLE-OPTIMIZE 6.6 4.8 3.0 2.3 1.9 11.3 9.0 8.2 8.0 7.0
ANCHOR-POINTS-WEIGHTED 8.9 6.9 4.9 4.0 3.2 10.4 6.7 5.6 4.7 3.4
ANCHOR-POINTS-PREDICTOR 4.7 4.1 3.6 3.4 4.1 16.2 14.8 13.4 12.4 11.2

P-IRT 7.3 5.9 3.5 2.1 1.3 9.8 8.2 5.1 3.7 3.0
GP-IRT 7.2 5.7 3.3 2.1 1.4 9.7 7.8 4.7 3.4 2.5
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Figure 5: Average normalized estimation gap relative to model similarity for AIPW (n=50) and
RANDOM-SAMPLING (n=100) on ImageNet. Each bar represents the target models whose similarity
to source models falls within the corresponding range. The normalized estimation gap is defined as
shown in equation 20. On average, AIPW outperforms RANDOM-SAMPLING, even with half the
data. However, RANDOM-SAMPLING shows better performance when model similarity is low.

D.2 Ablation on Core-set Size806

We conduct an ablation study on the size of the core-set n. We experiment with n ∈807

{10, 20, 50, 100, 200}, and the summarized results are shown in Table 1 (detailed results can be808

found in Figures 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15. As expected, the estimation gap generally de-809

creases as n increases for most methods. Our previous conclusions remain valid across both settings.810

With larger core-set sizes, most methods continue to perform better than RANDOM-SAMPLING in the811

interpolation split but fail to do so in the extrapolation model split. Interestingly, we also find that812

RANDOM-SAMPLING outperforms all other methods when given twice as much data, even in the813

interpolation model split.814

AIPW remains effective in both settings. However, its advantage over RANDOM-SAMPLING815

diminishes as n increases. While AIPW reduces the estimation gap by -30.4% in interpolation and816

-12.6% in extrapolation for n = 50, these advantages shrink to -12.4% in interpolation and a mere817

-2.3% in extrapolation for n = 200. This is because the estimator variance reduction factor of AIPW818

is up to 1
1+ n

N
ρ(ŝ(f, z), s(f, z))2. On the other hand, the advantage of AIPW remains significant819

when the dataset is large and thus n
N is small. Figure 5 compares AIPW with n = 50 to RANDOM-820

SAMPLING with n = 100 data points using ImageNet. AIPW achieves a lower average normalized821

estimation gap compared to RANDOM-SAMPLING, despite using only half the data. However, the822

normalized estimation gap for AIPW is biased with respect to model similarity. In contrast, the823

normalized estimation gap under RANDOM-SAMPLING remains largely neutral regarding model824

similarity. Consequently, while AIPW reduces the average, it produces a higher gap for models with825

low similarity compared to RANDOM-SAMPLING with twice the data.826
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Figure 6: The estimation gaps (↓) for target models (calculated as equation 1) under interpolation
model split, where source models are identically distributed with target models. Each target model
can only be evaluated on n = 10 data points. We also report ± the standard error of the mean and
the estimation gap reduction (↓) over RANDOM-SAMPLING in parentheses. A negative reduction
implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted.
Best viewed in color.
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Figure 7: The estimation gaps (↓) for target models (calculated as equation 1) under interpolation
model split, where source models are identically distributed with target models. Each target model
can only be evaluated on n = 20 data points. We also report ± the standard error of the mean and
the estimation gap reduction (↓) over RANDOM-SAMPLING in parentheses. A negative reduction
implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted.
Best viewed in color.
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Figure 8: The estimation gaps (↓) for target models (calculated as equation 1) under interpolation
model split, where source models are identically distributed with target models. Each target model
can only be evaluated on n = 50 data points. We also report ± the standard error of the mean and
the estimation gap reduction (↓) over RANDOM-SAMPLING in parentheses. A negative reduction
implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted.
Best viewed in color.
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Figure 9: The estimation gaps (↓) for target models (calculated as equation 1) under interpolation
model split, where source models are identically distributed with target models. Each target model
can only be evaluated on n = 100 data points. We also report ± the standard error of the mean and
the estimation gap reduction (↓) over RANDOM-SAMPLING in parentheses. A negative reduction
implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted.
Best viewed in color.
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Figure 10: The estimation gaps (↓) for target models (calculated as equation 1) under interpolation
model split, where source models are identically distributed with target models. Each target model
can only be evaluated on n = 200 data points. We also report ± the standard error of the mean and
the estimation gap reduction (↓) over RANDOM-SAMPLING in parentheses. A negative reduction
implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted.
Best viewed in color.
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Figure 11: The estimation gaps (↓) for target models (calculated as equation 1) under extrapolation
model split, where source models are the lowest-performing 50%, and target models are the top 30%
based on average performance over the full benchmark. Each target model can only be evaluated on
n = 10 data points. We also report ± the standard error of the mean and the estimation gap reduction
(↓) over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method achieves
a lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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Figure 12: The estimation gaps (↓) for target models (calculated as equation 1) under extrapolation
model split, where source models are the lowest-performing 50%, and target models are the top 30%
based on average performance over the full benchmark. Each target model can only be evaluated on
n = 20 data points. We also report ± the standard error of the mean and the estimation gap reduction
(↓) over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method achieves
a lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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Figure 13: The estimation gaps (↓) for target models (calculated as equation 1) under extrapolation
model split, where source models are the lowest-performing 50%, and target models are the top 30%
based on average performance over the full benchmark. Each target model can only be evaluated on
n = 50 data points. We also report ± the standard error of the mean and the estimation gap reduction
(↓) over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method achieves
a lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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Figure 14: The estimation gaps (↓) for target models (calculated as equation 1) under extrapolation
model split, where source models are the lowest-performing 50%, and target models are the top 30%
based on average performance over the full benchmark. Each target model can only be evaluated
on n = 100 data points. We also report ± the standard error of the mean and the estimation gap
reduction (↓) over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method
achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.

33



Random-Sampling

Random-Sampling-Learn
PCA

AIPW

Random-Search-Learn
Lasso

Double-Optimize

Anchor-Points-W
eighted

Anchor-Points-P
redictor

P-IR
T

GP-IR
T

HELM-OpenbookQA

HELM-GSM8K

HELM-LegalBench

HELM-Math

HELM-MedQA

HELM-MMLU

GLUE-MRPC

GLUE-RTE

GLUE-SST-2

GLUE-MNLI

GLUE-QNLI

OpenLLM-IFEval

OpenLLM-Math

OpenLLM-MMLU-Pro

OpenLLM-ARC

OpenLLM-BBH

OpenLLM-GPQA

OpenLLM-MUSR

ImageNet

Average

1.0
±0.01
(0.0)

5.4
±0.03

(456.3)

1.9
±0.03

(100.2)

1.0
±0.02
(1.8)

5.4
±0.03

(460.8)

8.7
±0.04

(804.8)

3.9
±0.04

(302.2)

0.5
±0.01
(-46.9)

1.5
±0.02
(51.9)

0.6
±0.01
(-36.6)

0.6
±0.01
(-33.1)

1.6
±0.03
(0.0)

7.2
±0.05

(357.3)

5.5
±0.05

(252.1)

1.5
±0.02
(-3.9)

7.2
±0.05

(359.7)

20.2
±0.07

(1193.6)

8.1
±0.09

(418.2)

2.1
±0.02
(34.3)

13.4
±0.04

(755.4)

1.4
±0.02
(-12.1)

1.5
±0.02
(-5.8)

2.4
±0.04
(0.0)

4.8
±0.05
(98.6)

13.4
±0.05

(450.9)

1.9
±0.03
(-20.4)

5.0
±0.05

(107.0)

9.1
±0.07

(275.4)

4.4
±0.06
(81.6)

3.0
±0.04
(22.3)

4.3
±0.03
(78.2)

1.7
±0.03
(-31.1)

1.6
±0.03
(-32.2)

1.5
±0.02
(0.0)

8.8
±0.05

(503.3)

3.8
±0.04

(160.7)

1.6
±0.03
(9.2)

9.2
±0.05

(532.8)

22.0
±0.08

(1418.0)

6.7
±0.1

(364.1)

2.5
±0.03
(71.0)

15.8
±0.07

(987.8)

1.4
±0.02
(-0.3)

1.8
±0.03
(21.0)

2.1
±0.03
(0.0)

15.6
±0.11

(652.3)

7.8
±0.08

(275.0)

1.8
±0.03
(-11.9)

15.7
±0.11

(655.7)

18.5
±0.11

(790.3)

7.4
±0.09

(254.5)

2.7
±0.03
(27.7)

14.4
±0.07

(593.5)

3.3
±0.04
(60.2)

2.9
±0.04
(39.8)

2.0
±0.03
(0.0)

10.0
±0.07

(404.9)

6.3
±0.06

(218.4)

1.9
±0.03
(-6.3)

10.3
±0.07

(417.9)

12.0
±0.08

(505.5)

5.0
±0.07

(151.7)

1.3
±0.02
(-32.4)

6.2
±0.05

(213.0)

3.1
±0.04
(54.7)

1.9
±0.03
(-3.5)

1.7
±0.02
(0.0)

18.9
±0.16

(1001.0)

9.0
±0.08

(425.2)

1.7
±0.03
(-1.6)

19.0
±0.16

(1010.7)

27.5
±0.16

(1502.5)

14.6
±0.09

(752.9)

1.4
±0.02
(-20.5)

26.0
±0.21

(1414.6)

1.5
±0.02
(-10.9)

1.3
±0.02
(-22.9)

1.4
±0.02
(0.0)

12.4
±0.18

(782.5)

3.3
±0.05

(137.0)

2.3
±0.04
(61.0)

11.8
±0.18

(734.2)

12.3
±0.18

(775.4)

9.8
±0.11

(596.2)

2.7
±0.05
(91.7)

9.6
±0.14

(580.0)

2.5
±0.04
(75.5)

1.8
±0.03
(30.7)

1.4
±0.02
(0.0)

13.2
±0.04

(855.4)

2.7
±0.03
(94.6)

1.3
±0.02
(-6.2)

13.5
±0.04

(881.0)

17.7
±0.03

(1182.3)

2.8
±0.03

(104.5)

1.5
±0.02
(9.0)

15.5
±0.05

(1024.5)

1.7
±0.02
(23.2)

1.5
±0.02
(6.8)

2.4
±0.04
(0.0)

28.2
±0.35

(1088.2)

28.8
±0.36

(1112.3)

2.1
±0.03
(-11.5)

27.8
±0.35

(1071.2)

28.9
±0.36

(1119.9)

5.3
±0.07

(122.3)

2.9
±0.04
(23.5)

3.0
±0.05
(27.4)

2.4
±0.04
(1.8)

2.4
±0.04
(-0.3)

2.6
±0.04
(0.0)

13.8
±0.13

(426.5)

13.1
±0.12

(397.7)

2.4
±0.04
(-7.2)

13.8
±0.13

(424.9)

14.1
±0.13

(437.9)

3.8
±0.05
(45.0)

3.7
±0.06
(42.8)

13.8
±0.13

(424.0)

5.8
±0.08

(122.7)

5.5
±0.07

(109.8)
2.2
±0.01
(0.0)

15.8
±0.06

(616.9)

16.7
±0.08

(660.9)

2.4
±0.02
(10.1)

16.2
±0.06

(634.6)

20.0
±0.07

(808.4)

22.1
±0.11

(902.9)

3.7
±0.03
(69.2)

22.3
±0.05

(913.8)

4.8
±0.03

(118.4)

3.5
±0.02
(59.1)

1.7
±0.01
(0.0)

8.8
±0.05

(414.9)

8.9
±0.06

(417.1)

1.7
±0.01
(-0.9)

8.3
±0.05

(385.8)

10.4
±0.06

(505.9)

6.7
±0.06

(289.7)

9.1
±0.15

(430.5)

9.8
±0.04

(467.6)

3.2
±0.02
(86.4)

1.8
±0.01
(7.2)

2.7
±0.02
(0.0)

13.2
±0.05

(387.3)

16.5
±0.04

(507.1)

2.6
±0.02
(-5.0)

13.6
±0.05

(400.2)

16.6
±0.05

(512.6)

6.7
±0.03

(147.6)

6.2
±0.03

(127.0)

16.0
±0.04

(489.2)

2.3
±0.02
(-14.8)

2.3
±0.01
(-17.0)

2.5
±0.02
(0.0)

7.5
±0.03

(198.8)

5.2
±0.03

(108.3)

2.1
±0.02
(-17.6)

7.3
±0.03

(193.5)

10.2
±0.04

(309.3)

8.9
±0.05

(256.7)

3.7
±0.04
(46.0)

12.0
±0.03

(378.1)

2.5
±0.02
(-1.9)

2.6
±0.02
(2.3)

2.8
±0.02
(0.0)

12.6
±0.05

(357.4)

15.4
±0.04

(458.7)

2.6
±0.02
(-6.4)

12.5
±0.05

(355.5)

13.7
±0.05

(396.4)

5.7
±0.03

(108.3)

2.3
±0.01
(-17.0)

10.7
±0.03

(288.3)

10.8
±0.04

(291.2)

7.3
±0.03

(163.5)
2.4
±0.02
(0.0)

5.8
±0.02

(142.5)

5.9
±0.02

(148.2)

2.7
±0.02
(14.1)

5.6
±0.02

(135.6)

5.6
±0.02

(133.5)

2.9
±0.02
(22.6)

3.2
±0.02
(32.1)

5.2
±0.02

(117.0)

2.2
±0.01
(-6.9)

2.5
±0.02
(2.7)

2.5
±0.02
(0.0)

4.2
±0.02
(66.1)

4.5
±0.01
(76.4)

2.2
±0.01
(-13.7)

4.0
±0.02
(58.3)

3.6
±0.01
(42.0)

4.0
±0.02
(56.4)

3.8
±0.02
(49.1)

6.6
±0.02

(161.1)

4.1
±0.02
(63.2)

2.7
±0.01
(5.8)

2.0
±0.03
(0.0)

4.2
±0.03

(104.8)

8.5
±0.02

(314.5)

1.5
±0.02
(-28.2)

4.0
±0.03
(95.4)

5.3
±0.03

(161.7)

4.5
±0.03

(120.2)

8.3
±0.12

(306.8)

6.4
±0.03

(214.0)

1.6
±0.02
(-19.5)

1.6
±0.02
(-20.5)

2.0
±0.01
(0.0)

11.1
±0.03

(469.2)

9.3
±0.02

(332.4)

2.0
±0.01
(-2.3)

11.1
±0.03

(469.2)

14.6
±0.03

(677.7)

7.0
±0.02

(268.3)

3.4
±0.01
(66.6)

11.2
±0.02

(483.1)

3.0
±0.01
(40.2)

2.5
±0.01
(16.5)

2

4

6

8

10

12

14

16

18

E
st

im
at

io
n

G
ap

%
(R

ed
u

ct
io

n
ov

er
R

a
n
d
o
m

-S
a
m

p
l
in

g
%

)

Figure 15: The estimation gaps (↓) for target models (calculated as equation 1) under extrapolation
model split, where source models are the lowest-performing 50%, and target models are the top 30%
based on average performance over the full benchmark. Each target model can only be evaluated
on n = 200 data points. We also report ± the standard error of the mean and the estimation gap
reduction (↓) over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method
achieves a lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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Table 2: Training and inference time of each method on ImageNet with N = 50000 data points and
|F| = 110 models. Training is based on 83 source models, and inference is on 27 target models.

Training Time (s) Inference Time (s)

RANDOM-SAMPLING 0.00 0.00
RANDOM-SAMPLING-LEARN 0.02 0.00

PCA 0.59 19.20
AIPW 0.00 0.27

RANDOM-SEARCH-LEARN 81.02 0.00
LASSO 105.58 0.01

DOUBLE-OPTIMIZE 4.88 0.00
ANCHOR-POINTS-WEIGHTED 84.26 0.00
ANCHOR-POINTS-PREDICTOR 197.71 0.26

P-IRT 585.72 0.90
GP-IRT 1750.20 0.89

Table 3: Average estimation gap between the predicted rankings based on the coreset and the actual
rankings based on the full benchmark, measured by Kendall’s τ (↑). The results are averaged over all
benchmarks.

Interpolation Extrapolation
n = 10 n = 20 n = 50 n = 100 n = 200 n = 10 n = 20 n = 50 n = 100 n = 200

RANDOM-SAMPLING 0.52 0.61 0.70 0.78 0.84 0.36 0.43 0.53 0.63 0.73
RANDOM-SAMPLING-LEARN 0.57 0.66 0.75 0.81 0.86 0.07 0.12 0.18 0.27 0.36

PCA 0.55 0.63 0.72 0.78 0.83 0.04 0.10 0.21 0.40 0.57
AIPW 0.52 0.62 0.72 0.79 0.84 0.33 0.40 0.51 0.61 0.70

RANDOM-SEARCH-LEARN 0.66 0.70 0.76 0.82 0.86 0.13 0.13 0.20 0.29 0.38
LASSO 0.68 0.71 0.77 0.81 0.82 0.05 0.06 0.12 0.19 0.22

DOUBLE-OPTIMIZE 0.58 0.66 0.76 0.81 0.84 0.31 0.36 0.44 0.50 0.58
ANCHOR-POINTS-WEIGHTED 0.65 0.70 0.76 0.81 0.85 0.37 0.43 0.50 0.60 0.69
ANCHOR-POINTS-PREDICTOR 0.67 0.72 0.77 0.80 0.80 0.21 0.25 0.32 0.38 0.44

P-IRT 0.52 0.58 0.71 0.80 0.87 0.28 0.31 0.42 0.56 0.69
GP-IRT 0.53 0.59 0.72 0.80 0.86 0.28 0.33 0.45 0.59 0.71

D.3 Running time827

While some of the benchmark prediction methods could potentially benefit from the use of GPUs, we828

opted to run all methods without them, as they are sufficiently fast on standard hardware. Table 2829

presents the training and inference times for each method on ImageNet. Among the models, GP-830

IRT is the slowest during training because it involves fitting a large Item Response Theory (IRT)831

model. During inference, PCA is the slowest, as it requires multiple imputations of the entire matrix.832

Although AIPW needs training a separate regressor for each target model during inference, the833

regressor is small, making the inference process remain efficient.834

D.4 Ranking Preservation835

We further compare the predicted rankings of target models with the actual rankings based on the full836

benchmark using Kendall’s τ . Specifically, we calculate Kendall’s τ for each random trial and average837

the results over 100 trials. Our conclusions mostly remain unchanged, with almost all benchmark838

prediction methods outperforming Random Sampling under interpolation, while none can surpass839

RANDOM-SAMPLING under extrapolation.840
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D.5 Case Studies841

We further investigate two additional experimental settings that deviate from the primary setting in842

the main paper.843

Fewer source models under interpolation. Different from the previous interpolation setting844

that utilized 75% of models as source models, we now use only 10 models as source models for845

each benchmark and use the rest as target models. All other settings remain unchanged. This846

setting allows us to assess the effectiveness of benchmark prediction when “training data” from847

source models is more limited. Results are shown in Figure 16. Consistent with the findings in the848

paper, most methods still outperform RANDOM-SAMPLING, while RANDOM-SEARCH-LEARN and849

RANDOM-SAMPLING-LEARN remain to be the best-performing methods.850

Near extrapolation. We modify the previous extrapolation setting, which used the lowest-851

performing 50% of models as source models and the top 30% as target models. In this new setting,852

we designate the top 25% of models as target models and utilize all remaining models as source853

models. All other settings remain unchanged. This setup enables us to examine whether benchmark854

prediction methods demonstrate improved performance when the distribution gap between source855

and target models is reduced. Results are shown in Figure 17. Consistent with the findings in the856

paper, most methods fail to consistently outperform RANDOM-SAMPLING, except for AIPW.857
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Figure 16: Experiment with fewer source models (randomly selected 10 models as source models)
under the interpolation model split. We report the estimation gaps (↓) for target models (calculated as
equation 1). We also report ± the standard error of the mean and the estimation gap reduction (↓)
over RANDOM-SAMPLING in parentheses. A negative reduction implies that the method achieves a
lower estimation gap than RANDOM-SAMPLING. % is omitted. Best viewed in color.
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Figure 17: Experiment with the near extrapolation model split by using the top 25% of available
models as target models and the remaining bottom 75% models as source models. We report the
estimation gaps (↓) for target models (calculated as equation 1). We also report± the standard error of
the mean and the estimation gap reduction (↓) over RANDOM-SAMPLING in parentheses. A negative
reduction implies that the method achieves a lower estimation gap than RANDOM-SAMPLING. % is
omitted. Best viewed in color.
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E Detailed Conclusion858

In this paper, we study the problem of benchmark prediction from fewer data and examine 11859

benchmark prediction methods. Our findings call into question the necessity of meticulous core-set860

selection and reveal that these methods are most proficient at interpolating scores among similar861

models. However, except RANDOM-SAMPLING and AIPW, all methods face significant difficulties862

when predicting target models that differ substantially from those they have encountered before.863

We caution against the indiscriminate use of benchmark prediction techniques, as their dependence on864

model similarity causes most of them to fail precisely when most needed: at the evaluation frontier,865

where the aim is to assess new models with unknown capabilities. Even in the context of interpolation,866

no method outperforms RANDOM-SAMPLING, when that simple baseline is given access to twice as867

much data. Thus, while we recommend to use AIPW as a consistent estimator with lower variance,868

this suggests that simply raising the sampling budget for RANDOM-SAMPLING can be competitive,869

especially in settings where predictions of other models for fitting AIPW are costly to obtain.870

F Broarder Impacts and Limitations871

This paper addresses the benchmark prediction problem in scenarios with limited data. One potential872

limitation of our study is the relatively small number of models examined. For both the HELM-Lite873

and GLUE benchmarks, we have collected full benchmark results for fewer than 100 models. Despite874

conducting 100 random trials for each experiment, including additional and more diverse models875

could further strengthen the comprehensiveness and robustness of our analysis.876

We do not anticipate any direct societal impacts from this work, such as potential malicious or877

unintended uses, nor do we foresee any significant concerns involving fairness, privacy, or security878

considerations. Additionally, we have not identified potential harms resulting from the application of879

this technology.880

39


	Introduction
	What is Benchmark Prediction?
	Experiments
	Conclusion
	Related Work
	Details of Benchmark Prediction Methods
	Problem Formulation
	Benchmark Prediction Methods

	Additional Experiment Setup
	Additinoal Experiment Results
	Reliance on Model Similarity
	Ablation on Core-set Size
	Running time
	Ranking Preservation
	Case Studies

	Detailed Conclusion
	Broarder Impacts and Limitations

