
Under review as a conference paper at ICLR 2022

HOW BPE AFFECTS MEMORIZATION IN TRANSFORM-
ERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training data memorization in NLP can both be beneficial (e.g., closed-book QA)
and undesirable (personal data extraction). In any case, successful model training
requires a non-trivial amount of memorization to store word spellings, various
linguistic idiosyncrasies and common knowledge. However, little is known about
what affects the memorization behavior of NLP models, as the field tends to focus
on the equally important question of generalization.
In this work, we demonstrate that the size of the subword vocabulary learned by
Byte-Pair Encoding (BPE) greatly affects both ability and tendency of standard
Transformer models to memorize training data, even when we control for the
number of learned parameters. We find that with a large subword vocabulary size,
Transformer models fit random mappings more easily and are more vulnerable
to membership inference attacks. Similarly, given a prompt, Transformer-based
language models with large subword vocabularies reproduce the training data more
often. We conjecture this effect is caused by reduction in the sequences’ length that
happens as the BPE vocabulary grows. Our findings can allow a more informed
choice of hyper-parameters, that is better tailored for a particular use-case.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) became the backbone of the state-of-the-art
models in a variety of tasks (Liu et al., 2019; Raffel et al., 2019; Adiwardana et al., 2020; Brown et al.,
2020). This spurred a significant interest in better understanding inner workings of these models (Vig
and Belinkov, 2019; Clark et al., 2019; Kharitonov and Chaabouni, 2020; Hahn, 2020; Movva and
Zhao, 2020; Chaabouni et al., 2021; Merrill et al., 2021; Sinha et al., 2021). Most of these works
have focussed specifically on how models generalize and capture structure across samples that are
similar. For instance, Vig and Belinkov (2019) focussed on how attention align with specific syntactic
dependency relations, Hupkes et al. (2020) considered if Transformers generalize compositionally
and Kharitonov and Chaabouni (2020) studied how different models generalize from very few data.
In contrast to these studies, we focus on factors that control the training data memorization behavior
of Transformers, which we believe to be important for several reasons.

First, large Transformer models are increasingly often used as a storage, for instance, as a general-
purpose knowledge base or as a closed-book question-answering system (Petroni et al., 2019; Roberts
et al., 2020; Lewis et al., 2020). Clearly, the ability to memorize factual knowledge from the training
data is crucial for such applications. There are even Transformers models that are explicitly endowed
with an external training data memorization mechanism (Khandelwal et al., 2020; 2021; He et al.,
2021), demonstrating that further boosting their memorization abilities is beneficial.

Second, in contrast, the same ability to memorize can become undesirable and lead to a leakage of
personal data from trained models (Carlini et al., 2020; Thakkar et al., 2021). A better understanding
of the phenomenon is thus instrumental both to enable better memorization when it is needed and to
avoid it when not.

Third, while generalization and memorization are often thought of as competing modes of fitting data,
training effective models in real tasks requires a non-trivial combination of the two. For instance,
successful language models need to generalize to be able to deal with never-seen-before sentences,

1

Under review as a conference paper at ICLR 2022

but they also need to memorize the spelling of words, the non-compositional meaning of idioms,
idiosyncrasies of languages, common knowledge, etc (see, e.g. Dankers et al., 2021).1

Despite this apparent importance, there is very little research into memorization in Transformers
and in NLP models in general, and we have only superficial understanding of what factors affect
this behavior. Intuitively, the number of parameters, data augmentation, and regularization are
likely to affect how successful models are in memorization (Zhang et al., 2016; Sablayrolles et al.,
2018). In this work, we primarily focus on the influence of a less obvious yet important factor: we
study how the selection of modelling units affects memorization. Typically, the same data can be
represented on various levels: raw bytes and their groups, individual characters, subword units, and
entire words. A very common approach is to learn subword-level vocabulary with Byte-Pair Encoding
(BPE) (Sennrich et al., 2015) or similar methods (e.g., Devlin et al., 2018; Kudo and Richardson,
2018; Provilkov et al., 2019). In spite of ubiquitous use of these methods, to the best of our knowledge,
there is no clear understanding of how the number of subwords or BPE operations should be chosen
and how this affect behavior of a model. We expect that BPE-like segmentation might play a crucial
role in memorization, as it controls the trade-off between the number of primitives a model will have
to operate with and the lengths of sequences it must represent.

In this work, to characterize a model’s behavior, we measure three “facets” of training data memo-
rization. First, as a proxy for the memorization capacity of a model, we use its ability to fit random,
non-systematic mappings. Next, we study the preference for memorization when generalization is
possible. For that, we study how easy it is to accurately tell if a particular example was used in the
model’s training data via a membership inference attack (Shokri et al., 2017). Finally, we examine
how easy it is to recover training data from a trained language model. We experiment with three
Transformer architectures: causal & masked language models, and encoder-based classifiers.

Our main experimental finding is that, across all architectures and tasks, the choice of modeling units
strongly affects the memorization behavior of the models, with large-cardinality BPE vocabularies
greatly facilitating memorization. This observation holds even when we control for the number of
trainable parameters.

After establishing this fact, we look deeper into the causes of the phenomenon we observe. We
examine three candidate causes which are principal (side-)effects of applying BPE: (i) removing
redundancy in the data (due to compression), (ii) increase in the number of the unique units used to
represent the data, or (iii) reducing the length of the training sequences. By finding a similar effect
with incompressible randomly generated data we can rule out the first possibility. Next, we artificially
double the vocabulary size by introducing “synonym” tokens and observe that the vocabulary growth,
in isolation, leads to a different memorization pattern. Thus, by exclusion, we conjecture that reducing
utterance length is, at least, a very important factor of memorization.2.

2 STUDYING MEMORIZATION – THE TASKS

To quantify the memorization capabilities and preferences of NLP models, we use three different
setups, with which we aim to cover different facets of what one can call training data memorization.

2.1 LEARNING MAPPINGS WITH RANDOM LABELS

Firstly, we consider a task of learning non-systematic mappings, where labels are independent from
inputs (Zhang et al., 2016). To achieve accuracy above chance, the model has to “store” the training
example in some way, thus we assume that a higher training accuracy implies increased training data
memorization ability.

To experiment with realistic natural input data, we consider the Stanford Natural Language Inference
dataset (SNLI, Bowman et al., 2015). In this dataset, each example is a pair of two sentences, one
representing a premise (“A boy is jumping on skateboard in the middle of a red bridge.”) and the
other representing a hypothesis (“The boy does a skateboarding trick.”). Each example is assigned a

1An interesting example is the language model of Lakhotia et al. (2021), which is trained on sub-phonemic
acoustic units without word boundaries, but confidently processes a large vocabulary of English words.

2Another potential cause that we consider is the changes in the relative frequencies of tokens that BPE brings
along. In Appendix D we investigate and rule out this hypothesis.

2

Under review as a conference paper at ICLR 2022

label that denotes if the hypothesis entails the premise, contradicts it, or neither contradict nor entails
(neutral). We represent examples in a concatenated form with a separator token (::) between a premise
and a hypothesis (“A boy is jumping on skateboard in the middle of a red bridge. :: The boy does a
skateboarding trick.”). For uniformity with other experiments, we transform the dataset into a binary
classification task by filtering out all examples with neutral labels.3 After this filtering, 367,388
examples remain. We replace original labels with randomly sampled ones (-1 / +1, equiprobably),
and we measure memorization by measuring the (training) accuracy of the models on this data.

2.2 MEMBERSHIP INFERENCE

While the task of memorizing random labels can tell us how much a model can remember, it doesn’t
allow us to test how much or what a model memorizes when it is trained on tasks which also admit
(or require) generalization. As this is typically the case with natural data, we thus need a different
strategy to assess memorization in more realistic scenarios. To evaluate memorization in such cases,
we resort to measuring models’ vulnerability to membership inference attacks (Shokri et al., 2017).
Indeed, if it is “easy” to accurately tell if a particular example was used for training, we assume
it is actually “stored” in the weights of the model in some form, rather than being inferred from a
more general rule or pattern (which would lead to high scores also for examples that were not in the
training data, but that are likely given that data).

More formally, suppose we have a model fθ that was trained on a subset D′ of a large set of examples
D, (D′ ⊂ D) withD′ obtained by sampling examples independently fromD with some probability λ.
The goal of membership inference is to figure out, given fθ, whether a particular example (xi, yi) ∈ D
was included in the training data D′.
We implement a simple membership inference attack protocol by Yeom et al. (2018). Given a model
fθ parameterized by θ, we calculate its loss on a data point l(fθ(xi), yi) and compare to a threshold τ :
if it is below the threshold, the data point belongs to the training data. By controlling τ we can control
the trade-off between precision and recall of the attack. To avoid the dependency on this parameter
and to represent the entire space of possible trade-offs, we use the AUC metric. After training a
model, we measure the AUC of the above rule that separates training and hold-out examples.

In this set of experiments, we again use the SNLI dataset. However, in this experiment we use the true
labels of the dataset, rather than using the random labels of the previous setup, allowing us to consider
both generalization and memorization. To make the prior probability of an example belonging to the
training dataset equal to 1

2 , at training time we use only a half of the original’s dataset training data
(367,388 examples remaining after filtering), with the second half playing the role of the hold-out.

2.3 TRAINING DATA RECOVERY

Lastly, we study the memorization capabilities of Transformer models in a setup that is closer to
natural large-scale tasks. In particular, we focus on the – interesting for memorization – domain
of question-answering, and we consider how well Transformer language models can reproduce
exact-match answers to questions present in the training data.

For this experiment, we use the L1 subset of the large-scale Probably Asked Questions (PAQ)
dataset (Lewis et al., 2021), which contains 14M queries with candidate answers. As with SNLI,
we transform this dataset so that it is suitable for training an LM by concatenating queries and their
respective candidate answers, separated by a special token (::). For instance, a training example might
be “where is the capital of argentina located :: buenos aires”. Whenever PAQ provided more than one
answer, we used the first. We lower-cased questions and answers. At test-time, we prompt the trained
LM by a query followed with the separator token and check whether the trained LM reproduces the
correct answer within top-1 or top-5 results returned by beam search (beam size 5). To speed up the
evaluation, we probe a fixed random sample of 4M questions.

3In the current experiment, this is not strictly necessary, since we map the input examples to random labels.
Filtering the data becomes important in the next experiments, in which we instead use true labels.

3

Under review as a conference paper at ICLR 2022

3 MODELS AND HYPERPARAMETERS

We consider three standard Transformer-based architectures: a (causal) language model (LM), a
masked language model (MLM), and a sequence encoder (Encoder). In our first two setups (random
label memorization and membership inference), we study all three architecture variants. In the
experiments on question-answer-recovery, we only study the LM architecture, as those experiments
require the ability to sample from the model efficiently.

3.1 BPE SETTINGS

The core question that we ask in this paper is how the choice of modeling units affects the memoriza-
tion behaviour of state-of-the-art Transformer models. To answer this question, for every experiment
we create various versions of the involved datasets that differ in the number of subwords, by varying
the parameters of the BPE process used to create subwords. In particular, for the SNLI dataset (used in
random label memorization and membership inference), we apply BPE with (0.5, 1, 5, 10, 20)× 103

steps, resulting in vocabulary sizes of 611, 1097, 4943, 9574, and 18336, respectively. For the larger
PAQ dataset, used in the recovery experiment, we get different versions of the dataset by running
BPE for (0.5, 1, 5, 10, 15, 20)× 103 steps, obtaining vocabulary sizes of 1280, 1784, 5784, 10784,
15784, and 20776, respectively.

3.2 CONTROLLING THE NUMBER OF LEARNED PARAMETERS

In our experiments, we vary the size of the subword vocabulary used to represent the data. In turn,
the number of the learned parameters that are present in the embedding layer changes, too. It is not
unreasonable to expect that the memorization capabilities of a model are impacted by this growth of
the number of the learned parameters. To avoid this confounding factor, we complement our study
with experiments where we control for the change in the number of embedding parameters. To do
so, we replace the embedding layer by a combination of an embedding and a fully-connected layer.
This way, we can change the dimensionality of the input & output token embeddings and control the
number of the learned parameters while maintaining the rest of the model isolated from any changes.
This is a standard architecture variant in fairseq (Ott et al., 2019). We report the used embedding
sizes and the resulting numbers of parameters in Appendix.

3.3 CASTING MODELS AS CLASSIFIERS

Some of the tasks introduced above require that the studied models are binary classifiers (e.g., learning
non-systematic mappings § 2.1). Here we discuss how we turn our considered architectures into
classifiers. Encoder takes the input sequence of length l and embeds it into a continuous representation
Re×l, where e in the embedding size. We take the embedding of the eos token and linearly map it
into logits of the labels ({−1,+1}). Encoder is trained to minimize the cross-entropy error of the
target label.

To use LM as a classifier, we associate new tokens (which never occur in the training data) with the
target labels and append them to the input strings, after the eos tokens. We train the model using the
standard teacher-forcing procedure. This way the accuracy of the classifier equates to the accuracy
of the predicting last token in a sequence. While this is a non-standard way of training classifiers,
it (i) reflects some of the interesting cases where language models are used as universal zero-shot
learners (Brown et al., 2020), (ii) allows us to compare LM’s memorization capabilities with other
architectures directly.

To use MLM as a classifier, we follow a similar approach. We extend an input string by a token that
specifies the label. At training-time, this token and a random part of the other tokens are masked. The
model is trained to recover all the masked tokens. The task of recovering a masked label resembles
how mask-filling is used in knowledge-intensive tasks (Petroni et al., 2019).

3.4 MODEL AND TRAINING DETAILS

We use similar Transformer models across experimental setups, with only slight differences, that
we describe below. In all experiments, we use the Adam optimizer (Kingma and Ba, 2014). We

4

Under review as a conference paper at ICLR 2022

10 11 12 13 14
log2 |V|

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ai

n
ac

cu
ra

cy

Encoder
LM
MLM

(a) Vanilla Transformer models.

10 11 12 13 14
log2 |V|

0.80

0.85

0.90

0.95

1.00

Tr
ai

n
ac

cu
ra

cy

Encoder
LM
MLM

(b) Models with the number of parameters fixed.

Figure 1: Training accuracy for fitting random labels on SNLI. Shaded area represents ±1 SEM
(Standard Error of the Mean).

use half-precision floats throughout all experiments. We implemented all three architectures using
Pytorch (Paszke et al., 2019).

Memorizing random labels The models are trained with learning rate 5e-4. The learning rate
is linearly warmed-up for the first 500 updates and then decreased under the square-root schedule.
As in this experiment we are interested in the ability to overfit training data, we train the models
for 500 epochs. We use batches of 512 examples. If a model achieves training accuracy above
or equal to 0.999, the training is stopped earlier. For LM and MLM are implemented as 4-layer,
4-head Transformers with embedding size 256 and FFN layer dimensionality of 512 In preliminary
experiments, we found that a 4-layer Encoder model quickly achieves 100% label prediction accuracy
(on train), irrespective of the number of subwords. Hence, in this experiment we used a 1-layer
version for that model type with embedding and FFN sizes of 256 & 512. When training MLM, each
token is masked with probability of 0.2.

Membership inference We use similar architectures and hyperparmeters as above for LM and
MLM. Encoder has 4 layers, embedding size of 512 and FFN dimensionality of 1024, same as
(M)LM. In this experiment we train for 100 epochs.

Question Answering In this set of experiments, we use the fairseq (Ott et al., 2019) imple-
mentation of Transformer LM. We study two variants of the architecture: base and large. The base
architecture has 6 layers with 8 attention heads, embedding dimensionality of 512 and FFN dimen-
sionality of 2048. The large architecture has 12 layers, 16 attention heads, embdedding dimension of
1024 and FFN dimension of 2048. Both variants have dropout probabilities of 0.1. In this experiment
we are only interested in training data memorization, hence we allow all models to overfit and do not
apply any early stopping. We stop training after a fixed budget of 70 epochs. We use a learning rate
of 5e-4, inverse-sqrt learning rate schedule and a linear warm-up for 4000 updates.

4 BPE INFLUENCES TRAINING DATA MEMORIZATION

In this section, we discuss our first main finding: that the number of BPE merges influences the
extent to which a model memorizes training data. This finding is persistent across the three different
experimental setups we described earlier: random label memorization, membership inference and
question-answer recovery. In all these experiments, we systematically control the number of merges,
which is roughly the same as the vocabulary size. We also run complementary experiments where we
fix the number of learned parameters to stay roughly the same for each vocabulary size (see §3.2).

4.1 MEMORIZING RANDOM LABELS

In Figure 1, we report the accuracy on fitting the training data with random labels as a function of
base-2 logarithm of the vocabulary size |V |. In Figure 1a we report results for “vanilla” architectures
(without an additional FFN layer that allows to control for the number of learned parameters) and in
Figure 1b we provide results for the models with the number of parameters fixed. We see that for all

5

Under review as a conference paper at ICLR 2022

10 11 12 13 14
log2|V|

0.6

0.7

0.8

0.9

1.0

AU
C Encoder

LM
MLM

(a) AUC, vanilla models.

10 11 12 13 14
log2|V|

0.6

0.7

0.8

0.9

1.0

AU
C Encoder

LM
MLM

(b) AUC, models with the number of parameters fixed.

10 11 12 13 14
log2|V|

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Te
st

 a
cc

ur
ac

y

Encoder
LM
MLM

(c) Test accuracy, vanilla models.

10 11 12 13 14
log2|V|

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Te
st

 a
cc

ur
ac

y

Encoder
LM
MLM

(d) Test accuracy, models with fixed number of params.

Figure 2: Membership inference attack, SNLI dataset. Shaded area represents ±1 SEM.

three models, LM, MLM, and Encoder, the dependency is very consistent: as the vocabulary size
grows, the models become universally more successful in fitting random labels. Encoder fits around
87% of the random labels with the subword vocabulary size of 611 and has a training accuracy of
more than 98% when the vocabulary size is increased to 18,336. LM and MLM – that have more
layers than Encoder – start off with a slightly higher accuracy (94% and 97%, respectively), their
accuracy quickly climbs up to 100% when increasing the number of subwords. This tendency persists
when controlling for the number of learned parameters (Figure 1b).

4.2 MEMBERSHIP INFERENCE

In Figure 2 we report the AUC for our membership inference experiments for all three architectures
(recall that these experiments used the same SNLI data as the previous experiment, except with
with true instead of random labels). Mirroring the results of our previous experiment, we observe a
monotonic dependency of the membership attack success rate in function of the size of the vocabulary
used: for all architectures, larger vocabulary granularity implies more memorisation.

In Figures 2c & 2d, we report the accuracy on the same exact models on the hold-out data. We see
that all models achieve decent generalization, with accuracy above 0.78. From Figure 2c we see that
as the vocabulary size grows, the test accuracy of (M)LM has distinct regions of growth. We believe
this indicates two important points: (i) generalization is not directly at odds with memorization, and
(ii) there is a level of granularity that allows better memorization and better generalization.

4.3 QUESTION ANSWER RECOVERY

In Figure 3 we report how the top-1 (Figure 3a) and top-5 (Figure 3b) accuracies change in function
of the logarithm of the vocabulary size. We report results for Transformer-base and Transformer-large
modifications, alongside with the parameter-controlled variants. We firstly observe that the model
size has a large impact on memorization: LM-large outperforms LM-base in all cases. Next, we see
that both models confirm the pattern we observed in the previous experiments: vocabulary growth
consistently leads to a growth in the memorization accuracy.

Focusing on the models with the number of parameters fixed, we see that even when correcting for
the total number of embedding parameters, the size of the learned vocabulary greatly affects the
ability of recovering training data.

6

Under review as a conference paper at ICLR 2022

11 12 13 14 15
log2|V|

0.04

0.06

0.08

0.10

0.12

0.14

To
p-

1
ac

cu
ra

cy

Base
Large
Base-control
Large-control

(a) Top-1 accuracy.

11 12 13 14 15
log2|V|

0.10

0.15

0.20

0.25

0.30

To
p-

5
ac

cu
ra

cy

Base
Large
Base-control
Large-control

(b) Top-5 accuracy.

Figure 3: Training data recovery: top-1 and top-5 accuracy on extracting the correct answer when
prompted with a query.

3 4 5 6 7 8 9 10 11
log2 |V|

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
ac

cu
ra

cy

Encoder
LM
MLM

(a) Random strings.

9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0
log2|V|

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai

n
ac

c
BPE
Duplicated vocab

(b) SNLI. BPE vs. Duplicated vocab.

Figure 4: Analysing potential causes of the increased memorization: fitting random labels on random
strings (left) and SNLI (right) datasets. Everywhere shaded area represents ±1 SEM.

5 LOOKING FOR EXPLANATIONS

In §4 we established that larger vocabularies, learned by BPE, lead to stronger memorization in
Transformer models, even when we control for the number of the learned parameters. In the current
section, we focus on why this might be the case, and further investigate this observed effect.

We hypothesise that the primary cause of the observed behavior is that with the growth of the BPE
vocabulary the input sequences become shorter (length hypothesis). In turn, shorter sequences are
easier to memorize as the work of attention is simplified. Indeed, it is known that learning complex
attention patterns is hard and often multiple attention heads turn out to be useless, which potentially
limits the ability to memorize complex “explanations” of the data (Voita et al., 2019; Michel et al.,
2019). At the same time, shorter sequences would shift the responsibility for memorization onto FFN
layers, which are known to memorize well (Zhang et al., 2016).

However, there could be two alternative explanations at play. Being a compression algorithm
originally, BPE compresses the data and it could be easier to memorize data without redundancies
(redundancy hypothesis). Second, BPE increases the vocabulary size and it is possible that each
individual token becomes more predictive of the label (vocabulary size hypothesis). As an illustration,
in the limit case of the vocabulary growth, every sequence might have a unique token. 4 In this case,
there is a one-to-one mapping between those tokens and labels (answers) that will, again, simplify
the work of self-attention. In a series of experiments below, we contrast out these three hypotheses.

5.1 EFFECT PERSISTS ON INCOMPRESSIBLE DATA

To investigate the redundancy hypothesis, we experiment with learning on randomly generated
incompressible data and examine whether a similar behavior persists.5 We generate random data by
enumerating all 2l binary (V = {0, 1}) sequences of length l and randomly assign each sequence to

4Generally, BPE stops before that, as it is does not cross word boundaries.
5Note that in §4.1 we experimented with random labels; here, the input sequences are random, too.

7

Under review as a conference paper at ICLR 2022

one of two classes, {−1,+1}. To study how the chosen level of representation affects the models’
memorization capacity, we apply BPE with {0, 4, 8, 16, 32, 64, 128, 256} steps on the generated data.
This allows us to start from a binary dataset with sufficiently large sequences and produce a sequence
of datasets of the same storage complexity (in bits), but with varied vocabulary sizes.

In Figure 4 we report the accuracy on fitting the training data with random labels as a function of the
logarithm of the vocabulary size. Again, we observe that for all three architectures the dependency
is very consistent: as the vocabulary size grows, the models become universally more successful in
fitting random labels.6 We conclude that the increased memorization success is thus not caused by
BPE compressing-out redundancies in more natural data.

5.2 VOCABULARY SIZE GROWTH DOES NOT EXPLAIN BETTER MEMORIZATION

To investigate the vocabulary size hypothesis we set up an experiment in which we increase the
vocabulary size, while keeping sequence lengths constant. We start from our earlier random label
memorization setup with SNLI data, using the vocabulary learned with 500 BPE operations. To
increase the number of tokens in this vocabulary, we randomly replace each unique token’s occurrence
with either of two new tokens, with equal probability, roughly doubling the vocabulary size. 7 For
instance, say that the current vocabulary has a token “cat”. We then iterate over the corpus and
replace half of its occurrences with “cat1” and the other half with “cat2” (making sure that those do
not happen in the prior vocabulary). Thus, if the vocabulary growth alone can explain the observed
effect, we will see that the datasets with “duplicated” tokens would also be easier to memorize.

We report results of this experiment using the LM model in Figure 4b, contrasting it to the BPE-
induced memorization results. We see that the resulting curves exhibit considerably different patterns.
The line that corresponds to the doubling procedure has a sharp fall in the beginning. Later, as the
vocabulary size grows, in accordance with in our thought experiment, tokens become increasingly
more unique to sequences which boosts the train accuracy. In contrast, the line obtained by growing
the vocabulary via BPE shows a monotonic, consistent growth for all vocabulary sizes. From that we
can conclude that the observed phenomenon cannot be explained solely by the vocabulary growth.

To summarize, the above experiments allowed us to rule out the alternative explanations (redundancy
and vocabulary growth hypotheses) and we conclude that reduction of the sequence length is the
primary factor of the observed memorization effect.8

6 DISCUSSION

While the generalization abilities of state-of-the-art models in NLP have been quite extensively
studied in the recent past (Finegan-Dollak et al., 2018; Hupkes et al., 2018; Lake and Baroni, 2018;
Keysers et al., 2019; Korrel et al., 2019; Mul and Zuidema, 2019; Raunak et al., 2019; Saxton et al.,
2019; Kim and Linzen, 2020; Dankers et al., 2021; Vig and Belinkov, 2019; Dubois et al., 2020;
Hupkes et al., 2020; Kharitonov and Chaabouni, 2020) comparatively little is known about what
factors impact how such models memorize.

For modelling natural data, however, both generalization and memorization are relevant properties.
In some cases, because memorization is harmful – for instance when personal data leak from a
trained model. In other cases, memorization instead is necessary for accurate performance – for
instance to recall the spelling of words or the meanings of idioms. In this work, we therefore focus
specifically on memorization, considering in particular the impact of the choice of modelling unit,
which recently became particularly relevant given that all current SOTA NLP architectures are trained
with an experimentally tuned number of subwords.

We studied memorization behavior of three types of Transformer models (causal and masked lan-
guage models, and an Encoder-based classifier). We looked at memorization from three different
perspectives: the ability to memorize random mappings, vulnerability to membership inference

6In this experiment, for small vocabulary sizes, the total number of learned parameters is nearly constant.
7For instance, nothing will change for a token that occurs once in the dataset.
8A flip side of this conjecture is that a more expressive attention improves memorization. In Appendix we

show this to be the case: increasing the number of attention heads improve random sequence memorization.

8

Under review as a conference paper at ICLR 2022

attacks, and ability to directly reproduce training data on a prompt. We have observed a strong
and monotonic influence of the BPE vocabulary size on how successful Transformer models are at
memorizing training data. With higher granularity vocabulary (i.e., more BPE merge operations),
Transformers (a) can memorize random mappings better, hence they have higher memory capacity,
and (b) do memorize more of training data in realistic tasks.

We considered several explanations for this strong trend. Is the increase perhaps due to the increase
in the number of trainable parameters? Often, the embedding layer has a noticeable share of the
trained parameters and this number grows with the size of the vocabulary. We show that while this
growth does play a role, the effect persists when we ensure that the number of trained parameters
remains constant when the granularity of the vocabulary grows.

Next, we conjecture that the phenomenon is caused by the reduction in the sequence length that
correlates with using larger-cardinality BPE vocabularies. It can simplify memorization, as the
latter will no longer require learning complex attention patterns “explaining” the data and offset
complexity onto fully-connected layers, which are known to be good in memorization (Zhang et al.,
2016). In contrast, learning useful attention patterns is hard and often multiple heads turn out to be
useless (Voita et al., 2019; Michel et al., 2019). Hence, it is possible that self-attention serves as a
bottleneck that limits the memorization capacity.

There are, however, two alternative explanations of the observed trend. It can happen that compressed
data with less redundancy is easier to memorize (redundancy hypothesis). However, our experiment
on random artificial data (Section 4.1) indicates that the reported effect holds even when the data is
not compressible in the information-theoretic sense. Further, can the growth of the vocabulary size
explain the behavior? It does not seem so: our experiment with artificially duplicating tokens shows
that this only starts to improve memorization with relatively large vocabularies and is detrimental for
memory at the beginning. After ruling out the two alternative possibilities, we are left with our initial
hypothesis that using higher-cardinality BPE subword vocabularies implies having to manage shorter
sentences on average, which in turn enable easier memorization.

With our work, we contribute to the important question of what impacts memorization behaviour in
Transformer models. We believe that our findings, firstly, have an important practical implication.
Our experiments provide a clear demonstration that both in artificial and natural data, the simple
choice of the number of subwords used has a large impact on the extent to which models memorize
training data, a fact that is not at all obvious when merely looking at performance on i.i.d. train/test
splits. This therefore calls for a more careful consideration of how many subwords to use for a
particular task, a decision that, in practical scenarios, is rarely thoroughly motivated or investigated.
In cases where a lot of memorization is desirable (e.g., QA-tasks) or undesirable (e.g., public models
trained on medical data), the number of subwords could provide an important factor in tuning the
amount of memorization that happens inside a model. Our findings can provide guidance for tuning
the learned data structures (e.g., learned Bloom filter-like existence indexes (Kraska et al., 2017))
and compression algorithms that train a Transformer model on the data-to-be-compressed as a
compression step (Izacard et al., 2019; Bellard, 2021). If increasing the subword vocabulary size is
not possible, boosting expressiveness of the attention can provide another solution (Appendix A).

Second, our work provides an interesting perspective about the relationship between memorization
and generalization. As we already mentioned before, memorization and generalization are often
thought of as competing modes of fitting data. Even in work that explicitly acknowledges that both
are required to model natural language (e.g. Dankers et al., 2021), they are still seen as skills that
are required in different situations: some examples, or phrases require memorization, while others
require generalization. However, our experiments with SNLI data show the relationship between
memorization and generalization are not directly at odds with each other, there relationship is more
complex than that: there appears to be a level of granularity that allows better memorization and
generalization. This experiment therefore begs the question: what is the actual relationship between
memorization and generalization in neural networks? To what extent does one help the other? Is
this related to the age-old processing vs storage question in human language processing (Jackendoff,
2007; Pinker, 1999; Pinker and Prince, 1988; Clahsen, 1999; Rumelhart and McClelland, 1986)?

9

Under review as a conference paper at ICLR 2022

REFERENCES

Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan,
Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al. Towards a human-like open-
domain chatbot. arXiv preprint arXiv:2001.09977, 2020.

Fabrice Bellard. Nncp v2: Lossless data compression with transformer. 2021. URL https:
//bellard.org/nncp/nncp_v2.1.pdf.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics,
2015.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. arXiv preprint arXiv:2012.07805, 2020.

Rahma Chaabouni, Roberto Dessì, and Eugene Kharitonov. Can transformers jump around right in
natural language? assessing performance transfer from scan. arXiv preprint arXiv:2107.01366,
2021.

Harald Clahsen. Lexical entries and rules of language: A multidisciplinary study of German
inflection. Behavioral and Brain Sciences, 22(6):991–1013, December 1999. ISSN 0140-525X,
1469-1825. doi: 10.1017/S0140525X99002228. URL https://www.cambridge.org/
core/product/identifier/S0140525X99002228/type/journal_article.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look at?
an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. The paradox of the compositionality of natural
language: a neural machine translation case study. CoRR, abs/2108.05885, 2021. URL https:
//arxiv.org/abs/2108.05885.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Location Attention for Extrapo-
lation to Longer Sequences. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 403–413, Online, July 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.acl-main.39. URL https://aclanthology.org/2020.
acl-main.39.

Catherine Finegan-Dollak, Jonathan K Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. Improving text-to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 351–360, 2018. URL https://aclanthology.org/P18-1033/.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Junxian He, Graham Neubig, and Taylor Berg-Kirkpatrick. Efficient nearest neighbor language
models. arXiv preprint arXiv:2109.04212, 2021.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and ‘diagnostic classifiers’
reveal how recurrent and recursive neural networks process hierarchical structure. Journal of
Artificial Intelligence Research, 61:907–926, 2018.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: how
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

10

https://bellard.org/nncp/nncp_v2.1.pdf
https://bellard.org/nncp/nncp_v2.1.pdf
https://www.cambridge.org/core/product/identifier/S0140525X99002228/type/journal_article
https://www.cambridge.org/core/product/identifier/S0140525X99002228/type/journal_article
https://arxiv.org/abs/2108.05885
https://arxiv.org/abs/2108.05885
https://aclanthology.org/2020.acl-main.39
https://aclanthology.org/2020.acl-main.39
https://aclanthology.org/P18-1033/

Under review as a conference paper at ICLR 2022

Gautier Izacard, Armand Joulin, and Edouard Grave. Lossless data compression with transformer.
2019. URL https://openreview.net/pdf?id=Hygi7xStvS.

Ray Jackendoff. A parallel architecture perspective on language processing. Brain research, 1146:
2–22, 2007.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashu-
bin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, et al. Measuring
compositional generalization: A comprehensive method on realistic data. In International Con-
ference on Learning Representations, 2019. URL https://openreview.net/pdf?id=
SygcCnNKwr.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=HklBjCEKvH.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Nearest
neighbor machine translation. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=7wCBOfJ8hJM.

Eugene Kharitonov and Rahma Chaabouni. What they do when in doubt: a study of inductive biases
in seq2seq learners. arXiv preprint arXiv:2006.14953, 2020.

Najoung Kim and Tal Linzen. COGS: a compositional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, 2020. URL https://aclanthology.org/2020.
emnlp-main.731/.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kris Korrel, Dieuwke Hupkes, Verna Dankers, and Elia Bruni. Transcoding compositionally: Us-
ing attention to find more generalizable solutions. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 1–11, Florence, Italy,
August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-4801. URL
https://aclanthology.org/W19-4801.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. arXiv preprint arXiv:1712.01208, 2017.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, 2018.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In proceedings of the 35th International Conference
on Machine Learning (ICML), pages 4487–4499, 2018.

Kushal Lakhotia, Evgeny Kharitonov, Wei-Ning Hsu, Yossi Adi, Adam Polyak, Benjamin Bolte,
Tu-Anh Nguyen, Jade Copet, Alexei Baevski, Adelrahman Mohamed, and Emmanuel Dupoux.
Generative spoken language modeling from raw audio. arXiv preprint arXiv:2102.01192, 2021.

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel. Question and answer test-train overlap in
open-domain question answering datasets. arXiv preprint arXiv:2008.02637, 2020.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich Küttler, Aleksandra Piktus,
Pontus Stenetorp, and Sebastian Riedel. PAQ: 65 million probably-asked questions and what you
can do with them. arXiv preprint arXiv:2102.07033, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

11

https://openreview.net/pdf?id=Hygi7xStvS
https://openreview.net/pdf?id=SygcCnNKwr
https://openreview.net/pdf?id=SygcCnNKwr
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=7wCBOfJ8hJM
https://aclanthology.org/2020.emnlp-main.731/
https://aclanthology.org/2020.emnlp-main.731/
https://aclanthology.org/W19-4801

Under review as a conference paper at ICLR 2022

William Merrill, Vivek Ramanujan, Yoav Goldberg, Roy Schwartz, and Noah Smith. Effects of
parameter norm growth during transformer training: Inductive bias from gradient descent, 2021.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? arXiv
preprint arXiv:1905.10650, 2019.

Rajiv Movva and Jason Y Zhao. Dissecting lottery ticket transformers: Structural and behavioral
study of sparse neural machine translation. arXiv preprint arXiv:2009.13270, 2020.

Mathijs Mul and Willem Zuidema. Siamese recurrent networks learn first-order logic reasoning
and exhibit zero-shot compositional generalization. In CoRR, abs/1906.00180, 2019. URL
https://arxiv.org/pdf/1906.00180.pdf.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32. 2019.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller,
and Sebastian Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066,
2019.

Steven Pinker. Words and rules: The ingredients of language. 1999.

Steven Pinker and Alan Prince. On language and connectionism: Analysis of a parallel distributed
processing model of language acquisition. Cognition, 28(1):73–193, 1988. ISSN 0010-0277.
doi: https://doi.org/10.1016/0010-0277(88)90032-7. URL https://www.sciencedirect.
com/science/article/pii/0010027788900327.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita. Bpe-dropout: Simple and effective subword
regularization. arXiv preprint arXiv:1910.13267, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Vikas Raunak, Vaibhav Kumar, Florian Metze, and Jaimie Callan. On compositionality in neural
machine translation. In NeurIPS 2019 Context and Compositionality in Biological and Artifi-
cial Neural Systems Workshop, 2019. URL https://vaibhav4595.github.io/files/
compo.pdf.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
parameters of a language model? arXiv preprint arXiv:2002.08910, 2020.

D E Rumelhart and J McClelland. On Learning the Past Tenses of English Verbs. In Parallel
distributed processing: Explorations in the microstructure of cognition, pages 216–271. MIT Press,
Cambridge, MA, 1986. URL https://apps.dtic.mil/sti/pdfs/ADA164233.pdf.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. Deja vu: an empirical
evaluation of the memorization properties of convnets. arXiv preprint arXiv:1809.06396, 2018.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. In Proceedings of the 7th International Conference on
Learning Representations (ICLR), 2019.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

12

https://arxiv.org/pdf/1906.00180.pdf
https://www.sciencedirect.com/science/article/pii/0010027788900327
https://www.sciencedirect.com/science/article/pii/0010027788900327
https://vaibhav4595.github.io/files/compo.pdf
https://vaibhav4595.github.io/files/compo.pdf
https://apps.dtic.mil/sti/pdfs/ADA164233.pdf

Under review as a conference paper at ICLR 2022

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pages
3–18. IEEE, 2017.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and Douwe Kiela.
Masked language modeling and the distributional hypothesis: Order word matters pre-training for
little. CoRR, abs/2104.06644, 2021. URL https://arxiv.org/abs/2104.06644.

Om Dipakbhai Thakkar, Swaroop Ramaswamy, Rajiv Mathews, and Francoise Beaufays. Under-
standing unintended memorization in language models under federated learning. In Proceedings
of the Third Workshop on Privacy in Natural Language Processing, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language model.
In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy, August 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/W19-4808. URL https://aclanthology.org/W19-4808.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning:
Analyzing the connection to overfitting. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pages 268–282. IEEE, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

George Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley, Boston, MA,
1949.

13

https://arxiv.org/abs/2104.06644
https://aclanthology.org/W19-4808

Under review as a conference paper at ICLR 2022

A NUMBER OF HEADS

In our analysis in §5, we conjecture that the observed effect is caused by the fact that large-cardinality
BPE vocabulary reduces pressure on attention to learn complex patterns due to having less tokens to
attend to. This raises the next question: if we increase the power of attention (e.g., by growing number
of heads) would the memorization be improved? To investigate that, we repeated our random-string
memorization experiment. This time, we have fixed the BPE vocabulary size (8 merges) and varied
the number of heads used in each layer as {1, 2, 4, 8, 16} and measured the training accuracy.

Our results in Figure 5 confirm our expectations: more heads allow more successful memorization.
Indeed it seems that the attention serves as a representation bottleneck that does not allow to easily
model complex interactions between tokens and, in turn, limits the memorization. What we observe
in this paper is that, when needed, this limitation can be alleviated by (a) increasing granularity of
the units that represent the data (e.g., by running BPE), or (b) improving representation power of the
self-attention mechanism.

B HYPERPARAMETERS USED IN EXPERIMENTS

B.1 RANDOM LABELS, SNLI

In all experiments we use fixed (sinusoidal) positional embeddings. We use starting learning rate of
5e-4 that is linearly warmed-up for 500 epochs and then decayed under the inverse-sqrt rule. We use
half-precision floats to represent the weights. Batch size is 512. In these experiments, we disabled
dropout. LM & MLM models have 4 layers while Encoder has 1. For each BPE vocabulary size, we
repeated our experiments with 3 different random seeds. The attention layers have 4 heads. Hidden
and embedding layers have dimensionalities of 512 and 256. Depending on the experiment, we used
1 or 4 GPUs to train each model, maintaining the overall batch size constant.

B.2 MEMBERSHIP INFERENCE

For (M) LM we used the same parameters as in § B.1. In this experiment, Encoder has 4 layers,
embedding size of 512 and FFN size of 1024. We trained for 100 epochs.

B.3 QA

We used the standard Transformer LM models of fairseq that are specified by the
--arch=transformer_lm_big (large) and --arch=transformer_lm (base).

We use fixed (sinusoidal) positional embeddings. The base architecture has 6 layers with 8 attention
heads, embedding dimensionality of 512 and FFN dimensionality of 2048. The large architecture
has 12 layers, 16 attention heads, embdedding dimension of 1024 and FFN dimension of 2048. Both

2 4 6 8 10 12 14 16
num. heads

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
ac

cu
ra

cy

Encoder
LM
MLM

Figure 5: Random label memorization accuracy vs. number of heads.

14

Under review as a conference paper at ICLR 2022

BPE steps token embedding size num. parameters

500 4400 18,311,749
1K 3050 18,239,335
5K 900 18,238,681

10K 480 18,105,192
20K 260 18,231,474

Table 1: LM: input embedding size and number of learned parameters for the control models.

BPE steps token embedding size num. parameters

500 4400 18,316,149
1K 3050 18,242,385
5K 900 18,239,581

10K 480 18,105,672
20K 260 18,231,734

Table 2: MLM: input embedding size and number of learned parameters for the control models.

variants have dropout probabilities of 0.1. All models are trained for 70 epochs. We use a learning
rate of 5e-4, inverse-sqrt learning rate schedule and a linear warm-up for 4000 updates. Again, we
used half-precision floats to represent models’ weights. The input and output embedding matrices are
shared in the models. Each GPU’s batch contains up to 3072 tokens and accumulate gradients from 8
batches before running an update. The models were trained on 8 GPUs each.

B.4 RANDOM SEQUENCES

As in § B.1.

B.5 DUPLICATED TOKENS EXPERIMENT

As in § B.1.

B.6 CONTROL MODELS

In experiments where we control the number of learned parameters, input token embedding size is
no longer attached to the embedding size within the Transformer model (which remains identical to
the vanilla, non-ctontrolled model). In Tables 1-6 we report the embedding sizes and the number of
learned parameters for control models we used in experiments.

C TRAINING DATA EXTRACTION WITH SAMPLING

In this Section we investigate whether the relation between the success rate in the training data
extraction experiments and the BPE-learned vocabulary size, reported in Section 4.3 and Figure 3, is
independent from the way we generate continuations of a prompt.

We re-evaluate the training data extraction performance for the large models used in Section 4.3.
We follow exactly the same protocol as in Section 4.3 with one exception: instead of using beam
search, we sequentially sample tokens from the language model (i.e., we run ancestral sampling)
at temperature 1.0. For each prompt, we sample 20 candidates and measure how often the ground-
truth continuation is among those. We report our findings in Figure 6. From Figure 6 we see
that the reported relation has the same form as before: larger BPE vocabulary sizes lead to better
memorization. Overall, we conclude that our findings are likely to be independent from the specific
training data extraction method used.

15

Under review as a conference paper at ICLR 2022

BPE steps token embedding size num. parameters

500 1125 1,792,731
1K 785 1,791,741
5K 231 1,787,673

10K 125 1,788,106
20K 67 1,790,056

Table 3: Encoder: input embedding size and number of learned parameters for the control models (1
layer).

BPE steps token embedding size num. parameters

500 3000 13,322,138
1K 2300 13,294,038
5K 820 13,305,718

10K 460 13,287,138
20K 220 12,670,778

Table 4: Encoder: input embedding size and number of learned parameters for the control models (4
layer).

D CAN CHANGES IN FREQUENCY DISTRIBUTION CAUSE THE OBSERVED
EFFECT?

In the main text, we considered three factors that accompany growing BPE vocabulary sizes: reduction
in sequence length, increased number of tokens, and decrease in the redundancy. Another potential
confounding behavior is that BPE affects the (relative) frequency of the tokens used for modelling
the data.

To showcase this, we run the following experiment. We take BPE vocabularies learned for the SNLI
dataset with the number of merges varied in {100, 400, 1000, 5000} and, for each token, measure
its frequency in the corpus. Next, we sort the tokens in the order of decreasing frequency and plot
token frequency in function of its order after sorting. We can expect that with the increased number
of merges, BPE-learned subwords will start approximating words more closely and the frequency
distribution of tokens will approach that of words. In turn, the latter follows an extremely skewed
Zipf distribution (Zipf, 1949). Figure 7a supports this prediction: increasing the number of merges
forces the token distribution to become more peaky.

11 12 13 14 15
log2|V|

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

To
p-

20
 a

cc
ur

ac
y

Large

Figure 6: Training data recovery: top-20 accuracy on extracting the correct answer when prompted
with a query (sampling).

16

Under review as a conference paper at ICLR 2022

BPE steps token embedding size num. parameters

500 3000 162,139,136
1K 2900 162,269,536
5K 1420 162,278,176

10K 860 162,192,256
15K 620 162,212,576
20K 480 162,112,256
30K 335 162,150,096

Table 5: LM-Large, QA experiment: input embedding size and number of learned parameters for the
control models.

BPE steps token embedding size num. parameters

500 2400 24,444,928
1K 1965 24,433,048
5K 811 24,443,424

10K 468 24,441,472
15K 328 24,428,352
20K 253 24,430,728
30K 174 24,447,136

Table 6: LM-Base, QA experiment: input embedding size and number of learned parameters for the
control models.

Can the increased skeweness of the token distribution explain the increased memorization? To rule
this possibility out, we run an experiment where the token distribution is fixed to be uniform, but the
sequence length is reduced.

To achieve this, we start from the same dataset of random strings as in Section 5.1. In this dataset,
the initial distribution of 0s and 1s is uniform as we enumerate all binary strings of a fixed length.
Next, we replace BPE with an “idealized” subword learning procedure which maintains the uniform
distribution of tokens but reduces the lengths of the strings. The procedure is simple: we firstly group
all possible pairs of 0s and 1s into new tokens (00, 01, 10, 11) and use them to encode the initial
strings (e.g., “0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1” becomes “00 00 00 00 00 00 00 01”). We recursively
repeat this procedure, obtaining a sequence of views of the same dataset, at each step growing the
vocabulary size quadratically (2, 4, 16, and 256) and reducing the string length by two. In this process,
all tokens remain uniformly distributed.

Using the obtained series of datasets, we repeat the random label memorization experiment (Sec-
tion 5.1) and report the results obtained in Figure 7b. We observe that the reported effect persists
even in the case when the relative frequencies of tokens are not changed and fixed to be uniform, thus
disproving the hypothesis that the observed effect is due to frequency and not token length.

17

Under review as a conference paper at ICLR 2022

0 20 40 60 80 100
token rank

0

100

200

300

400

500

600

Fr
eq

ue
nc

y,
 1

03

BPE 100
BPE 500
BPE 1000
BPE 5000

(a) Token frequency in function of its frequency rank (position in the list of tokens
when sorted in the decreasing frequency order) for BPE vocabularies of different
size. SNLI dataset.

1 2 3 4 5 6 7 8
log2|V|

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
ac

cu
ra

cy

Encoder
LM
MLM

(b) Accuracy on fitting random labels on random strings. The vocabulary size is
controlled by a procedure that maintains uniform distribution of the tokens (see the
text).

Figure 7: Investigating the relative frequency hypothesis.

18

	Introduction
	Studying Memorization – the tasks
	Learning mappings with random labels
	Membership inference
	Training data recovery

	Models and Hyperparameters
	BPE settings
	Controlling the number of learned parameters
	Casting models as classifiers
	Model and training details

	BPE influences training data memorization
	Memorizing random labels
	Membership inference
	Question Answer Recovery

	Looking for Explanations
	Effect persists on incompressible data
	Vocabulary size growth does not explain better memorization

	Discussion
	Number of heads
	Hyperparameters used in experiments
	Random labels, SNLI
	Membership inference
	QA
	Random sequences
	Duplicated tokens experiment
	Control models

	Training Data Extraction with Sampling
	Can Changes in Frequency Distribution Cause the Observed Effect?

