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Abstract
We investigate the classification performance of
K-nearest neighbors (K-NN) and deep neural net-
works (DNNs) in the presence of label noise. We
first show empirically that a DNN’s prediction for
a given test example depends on the labels of the
training examples in its local neighborhood. This
motivates us to derive a realizable analytic ex-
pression that approximates the multi-class K-NN
classification error in the presence of label noise,
which is of independent importance. We then
suggest that the expression for K-NN may serve
as a first-order approximation for the DNN error.
Finally, we demonstrate empirically the proxim-
ity of the developed expression to the observed
performance of DNN. Our result may explain an
important factor in DNN robustness to label noise
by showing that the less concentrated the noise
the greater is the network resistance to it.

1. Introduction
Deep neural networks (DNN) provide state-of-the-art results
in many applications. To train these models, large labeled
data are required. Time and cost limitations come into play
in their creation, which often results in imperfect labeling,
or label noise, due to human error (Ipeirotis et al., 2010).

Perhaps surprisingly, it has been shown (Krause et al., 2015)
that DNNs trained on datasets with high levels of label-noise
may still attain accurate predictions. This phenomenon is
not unique only to DNNs but also to classic classifiers such
as K-Nearest Neighbours (K-NN) (Angluin & Laird, 1988;
Natarajan et al., 2013; Frenay & Verleysen, 2014).

The starting point of this work is the observation that a
DNN’s prediction for a given test example depends on a lo-
cal neighborhood of training examples. This is motivated by
recent works that show that networks perform a smooth in-
terpolation between the labels of training examples (Ongie
et al., 2020; Savarese et al., 2019; Williams et al., 2019;

1School of Electrical Engineering, Tel Aviv University. Corre-
spondence to: Amnon Drory <amnon.drory@tau.ac.il>.

Giryes, 2020). We suggest using K-NN as a first order
approximation of such an interpolation. We validate this
assumption and empirically demonstrate that the networks’
last-layer output effectively encodes the distribution of train-
ing labels in such a neighborhood, i.e., provides a similar
output to aK-NN applied on the embedding space of the net-
work. This may suggest that bounds developed for a K-NN
classifier applied to this space may apply to DNN. To this
end, we develop an analytical expression that approximates
the K-NN accuracy in the presence of randomly-spread
label noise, which is of importance by itself, and show em-
pirically that it matches the K-NN prediction accuracy.

Establishing the relationship between DNN and K-NN, we
suggest that this bound may serve as a first order approxima-
tion to the accuracy of a network at different levels and types
of noise. This relationship leads to an important conclusion
about DNN resistance to label noise: The amount of resis-
tance depends on how well the noisy examples are spread
in the training set. When label noise is randomly spread,
the resistance is high, since the probability of noisy exam-
ples overcoming the correct ones in any local neighborhood
is small. However, when the noisy examples are locally
concentrated, DNNs are unable to overcome the noise.

We validate our analytical expression for DNN using exten-
sive experiments on several datasets: MNIST, CIFAR-10,
and ImageNet. We show that empirical curves of accuracy-
per-noise-level fit well with our mathematical expression.
Proofs and more empirical results appear in the full paper.

2. Analysis of Robustness to Label Noise
The following steps are performed to analyze label noise: (i)
we establish the different label noise models to consider; (ii)
we show empirically that the output of the DNN’s softmax
resembles the label distribution of the K nearest training
examples, linking DNNs to K-NN; and (iii) with this obser-
vation, we derive a formula for K-NN, which is of interest
by itself, with the hypothesis that it applies also to DNN.

Setting. In the “ideal” classification setting, we have a
training set T = {xi, yi}Ni=1 and a test set S = {x̂i, ŷi}Mi=1,
where x is typically an image, and y is a label from the
label set L = {`1, `2, . . . , `L}. A classification algorithm
(DNN or K-NN) learns from T and is tested on S. The
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setting with label noise is similar, except that the classifier
learns from a noisy training set {xi, ỹi}Ni=1, which is derived
from the clean data T by changing some of the labels. We
designate by γ the fraction of training examples that are
corrupted (with changed labels).1

A common noise setting is that of randomly-spread noise.
In this setting the process of selecting the noisy label ỹ is
agnostic to the content of the image x, and instead only
depends (stochastically) on the clean label y. The exam-
ples that get corrupted (i.e. their labels are changed) are
selected uniformly at random from the training set S. For
each such example, the noisy label is stochastically selected
according to a conditional probability P (ỹ|y) (we refer to
this as the corruption matrix).2 This setting can capture
the overall similarity in appearance between categories of
images, which leads to error in labeling.

Two simple variants of noise are often considered: Uniform
Noise, and Flip-Noise. Uniform Noise is the case where the
noisy label is selected uniformly at random from L. This
corresponds to a corruption matrix where P (ỹ|y) = 1

L for
all ỹ, y. In the flip label-noise setting, each label `i has one
counterpart `j with which it may be replaced. In this case
the corruption matrix is a permutation matrix.

In contrast with the randomly spread setting, we also con-
sider the locally concentrated noise setting, where the noisy
labels are locally concentrated in the training set (Inouye
et al., 2017). As an example, consider a task of labeling
images as either cat or dog, and a human annotator that
consistently marks all poodles as cat. We show that K-NN
and, by extension DNN, are resilient to randomly spread
label noise but not to locally concentrated one.

The connection between DNN and K-NN. We observe
that DNN’s prediction, similar to K-NN, tends to be the plu-
rality label (most common) in a local neighborhood of train
examples that surround the test example. The connection
between K-NN and DNN is observed indirectly, by adding
different types of noise to the training set, and analyzing
its effect on the network’s softmax-layer output. We find
that this output tends to be the local probability distribution
of the training examples in the vicinity of x: Its argmax
`pred = argmax`∈L softmaxx(`) is the plurality label.

Fig. 1 presents the average softmax output of DNNs for
various noise types and datasets. It demonstrates how the
softmax layer output tends to be the distribution of the labels
in the neighborhood of training examples. For example,
when there is a uniform noise with noise level γ, we see

1Note that the subset of ”corrupted” examples may contain
examples whose label has not changed if the randomly selected
noisy label is the same as the original label.

2A confusion matrix C can be derived from the corruption
matrix by C = (1−γ)I + γP , where I is the identity.

(a) CIFAR-10,
30% uniform
noise

(b) CIFAR-
10, 40% flip
noise

(c) MNIST,
Locally con-
centrated
noise, exam-
ple in a clean
region

(d) MNIST,
Locally
concentrated
noise, exam-
ple in a noisy
region

Figure 1. Softmax analysis: Each diagram is aggregated from
many test examples. The height of the bars shows the median, and
the confidence interval shows the central 50% of examples. The
ground truth label is marked by a black margin.

that the peak value of the softmax is 1−γ + γ
L and the rest

of the bins contain approximately γ
L , which is the number

of noisy examples from each class expected to be in any
local neighborhood. In the case of flip noise, it can be
seen that the softmax probabilities spread mostly at the
classes with which the flip occurs. and that the value is
roughly proportional to amount of noise. It follows that the
network makes a wrong prediction only when the “wrong”
class achieves plurality in a local neighborhood. This, for
example, is the case when locally concentrated noise is
added and the test example is taken from the noisy region.

These findings provide us with an intuition into how DNNs
are able to overcome label noise: Only the plurality label
in a neighborhood determines the output of the network.
Therefore, adding label noise in a way that does not change
the plurality label should not affect the network’s prediction.
As long as the noise is randomly spread in the training set,
the plurality label is likely to remain unchanged. The higher
the noise level, the more likely it is that a plurality label
switch will occur in some neighborhoods. When the noise
type and noise level are known, it may be possible to pro-
duce a mathematical expression for the K-NN model, that
predicts the probability of a switch. We suggest that this
can serve as a first-order approximation to the behaviour
of DNNs in the presence of noise. We show empirically
that indeed it does match the observed behaviour of DNNs
quite well in some settings. We also believe that this expres-
sion for K-NN is of independent interest, as it improves
and extends previously known mathematical models for the
resistance of KNNs to noise (Okamoto & Satoh, 1995).

K-NN accuracy in the presence of label noise. We turn
to produce an analytical expression for the probability of a
plurality switch, in the randomly-spread noise setting. Later,
we also discuss the locally concentrated noise setting. We
model randomly spread noise as follows: each test example
(x̂s, ŷs) has a local neighborhood N (x̂s) of K training ex-
amples. qi is the probability for any example in N (x̂s) to
have the observed label `i. The distribution q encodes the



Submission to The Art of Learning with Missing Values ICML workshop

results of the noise-creation process, and it depends on the
parameters of this process, and on the clean labels of the
examples in N (x̂s). Following (Okamoto & Satoh, 1995)
we considerably simplify our derivation by introducing a
small approximation: instead of treating the clean training
examples as constant, we consider them to be sampled i.i.d
from a clean distribution Cs(`). The K-NN algorithm’s
prediction, which we denote by Y (x̂s), is the plurality label.
Its expected accuracy is defined as follows.
Definition 1 (K-NN Prediction Accuracy).

AK−NN ,
1

M

M∑
s=1

Pr
(
Y (x̂s) = ŷs

)
, (1)

where Pr
(
Y (x̂s) = ŷs

)
is the probability that the plurality

label of test example x̂ in N (x̂) is the same as the ground
truth label for x̂.

By expanding Eq. (1), we obtain an analytical formula for
the accuracy of a K-NN classifier, which is given in the fol-
lowing theorem (proof based on combinatorial principles):
Theorem 1 (Plurality Accuracy). The probability of the
plurality label being correct is

Q , Pr
(
Y (x̂) = ŷ

)
=
∑
n1

∑
n2

· · ·
∑
nL

Jni>nj , ∀j 6=iK (2)

·

(
K

n1, n2, . . . , nL

)
· qn1

1 · · · q
nL
L ,

where J·K is the indicator function, ŷ = `i is the correct
label, nj is the number of appearances of the label `j in
N (x̂) and qj is the probability of any such appearance.

What is left to show is how to calculate qj . The probability
qj is derived from the process that creates the noisy training
set. Let x̂s be a test example, and let x be a training example
in N (x̂s). Let y be the clean label of x and ỹ be its noisy
label. We denote by Cs(`) the clean label distribution in
N (x̂s). In other words, Cs(`) , Pr(y = `). Thus, the
expression for qj , Pr(ỹ = `j) is

qj = (1−γ) · Cs(`j) + γ ·
L∑
k=1

P (`j |`k) · Cs(`k), (3)

where γ is the noise level, and P (ỹ|y) is the corruption
matrix that defines the corruption process. Eq. (3) shows
that an example may be labeled with a label ` in two ways:
Either it is uncorrupted and ` was its original label, or it was
corrupted and received ` as its noisy label.

We can greatly improve the efficiency of calculating Q by
first decomposing the multinomial coefficient into a product
of binomials, and then decomposing Q into

Q =

M1∑
n1=m1

(
K

n1

)
qn1
1 · · ·

ML∑
nL=mL

(
K −

L−1∑
j=1

nj

nL

)
qnL

L , (4)

where mi is the smallest number of repeats of `i allowed,
Mi is the largest, and together they encode the requirement
that ni > nj ∀j 6= i. See supplementary material for
a detailed derivation. Equation (4) contains many partial
sums that are repeated multiple times, which allows further
speedups by dynamic programming.

Estimating the clean distribution: In the K-NN setting,
we can find the clean distribution by simply analyzing the
clean data and noting the labels of the examples in the K-
neighborhood of each test example. In the DNN setting, we
can possibly do the same, using the one-before-last layer
output as an embedding space in which to measure distances.
Instead, we follow our observations in Fig. 1 and use the
softmax layer output of a network trained on clean data. This
results in a much more computationally efficient algorithm.

The locally-concentrated noise setting. An approximate
analysis of DNN accuracy based on the K-NN algorithm
can be done also in the locally concentrated noise setting.
To do so, we need to assume that the noisy examples are
concentrated in the feature space that K-NN operates in.
If the noise is concentrated, then N (x̂) is almost always
contained either in the corrupt area or clean area. In the
first case, the prediction will be based on the corrupt label,
therefore wrong. In the second, it will be correct. Therefore,
the expected accuracy can be determined by the fraction of
test examples for which N (x̂) is in the clean area. If we
assume that the test examples are approximately uniformly
spread in the example space, we can expect this fraction to
be 1−γ. Figs. 1(c,d) and Fig. 2(h,i) show this empirically.

3. Experiments
Our analytical model for K-NN acurracy in the presence
of noise provides accuracy-vs-noise curves. We compare
these to experimental curves derived from DNN trained on
noisy data. We repeat these experiments with multiple noise
types, and several popular datasets: MNIST, CIFAR-10,
and ImageNet (ILSVRC 2012). Notice that we re-train the
network for each dataset, noise type and noise level.

For all MNIST experiments, we use a DNN, which reaches
∼100% accuracy. For the CIFAR-10 experiments, we use
the All Convolutional Network (Springenberg et al., 2014).
To produce features for the K-NN experiments, an addi-
tional fully connected layer was added before the softmax,
with 256 output channels. For ImageNet experiments, we
use the Densenet-121 (Huang et al., 2016) architecture, with
Adam Optimization and mini-batch of size 256. The feature
used in K-NN experiments is 2048-dimensional.

The results of our experiments are summarized in Fig. 2.
They contain four types of noise (uniform, flipped, general
confusion matrix, and locally concentrated) and different
values of K. We produce locally concentrated noise by
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(a) MNIST flip (b) CIFAR-10 flip (c) ImageNet flip

(d) MNIST uniform (e) CIFAR-10 uniform (f) ImageNet uniform

(g) MNIST general corruption matrix (h) MNIST concentrated noise (i) CIFAR-10 concentrated noise

Figure 2. DNN Analytical and Experimental curves. The experimental curves show the mean accuracy and standard deviation. In most
cases, the experimental curve is quite close to the corresponding analytical curves, and is clearly different from the analytical curves of the
other settings (other subfigures). In (g) we also show the corruption-matrix P (ỹ|y) (rows are original label, columns are corrupt label, and
brightness denotes probability, where white=high, black=low).

using k-means to find clusters of examples that are locally-
concentrated in a feature space. In detail: we use the output
of the penultimate layer of a network trained on clean data as
a feature vector for each training example. In this space, we
perform k-means for each class separately to divide it into
k clusters. Then we select one of the clusters and change all
of the labels in it into the same incorrect label.

The graphs in Fig. 2 show that we can calculate analyt-
ically the performance of the network for a given noise
level, for some types of label noise. We plot the analytical
curve (colored) for various K as we do not know the neigh-
bourhood size. Yet, in all cases, the experimental curve
(black) appears to naturally follow its corresponding fam-
ily of analytical curves. We believe this indicates that the

analytical curves approximate the general behavior of the
experimental curves. In other words, our mathematical anal-
ysis captures a major factor in explaining the resistance of
DNNs to spatially-spread noise. On a smaller scale, there
are some deviations of the experimental curves from the
anlytical ones. This could be caused by secondary factors
that are not considered by the model.

The analytical expression predicts that DNNs may resist
high levels of noise, but only if the noise is randomly spread
in the training set (i.e., the uniform and flip settings). In
contrast, in the locally concentrated noise setting DNNs are
expected to have no resistance to noise. Note that indeed,
this predicted behavior is demonstrated in the plots.



Submission to The Art of Learning with Missing Values ICML workshop

References
Angluin, D. and Laird, P. Learning from noisy examples.

Machine Learning, 2(4):343–370, 1988.

Frenay, B. and Verleysen, M. Classification in the presence
of label noise: A survey. IEEE Transactions on Neural
Networks and Learning Systems, 25(5):845–869, May
2014.

Giryes, R. A function space analysis of finite neural
networks with insights from sampling theory. CoRR,
abs/2004.06989, 2020.

Huang, G., Liu, Z., and Weinberger, K. Q. Densely con-
nected convolutional networks. CoRR, abs/1608.06993,
2016. URL http://arxiv.org/abs/1608.
06993.

Inouye, D., Ravikumar, P., Das, P., and Datta, A. Hyperpa-
rameter selection under localized label noise via corrupt
validation. In NIPS-LLD (Learning with Limited Data)
Workshop, 2017.

Ipeirotis, P. G., Provost, F., and Wang, J. Quality manage-
ment on amazon me- chanical turk. In ACM SIGKDD
workshop on human computation, pp. 64–67, 2010.

Krause, J., Sapp, B., Howard, A., Zhou, H., Toshev, A.,
Duerig, T., Philbin, J., and Fei-Fei, L. The Unreasonable
Effectiveness of Noisy Data for Fine-Grained Recogni-
tion. ArXiv e-prints, November 2015.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari.,
A. Learning with noisy labels. In NIPS, pp. 1196–1204,
2013.

Okamoto, S. and Satoh, K. An average-case analysis
of k-nearest neighbor classifier. In Proceedings of the
First International Conference on Case-Based Reasoning
Research and Development, ICCBR ’95, pp. 253–264,
Berlin, Heidelberg, 1995. Springer-Verlag. ISBN 3-540-
60598-3. URL http://dl.acm.org/citation.
cfm?id=646264.685911.

Ongie, G., Willett, R., Soudry, D., and Srebro, N. A function
space view of bounded norm infinite width re{lu} nets:
The multivariate case. In International Conference on
Learning Representations, 2020.

Savarese, P., Evron, I., Soudry, D., and Srebro, N. How do
infinite width bounded norm networks look in function
space? In Conference on Learning Theory, pp. 2667–
2690, 2019.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. A. Striving for simplicity: The all con-
volutional net. CoRR, abs/1412.6806, 2014. URL
http://arxiv.org/abs/1412.6806.

Williams, F., Trager, M., Panozzo, D., Silva, C., Zorin, D.,
and Bruna, J. Gradient dynamics of shallow univariate
relu networks. In Advances in Neural Information Pro-
cessing Systems 32, pp. 8376–8385. 2019.

http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://dl.acm.org/citation.cfm?id=646264.685911
http://dl.acm.org/citation.cfm?id=646264.685911
http://arxiv.org/abs/1412.6806

