
Published as a conference paper at ICLR 2026

HINGE REGRESSION TREE: A NEWTON METHOD FOR
OBLIQUE REGRESSION TREE SPLITTING

Hongyi Li, Han Lin & Jun Xu∗†

School of Intelligence Science and Engineering
Harbin Institute of Technology, Shenzhen
Shenzhen, 518055, China
{23b904015, 24s153081}@stu.hit.edu.cn
xujunqgy@hit.edu.cn

Code: https://github.com/Hongyi-Li-sz/Hinge-Regression-Tree

ABSTRACT

Oblique decision trees combine the transparency of trees with the power of multi-
variate decision boundaries—but learning high-quality oblique splits is NP-hard,
and practical methods still rely on slow search or theory-free heuristics. We
present the Hinge Regression Tree (HRT), which reframes each split as a non-
linear least-squares problem over two linear predictors whose max/min envelope
induces ReLU-like expressive power. The resulting alternating fitting procedure
is exactly equivalent to a damped Newton (Gauss–Newton) method within fixed
partitions. We analyze this node-level optimization and, for a backtracking line-
search variant, prove that the local objective decreases monotonically and con-
verges; in practice, both fixed and adaptive damping yield fast, stable convergence
and can be combined with optional ridge regularization. We further prove that
HRT’s model class is a universal approximator with an explicit O(δ2) approxi-
mation rate, and show on synthetic and real-world benchmarks that it matches or
outperforms single-tree baselines with more compact structures.

1 INTRODUCTION

Decision trees are among the most influential models in supervised learning due to their inter-
pretability and ability to capture nonlinear relationships. The classical CART framework (Breiman
et al., 1984) introduced axis-aligned recursive partitioning, which remains a cornerstone of modern
tree-based methods. However, such axis-aligned trees often require deep structures to approximate
even simple relationships in high-dimensional or correlated settings, limiting efficiency and gener-
alization (Hastie et al., 2009).

To address these issues, oblique regression trees extend splitting criteria from axis-aligned thresholds
to hyperplanes defined by linear combinations of features. This formulation yields more compact
structures and improved predictive performance, particularly when features are correlated or rotated
(Murthy et al., 1994). Nonetheless, finding the optimal oblique hyperplane is NP-hard (Laurent
& Rivest, 1976; Hancock et al., 1996), and practical algorithms have relied on greedy heuristics,
evolutionary methods, or convex surrogates (Loh, 2014). Recent work explores optimization-based
formulations (Panda et al., 2024; Karthikeyan et al., 2022), but efficient and theoretically sound
solutions remain limited.

We introduce a novel oblique regression tree algorithm, termed the Hinge Regression Tree (HRT),
that fundamentally redefines the node splitting problem. Specifically, we propose to learn each
node split as a nonlinear least squares optimization problem involving two distinct linear models.
The basis function employs a hinge formulation to model this nonlinear optimization, intrinsically
endowing HRT with ReLU-like nonlinear expressive power. To improve robustness under mul-
ticollinearity, ridge regularization (Hoerl & Kennard, 1970) is optionally incorporated within the

∗Also with the Shenzhen Key Lab for Advanced Motion Control and Modern Automation Equipments.
†Corresponding author: Jun Xu.

1

https://github.com/Hongyi-Li-sz/Hinge-Regression-Tree

Published as a conference paper at ICLR 2026

fitting step. The resulting iterative optimization can be interpreted as a damped Newton (Gauss–
Newton) method within fixed partitions. Furthermore, we show that, for a backtracking line-search
variant, the node-level objective decreases monotonically and converges, and that, when the partition
stabilizes, the iterates converge to the corresponding OLS minimizer, while in practice both fixed
and adaptive damping exhibit fast and stable convergence. Separately, we establish that the induced
piecewise linear model class enjoys strong universal approximation guarantees.

Our contributions can be summarized as follows: (1) We introduce a novel HRT algorithm that refor-
mulates node splitting as a nonlinear least squares optimization over two linear functions. The result-
ing HRT model, by hierarchically composing its max/min envelope-based splits, intrinsically gains
ReLU-like nonlinear expressive power and supports optional ridge regularization. (2) We charac-
terize the node-level alternating optimization as a damped Newton/Gauss–Newton method and, for
a backtracking line-search variant, prove that the node-level objective decreases monotonically and
converges, thereby providing a theoretical foundation for its efficiency and stable behaviour in prac-
tice. (3) We establish that the resulting piecewise linear models constitute a universal approximator
with an explicit O(δ2) approximation rate, validating HRT’s powerful function approximation ca-
pabilities. (4) Through extensive experiments on synthetic and real-world datasets, we demonstrate
that HRT achieves competitive performance compared to single-tree baselines while maintaining a
more compact structure. By integrating regression modeling objectives with optimization theory,
our work advances oblique regression trees as both a practical and theoretically principled tool for
nonlinear function approximation.

2 RELATED WORK

Oblique regression trees. The quest for optimal oblique splits dates back decades, driven by their
ability to form more compact and expressive decision boundaries compared to axis-aligned trees
(Murthy et al., 1994; Loh, 2014). Early approaches largely relied on greedy heuristics, such as OC1
(Murthy et al., 1994) which employed randomized search, or statistical tests for feature selection,
like GUIDE (Loh, 2009). However, the NP-hard nature of finding optimal oblique hyperplanes (Lau-
rent & Rivest, 1976) has motivated a shift towards more sophisticated optimization-based method-
ologies. These include alternating optimization strategies, which iteratively refine split parameters
and data assignments (e.g., TAO (Carreira-Perpinán & Tavallali, 2018)), and gradient-based opti-
mization techniques. Recent differentiable oblique trees, such as DGT (Karthikeyan et al., 2022),
train trees end-to-end using gradient descent with approximations like over-parameterization and
straight-through estimators. Similarly, DTSemNet (Panda et al., 2024) formulates oblique decision
trees as neural networks, enabling optimization with standard gradient descent. While these methods
have significantly advanced the field, they often rely on heuristics, approximations, or specific neu-
ral network architectures. Our work distinguishes itself by reframing the core splitting problem as
a direct, nonlinear least squares optimization with a clear equivalence to a damped Newton method,
providing a theoretically grounded and efficient alternative.

Piecewise linear models and hinge functions. Regression trees are essentially a piecewise linear
approximation that recursively partitions the input space and fits a simple model (typically constant
or linear) within each region. The universal approximation property of piecewise linear functions is
a cornerstone of approximation theory, providing a theoretical foundation for the expressive power
of such models (Cybenko, 1989; Hornik, 1991). More recent developments confirm explicit conver-
gence rates for oblique trees (Cattaneo et al., 2024), while deep networks provide complementary
insights into piecewise linear expressivity (Hu, 2021). Hinge functions are indispensable piecewise
linear primitives in machine learning models, valued for their non-smoothness and geometric inter-
pretability (Ergen & Pilanci, 2021). As a pioneering work, hinging hyperplanes (Breiman, 1993)
construct global additive expansions of hinge units. Their influence extends broadly, from inspiring
the hinge loss used in SVMs (Cortes & Vapnik, 1995) to motivating the ReLU activation func-
tions that dominate modern neural networks (Nair & Hinton, 2010; Glorot et al., 2011). Owing
to their piecewise linear structure, hinge functions are particularly effective for defining efficient
and interpretable decision boundaries. However, the reliance on additive combinations in hinging
hyperplanes can obscure the interpretability of the resulting models. In contrast, our method di-
rectly leverages the characteristics of hinging hyperplanes to formulate node splits, while improving
interpretability through explicit expressions of the corresponding subregions.

2

Published as a conference paper at ICLR 2026

3 TREE CONSTRUCTION AND OBLIQUE SPLIT OPTIMIZATION

This section describes our procedure for constructing the HRT, an oblique decision tree. We first
specify the construction objective, then detail how oblique splits are optimized at each internal node,
followed by the recursive routine used to construct the full tree. Our key insight is to formulate each
split as a nonlinear least-squares problem over two linear models. This formulation allows the tree
to directly learn a locally adaptive piecewise-linear structure, from which the splitting hyperplane
arises naturally.

3.1 CONSTRUCTION OBJECTIVE OF THE HRT

Consider a dataset S = {(xj , yj)}Nj=1, where xj ∈ Rd and yj ∈ R, suppose x̃ ∈ Rd+1 is the
augmented feature vector, i.e., x̃ = [x1, . . . , xd, 1]

T . Assume there are T nodes Dt, indexed in a
breadth-first order by t ∈ T = {1, . . . , T}. The nodes can be classified into two types: internal
nodes, which execute branching tests and are denoted by t ∈ TI, and leaf nodes, which are utilized
for prediction and are denoted by t ∈ TL. Starting from the root node, the tree grows through the
internal nodes to reach the leaf nodes. For each node Dt, t ∈ T, there is an associated parameter
vector θt ∈ Rd+1 describing the corresponding linear relationship. Let tl(x) be the leaf index
reached by input x, and let its linear predictor be ℓtl(x) = x̃Tθtl(x). The tree’s output function is
thus ŷ(x) = ℓtl(x)(x). The global approximation accuracy refers to the training set is then described
as

J(Dt,θ) =
1

2

N∑
i=1

(yi − ŷ(xi))
2, (1)

where ŷ(xi) = ℓtl(xi)(xi), meaning that the input xi belongs to a unique leaf node Dtl(xi) with
tl(xi) ∈ TL. The indices of the internal nodes and leaf nodes, i.e., TI and TL are dynamically
changing during the construction the HRT.

3.2 OPTIMIZATION OF OBLIQUE SPLITS

3.2.1 OBJECTIVE FUNCTION

At any internal node Dt, t ∈ TI, our goal is to find two sets of parameters, θt1 ,θt2 ∈ Rd+1, and
these parameters define two linear functions, ℓt1(x) = x̃Tθt1 and ℓt2(x) = x̃Tθt2 that best fit the
data. Specifically, we aim to minimize the following nonlinear least squares objective function:

V (θ) =
1

2

∑
xj∈Dt

(yj − h(xj ,θ))
2 (2)

with respect to θ = [θT
t1 ,θ

T
t2]

T ∈ R2(d+1), which is the total parameter vector, and h(xj ,θ) is
defined as:

h(xj ,θ) = max
(
x̃T
j θt1 , x̃

T
j θt2

)
or h(xj ,θ) = min

(
x̃T
j θt1 , x̃

T
j θt2

)
The basis function h(xj ,θ) is a hinge function. This function intrinsically defines a decision bound-
ary in the data space, given by the hyperplane x̃T (θt1 − θt2) = 0, where ℓt1(x) = ℓt2(x). De-
pending on which side of this hyperplane a data point xj lies (i.e., whether x̃T

j θt1 ≥ x̃T
j θt2 or

vice versa), the model selects either ℓt1(xj) or ℓt2(xj) for prediction. This hinge-enabled piecewise
linear structure flexibly adapts to both convex and concave local data structures.

From a tree model perspective, minimizing V (θ) corresponds to optimizing a structure with one
root and two leaves. The root uses the hyperplane x̃T (θt1 − θt2) = 0 as its decision boundary to
partition the data, i.e., the internal node Dt is partitioned into two leaf nodes Dt1 and Dt2 . Each leaf
corresponds to a linear function ℓt1(x) or ℓt2(x) used for prediction in their respective data subsets.

3.2.2 OPTIMIZATION AS A NEWTON METHOD

We address the nonlinear least squares optimization problem by employing an iterative procedure,
which we formulate as a Newton method to derive an efficient solution.

3

Published as a conference paper at ICLR 2026

Directly minimizing Equation (2) is difficult due to the non-differentiable function. Our iterative
algorithm operates by defining two dynamic partitions of the data based on the current parameters
θ:

S1(θ) = {xj ∈ Dt | x̃T
j θt1 ≥ x̃T

j θt2}
S2(θ) = Dt \ S1(θ)

For a fixed partition (S1,S2), the objective function is differentiable with respect to θt1 and
θt2 within each respective domain. Under this condition, the Newton update relies on the gra-
dient ∇V and the Hessian matrix ∇2V . Generally, a Newton update is given by θ(k+1) =
θ(k) − µ[∇2V]−1∇V . In our case, due to the locally linear nature of h(xj ,θ) within each fixed
partition, its second derivative is zero, which means the Gauss-Newton approximation to the Hessian
is exact. Combining this exact Hessian with the gradient structure (as derived in detail in Appendix
A), this update simplifies to:

θ(k+1) = θ(k) + µ(θ
(k)
OLS − θ(k)) (3)

where θ(k) is the current parameter, and θ
(k)
OLS represents the optimal Ordinary Least Squares

(OLS) solution independently computed for its respective data subset based on the current partitions
S1(θ(k)) and S2(θ(k)). The term (θ

(k)
OLS−θ(k)) corresponds to the Newton direction−[∇2V]−1∇V

for the current fixed partition. µ is the step size. After θ(k+1) is computed, the data points are
then reassigned to new partitions S1(θ(k+1)) and S2(θ(k+1)) for the next iteration, based on these
updated parameters. This alternating procedure of parameter fitting and partition re-assignment
forms the core of our optimization. Our iterative procedure employs a step size µ ∈ (0, 1]. When
µ = 1, the new parameters are directly set to the optimal OLS solution for the current partitions,
i.e., θ(k+1) = θ

(k)
OLS, which represents a unit-step Newton update. For a detailed derivation of the

general case and its equivalence to OLS when µ = 1, please refer to Appendix A. We support two
step-size strategies in practice, both sharing the same Newton direction but differing in how µ(k) is
chosen: (i) a fixed damping factor µ ∈ (0, 1], which yields a simple and efficient implementation,
and (ii) an automatic backtracking line search (denoted as “auto” in our experiments), which selects
µ(k) adaptively to ensure sufficient decrease of the node-level objective.

3.3 RECURSIVE TREE CONSTRUCTION

The core of the HRT construction is a recursive splitting process. Starting from the root node, each
internal node undergoes the node-level optimization procedure described in Section 3.2.2. This
procedure iteratively finds the optimal oblique hyperplane, thus creating a linear decision boundary.
Data points are subsequently assigned to the left or right child node depending on whether x̃Tθt1 ≥
x̃Tθt2 . The split is recursively applied to the resulting child nodes until a stopping condition is
satisfied, such as reaching the maximum tree depth, falling below a minimum number of samples, or
achieving a Root Mean Squared Error (RMSE) below a predefined threshold. Through this recursive
mechanism, the tree naturally composes a hierarchy of hinge operations. This hierarchical structure
endows the model with ReLU-like expressivity.

To enhance model robustness, all OLS fitting steps can optionally incorporate ridge regression (L2
regularization). Furthermore, to ensure continuous tree growth, even if the node-level iterative op-
timization fails to converge within a specified number of iterations, a simple fallback mechanism is
employed to determine the split. Detailed information on these mechanisms, including the mathe-
matical formulation of ridge regression and the specific implementation of the fallback strategy, can
be found in Appendix C. The detailed pseudocode for the optimal node-splitting mechanism and the
overall tree-building procedure, along with their computational complexity analysis, can be found
in Appendix D and E, respectively.

3.4 ILLUSTRATION OF THE RELU-LIKE EXPRESSIVE POWER

Each internal node Dt carries two linear scores ℓt1(x) = x̃Tθt1 and ℓt2(x) = x̃Tθt2 . It routes data
points by the hinge test st(x) = ℓt1(x)− ℓt2(x) ≥ 0 (left child) or < 0 (right child). A depth-k tree
induces a polyhedral partition of the input space by intersecting halfspaces along root-to-leaf paths.
According to Section 3.1, for each input x, the tree’s output function is ŷ(x) = ℓtl(x)(x), which

4

Published as a conference paper at ICLR 2026

is a piecewise linear function defined on at most 2k regions. Define the ReLU function σ(u) =
max{u, 0}. For any scalars a, b, we have max(a, b) = a+ σ(b− a) and min(a, b) = a− σ(a− b).
This implies that a binary hinge operation at a node is essentially a single-unit ReLU gate acting
on linear arguments. Composing these gates along the tree structure yields a computational circuit
formed by linear maps and ReLU operations, which justifies its ReLU-like expressive power.

4 THEORETICAL ANALYSIS

4.1 CONVERGENCE ANALYSIS

Our algorithm uses an alternating optimization strategy. We update parameters by

θ(k+1) = θ(k) + µ(k)p(k), p(k) = θ
(k)
OLS − θ(k),

where, as shown in Section 3.2, p(k) is a Newton/Gauss–Newton direction under the current parti-
tion.

In practice we instantiate this generic update rule in two ways. The first uses a fixed damping factor
µ(k) ≡ µ ∈ (0, 1]; the value of µ (e.g., 0.1, 0.5, 1) is treated as a hyperparameter and selected
on a validation split. The second, denoted as auto in our experiments, employs a simple monotone
backtracking line search: starting from µ(k) = 1 we geometrically decrease µ(k) until a valid split
with a strictly smaller node-level RMSE is found, or terminate if no such step exists.

For our theoretical analysis we focus on this line-search variant. In Appendix B we show that, under
mild assumptions, the resulting damped Newton method yields a monotonically decreasing sequence
of node-level objectives that converges, and that when the partition stabilizes the iterates converge
to the corresponding OLS minimizer. Empirically, we observe that both the fixed-step and auto
line-search schemes exhibit fast and stable convergence. Practical safeguards include optional ridge
regularization in the OLS fits to improve conditioning, minimum-sample and error-based stopping
at nodes, and a simple fallback (median split) if the node-level optimization fails to make progress
within Tmax iterations. We terminate when the relative change in V or in θ falls below a tolerance,
or when the partition stabilizes.

4.2 UNIVERSAL APPROXIMATION THEORY

This section establishes the theoretical foundation for HRT’s expressive power. We prove that its
piecewise linear model class is a universal approximator for continuous functions and derive an
explicit approximation rate that quantifies how its precision scales with domain partitioning.

Theorem 1. LetF be the class of piecewise linear functions represented by finite oblique regression
trees with linear models at the leaves. Let g : K → R be a twice continuously differentiable
function (g ∈ C2(K)) on a compact set K ⊂ Rd. Furthermore, assume that for any constructed
partition ofK into regions {Ri} with diameter≤ δ, each regionRi containsNi training data points
(xj , g(xj))

Ni
j=1. Let Xi be the Ni× (d+1) design matrix whose j-th row is x̃T

j . We further assume
that Xi satisfies λmin(X

T
i Xi) ≥ cNi for some constant c > 0. Also, supx∈K ∥x̃∥2 ≤ DK for some

bounded constant DK. Then, there exists a constant C such that for any δ > 0, we can construct
a function f ∈ F by partitioning the domain K into regions {Ri} with maxi diam(Ri) ≤ δ,
satisfying the uniform error bound:

sup
x∈K
|f(x)− g(x)| ≤ Cδ2

This approximation rate directly implies the universal approximation property, i.e., for any ϵ > 0,
there exists a function f ∈ F such that supx∈K |f(x)− g(x)| < ϵ.

For the detailed proof, please refer to Appendix F.

Intuition. Our HRTs serve as universal approximators by recursively partitioning the input space
into convex regions and fitting local linear models in each. As partitions refine (region diameter
δ decreases), the piecewise linear predictor uniformly approximates g(x), achieving an O(δ2) ap-
proximation rate under standard smoothness assumptions. We assume an eigenvalue lower bound

5

Published as a conference paper at ICLR 2026

for each leaf i, λmin(X
T
i Xi)≥ cNi, which keeps local OLS well posed so that its estimation error

matches the O(δ2) approximation term. In practice, strong collinearity or small leaf sizes may vi-
olate this condition; we therefore optionally employ ridge regularization, replacing the local closed
form with (XT

i Xi+αI0)
−1XT

i y. For any α > 0, this raises the smallest eigenvalue in the penalized
subspace and stabilizes the normal equations.

5 EXPERIMENTS

To validate our algorithm’s effectiveness and properties, we conducted experiments addressing three
key questions: (1) Does the core splitting algorithm converge efficiently as predicted? (2) Can the
resulting tree model effectively approximate complex continuous functions, verifying our universal
approximation claim? (3) Does our method perform competitively on real-world regression tasks?

5.1 CONVERGENCE ANALYSIS OF THE SPLITTING ALGORITHM

Objective: This experiment investigates the convergence dynamics of our splitting algorithm, focus-
ing on the critical role of the step size µ. We aim to empirically demonstrate the trade-off between
convergence speed and stability by testing the algorithm on two distinct synthetic datasets: one
challenging and unstable, and another well-behaved yet non-trivial. This dual approach validates
our theoretical claim that while the algorithm is equivalent to a damped Newton method within
fixed partitions, a damped step size (µ < 1) is essential for robustness, whereas a unit step can
achieve rapid convergence in stable scenarios.

Setup: We generate two datasets, each of N = 1000 samples with Gaussian noise (ϵ ∼ N (0, 1)).
For the unstable case, data are generated from the sinc function, y = − sin(5πx)

5πx + 0.025ϵ, on
x ∈ [−1.5, 1.5]. Its multiple local extrema and sharp oscillations create a challenging optimization
landscape. For the stable case, data are generated from a smooth, nonlinear function with a distinct
inflection point, y = 2

1+e−3x − 0.8x+ 0.025ϵ, on x ∈ [−3, 3]. This twisted sigmoid function
is an ideal well-behaved target, as it requires a nonlinear fit but lacks the sharp features that cause
instability. On both datasets, we test four step sizes: µ ∈ {1.0, 0.5, 0.1, 0.05}.
Results and Analysis: The results in Figure 1 (unstable case) and Figure 2 (stable case), show the
role of the step size. As shown in Figure 1, the results on the sinc function highlight the necessity
of damping for stability. The unit Newton step (µ = 1.0) is unstable. Its aggressive updates cause a
partition collapse within the first few iterations, making the algorithm revert to a poor global linear
fit. The large damped step (µ = 0.5), while avoiding outright collapse, becomes trapped in a limit
cycle; the model’s parameters and the corresponding data partition oscillate between a small set of
states without ever converging to a fixed point. Small steps (µ = 0.1, 0.05) prove robust, converging
to a high-quality piecewise linear model that accurately captures the function’s complex structure.
This clearly demonstrates that for challenging problems, effective damping is not merely a heuristic
but a prerequisite for success.

Results on the twisted sigmoid function (see Figure 2 for visualization and detailed analysis),
illustrate the efficiency benefits of the Newton updates. Here, all step sizes converge to the same
solution around the function’s inflection point. Crucially, the unit Newton step (µ = 1.0) exhibits
the fastest convergence, reaching the optimal solution in just a few iterations. As the step size
decreases, the number of iterations required for convergence predictably increases, showcasing the
classic speed-stability trade-off.

Taken together, these experiments demonstrate our algorithm’s behavior. It functions as a damped
Newton method. On complex, unstable problems, a small step size (µ < 1) is essential to ensure
robust convergence by preventing partition collapse. On well-behaved problems, a unit step size
(µ = 1) leverages the full power of the Newton update, achieving extremely rapid convergence. This
confirms the algorithm’s theoretical foundation and provides a clear practical guideline: the step size
µ serves as a crucial hyperparameter to balance convergence speed against stability, depending on
the nature of the problem. Additional ablation studies on the fallback mechanism are reported in
Appendix G.

6

Published as a conference paper at ICLR 2026

0 20 40 60
Iteration

25.0

27.5

30.0

32.5

35.0

37.5
Lo

ss

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

1.0

0.5

0.0

y

Data Initial Split Start Point Step=1.0, single line Step=0.5 Step=0.1 Step=0.05

Figure 1: Node-level convergence analysis on the unstable sinc function. Left: Objective value
per iteration for a single internal node (fixed initialization and data subset). The unit step (µ = 1.0,
blue) and a large step (µ = 0.5, orange) do not decrease the objective monotonically in this example,
and the latter gets trapped in a limit cycle. Smaller damping (µ = 0.1, green; µ = 0.05, red)
yields much more regular local Newton dynamics at this node. Right: Final fitted models for this
controlled experiment. With large steps the node effectively collapses to a poor single linear fit,
whereas sufficiently damped updates recover a meaningful piecewise linear approximation. Note
that this figure illustrates local node-level behaviour; full-tree performance with fallback is analysed
in Appendix G.

0 10 20 30 40
Iteration

40

60

80

100

Lo
ss

3 2 1 0 1 2 3
x

0

1

2

y
Data Initial Split Start Point Step=1.0 Step=0.5 Step=0.1 Step=0.05

Figure 2: Node-level convergence analysis on the well-behaved twisted sigmoid function.
Left: For this node, all step sizes lead to monotone decrease of the objective. The unit Newton
step (µ = 1.0, blue) reaches the local minimum in the fewest iterations. Right: All step sizes arrive
at essentially the same high-quality piecewise linear fit around the function’s inflection point. This
illustrates that, on stable problems, even aggressive Newton steps can behave well at the node level.
Global training behaviour across all nodes and datasets is reported in Tables 5–8.

5.2 FUNCTION APPROXIMATION ON SYNTHETIC DATA

Objective: This experiment validates the piecewise linear approximation of our proposed oblique
regression tree and connect it with the theoretical Theorem 1, demonstrating its superiority in fitting
complex functions.

Setup: We evaluate our method on both 2D and 3D regression tasks. For 2D tasks, we use
two classic test functions: the sinc function y = − sin(5πx)

5πx on x ∈ [−1.5, 1.5] and the
twisted sigmoid function y = 2

1+e−3x − 0.8x on x ∈ [−3, 3]. For 3D tasks, we evaluate our
method’s performance on four oscillatory surface functions with complex characteristics (detailed
equations available in Appendix H), with inputs x1, x2 both ranging from [−3, 3]. All synthetic data
are generated by adding independent and identically distributed zero-mean Gaussian noise to the
true function values. Specifically, the noise standard deviation is 0.025 for 2D tasks and 0.05 for 3D
tasks. A detailed rationale for the selection of these synthetic functions and noise levels is provided
in Appendix H. For each task, we generate a sufficient number of data points (1000 total for 2D
tasks, 10000 total for 3D tasks) and split them into 70% for training and 30% for testing.

7

Published as a conference paper at ICLR 2026

We compare our piecewise linear regression tree with two representative baseline methods, CART
and XGBoost. These baseline models are implemented using the scikit-learn library. Our
proposed piecewise linear regression tree is trained using Algorithm 4. Hyperparameters for all
models are optimized via five-fold cross-validation and grid search on the training set, with final
performance reported on the testing set.. For detailed hyperparameter configurations, please refer to
Appendix I.

Table 1: Performance comparison on 2D and 3D synthetic functions. All values are reported as mean
± standard deviation over 10 repetitions for 2D functions and five repetitions for 3D functions. For
RMSE and MAE, lower is better (↓). For R², higher is better (↑). Best results are bolded. Significant
improvements over the best baseline are marked with † (p < 0.05).

sinc twisted sigmoid
Model RMSE(↓) MAE(↓) R²(↑) Model RMSE(↓) MAE(↓) R²(↑)

CART 0.0325 ± 0.0012 0.0254 ± 0.0009 0.9831 ± 0.0049 CART 0.0312 ± 0.0011 0.0249 ± 0.0009 0.9976 ± 0.0002
XGB 0.0289 ± 0.0010 0.0228 ± 0.0009 0.9868 ± 0.0031 XGB 0.0286 ± 0.0005 0.0226 ± 0.0007 0.9980 ± 0.0001
Ours 0.0280 ± 0.0009 0.0222 ± 0.0008 0.9876 ± 0.0028 Ours 0.0258 ± 0.0004† 0.0205 ± 0.0003† 0.9983 ± 0.0001†

f1(x1, x2) f2(x1, x2)
CART 0.8552 ± 0.0148 0.6580 ± 0.0127 0.9945 ± 0.0001 CART 0.2721 ± 0.0028 0.1972 ± 0.0024 0.9301 ± 0.0011
XGB 0.3018 ± 0.0088 0.2317 ± 0.0069 0.9993 ± 0.0000 XGB 0.0859 ± 0.0015 0.0681 ± 0.0013 0.9930 ± 0.0003
Ours 0.1646 ± 0.0796† 0.1080 ± 0.0362† 0.9998 ± 0.0003† Ours 0.0757 ± 0.0020† 0.0587 ± 0.0016† 0.9946 ± 0.0003†

f3(x1, x2) f4(x1, x2)
CART 0.0752 ± 0.0011 0.0587 ± 0.0007 0.9832 ± 0.0005 CART 0.0789 ± 0.0014 0.0575 ± 0.0005 0.9945 ± 0.0002
XGB 0.0537 ± 0.0003 0.0428 ± 0.0001 0.9914 ± 0.0002 XGB 0.0556 ± 0.0005 0.0438 ± 0.0003 0.9973 ± 0.0001
Ours 0.0528 ± 0.0004† 0.0420 ± 0.0003† 0.9917 ± 0.0002† Ours 0.0555 ± 0.0007 0.0436 ± 0.0004 0.9973 ± 0.0001

2D and 3D Experimental Results The results, summarized in Table 1, demonstrate our method’s
ability to effectively approximate complex functions across both 2D and 3D tasks. For a detailed
visual comparison of 2D approximation performance and visualizations for f1, f2, f3 and f4, please
refer to Appendix H. The superior performance of our method across various synthetic functions
arises from two fundamental design principles. First, the combination of piecewise linear modeling
and Newton iterative optimization allows for precise and efficient local approximation. In contrast
to traditional piecewise constant tree models, we explicitly fit linear or planar functions within each
partition and employ Newton updates to quickly converge to high-quality solutions. Second, flexible
oblique splits significantly enhance the adaptability of feature-space partitioning. By overcoming the
limitations of axis-parallel splits, they yield decision boundaries that better align with the intrinsic
geometry of the data, enabling more efficient and accurate region segmentation.

5.3 PERFORMANCE ON REAL-WORLD REGRESSION DATASETS

Objective: To evaluate the practical performance of our proposed model on standard benchmark
regression datasets and compare it against other well-established methods.

Setup: To assess the practical performance of the proposed method, we evaluate it on a diverse
suite of publicly available regression datasets, including all seven benchmarks from Zharmagam-
betov et al. (2021) and several large-scale industrial datasets such as MSLR and YearPred. These
datasets cover a wide spectrum of feature dimensionalities (Nf) and sample sizes (Ns), from low-
dimensional, small-sample tasks to high-dimensional, large-scale scenarios (see Table 2).

We compare against the following strong baselines: DTSemNet (Panda et al., 2024), DGT
(Karthikeyan et al., 2022), TAO (oblique and axis-aligned) (Carreira-Perpinán & Tavallali, 2018;
Zharmagambetov et al., 2021), CART (Breiman et al., 1984), M5 model trees (Wang & Witten,
1997), the linear trees implemented in the linear-tree library (Cerliani, 2022), and XGBoost
(Chen & Guestrin, 2016) (an ensemble method).

For the seven datasets from Zharmagambetov et al. (2021), we directly cite performance from that
work. For the remaining datasets without published results, we reproduce results. The only excep-
tion is TAO, which is not publicly available; its reported numbers are directly taken from the original
paper. For reproduced experiments, hyperparameters are tuned via five-fold cross-validation on the
training set, with final performance reported on the testing set. Specifically, for datasets with pre-
defined train/test splits, we adhere to these original partitions. For datasets without such predefined
splits, we first randomly divide the entire dataset into a 0.5:0.5 train/test ratio. For detailed hyperpa-
rameter configurations, please refer to Appendix I.

8

Published as a conference paper at ICLR 2026

Table 2: Average RMSE results (lower is better) on regression tasks, ± std over five runs. The first
column lists the dataset name, followed by the number of features Nf and the number of samples
Ns. The first seven datasets are from Zharmagambetov et al. (2021). The reported results for TAO
(including TAO-A: axis-aligned and TAO-O: oblique) and CART are taken from Zharmagambetov
et al. (2021); DGT results from Karthikeyan et al. (2022); DTSemNet results from Panda et al.
(2024); XGBoost results from Zharmagambetov & Carreira-Perpinan (2020). For datasets with
reported results in the original papers, we directly cite their results. For datasets without reported
results, we reproduce the experiments under the same settings. The only exception is TAO, which is
not publicly available. Note that for the Ailerons, D-Elevators, and D-Ailerons datasets, the reported
RMSE values are scaled by ×10−4, ×10−3, and ×10−4 respectively. A dash (–) indicates runtime
exceeding 10 hours. Significant improvements over the best baseline are marked with † (p < 0.05).

Dataset (Nf , Ns) DTSemNet DGT TAO-A TAO-O CART XGB M5 Linear tree HRT (ours)

Abalone (8, 4k) 2.14 ± 0.03 2.15 ± 0.03 2.32 ± 0.58 2.18 ± 0.05 2.34 ± 0.59 2.20 ± 0.00 2.18 ± 0.04 2.22 ± 0.05 2.11 ± 0.05
CPUact (21, 8k) 2.65 ± 0.18 2.91 ± 0.15 3.26 ± 0.51 2.71 ± 0.04 3.28 ± 0.44 2.57 ± 0.00 4.16 ± 2.72 3.05 ± 0.66 2.56 ± 0.05
Ailerons (40, 14k) 1.66 ± 0.01 1.72 ± 0.02 2.55 ± 0.00 1.76 ± 0.02 2.85 ± 0.57 1.72 ± 0.00 1.68 ± 0.00 1.75 ± 0.00 1.64 ± 0.00†
CTSlice (384, 54k) 1.45 ± 0.12 2.30 ± 0.17 2.66± 0.04 1.54 ± 0.05 2.69 ± 0.03 1.18 ± 0.00 3.81 ± 0.28 2.89 ± 0.67 1.41 ± 0.15
YearPred (90, 515k) 8.99 ± 0.01 9.05 ± 0.01 9.76±0.11 9.11 ± 0.05 9.79 ± 0.54 9.01 ± 0.00 9.43 ± 0.03 9.15 ± 0.01 8.97 ± 0.02
Concrete (8, 1k) 7.96 ± 0.33 7.43 ± 0.24 7.20±3.17 7.17 ± 0.43 7.22 ± 3.13 6.75 ± 0.21 6.65 ± 0.12 6.93 ± 0.74 6.92 ± 0.24
Airfoil (5, 2k) 3.83 ± 0.16 3.72 ± 0.10 2.73±0.62 3.13 ± 0.38 2.75 ± 0.62 2.77 ± 0.10 3.21 ± 0.06 2.81 ± 0.12 2.63 ± 0.10

MSLR (136, 965k) 0.766 ± 0.000 0.772 ± 0.000 N/A N/A 0.771 ± 0.000 0.750±0.000 1.40 ± 0.00 - 0.764 ± 0.000
Fried (10, 41k) 1.51 ± 0.00 2.27 ± 0.09 N/A N/A 1.96 ± 0.01 1.09 ± 0.00 1.59 ± 0.02 1.10 ± 0.00 1.09 ± 0.01†
D-Elevators (6, 10k) 1.46 ± 0.00 1.46 ± 0.01 N/A N/A 1.50 ± 0.02 1.46 ± 0.02 1.43 ± 0.02 1.45 ± 0.02 1.43 ± 0.01
D-Ailerons (5, 7k) 1.76 ± 0.00 1.75 ± 0.02 N/A N/A 1.83 ± 0.04 1.72 ± 0.05 1.65 ± 0.03 1.72 ± 0.02 1.68 ± 0.02
Kinematics (8, 8k) 0.168 ± 0.000 0.135 ± 0.003 N/A N/A 0.200 ± 0.003 0.125 ± 0.001 0.175 ± 0.004 0.141 ± 0.003 0.102± 0.003†
C&C (127, 2k) 0.201 ± 0.000 0.227 ± 0.000 N/A N/A 0.160 ± 0.005 0.142 ± 0.004 0.145 ± 0.004 0.195 ± 0.009 0.140 ± 0.004
Blog (280, 60k) 32.30 ± 0.00 28.35 ± 1.57 N/A N/A 26.78 ± 2.39 23.02 ± 0.00 22.81 ± 0.11 - 25.41 ± 1.83

Results and Analysis: As shown in Table 2, our method achieves the best or highly competitive
RMSE across a broad set of datasets. Among all single-tree models, our method demonstrates su-
perior performance on the vast majority of datasets. In most datasets, the proposed approach yields
notable reductions in RMSE. Even for large-scale datasets like MSLR and YearPred, our perfor-
mance remains on par with or occasionally superior to the best existing results (including ensemble
methods), demonstrating the scalability of our approach. For hyperparameter configurations, please
refer to Appendix I.

In addition to RMSE, Table 3 assesses the structural complexity of the learned models in terms of
average depth (∆) and average number of leaves (L) over five runs. Our method typically pro-
duces significantly shallower trees with fewer leaves compared to other single-tree baselines. For
instance, on Concrete, our model achieves competitive RMSE with a depth of only 3 and 5.8 leaves,
demonstrating superior performance compared to CART, which requires a depth of 11.2 and 113
leaves to attain higher error. This indicates that the proposed method attains a favorable trade-off
between predictive performance and transparency. Regarding training time, as shown in Table 4,
our method also shows efficient training performance on multiple datasets. While all experiments
in this section focus on regression, a preliminary extension of HRT to binary classification is re-
ported in Appendix K, where the same framework achieves competitive AUC and F1 scores with
substantially shallower trees.

Table 3: Average depths (∆) and average number of leaves (L) over five repetitions for regression
datasets. Only single-tree models are included in this comparison; XGBoost is excluded, as its depth
and leaf statistics are not comparable to those of single decision trees. A dash (–) indicates that the
corresponding result was not reported in the original source. Datasets and results for TAO (including
TAO-A: axis-aligned and TAO-O: oblique) and CART are from Zharmagambetov et al. (2021), DGT
results are from Karthikeyan et al. (2022), and DTSemNet results are from Panda et al. (2024).

Dataset (Nf , Ns) DTSemNet DGT TAO-A TAO-O CART Ours

∆ L ∆ L ∆ L ∆ L ∆ L ∆ L

Abalone (8, 4k) 5.0 – 6.0 – 5.0 12.8 6.0 58.6 5.0 12.8 2.0 4.0
CPUact (21, 8k) 5.0 – 6.0 – 9.0 57.2 6.0 52.7 9.0 57.2 2.0 4.0
Ailerons (40, 14k) 5.0 – 6.0 – 7.0 15.0 6.0 60.2 7.0 15.0 2.0 4.0
CTSlice (384, 54k) 5.0 – 10.0 – 36.0 700.0 7.0 74.8 36.0 700.0 7.0 93.2
YearPred (90, 515k) 6.0 – 8.0 – 12.0 135.0 8.0 157.9 12.0 135.0 4.0 16.0
Concrete (8, 1k) 5.0 – 6.0 – 11.2 113.0 9.0 192.0 11.2 113.0 3.0 5.8
Airfoil (5, 2k) 5.0 – 6.0 – 15.0 479.8 8.0 147.1 15.0 479.8 5.0 25.0

9

Published as a conference paper at ICLR 2026

Table 4: Training time (in seconds, lower is better) on three regression datasets. The first column
lists the dataset name, followed by the number of features Nf and the number of samples Ns. The
numbers in parentheses represent the average number of iterations for HRT (ours).

Dataset (Nf , Ns) DTSemNet DGT CART XGB M5 Linear tree HRT (ours)

D-Ailerons (5, 7k) 9.557 60.850 0.008 2.757 0.344 3.601 0.183 (6.7)
Fried (10, 41k) 69.979 395.243 0.171 9.722 8.322 25.743 2.807 (45.7)
Kinematics (8, 8k) 16.950 93.690 0.028 14.064 1.447 7.960 0.790 (15.8)
C&C (127, 2k) 0.908 51.548 0.057 53.801 0.177 307.832 0.178 (1.4)

6 CONCLUSION

We presented the Hinge Regression Tree (HRT), a new oblique regression tree method that formu-
lates each split as a nonlinear least-squares fit over two linear models connected by a hinge. This
yields a hierarchy of max/min envelope splits that provides ReLU-like piecewise linear expressive-
ness while preserving the interpretability of shallow decision trees.

We showed that the alternating fitting step at each node corresponds to a damped Newton/Gauss–
Newton procedure over fixed partitions. With a backtracking line search, we proved monotonic
decrease of the node objective and convergence to the OLS solution once the partition stabilizes. In
practice, both fixed and adaptive damping schemes converge quickly and stably, and can incorporate
ridge regularization for robustness. From a functional viewpoint, we also established a universal
approximation property for the resulting piecewise-linear model class, with an explicit O(δ2) rate
that links approximation error to partition granularity.

Experiments on synthetic and real datasets demonstrate that HRT matches or exceeds strong single-
tree baselines while producing significantly shallower trees with fewer leaves, achieving a favorable
balance between accuracy, compactness, and interpretability.

Future directions include extending the method to classification and structured outputs, develop-
ing more adaptive step-size and regularization strategies for large-scale or ill-conditioned settings,
and integrating HRT-style node optimization into ensemble methods such as boosting and random
forests.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of this work. The detailed mathematical
derivations for our novel node-splitting algorithm’s optimization strategy and its equivalence to a
damped Newton method are thoroughly presented in Appendix A. Complete pseudocode for both
the optimal node-splitting mechanism (Algorithm 2) and the overall tree-building procedure (Algo-
rithm 4) is provided in Appendix D. Additionally, Appendix C outlines the optional ridge regression
regularization and the fallback strategy for non-convergent nodes. The theoretical analysis, includ-
ing convergence properties (further supported by empirical analysis in Section 5.1) and the proofs
for the universal approximation property, are detailed in Appendix A and Appendix F respectively.
For the experimental setup, comprehensive descriptions of synthetic data generation and definitions
(Appendix H), real-world datasets (Table 13), and hyperparameter configurations for both baseline
methods and our approach (Tables 9, 10, 11, and 12) are fully documented in Appendix I.

ACKNOWLEDGMENTS

This work was supported in part by the Science and Technology Innovation Committee of Shen-
zhen Municipality under Grant GXWD20231129101652001, in part by the Shenzhen Science and
Technology Program under Grant SYSPG20241211173609005, and in part by Guangdong Provin-
cial Key Laboratory of Intelligent Morphing Mechanisms and Adaptive Robotics under Grant
2023B1212010005.

10

Published as a conference paper at ICLR 2026

REFERENCES

Leo Breiman. Hinging hyperplanes for regression, classification, and function approximation. IEEE
Transactions on Information Theory, 39(3):999–1013, 1993.

Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification and
Regression Trees. Wadsworth International Group, 1984.

Miguel A Carreira-Perpinán and Pooya Tavallali. Alternating optimization of decision trees, with
application to learning sparse oblique trees. In Advances in Neural Information Processing Sys-
tems, 2018.

Matias D Cattaneo, Rajita Chandak, and Jason M Klusowski. Convergence rates of oblique regres-
sion trees for flexible function libraries. The Annals of Statistics, 52(2):466–490, 2024.

Marco Cerliani. Linear-tree: A python library for model trees with linear models at the leaves.
https://github.com/cerlymarco/linear-tree, 2022.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, pp.
785–794, 2016.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals and Systems, 2(4):303–314, 1989.

Tolga Ergen and Mert Pilanci. Convex geometry and duality of over-parameterized neural networks.
Journal of Machine Learning Research, 22(212):1–63, 2021.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pp. 315–323. JMLR Workshop and Conference Proceedings, 2011.

Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning decision lists
and trees. Information and Computation, 126(2):114–122, 1996.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, et al. The Elements of Statistical Learning.
Springer, 2009.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4
(2):251–257, 1991.

Xia Hu. Understanding deep neural networks from the perspective of piecewise linear property.
PhD thesis, Simon Fraser University, 2021.

Ajaykrishna Karthikeyan, Naman Jain, Nagarajan Natarajan, and Prateek Jain. Learning accurate
decision trees with bandit feedback via quantized gradient descent. Transactions on Machine
Learning Research, 2022.

Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is NP-complete.
Information Processing Letters, 5(1):15–17, 1976.

Wei-Yin Loh. Improving the precision of classification trees. The Annals of Applied Statistics, pp.
1710–1737, 2009.

Wei-Yin Loh. Fifty years of classification and regression trees. International Statistical Review, 82
(3):329–348, 2014.

Sreerama K Murthy, Simon Kasif, and Steven Salzberg. A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research, 2:1–32, 1994.

11

https://github.com/cerlymarco/linear-tree

Published as a conference paper at ICLR 2026

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning (ICML), pp. 807–814,
2010.

Subrat Prasad Panda, Blaise Genest, Arvind Easwaran, and Ponnuthurai Nagaratnam Suganthan.
Vanilla gradient descent for oblique decision trees. arXiv preprint arXiv:2408.09135, 2024.

Yong Wang and Ian H Witten. Inducing model trees for continuous classes. In Proceedings of the
ninth European conference on machine learning, volume 9, pp. 128–137, 1997.

Arman Zharmagambetov and Miguel Carreira-Perpinan. Smaller, more accurate regression forests
using tree alternating optimization. In International Conference on Machine Learning, pp. 11398–
11408. PMLR, 2020.

Arman Zharmagambetov, Suryabhan Singh Hada, Magzhan Gabidolla, and Miguel A Carreira-
Perpinán. Non-greedy algorithms for decision tree optimization: An experimental comparison.
In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

12

Published as a conference paper at ICLR 2026

APPENDIX

A Detailed Derivations for Equivalence of Iterative Optimization to Newton Method 14

B Node-Level Convergence of the Line-Search Newton Update 15

C Details on Regularization and Fallback Strategies 18

D Parameter Initialization Strategy and Detailed Algorithms 19

D.1 Parameter Initialization Strategy . 19

D.2 Detailed Algorithms . 19

E Time Complexity Analysis 23

E.1 Algorithm 1: Find Optimal Split . 23

E.2 Algorithm 2: Build Oblique Regression Tree . 23

F Proof of Universal Approximation and Approximation Rate 23

G Ablation Study on Step Size: Stability, Efficiency, and Fallback 26

H Synthetic Data Description 28

I Hyperparameter 31

J Dataset Details 33

K Extending HRT to Binary Classification 33

L The Use of Large Language Models (LLMs) 34

13

Published as a conference paper at ICLR 2026

A DETAILED DERIVATIONS FOR EQUIVALENCE OF ITERATIVE
OPTIMIZATION TO NEWTON METHOD

This appendix provides a detailed mathematical derivation demonstrating the equivalence of our
iterative optimization procedure to a Newton method.

Recall from Section 3 that at any internal node of the tree Dt, for all xj ∈ Dt, we aim to minimize
the nonlinear least squares objective function:

V (θ) =
1

2

∑
xj∈Dt

(yj − h(xj ,θ))
2

where θ = [θT
t1 ,θ

T
t2]

T ∈ R2(d+1) is the total parameter vector. The function h(xj ,θ) is defined as
h(xj ,θ) = max

(
x̃T
j θt1 , x̃

T
j θt2

)
or h(xj ,θ) = min

(
x̃T
j θt1 , x̃

T
j θt2

)
. For clarity, we will provide

the detailed derivation for the max form; the derivation for the min form follows analogously with
adjusted partition definitions. As discussed in Section 3, directly minimizing V (θ) is challenging
due to the non-differentiability of the hinge functions at the switching points.

Our approach can be interpreted as an iterative procedure equivalent to the Newton method within
fixed partitions. We first define dynamic partitions of the data based on the current parameters θ, as
introduced in Section 3:

S1(θ) = {xj ∈ Dt | x̃T
j θt1 ≥ x̃T

j θt2}
S2(θ) = S \ S1(θ)

For a fixed partition (S1,S2), the objective function is differentiable with respect to θt1 and θt2
within their respective domains. Under this condition, we can compute the gradient ∇V and the
Hessian matrix∇2V .

Gradient Calculation. For almost all θ (where no data point lies exactly on the boundary
xT
j θt1 = xT

j θt2), the model function h(xj ,θ) is differentiable at each data point. Specifically,
for h(xj ,θ) = max

(
xT
j θt1 ,x

T
j θt2

)
∇h(xj ,θ) =


(
x̃j

0

)
if x̃T

j θt1 > x̃T
j θt2(

0

x̃j

)
if x̃T

j θt1 < x̃T
j θt2

Thus, the gradient of the objective function is:

∇V (θ) =

N∑
j=1

(yj − h(xj ,θ))(−∇h(xj ,θ)) = −
N∑
j=1

(yj − h(xj ,θ))∇h(xj ,θ)

Substituting∇h(xj ,θ) and summing over the respective partitions:

∇V (θ) = −

(∑
(xj ,yj)∈S1(θ)

x̃j(yj − x̃T
j θt1)∑

(xj ,yj)∈S2(θ)
x̃j(yj − x̃T

j θt2)

)
Hessian Matrix Calculation. For a generic nonlinear least squares problem, the Hessian matrix
is given by:

∇2V (θ) =
∑
j

[(∇h(xj ,θ))(∇h(xj ,θ))
T − (yj − h(xj ,θ))∇2h(xj ,θ)]

However, in our specific case, because h(xj ,θ) is locally linear within each fixed partition (i.e.,
h(xj ,θ) is either x̃T

j θt1 or x̃T
j θt2), its second derivative∇2h(xj ,θ) is zero. This causes the second

term of the Hessian to vanish, meaning the expression
∑

j(∇hj)(∇hj)T , often used as the Gauss-
Newton approximation, becomes the exact Hessian.

Therefore, the exact Hessian matrix is:

∇2V (θ) =

(∑
(xj ,yj)∈S1(θ)

x̃jx̃
T
j 0

0
∑

(xj ,yj)∈S2(θ)
x̃jx̃

T
j

)
where 0 is a (d+ 1)× (d+ 1) zero matrix.

14

Published as a conference paper at ICLR 2026

Newton Update and OLS Equivalence. The Newton update at iteration k is generally given by
θ(k+1) = θ(k) − µ[∇2V (θ(k))]−1∇V (θ(k)). Let θ(k) = [θ

(k)T
t1 ,θ

(k)T
t2]T . We examine the updates

for θt1 and θt2 separately.

For θt1 , the update is:

θ
(k+1)
t1 = θ

(k)
t1 − µ

 ∑
(xj ,yj)∈S1(θ(k))

x̃jx̃
T
j

−1− ∑
(xj ,yj)∈S1(θ(k))

x̃j(yj − x̃T
j θ

(k)
t1)



= θ
(k)
t1 + µ

 ∑
(xj ,yj)∈S(k)

1

x̃jx̃
T
j


−1 ∑

(xj ,yj)∈S(k)
1

x̃jyj −
∑

(xj ,yj)∈S(k)
1

x̃jx̃
T
j θ

(k)
t1



= θ
(k)
t1 + µ


 ∑

(xj ,yj)∈S(k)
1

x̃jx̃
T
j


−1 ∑

(xj ,yj)∈S(k)
1

x̃jyj

− θ
(k)
t1


Let θ(k)

OLS,1 =
(∑

(xj ,yj)∈S(k)
1

x̃jx̃
T
j

)−1 (∑
(xj ,yj)∈S(k)

1
x̃jyj

)
be the OLS solution for the data

subset S(k)1 . Then the Newton update can be written as:

θ
(k+1)
t1 = θ

(k)
t1 + µ(θ

(k)
OLS,1 − θ

(k)
t1)

A similar derivation holds for θ2:

θ
(k+1)
t2 = θ

(k)
t2 + µ(θ

(k)
OLS,2 − θ

(k)
t2)

where θ
(k)
OLS,2 is the OLS solution for the data subset S(k)2 .

In our algorithm, the step size µ is a tunable parameter. When a unit step size is employed (i.e.,
µ = 1), the update formulas simplify to:

θ
(k+1)
t1 = θ

(k)
OLS,1

θ
(k+1)
t2 = θ

(k)
OLS,2

This demonstrates that when a unit step size (µ = 1) is employed, the alternating procedure of model
fitting (performing OLS on the current partitions) and partitioning (reassigning data points based on
the new model parameters), as presented in Algorithm 2, is precisely equivalent to executing a unit-
step Newton method to minimize the original nonlinear objective function V (θ). This choice of
µ = 1 is common for this type of problem due to its direct connection to the optimal OLS solutions
within fixed partitions.

B NODE-LEVEL CONVERGENCE OF THE LINE-SEARCH NEWTON UPDATE

This appendix provides a node-level convergence guarantee for the line-search Newton update de-
scribed in Section 3.2.2. The analysis is local to a single internal node and does not rely on global
tree construction. Throughout, we adopt the notation introduced in Section 3.2.1.

Setup. At an internal node Dt, the local objective is

V (θ) =
1

2

∑
xj∈Dt

(
yj − h(xj ,θ)

)2
, θ = [θT

t1 ,θ
T
t2]

T ∈ R2(d+1), (4)

where
h(xj ,θ) = max{x̃T

j θt1 , x̃
T
j θt2}, x̃j = [xT

j , 1]
T .

15

Published as a conference paper at ICLR 2026

Given θ, define the partition

S1(θ) = {xj ∈ Dt : x̃
T
j θt1 ≥ x̃T

j θt2}, (5)

S2(θ) = Dt \ S1(θ). (6)

On a fixed partition (S1,S2), the hinge becomes inactive and

V (θ) = 1
2∥y1 −X1θt1∥22 + 1

2∥y2 −X2θt2∥22, (7)

with gradient and Hessian

∇V (θ) =

[
XT

1 (X1θt1 − y1)
XT

2 (X2θt2 − y2)

]
, H(θ) =

[
XT

1 X1 0

0 XT
2 X2

]
, (8)

where
Xi =

[
x̃T
j

]
xj∈Si

∈ R|Si|×(d+1), yi = [yj]xj∈Si
∈ R|Si|, i = 1, 2,

that is,X1 (resp.X2) is the matrix whose rows are the augmented feature vectors x̃T
j for all xj ∈ S1

(resp. xj ∈ S2), and y1 (resp. y2) is the vector of the corresponding responses. Here |Si| denotes
the number of elements in Si.
The OLS solution for this partition is

θOLS =

[
(XT

1 X1)
−1XT

1 y1

(XT
2 X2)

−1XT
2 y2

]
.

As shown in Section 3.2.2,

p(θ) = θOLS − θ = −H(θ)−1∇V (θ) (9)

is the exact Newton/Gauss–Newton direction on this partition. The following assumption is requisite
for the node-level convergence.

Assumption 1 (Regularity). For every iterate θ(k):

(i) (Nondegenerate hinge) For all j, x̃T
j θ

(k)
t1 ̸= x̃T

j θ
(k)
t2 . Thus no sample lies exactly on the

separating hyperplane.

(ii) (Uniform strong convexity on each fixed partition) Each block matrix XT
i Xi encountered

along the iterates satisfies

mI ⪯ XT
i Xi ⪯ LI, i = 1, 2,

for global constants 0 < m ≤ L <∞.

This condition is standard and matches the leaf-level eigenvalue assumption used in our approxima-
tion theory.

The following theorem demonstrates that the line-search Newton update (3) can reach a local opti-
mum of (2).

Theorem 2 (Node-level convergence of the line-search Newton update). Under the node-level setup
and Assumption 1, consider the Newton iteration at node Dt

θ(k+1) = θ(k) + µ(k)p(k),

where p(k) = p(θ(k)) is the Newton/Gauss–Newton direction given by Equation(9), and µ(k) is
chosen by a backtracking line search with parameter β ∈ (0, 1) and trial steps {µ0β

t}t≥0. Then the
following hold:

(a) (Per-iterate descent and line-search termination) For any iterate θ(k) with θ(k) ̸= θOLS,
the Newton direction p(k) is a strict descent direction and the backtracking line search
produces a step size µ(k) > 0 such that

V (θ(k+1)) = V (θ(k) + µ(k)p(k)) < V (θ(k)). (10)

16

Published as a conference paper at ICLR 2026

(b) (Monotone decrease and convergence of the objective) The sequence {V (θ(k))} is strictly
decreasing whenever p(k) ̸= 0 and converges to a finite limit V∞.

(c) (Convergence under a fixed partition) If there exists K such that the partition
(S1(θ(k)),S2(θ(k))) is constant for all k ≥ K, then {θ(k)} converges to the unique OLS
minimizer for that fixed partition.

Proof. We proceed in several steps.

Step 1: Newton direction is a strict descent direction. For any iterate θ (we temporarily drop
the superscript k), the Newton direction satisfies

p(θ) = −H(θ)−1∇V (θ),

so
∇V (θ)T p(θ) = −∇V (θ)TH(θ)−1∇V (θ).

Assumption 1(ii) implies H(θ) ⪯ LI and H(θ) ≻ 0, and hence H(θ)−1 ⪰ 1
LI . Therefore,

∇V (θ)TH(θ)−1∇V (θ) ≥ 1

L
∥∇V (θ)∥22,

which yields

∇V (θ)T p(θ) ≤ − 1

L
∥∇V (θ)∥22.

If θ ̸= θOLS, then ∇V (θ) ̸= 0, so the right-hand side is strictly negative. Thus p(θ) is a strict
descent direction.

Step 2: Local decrease along p(θ). Fix θ and its Newton direction p = p(θ). Write

θ =

[
θt1
θt2

]
, p(θ) =

[
p1
p2

]
,

conformably with the block structure in Equation(8).

Consider the univariate function
ψ(µ) := V (θ + µp), µ ≥ 0.

We show that there exists µ̃ > 0 such that V (θ + µp) < V (θ) for all 0 < µ ≤ µ̃.

For each j, define
aj(θ) = x̃T

j θt1 , bj(θ) = x̃T
j θt2 .

Assumption 1(i) states that aj(θ) ̸= bj(θ) for all j, i.e., the active branch in the max is unique at θ.
Without loss of generality, suppose aj(θ) > bj(θ); the other case is analogous.

Along the ray θ + µp we have
aj(θ + µp)− bj(θ + µp) =

(
aj(θ)− bj(θ)

)
+ µ

(
x̃T
j p1 − x̃T

j p2
)
,

which is an affine function of µ and is nonzero at µ = 0. Therefore, for each j there exists µ̄j > 0
such that the sign of aj(θ + µp) − bj(θ + µp) does not change for all 0 ≤ µ ≤ µ̄j . In particular,
the active branch in h(xj , ·) remains the same for all small µ.

Let µ̄ := minj µ̄j > 0. Then for all 0 ≤ µ ≤ µ̄ the index of the active branch in h(xj , ·) is fixed for
every j, so V (θ + µp) coincides with the smooth quadratic representation (7) along this segment.
Hence ψ(µ) is differentiable on [0, µ̄] with

ψ′(0) = ∇V (θ)T p.

By Step 1, ψ′(0) = ∇V (θ)T p < 0. By continuity of ψ′ at 0, there exists 0 < µ̃ ≤ µ̄ such that
ψ(µ) < ψ(0) = V (θ) for all 0 < µ ≤ µ̃,

i.e.,
V (θ + µp) < V (θ) for all 0 < µ ≤ µ̃.

17

Published as a conference paper at ICLR 2026

Step 3: Backtracking line search terminates with a decreasing step. Let the backtracking line
search start from some initial step µ0 > 0 and generate the sequence µt = µ0β

t for t = 0, 1, 2, . . .
with β ∈ (0, 1). Since µt → 0, there exists t⋆ such that µt⋆ ≤ µ̃. For this t⋆ we have 0 < µt⋆ ≤ µ̃
and hence, by Step 2,

V (θ + µt⋆p) < V (θ).

The backtracking procedure selects the first such t⋆, so it terminates with a step size µ(k) = µt⋆ > 0
satisfying (10). This proves part (a).

Step 4: Monotone decrease and convergence of V . Applying part (a) at each iteration k yields

V (θ(k+1)) = V (θ(k) + µ(k)p(k)) < V (θ(k))

whenever p(k) ̸= 0. Since V (θ) ≥ 0 for all θ, the sequence {V (θ(k))} is strictly decreasing and
bounded below, and thus converges to some finite limit V∞ ≥ 0. This establishes part (b).

Step 5: Convergence under a fixed partition. Finally, suppose there exists K such that the
partition (S1(θ(k)),S2(θ(k))) is constant for all k ≥ K. Then for all k ≥ K, the objective V
coincides with the smooth, strongly convex quadratic version of (7) with Hessian

H(θ) =

[
XT

1 X1 0

0 XT
2 X2

]
, mI ⪯ H(θ) ⪯ LI,

by Assumption 1(ii). In this regime, the Newton direction simplifies to

p(θ) = θOLS − θ,

and the update becomes

θ(k+1) − θOLS =
(
1− µ(k)

)(
θ(k) − θOLS

)
.

Under the standard backtracking line-search rule on a strongly convex quadratic, the accepted step
sizes µ(k) are uniformly bounded away from zero and from above, so the factor |1− µ(k)| is strictly
less than 1 and uniformly bounded away from 1. Hence θ(k) → θOLS as k → ∞. Equivalently,
the iterates converge to the unique OLS minimizer for the fixed partition, which proves part (c) and
completes the proof.

C DETAILS ON REGULARIZATION AND FALLBACK STRATEGIES

Incorporating Ridge Regression (L2 Regularization). To enhance model robustness and effec-
tively handle situations like multicollinearity or high-dimensional data, we introduce optional ridge
regression (L2 regularization) in all OLS fitting steps within this algorithm. ridge regression modi-
fies the OLS objective by adding a penalty on the L2-norm of the model coefficients, i.e., minimiz-
ing:

min
θ

1

2

Nk∑
j=1

(
yj − x̃T

j θ
)2

+
α

2

d−1∑
i=0

θ2i

where α ≥ 0 is the regularization strength parameter. Notably, the bias term θd (corresponding to
the constant 1 in the augmented feature vector) is typically not regularized. Given a design matrix
X (already augmented with a column of ones for the bias) and a target vector y, the ridge regression
solution with regularization parameter α ≥ 0 is given by:

θ = (XTX + αI0)
−1XTy

where I0 is an identity matrix with its last diagonal element (corresponding to the bias term) set
to zero, ensuring the bias is not regularized. This regularization mechanism effectively stabilizes
parameter estimation, especially when the training data matrix XTX might be near-singular, which
is particularly important in high-dimensional feature spaces or with limited sample sizes. The regu-
larization strength α is tuned as a hyperparameter during model training.

18

Published as a conference paper at ICLR 2026

Fallback Strategy for Non-convergent Nodes. If the iterative optimization does not converge
within Tmax iterations, we fall back to a simple median split: a feature dimension k is chosen at
random, and the data are split at the median mk of this dimension. This guarantees progress in tree
growth and often decomposes a hard global problem into smaller subproblems that converge quickly
under our Newton updates.

D PARAMETER INITIALIZATION STRATEGY AND DETAILED ALGORITHMS

This section provides the detailed pseudocode for the optimal node-splitting and tree-building pro-
cedures discussed in Section 3.

D.1 PARAMETER INITIALIZATION STRATEGY

The first step of Algorithms 1 and 2 requires the initialization of the parameter vectors θ1 and θ2.
A reasonable and stable initialization is important for the convergence of the subsequent alternating
optimization. We employ a simple data-driven heuristic combined with a small fallback procedure.

The initialization procedure is as follows:

1. Heuristic initial partition. At the current node, we identify the feature dimension with the
largest range in the local data. We then use the median value of this feature as a pivot to
split the samples into two subsets. This aims to create an initial partition along the direction
of greatest variation, which typically yields a more balanced and meaningful starting point
than a fully random split.

2. Partition-based initial (ridge) regression. Given these two subsets, we independently
solve a (ridge-regularized) least-squares problem on each subset to obtain the initial pa-
rameter vectors θ1 and θ2. In our implementation we require that each subset contains at
least two samples; otherwise we treat the split as too small for a reliable local regression.

3. Fallback for degenerate or very small partitions. In edge cases, such as when the node
contains very few samples, the features are nearly constant, or one of the subsets after the
median split is too small, we fall back to a simple global initialization. Specifically, we
first compute a global ridge regression solution θglobal using all samples at the node (or
a constant predictor based on the mean response if the design matrix is degenerate). We
then construct two initial parameter vectors θ1 and θ2 by adding small independent random
perturbations to θglobal, which ensures a non-trivial starting point even under poor initial
splits.

4. Ensuring parameter diversity. Finally, we check whether the resulting θ1 and θ2 are
nearly identical. If so, we add another small perturbation (and, in a rare corner case, a
tiny offset to the first coefficient) to break the symmetry, so that the subsequent alternating
optimization can proceed effectively.

This initialization strategy provides a data-dependent yet lightweight starting point for the node-
wise optimization, and makes the overall splitting procedure more robust to degenerate partitions
and small-sample regimes.

D.2 DETAILED ALGORITHMS

19

Published as a conference paper at ICLR 2026

Algorithm 1 Find Optimal Split (Min Variant)

Require: Dataset S = {(xj , yj)}Nj=1, Max iterations Tmax, Step size µ, Tolerance ϵ
Ensure: Optimal parameters θ∗

1 ,θ
∗
2

1: Initialize θ
(0)
1 ,θ

(0)
2 and partitions S1,S2 using the strategy in Sec. D.1.

2: for t = 1, . . . , Tmax do
3: // Model Fitting Step
4: Compute θ

(k)
OLS,1 and θ

(k)
OLS,2 (with optional ridge regularization)

5: θ
(k+1)
1 ← θ

(k)
1 + µ

(
θ
(k)
OLS,1 − θ

(k)
1

)
▷ Newton update with step size µ

6: θ
(k+1)
2 ← θ

(k)
2 + µ

(
θ
(k)
OLS,2 − θ

(k)
2

)
▷ Newton update with step size µ

7: // Partitioning Step (min: assign to the smaller branch)
8: S1,new ← ∅, S2,new ← ∅
9: for all (xj , yj) ∈ S do

10: if x̃T
j θ1 ≤ x̃T

j θ2 then
11: S1,new ← S1,new ∪ {(xj , yj)}
12: else
13: S2,new ← S2,new ∪ {(xj , yj)}
14: end if
15: end for
16: if ∥θ(k+1)

1 − θ
(k)
1 ∥+ ∥θ

(k+1)
2 − θ

(k)
2 ∥ < ϵ then ▷ Check parameter changes

17: break ▷ Convergence
18: end if
19: S1 ← S1,new, S2 ← S2,new
20: end for
21: return θ1,θ2

Algorithm 2 Find Optimal Split (Max Variant)

Require: Dataset S = {(xj , yj)}Nj=1, Max iterations Tmax, Step size µ
Ensure: Optimal parameters θ∗

1 ,θ
∗
2

1: Initialize θ
(0)
1 ,θ

(0)
2 and partitions S1,S2 using the strategy in Sec. D.1.

2: for t = 1, . . . , Tmax do
3: // Model Fitting Step
4: Compute θ

(k)
OLS,1 and θ

(k)
OLS,2 (with optional ridge regularization)

5: θ
(k+1)
1 ← θ

(k)
1 + µ(θ

(k)
OLS,1 − θ

(k)
1) ▷ Newton update with step size µ

6: θ
(k+1)
2 ← θ

(k)
2 + µ(θ

(k)
OLS,2 − θ

(k)
2) ▷ Newton update with step size µ

7: // Partitioning Step (max: assign to the larger branch)
8: S1,new ← ∅, S2,new ← ∅
9: for all (xj , yj) ∈ S do

10: if x̃T
j θ1 ≥ x̃T

j θ2 then
11: S1,new ← S1,new ∪ {(xj , yj)}
12: else
13: S2,new ← S2,new ∪ {(xj , yj)}
14: end if
15: end for
16: if ||θ(k+1)

1 − θ
(k)
1 ||+ ||θ

(k+1)
2 − θ

(k)
2 || < ϵ then ▷ Check parameter changes

17: break ▷ Convergence
18: end if
19: S1 ← S1,new, S2 ← S2,new
20: end for
21: return θ1,θ2

20

Published as a conference paper at ICLR 2026

Algorithm 3 Find Optimal Split (Min-or-Max by RMSE)

Require: Dataset S = {(xj , yj)}Nj=1, Tmax, Step size µ, Tolerance ϵ
Ensure: Best parameters (θ∗

1 ,θ
∗
2), model type ∈ {min,max}

1: (θmax
1 ,θmax

2)← run Algorithm 2 (max variant) on S with (Tmax, µ, ϵ)
2: (θmin

1 ,θmin
2)← run Algorithm 1 (min variant) on S with (Tmax, µ, ϵ)

3: Compute RMSEmax ←
√

1
N

∑N
j=1

(
yj −max(x̃T

j θ
max
1 , x̃T

j θ
max
2)

)2
4: Compute RMSEmin ←

√
1
N

∑N
j=1

(
yj −min(x̃T

j θ
min
1 , x̃T

j θ
min
2)

)2
5: if RMSEmin < RMSEmax then
6: return θmin

1 ,θmin
2

7: else
8: return θmax

1 ,θmax
2

9: end if

21

Published as a conference paper at ICLR 2026

Algorithm 4 Build Oblique Regression Tree

Require: Dataset S, current depth d, hyperparameters (max depth Dmax, min samples Nmin,
RMSE threshold τRMSE , step size µ)

Ensure: Root node of a (sub)tree
1: // Check stopping criteria for creating a leaf
2: Fit a single linear model for the current node: θleaf ← argminθ

∑
(x,y)∈S(y− x̃Tθ)2 ▷ Solve

via OLS (with optional ridge regularization)
3: Calculate RMSE: RMSE =

√
1
|S|
∑

(x,y)∈S(y − x̃Tθleaf)2

4: if d ≥ Dmax or |S| < Nmin or RMSE < τRMSE then ▷ Check depth, samples, or RMSE
5: Create a leaf node.
6: Store θleaf in the node and return the node.
7: end if
8:
9: // Proceed with splitting the node

10: θ∗
1 ,θ

∗
2 ← FindOptimalSplit(S, µ)

11: SL ← {(x, y) ∈ S | x̃Tθ∗
1 ≥ x̃Tθ∗

2}
12: SR ← S \ SL
13:
14: if |SL| < Nmin or |SR| < Nmin then ▷ Ineffective split, create leaf
15: Create a leaf node.
16: Store the pre-computed θleaf from line 3 and return the node.
17: end if
18:
19: Create an internal node, store split rule (θ∗

1 ,θ
∗
2)

20: N.left child← BuildTree(SL, d+ 1, Dmax, Nmin, τRMSE , µ)
21: N.right child← BuildTree(SR, d+ 1, Dmax, Nmin, τRMSE , µ)
22: return the internal node

22

Published as a conference paper at ICLR 2026

E TIME COMPLEXITY ANALYSIS

E.1 ALGORITHM 1: FIND OPTIMAL SPLIT

• Overview: Algorithm 1 is an iterative algorithm designed to find the optimal splitting
parameters θ1 and θ2. It alternates between model fitting and partition updating, running
for at most Tmax iterations.

• Per Iteration:
– Model Fitting: Solves OLS for two partitions S1 and S2. These OLS solutions can

incorporate ridge regression. The complexity of each OLS problem is O(Nk · d2),
where Nk is the number of samples in the partition and d is the feature dimension.
Since N = N1 +N2, the total complexity is O(N · d2).

– Partition Updating: For each of theN samples, computes two linear functions x̃T
j θ1

and x̃T
j θ2 (each O(d)) and reassigns partitions, yielding a complexity of O(N · d).

– Total Per Iteration: O(N · d2) +O(N · d) = O(N · d2).
• Total Iterations: At most Tmax, a user-defined maximum.
• Total Time Complexity: O(Tmax ·N · d2).
• Note: In practice, convergence may occur before Tmax, but the worst-case complexity as-

sumes the full number of iterations.

E.2 ALGORITHM 2: BUILD OBLIQUE REGRESSION TREE

• Overview: Algorithm 2 recursively constructs an oblique regression tree with a maximum
depthDmax and a minimum ofNmin samples per leaf. Each internal node invokes Algorithm
1, while leaf nodes fit a final linear model.

• Internal Nodes:
– Splitting: Each internal node calls Algorithm 1, with complexity O(Tmax ·Nnode ·d2),

where Nnode is the number of samples at the node.
– Worst-Case Assumption: The tree is balanced, with each split dividing the data ap-

proximately in half.
– Level Analysis: At level k, there are 2k nodes, each with approximately N/2k sam-

ples. The total complexity per level is:

2k ·O(Tmax · (N/2k) · d2) = O(Tmax ·N · d2).

– Total Levels: With Dmax levels, the complexity is O(Dmax · Tmax ·N · d2).
• Leaf Nodes:

– Fitting: Each leaf fits an OLS model, which can also incorporate ridge regression,
with complexity O(Nleaf · d2), where Nleaf is the number of samples in the leaf.

– Total Leaves: Up to O(2Dmax) leaves, but the total sample count across all leaves is
N . Thus, the total complexity is O(N · d2).

• Total Time Complexity: O(Dmax · Tmax ·N · d2) +O(N · d2) = O(Dmax · Tmax ·N · d2).
• Note: In practical settings, Tmax and Dmax are often fixed constants, simplifying the com-

plexity toO(N ·d2). In theory, ifDmax scales withN , the complexity increases accordingly.

F PROOF OF UNIVERSAL APPROXIMATION AND APPROXIMATION RATE

Theorem 1. LetF be the class of piecewise linear functions represented by finite oblique regression
trees with linear models at the leaves. Let g : K → R be a twice continuously differentiable
function (g ∈ C2(K)) on a compact set K ⊂ Rd. Furthermore, assume that for any constructed
partition ofK into regions {Ri} with diameter≤ δ, each regionRi containsNi training data points
(xj , g(xj))

Ni
j=1. Let Xi be the Ni× (d+1) design matrix whose j-th row is x̃Tj . We further assume

that Xi satisfies λmin(X
T
i Xi) ≥ cNi for some constant c > 0. Also, supx∈K ∥x̃∥2 ≤ DK for some

bounded constant DK. Then, there exists a constant C such that for any δ > 0, we can construct

23

Published as a conference paper at ICLR 2026

a function f ∈ F by partitioning the domain K into regions {Ri} with maxi diam(Ri) ≤ δ,
satisfying the uniform error bound:

sup
x∈K
|f(x)− g(x)| ≤ Cδ2

This approximation rate directly implies the universal approximation property, i.e., for any ϵ > 0,
there exists a function f ∈ F such that supx∈K |f(x)− g(x)| < ϵ.

Proof. This proof relies on constructing a first-order Taylor approximation within each partition
and then quantifying the impact of OLS estimation. The condition that g is twice continuously
differentiable (g ∈ C2(K)) on the compact set K is crucial throughout this proof.

We adopt the following notation for clarity and consistency: x (or xj) denotes a d-dimensional
original feature vector. x̃ (or x̃j) denotes the d+ 1-dimensional augmented feature vector [xT , 1]T

(or [xT
j , 1]

T respectively), which includes a bias term.

1. Domain Partitioning. As is standard, the compact set K (representing the domain of original
feature vectors) can be covered by a finite collection of disjoint convex polytopes {Ri}Mi=1 such
that

⋃M
i=1Ri = K and the diameter of each polytope diam(Ri) ≤ δ. Since oblique decision trees

perform recursive partitioning with hyperplanes, such a partition can always be realized by a tree
structure where the leaf nodes correspond to these regions.

2. Local Taylor Linear Approximation. This step introduces a theoretical linear approximation.
For each region Ri, we select a center point ci ∈ Ri and define fTaylor,i(x) as the first-order Taylor
expansion of g around ci:

fTaylor,i(x) = g(ci) +∇g(ci)T (x− ci) for all x ∈ Ri

This fTaylor,i(x) is a linear function of x. It serves as an analytical benchmark for how well g(x)
can be approximated locally by a linear function.

3. Bounding the Taylor Approximation Error (Approximation Error). By Taylor’s theorem
with the Lagrange remainder, for any x ∈ Ri, there exists a point ξ on the line segment between x
and ci such that:

g(x) = g(ci) +∇g(ci)T (x− ci) +
1

2
(x− ci)

T∇2g(ξ)(x− ci)

where ∇2g(ξ) is the Hessian matrix of g at ξ. The Taylor approximation error is therefore the
magnitude of the remainder term:

|fTaylor,i(x)− g(x)| =
∣∣∣∣12(x− ci)

T∇2g(ξ)(x− ci)

∣∣∣∣
Since g ∈ C2(K), its Hessian is bounded on the compact set K. Let M = supz∈K ∥∇2g(z)∥2 be
the supremum of the spectral norm of the Hessian. We can then bound the error:

|fTaylor,i(x)− g(x)| ≤
1

2
M∥x− ci∥22

As both x and ci are in Ri, the distance between them is bounded by the diameter, ∥x− ci∥2 ≤ δ.
This yields:

|fTaylor,i(x)− g(x)| ≤
1

2
Mδ2

Letting CA =M/2, this term is bounded by CAδ
2.

4. Quantification of OLS Estimation Error and its Impact on Convergence Rate. The preceding
analysis assumes we can construct fTaylor,i(x) exactly. In practice, however, we only have access to
values of g at a finite set of data points. To construct a function f ∈ F (as described in the theorem),
we use actual data to fit local linear models. Within each region Ri, we employ OLS to estimate a
linear model from a set of Ni training data points {(xj , yj)}Ni

j=1, where yj = g(xj). Let fOLS,i(x)
denote this OLS-estimated linear function, which takes the augmented input x̃.

24

Published as a conference paper at ICLR 2026

To quantify the impact of OLS estimation, we decompose the total error for an original input x into
two parts:

|g(x)− fOLS,i(x)| ≤ |g(x)− fTaylor,i(x)|+ |fTaylor,i(x)− fOLS,i(x)|

The first term is the Taylor approximation error, which we have bounded by CAδ
2. We now need

to bound the second term, representing the difference between the OLS-estimated function and the
theoretical Taylor function. Letting fTaylor,i(x) = w∗T

i x̃, where w∗
i is the corresponding theoretical

coefficient vector (i.e., w∗
i = [∇g(ci)T , g(ci)−∇g(ci)T ci]T). The OLS-estimated linear function

is fOLS,i(x) = ŵT
i x̃, where ŵi is its coefficient vector.

We know that g(xj) = fTaylor,i(xj) + R(xj), where |R(xj)| ≤ CAδ
2 is the Taylor remainder.

Utilizing the linear model representation, this can be written as yj = g(xj) = w∗T
i x̃j + R(xj) for

each data point (xj , yj) inRi.

In matrix-vector notation, for all Ni training data points inRi, we have:

yi = Xiw
∗
i +Ri

where yi = [y1, . . . , yNi
]T is the vector of observed values, Xi is the Ni × (d + 1) design matrix

with rows x̃T
j , and Ri = [R(x1), . . . , R(xNi

)]T is the vector of Taylor remainders.

The OLS estimator ŵi minimizes the empirical loss
∑Ni

j=1(g(xj) − ŵT
i x̃j)

2. The solution to this
minimization is given by the normal equations:

XT
i Xiŵi = XT

i yi

Because XT
i Xi is invertible (guaranteed by the data assumption in the theorem for sufficiently

diverse data), we can solve for ŵi:

ŵi = (XT
i Xi)

−1XT
i yi

Substituting the expression for yi from above into the OLS solution:

ŵi = (XT
i Xi)

−1XT
i (Xiw

∗
i +Ri)

= (XT
i Xi)

−1XT
i Xiw

∗
i + (XT

i Xi)
−1XT

i Ri

Since (XT
i Xi)

−1XT
i Xi = I (the identity matrix), the equation simplifies to:

ŵi = w∗
i + (XT

i Xi)
−1XT

i Ri

Rearranging this, we obtain the desired expression for the difference:

ŵi −w∗
i = (XT

i Xi)
−1XT

i Ri

Under the data assumption stated in the theorem, we can bound the uniform error of the OLS esti-
mate:

sup
x∈Ri

|fTaylor,i(x)− fOLS,i(x)| = sup
x∈Ri

|x̃T (ŵi −w∗
i)|

≤ sup
x∈Ri

∥x̃∥2 · ∥ŵi −w∗
i ∥2

≤ DK∥(XT
i Xi)

−1XT
i Ri∥2

≤ DK∥(XT
i Xi)

−1XT
i ∥2∥Ri∥2

From the theorem’s assumption, λmin(X
T
i Xi) ≥ cNi for some constant c > 0. This implies that

the smallest singular value of Xi, σmin(Xi) =
√
λmin(XT

i Xi) ≥
√
cNi. The spectral norm of the

pseudoinverse X+
i = (XT

i Xi)
−1XT

i is given by ∥X+
i ∥2 = 1

σmin(Xi)
. Therefore, we have:

∥(XT
i Xi)

−1XT
i ∥2 ≤

1√
cNi

Substituting this into the bound:

sup
x∈Ri

|fTaylor,i(x)− fOLS,i(x)| ≤ DK ·
1√
cNi

· ∥Ri∥2

25

Published as a conference paper at ICLR 2026

Since ∥Ri∥2 ≤
√
Ni supj |R(xj)| ≤

√
NiCAδ

2, we obtain:

sup
x∈Ri

|fTaylor,i(x)− fOLS,i(x)| ≤ DK
1√
cNi

√
NiCAδ

2 =
DKCA√

c
δ2

This term is of order O(δ2), with a constant factor CO = DKCA/
√
c. This indicates that as long as

the data density and diversity are sufficient (ensuring Ni is large enough and c is well above zero),
OLS can converge to the theoretically optimal local linear approximation, and the additional error it
introduces does not degrade the O(δ2) convergence rate.

Combining Total Error: Combining both error components, for each region Ri and any original
feature vector x ∈ Ri, we have:

|g(x)− fOLS,i(x)| ≤ CAδ
2 + COδ

2 = (CA + CO)δ
2

Let C = CA+CO = CA(1+DK/
√
c). We define the constructed piecewise linear function f ∈ F

such that for x ∈ Ri, f(x) = fOLS,i(x). Thus, this bound holds for the entire domain K:

sup
x∈K
|g(x)− f(x)| ≤ Cδ2

This demonstrates that even with OLS for local linear fitting, provided sufficient data Ni in each
region to stabilize the OLS estimates, the O(δ2) convergence rate is maintained. The universal
approximation property also follows.

Corollary 1 (Curse of Dimensionality). To achieve a partition with a maximum region diameter
of δ, the depth of a well-balanced tree, Dmax, scales with the dimension d. To halve a region’s
diameter, one must ideally cut it along all d orthogonal directions, which requires approximately d
splits, or d levels in the tree. This leads to the approximate relationship:

δ(Dmax) ≈ diam(K) · 2−Dmax/d

This implies that achieving a fixed error level (i.e., a fixed δ) requires the tree depth Dmax to grow
linearly with dimension d (Dmax ∝ d log(1/δ)), a manifestation of the curse of dimensionality
inherent to space-partitioning methods.

G ABLATION STUDY ON STEP SIZE: STABILITY, EFFICIENCY, AND
FALLBACK

The step size µ (damping factor) is a key hyperparameter in our node-splitting algorithm. It controls
how aggressively each Newton update moves toward the local OLS solution and therefore directly
affects stability, efficiency, and final performance. To examine these effects empirically, we perform
an ablation over µ on four datasets with different characteristics: the oscillatory sinc function,
the smoother twisted sigmoid function, and the real-world Kinematics and D-Ailerons
datasets. For the two real-world datasets, we additionally evaluate an automatic line-search step-size
strategy (denoted by auto). Results are reported in Tables 5–8.

1. Damping and the fallback mechanism. On the synthetic datasets, smaller step sizes lead to
very few fallbacks, while more aggressive steps can trigger the fallback mechanism more often. For
sinc, the fallback rate is essentially negligible at µ = 0.01 (0.39%), modest at µ = 0.05 (4.74%),
and rises to 32.86%, 60.94%, and 29.55% at µ = 0.10, 0.50, and 1.00, respectively. A similar but
milder trend appears on twisted sigmoid: the fallback rate increases from 0.67% at µ = 0.01
to 34.67% at µ = 0.50, before dropping to 19.33% at µ = 1.00. On the real-world datasets,
fallback rates are moderate and relatively stable across µ for Kinematics (between 6.87% and
10.82%, with 9.51% for auto), and identically zero on D-Ailerons for all settings, including
auto. Overall, these results indicate that damping does help keep the fallback mechanism rare on
more challenging synthetic objectives, while some benign regression problems remain stable even
for relatively aggressive step sizes.

26

Published as a conference paper at ICLR 2026

2. Step size, iterations, and training time. Larger step sizes do not automatically translate into
faster convergence in wall-clock time. On the Kinematics datasets, small or moderately damped
step sizes typically lead to stable and fairly regular Newton dynamics, so the node-wise optimisation
terminates after only a few iterations on most splits. In contrast, aggressive step sizes can induce
oscillatory or irregular behaviour at some nodes: the objective value may fail to decrease monoton-
ically, and the parameters and partitions can keep moving without settling down quickly. Such os-
cillatory runs require many more iterations before the stopping criterion is met, which substantially
increases both the average iteration count and the total training time. As a result, the dependence
of fit time on µ is non-monotone: large steps can be very fast when they converge cleanly, but they
may be markedly less efficient once the cost of these unstable cases is taken into account.

3. Effect on predictive accuracy. The impact of µ on RMSE is dataset dependent but generally
modest, with a few notable cases. On sinc, the smallest step size µ = 0.01 achieves the low-
est error (0.02796), while µ = 0.10 is clearly suboptimal (0.05310); larger steps (µ = 0.50 and
1.00) recover competitive errors but at the cost of higher fallback rates and iteration counts. On
twisted sigmoid, all choices of µ yield similar performance, with a slight advantage around
µ = 0.50 and 1.00 (RMSE ≈ 0.0258–0.0283). On Kinematics, performance improves as µ
increases up to 0.50 (RMSE decreasing from 0.13055 at µ = 0.01 to 0.10266 at µ = 0.50), and the
auto strategy yields the lowest error (0.10185) while using far fewer iterations than µ = 0.50. On
D-Ailerons, all step-size choices, including auto, achieve essentially identical RMSE (about
1.68× 10−4), indicating that accuracy is largely insensitive to the damping factor on this dataset.

4. Overall takeaway. Taken together, these experiments suggest that the damping factor µ mainly
controls a trade-off between stability, efficiency, and the need for fallbacks, with only moderate in-
fluence on accuracy in most settings. Small or moderate fixed step sizes tend to keep fallbacks rare
and iterations moderate, especially on synthetic problems such as sinc and twisted sigmoid.
Extremely aggressive fixed steps can lead to increased fallback usage and substantially more it-
erations, particularly on more structured or high-dimensional data such as Kinematics. The
automatic line-search step size (auto), which corresponds to the theoretically analysed variant in
Appendix B, consistently provides a robust choice on the real-world datasets: it attains strong ac-
curacy, moderate iteration counts, and stable fallback behaviour without requiring manual tuning
of µ.

It is important to note that Figures 1 and 2 focus on the dynamics of a single internal node under
different step sizes, with a fixed initialization. In contrast, Tables 5–8 report averages over all nodes
in a full tree, including the effect of the fallback mechanism and stochastic variation across runs.
As a result, local node-level stability and global tree-level efficiency are related but not identical
quantities, and their trends need not coincide pointwise for every value of µ.

Table 5: Ablation study on the sinc dataset. Metrics are averaged over 10 runs.

Step size (µ) RMSE ↓ Leaves Avg. Iters Fit Time (s) Avg. Fallbacks Avg. Splits Fallback Rate (%)

0.01 0.02796 26.7 2.56 0.166 0.1 25.7 0.39%
0.05 0.02885 24.2 4.46 0.105 1.1 23.2 4.74%
0.10 0.05310 22.3 5.97 0.107 7.0 21.3 32.86%
0.50 0.03069 26.6 4.30 0.112 15.6 25.6 60.94%
1.00 0.02926 23.0 6.65 0.141 6.5 22.0 29.55%

Table 6: Ablation study on the twisted sigmoid dataset. Metrics are averaged over 10 runs.

Step size (µ) RMSE ↓ Leaves Avg. Iters Fit Time (s) Avg. Fallbacks Avg. Splits Fallback Rate (%)

0.01 0.02653 16.0 3.17 0.045 0.1 15.0 0.67%
0.05 0.03011 16.0 4.44 0.083 0.6 15.0 4.00%
0.10 0.02831 15.6 5.28 0.063 3.0 14.6 20.55%
0.50 0.02578 16.0 6.13 0.107 5.2 15.0 34.67%
1.00 0.02577 16.0 7.54 0.121 2.9 15.0 19.33%

27

Published as a conference paper at ICLR 2026

Table 7: Ablation study on the Kinematics dataset. Metrics are averaged over five runs.

Step size (µ) RMSE ↓ Leaves Avg. Iters Fit Time (s) Avg. Fallbacks Avg. Splits Fallback Rate (%)

0.01 0.13055 57.0 10.89 0.49 4.6 56.0 8.21%
0.05 0.11367 59.2 19.53 0.62 4.0 58.2 6.87%
0.10 0.10631 57.2 26.65 0.72 6.0 56.2 10.68%
0.50 0.10266 56.6 59.77 1.53 5.8 57.2 10.14%
1.00 0.10702 48.6 83.43 1.88 5.8 53.6 10.82%
auto 0.10185 48.6 15.76 0.79 5.4 56.8 9.51%

Table 8: Ablation study on the D-Ailerons dataset. Metrics are averaged over five runs. The
reported RMSE values are scaled by ×10−4.

Step size (µ) RMSE ↓ Leaves Avg. Iters Fit Time (s) Avg. Fallbacks Avg. Splits Fallback Rate (%)

0.01 1.68 8 1.57 0.105 0 7 0%
0.05 1.68 8 32.43 0.178 0 7 0%
0.10 1.68 8 30.09 0.179 0 7 0%
0.50 1.68 8 57.69 0.345 0 7 0%
1.00 1.68 8 92.60 0.525 0 7 0%
auto 1.68 8 6.71 0.183 0 7 0%

H SYNTHETIC DATA DESCRIPTION

This appendix provides the detailed mathematical definitions of the 3D synthetic functions used
in Section 5.2, the rationale for the selection of these synthetic functions and noise levels, and
additional visualizations of our method’s 2D and 3D function approximation capabilities (Figures 3
and 4).

For all 3D functions, the inputs x1, x2 range from [−3, 3].

3D Oscillatory Surface Functions:

• f1(x1, x2) =
(
0.5x31 − 2x1x

2
2 + 3 sin (4x1) cos (2x2) + 0.1 e−(x

2
1+x2

2)
)

• f2(x1, x2) = sin(3x1) + cos(2x2) + 0.5 sin(5x1) cos(4x2)

• f3(x1, x2) =
x2
1−x2

2

0.5+r2 + sin(r)e−r, where r =
√
x21 + x22 + 10−6.

• f4(x1, x2) = 2 · exp
(
− (x1−1)2+(x2−1)2

0.5

)
− 3 · exp

(
− (x1+1)2+(x2+1.5)2

0.3

)
+ 0.5x1

Rationale for Selection of Synthetic Functions: These functions exhibit diverse nonlinear charac-
teristics, including high-frequency oscillations (sinc, 3D oscillatory functions), sharp changes, and
inflection points (twisted sigmoid). Successfully approximating such a wide range of nonlin-
earities, as demonstrated by our empirical results, provides strong empirical support for the universal
approximation capability of our piecewise linear HRT model, which is theoretically proven in Theo-
rem 1. The sinc function, with its numerous local extrema and oscillations, presents a particularly
challenging landscape for optimization algorithms. It helps to expose potential instabilities (e.g.,
non-monotonic convergence, limit cycles) in the splitting mechanism, thereby highlighting the ne-
cessity and effectiveness of damped Newton updates for robust convergence, as analyzed in Section
5.1. Conversely, the twisted sigmoid function, while non-trivial, is smoother and less prone to
pathological behaviors, allowing us to demonstrate the efficiency of our Newton updates in a more
stable environment.

Rationale for Noise Levels: Introducing independent and identically distributed zero-mean Gaus-
sian noise (with standard deviations of 0.025 for 2D tasks and 0.05 for 3D tasks) simulates this inher-
ent uncertainty. This ensures that our model’s performance is evaluated not just on ideal, noiseless
functions, but on data that more closely mimic practical applications. The selected noise levels are
not so high that the primary challenge for the models remains the accurate approximation of the un-
derlying functional relationship, rather than solely distinguishing signal from overwhelming noise.

28

Published as a conference paper at ICLR 2026

This allows us to clearly observe and compare the models’ capacities to fit the true, underlying non-
linear structures. If noise were excessively high, it would obscure the approximation performance,
making it difficult to assess the inherent expressive power of the models.

1.0

0.5

0.0

y Training Data
Test Data
Our method
CART
XGBoost

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.05

0.00

0.05

r

(a) y = − sin(5πx)
5πx

+ 0.025ϵ

0

1

2

y

Training Data
Test Data
Our method
CART
XGBoost

3 2 1 0 1 2 3
x

0.05

0.00

0.05

r

(b) y = 2
1+e−3x − 0.8x+ 0.025ϵ

Figure 3: Top: Approximation performance of various methods on sinc and twisted sigmoid
functions. Bottom: Residuals r = ypred − ytrue, representing the difference between predicted and
true values for each method.

29

Published as a conference paper at ICLR 2026

x1

−3 −2 −1 0 1 2 3

x2

−3
−2

−1
0

1
2

3

y

−40

−20

0

20

40

Training Data
Test Data
Our Method

(a) Our Method approximating y = f1(x1, x2) +
0.05ϵ.

x1

−3 −2 −1 0 1 2 3

x2

−3
−2

−1
0

1
2

3

y

−2
−1
0
1
2

Training Data
Test Data
Our Method

(b) Our Method approximating y = f2(x1, x2) +
0.05ϵ.

x1

−3 −2 −1 0 1 2 3

x2

−3
−2

−1
0

1
2

3

y

−1.0

−0.5

0.0

0.5

1.0

Training Data
Test Data
Our Method

(c) Our Method approximating y = f3(x1, x2) +
0.05ϵ.

x1

−3 −2 −1 0 1 2 3

x2

−3
−2

−1
0

1
2

3

y

−3
−2
−1
0
1
2

Training Data
Test Data
Our Method

(d) Our Method approximating y = f4(x1, x2) +
0.05ϵ.

Figure 4: 3D function approximation. We visualize the learned piecewise linear surface of our
method along with training/testing points. Contours on the floor help read depth. For clarity, only
the fitted surface of Our Method is shown; detailed quantitative comparisons with baselines are
provided in Table 1.

.

30

Published as a conference paper at ICLR 2026

I HYPERPARAMETER

This appendix details the hyperparameter search grids used for tuning various models in 2D and
3D function approximation experiments. For each model, a grid search approach was employed to
find the optimal hyperparameters that minimize the validation error. The specific ranges for each
hyperparameter are listed in Table 9. Hyperparameters are tuned via five-fold cross-validation on
the training set, with final performance reported on the testing set.

Table 9: Hyperparameter Search Grids for 3D Function Approximation Models

Model Hyperparameter Search Grid

HRT

max depth {4, 6, 8, 10, 12}
ridge alpha {0.01, 0.03, 0.05}
step size {0.01, 0.5, 1,’auto’}
threshold {0.001, 0.1}

CART
max depth {3, 5, 7, 9, 11}
min samples split {2, 5, 10}
min samples leaf {1, 2, 4}

XGB

n estimators {50, 100, 200}
learning rate {0.01, 0.1, 0.2}
max depth {2, 3, 5}
subsample {0.7, 1.0}

For HRT, we tuned the threshold parameter, which controls the splitting criterion, and
max depth, which limits the maximum depth of the constructed tree structure. We also var-
ied the ridge alpha, which adjusts the regularization strength in ridge regression to mitigate
overfitting, and the step size, which determines the granularity of updates during optimization
and affects convergence speed and stability. For CART, we explored variations in max depth,
the minimum number of samples required to split an internal node (min samples split),
and the minimum number of samples required to be at a leaf node (min samples leaf).
For XGBoost, we optimized the number of boosting rounds (n estimators), the step size
shrinkage (learning rate), the maximum depth of a tree (max depth), and the subsam-
ple ratio of the training instance (subsample). The objective function used for XGBoost was
’reg:squarederror’ with ’rmse’ as the evaluation metric.

Tables 10 and 11 summarize the chosen hyperparameters via 5-fold cross-validation, covering both
our proposed method and all reproduced baseline methods. The tuned hyperparameters for DTSem-
Net and DGT are listed in Table 12,.

Table 10: Optimal Hyperparameters Across Various Functions for Different Models

Function Model Best Hyperparameters

sinc
CART {’max depth’: 9, ’min samples leaf’: 2, ’min samples split’: 2}
XGB {’learning rate’: 0.1, ’max depth’: 3, ’n estimators’: 200, ’subsample’: 0.7}
HRT {’max depth’: 6, ’ridge alpha’: 0.001, ’step size’: 0.01, ’threshold’: 0.03}

twisted sigmoid
CART {’max depth’: 9, ’min samples leaf’: 2, ’min samples split’: 5}
XGB {’learning rate’: 0.1, ’max depth’: 3, ’n estimators’: 100, ’subsample’: 0.7}
HRT {’max depth’: 4, ’ridge alpha’: 0.001, ’step size’: 0.5, ’threshold’: 0.01}

f1(x1, x2)
CART {’max depth’: 11, ’min samples leaf’: 1, ’min samples split’: 2}
XGB {’learning rate’: 0.2, ’max depth’: 5, ’n estimators’: 200, ’subsample’: 0.7}
HRT {’max depth’: 12, ’threshold’: 0.01, ’ridge alpha’: 0, ’step size’: 1}

f2(x1, x2)
CART {’max depth’: 11, ’min samples leaf’: 1, ’min samples split’: 2}
XGB {’learning rate’: 0.2, ’max depth’: 5, ’n estimators’: 200, ’subsample’: 0.7}
HRT {’max depth’: 12, ’threshold’: 0.01, ’ridge alpha’: 0, ’step size’: 1}

f3(x1, x2)
CART {’max depth’: 11, ’min samples leaf’: 4, ’min samples split’: 2}
XGB {’learning rate’: 0.1, ’max depth’: 5, ’n estimators’: 200, ’subsample’: 0.7}
HRT {’max depth’: 8, ’threshold’: 0.05, ’ridge alpha’: 0, ’step size’: 1}

f4(x1, x2)
CART {’max depth’: 11, ’min samples leaf’: 1, ’min samples split’: 2}
XGB {’learning rate’: 0.1, ’max depth’: 5, ’n estimators’: 200, ’subsample’: 0.7}
HRT {’max depth’: 12, ’threshold’: 0.05, ’ridge alpha’: 0, ’step size’: 1}

31

Published as a conference paper at ICLR 2026

Table 11: Optimal Hyperparameters Across Various Datasets for Different Models

Dataset Model Best Hyperparameters

Abalone
M5 {’M’: 10.0}
Linear tree {’max depth’: 3, ’min samples leaf’: 40}
HRT {’max depth’: 2, ’ridge alpha’: 0, ’step size’: 1, ’threshold’: 1}

CPUact
M5 {’M’: 4.0}
Linear tree {’max depth’: 3, ’min samples leaf’: 10}
HRT {’max depth’: 2, ’ridge alpha’: 0, ’step size’: 0.5, ’threshold’: 0.5}

Ailerons
M5 {’M’: 40.0 }
Linear tree {’max depth’: 3, ’min samples leaf’: 10}
HRT {’max depth’: 2, ’ridge alpha’: 1, ’step size’: 1, ’threshold’: 5e-05}

CTSlice
M5 {’M’: 20.0}
Linear tree {’max depth’: 5, ’min samples leaf’: 10}
HRT {’max depth’: 7, ’ridge alpha’: 10, ’step size’: 1, ’threshold’: 0.2}

YearPred
M5 {’M’: 200.0}
Linear tree { max depth=5, min samples leaf=2000 }
HRT {’max depth’: 4, ’ridge alpha’: 0, ’step size’: ‘auto’, ’threshold’: 0.5}

Concrete

XGB {’learning rate’: 0.01, ’max depth’: 7, ’n estimators’: 200, ’subsample’: 0.7}
M5 {’M’: 4.0}
Linear tree {’max depth’: 3, ’min samples leaf’: 40}
HRT {’max depth’: 3, ’ridge alpha’: 0.1, ’step size’: 0.5, ’threshold’: 6}

Airfoil

XGB {’learning rate’: 0.01, ’max depth’: 7, ’n estimators’: 200, ’subsample’: 0.7}
M5 { M’: 4.0}
Linear tree {max depth’: 6, ’min samples leaf’: 50 }
HRT {’max depth’: 5, ’ridge alpha’: 0.01, ’step size’: ‘auto’, ’threshold’: 1.5}

MSLR

CART {’max depth’: 9, ’min samples leaf’: 4, ’min samples split’: 10}
XGB {’learning rate’: 0.1, ’max depth’: 5, ’n estimators’: 200, ’subsample’: 0.7}
M5 {’M’: 500}
Linear tree { }
HRT {’max depth’: 3, ’ridge alpha’: 0, ’step size’: 0.5, ’threshold’: 0.2}

Fried

CART {’max depth’: 11, ’min samples leaf’: 4, ’min samples split’: 10}
XGB {’learning rate’: 0.1, ’max depth’: 5, ’n estimators’: 200, ’subsample’: 0.7}
M5 {’M’: 4.0}
Linear tree {’max depth’: 5, ’min samples leaf’: 10}
HRT {’max depth’: 5, ’ridge alpha’: 0.1, ’step size’: 0.1, ’threshold’: 0}

D-Elevators

CART {’max depth’: 5, ’min samples leaf’: 2, ’min samples split’: 10}
XGB {’learning rate’: 0.01, ’max depth’: 5, ’n estimators’: 200, ’subsample’: 0.7}
M5 {’M’: 20.0}
Linear tree {’max depth’: 5, ’min samples leaf’: 20}
HRT {’max depth’: 5, ’ridge alpha’: 10, ’step size’: 1, ’threshold’: 0}

D-Ailerons

CART {’max depth’: 5, ’min samples leaf’: 4, ’min samples split’: 10}
XGB {’learning rate’: 0.1, ’max depth’: 3, ’n estimators’: 200, ’subsample’: 0.7}
M5 {’M’: 20.0}
Linear tree {’max depth’: 3, ’min samples leaf’: 20}
HRT {’max depth’: 3, ’ridge alpha’: 10, ’step size’: ’auto’, ’threshold’: 0}

Kinematics

CART {’max depth’: 9, ’min samples leaf’: 4, ’min samples split’: 10}
XGB {’learning rate’: 0.1, ’max depth’: 7, ’n estimators’: 200, ’subsample’: 0.7}
M5 {’M’: 4.0}
Linear tree {’max depth’: 7, ’min samples leaf’: 40}
HRT {’max depth’: 6, ’ridge alpha’: 1, ’step size’: ’auto’, ’threshold’: 0}

C&C

CART {’max depth’: 3, ’min samples leaf’: 4, ’min samples split’: 2}
XGB {’learning rate’: 0.01, ’max depth’: 5, ’n estimators’: 200, ’subsample’: 0.7}
M5 {’M’: 40.0}
Linear tree {’max depth’: 9, ’min samples leaf’: 10}
HRT {’max depth’: 1, ’ridge alpha’: 300, ’step size’: 0.01, ’threshold’: 0.0}

Blog

CART {’max depth’: 5, ’min samples leaf’: 1, ’min samples split’: 2}
XGB {’learning rate’: 0.05, ’max depth’: 3, ’n estimators’: 400}
M5 {’M’: 20.0}
Linear tree { }
HRT {’max depth’: 2, ’ridge alpha’: 100, ’step size’: 0.01, ’threshold’: 0}

Table 12: Hyperparameters for DGT and DTSemNet

Parameters DTSemNet DGT

Height 5 6
Learning Rate 0.005 0.01
Batch Size 32 128
Num Epochs 80 200
Optimizer Adam RMSprop

32

Published as a conference paper at ICLR 2026

J DATASET DETAILS

• Abalone: This dataset is designed to predict the age of abalone, given eight features including
categorical and numerical measurements describing physical characteristics.

• CPUact: This dataset is designed to predict the portion of time that CPUs run in user mode, given
numerical features describing system performance measurements.

• Ailerons: This dataset is designed to predict the aileron control command, given numerical fea-
tures describing the status of the aircraft.

• CTSlice: This dataset is designed to predict the relative location of CT slices on the axial axis
of the human body, given numerical features describing bone and air distribution patterns extracted
from CT images.

• YearPred: This dataset is designed to predict the release year of a song, given numerical features
describing audio characteristics.

• Concrete: This dataset is designed to predict the compressive strength of concrete, given eight
quantitative mixture components together with the age of the concrete as input features.

• Airfoil: This dataset is designed to predict the scaled sound pressure level of airfoils, given five
numerical features describing aerodynamic and geometric properties.

• MSLR: Given 136-dimensional feature vectors extracted from query-url pairs, predict the rele-
vance judgment labels, which take values from 0 (irrelevant) to 4 (perfectly relevant).

• Fried: This dataset is designed to predict a continuous target variable, given ten numerical features
generated independently and uniformly.

• D-Elevators: This dataset is designed to predict the variation of elevator control signals for an
F16 aircraft, given six numerical features describing the aircraft state.

• D-Ailerons: This dataset is designed to predict the variation of aileron control signals for an F16
aircraft, given numerical features describing the aircraft state.

• Kinematics: This dataset is designed to predict the forward kinematics of an 8-link robot arm,
given numerical features describing joint configurations. The variant used (8nm) is highly nonlinear
and moderately noisy.

• C&C (Communities & Crime): This dataset combines census, law-enforcement, and crime
statistics to predict community crime rates. It is high-dimensional and heterogeneous, serving as a
standard benchmark for socio-demographic prediction.

• Blog: This dataset predicts the number of comments on blog posts using text-derived features.
It features a skewed target distribution and nonlinear relationships, making it suitable for modeling
online content influence.

K EXTENDING HRT TO BINARY CLASSIFICATION

Although HRT was originally developed for regression tasks, it naturally extends to binary classi-
fication. We treat the binary labels {0, 1} directly as continuous regression targets, allowing the
model to learn locally optimal linear decision functions at each leaf. At inference, we interpret the
tree output ŷ(x) as a real-valued score, clip it to [0, 1] to obtain a class-probability estimate, and
predict the positive class if ŷ(x) ≥ 0.5 and the negative class otherwise.

To assess the classification capability of HRT, we evaluated it on five public binary classification
datasets (Breast-w, Credit-g, Banknote, Spambase, and Diabetes), comparing its performance with
that of CART and XGBoost. Across these datasets, HRT achieves AUC, Accuracy, and F1 scores
that are broadly competitive with—and in several cases exceed—those of XGBoost, while requiring
substantially fewer leaf nodes. This reduction in model complexity contributes to improved inter-
pretability without sacrificing predictive accuracy. The detailed results (mean ± standard deviation
over 5 random repetitions) are reported in Table 14.

33

Published as a conference paper at ICLR 2026

Table 13: Dataset Details

Dataset features Total sample number Source

Abalone 8 4177 UCI1

CPUact 21 8192 Delve2

Ailerons 40 13750 LIACC3

CTSlice 384 53500 UCI1

YearPred 90 515345 UCI1

Concrete 8 1030 UCI1

Airfoil 5 1503 UCI1

MSLR 136 964933 MSLR-WEB10K4

Fried 10 40768 LIACC3

D-Elevators 6 9517 LIACC3

D-Ailerons 5 7129 LIACC3

Kinematics 8 8192 LIACC3

C&C 127 1994 UCI1

Blog 280 60021 UCI1

To ensure a fair and consistent comparison, we conducted independent hyperparameter tuning for
each model on every dataset. Although XGBoost constitutes a strong ensemble baseline due to its
use of multiple boosted trees, HRT employs only a single-tree structure. Despite this difference in
model complexity, the empirical results indicate that HRT can reach competitive levels of predictive
performance while maintaining a simpler and more transparent model form. The best hyperparam-
eter configurations selected for all models are summarized in Table 15.

Table 14: Performance comparison on five real-world datasets. Values for AUC, ACC, and F1 are
reported as mean ± standard deviation, while values for Leaves and Fit Time are reported as mean
only. For AUC, ACC, and F1, higher is better (↑). For Leaves and Fit Time, lower is better (↓).
The best result in each column for each dataset is bolded. Significant improvements over the best
baseline are marked with † (p < 0.05).

Dataset (Nf , Ns) Model AUC(↑) ACC(↑) F1(↑) Leaves(↓) Fit Time (s)(↓)

Breast-w (9,699)
CART 0.960 ± 0.006 0.931 ± 0.013 0.899 ± 0.022 11.2 0.006
XGBoost 0.986 ± 0.006 0.949 ± 0.006 0.927 ± 0.010 N/A 1.733
Our Method 0.993 ± 0.003† 0.956 ± 0.007 0.935 ± 0.010 2.0 0.044

Credit-g (20,1000)
CART 0.707 ± 0.019 0.710 ± 0.017 0.803 ± 0.013 22.2 0.023
XGBoost 0.782 ± 0.007 0.750 ± 0.005 0.843 ± 0.003 N/A 1.155
Our Method 0.791 ± 0.009 0.760 ± 0.004† 0.840 ± 0.005 1.0 0.040

Banknote (4,1372)
CART 0.983 ± 0.008 0.983 ± 0.007 0.981 ± 0.008 19.8 0.005
XGBoost 0.999 ± 0.000 0.987 ± 0.007 0.986 ± 0.008 N/A 1.114
Our Method 1.000 ± 0.000 0.984 ± 0.002 0.982 ± 0.002 2.0 0.006

Spambase (57,4601)
CART 0.924 ± 0.010 0.900 ± 0.009 0.868 ± 0.011 22.2 0.030
XGBoost 0.981 ± 0.003 0.940 ± 0.008 0.923 ± 0.010 N/A 1.928
Our Method 0.966 ± 0.006 0.922 ± 0.006 0.900 ± 0.007 8.0 0.901

Diabetes (8,768)
CART 0.757 ± 0.020 0.731 ± 0.010 0.549 ± 0.089 7.4 0.005
XGBoost 0.818 ± 0.014 0.755 ± 0.022 0.627 ± 0.030 N/A 0.306
Our Method 0.817 ± 0.012 0.762 ± 0.017 0.629 ± 0.025 2.0 0.031

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

Following the ICLR 2026 guidelines regarding the use of Large Language Models (LLMs), we
hereby disclose that LLMs were utilized in the preparation of this paper:

1https://archive.ics.uci.edu/
2https://www.cs.toronto.edu/˜delve/data/comp-activ/desc.html
3https://www.dcc.fc.up.pt/˜ltorgo/Regression/DataSets.html
4https://www.microsoft.com/en-us/research/project/mslr/

34

https://archive.ics.uci.edu/
https://www.cs.toronto.edu/~delve/data/comp-activ/desc.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.microsoft.com/en-us/research/project/mslr/

Published as a conference paper at ICLR 2026

Table 15: Hyperparameters for Classification Datasets

Dataset Model Best Hyperparameters

Breast-w
CART {’max depth’: 5, ’min samples leaf’: 4, ’min samples split’: 2}
XGBoost {’learning rate’: 0.05, ’max depth’: 5, ’n estimators’: 200, ’subsample’: 0.7}
Our Method {’max depth’: 1, ’ridge alpha’: 1, ’step size’: 1, ’threshold’: 0}

Credit-g
CART {’max depth’: 5, ’min samples leaf’: 2, ’min samples split’: 10}
XGBoost {’learning rate’: 0.01, ’max depth’: 3, ’n estimators’: 200, ’subsample’: 0.7}
Our Method {’max depth’: 1, ’ridge alpha’: 10, ’step size’: 0.01, ’threshold’: 0.5}

Banknote
CART {’max depth’: 7, ’min samples leaf’: 1, ’min samples split’: 2}
XGBoost {’learning rate’: 0.1, ’max depth’: 3, ’n estimators’: 200, ’subsample’: 1.0}
Our Method {’max depth’: 1, ’ridge alpha’: 0, ’step size’: 0.01, ’threshold’: 0}

Spambase
CART {’max depth’: 5, ’min samples leaf’: 4, ’min samples split’: 10}
XGBoost {’learning rate’: 0.05, ’max depth’: 5, ’n estimators’: 200, ’subsample’: 0.7}
Our Method {’max depth’: 3, ’ridge alpha’: 10, ’step size’: 1, ’threshold’: 0}

Diabetes
CART {’max depth’: 3, ’min samples leaf’: 2, ’min samples split’: 2}
XGBoost {’learning rate’: 0.05, ’max depth’: 3, ’n estimators’: 50, ’subsample’: 0.7}
Our Method {’max depth’: 1, ’ridge alpha’: 1, ’step size’: 1, ’threshold’: 0}

• Text Drafting and Refinement: Assisting in drafting and revising portions of the text,
such as rephrasing existing sentences, checking grammar, and improving linguistic flow.

• Content Clarification and Summarization: Helping to clarify complex concepts or sum-
marize lengthy explanations.

• Formatting and Structural Suggestions: Providing advice on LaTeX formatting and as-
sisting in structuring certain sections.

All content generated by the LLM underwent rigorous review, editing, and validation by the human
authors. The human authors bear full responsibility for the entirety of the paper’s content. This
disclosure is made to ensure transparency and comply with ICLR’s policy.

35

	Introduction
	Related Work
	Tree Construction and Oblique Split Optimization
	Construction objective of the HRT
	Optimization of oblique splits
	Objective Function
	Optimization as a Newton Method

	Recursive Tree Construction
	Illustration of the ReLU-like expressive power

	Theoretical Analysis
	Convergence Analysis
	Universal Approximation Theory

	Experiments
	Convergence Analysis of the Splitting Algorithm
	Function Approximation on Synthetic Data
	Performance on Real-World Regression Datasets

	Conclusion
	Detailed Derivations for Equivalence of Iterative Optimization to Newton Method
	Node-Level Convergence of the Line-Search Newton Update
	Details on Regularization and Fallback Strategies
	Parameter Initialization Strategy and Detailed Algorithms
	Parameter Initialization Strategy
	Detailed Algorithms

	Time Complexity Analysis
	Algorithm 1: Find Optimal Split
	Algorithm 2: Build Oblique Regression Tree

	Proof of Universal Approximation and Approximation Rate
	Ablation Study on Step Size: Stability, Efficiency, and Fallback
	Synthetic Data Description
	Hyperparameter
	Dataset Details
	Extending HRT to Binary Classification
	The Use of Large Language Models (LLMs)

