
Under review as a conference paper at ICLR 2023

RANDOM LAPLACIAN FEATURES
FOR LEARNING WITH HYPERBOLIC SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to its geometric properties, hyperbolic space can support high-fidelity embed-
dings of tree- and graph-structured data, upon which various hyperbolic networks
have been developed. Existing hyperbolic networks encode geometric priors not
only for the input, but also at every layer of the network. This approach involves
repeatedly mapping to and from hyperbolic space, which makes these networks
complicated to implement, computationally expensive to scale, and numerically
unstable to train. In this paper, we propose a simpler approach: learn a hyper-
bolic embedding of the input, then map once from it to Euclidean space using a
mapping that encodes geometric priors by respecting the isometries of hyperbolic
space, and finish with a standard Euclidean network. The key insight is to use
a random feature mapping via the eigenfunctions of the Laplace operator, which
we show can approximate any isometry-invariant kernel on hyperbolic space. Our
method can be used together with any graph neural networks: using even a linear
graph model yields significant improvements in both efficiency and performance
over other hyperbolic baselines in both transductive and inductive tasks.

1 INTRODUCTION

Real-world data contains various structures that resemble non-Euclidean spaces: for example, data
with tree- or graph-structure such as citation networks (Sen et al., 2008), social networks (Hoff
et al., 2002), biological networks (Rossi & Ahmed, 2015), and natural language (e.g., taxonomies
and lexical entailment) where latent hierarchies exist (Nickel & Kiela, 2017). Graph-style data fea-
tures in a range of problems—including node classification, link prediction, relation extraction, and
text classification. It has been shown both theoretically and empirically (Bowditch, 2006; Nickel &
Kiela, 2017; 2018; Chien et al., 2022) that hyperbolic space—the geometry with constant negative
curvature—is naturally suited for representing (i.e. embedding) such data and capturing implicit
hierarchies, outperforming Euclidean baselines. For example, Sala et al. (2018) shows that hyper-
bolic space can embed trees without loss of information (arbitrarily low distortion), which cannot
be achieved by Euclidean space of any dimension (Chen et al., 2013; Ravasz & Barabási, 2003).

Presently, most well-known and -established deep neural networks are built in Euclidean space. The
standard approach is to pass the input to a Euclidean network and hope the model can learn the fea-
tures and embeddings. But this flat-space approach can encode the wrong prior in tasks for which we
know the underlying data has a different geometric structure, such as the hyperbolic-space structure
implicit in tree-like graphs. Motivated by this, there is an active line of research on developing ML
models in hyperbolic space Hn. Starting from hyperbolic neural networks (HNN) by Ganea et al.
(2018), a variety of hyperbolic networks were proposed for different applications, including HNN++
(Shimizu et al., 2020), hyperbolic variational auto-encoders (HVAE, Mathieu et al. (2019)), hyper-
bolic attention networks (HATN, Gulcehre et al. (2018)), hyperbolic graph convolutional networks
(HGCN, Chami et al. (2019)), hyperbolic graph neural networks (HGNN, Liu et al. (2019)), and
hyperbolic graph attention networks (HGAT Zhang et al. (2021a)). The strong empirical results of
HGCN and HGNN in particular on node classification, link prediction, and molecular-and-chemical-
property prediction show the power of hyperbolic geometry for graph learning.

These hyperbolic networks adopt hyperbolic geometry at every layer of the model. Since hyperbolic
space is not a vector space, operations such as addition and multiplication are not well-defined; nei-
ther are matrix-vector multiplication and convolution, which are key components of a deep model

1

Under review as a conference paper at ICLR 2023

that uses hyperbolic geometry at every layer. A common solution is to treat hyperbolic space as a
gyro-vector space by equipping it with a non-commutative, non-associative addition and multiplica-
tion, allowing hyperbolic points to be processed as features in a neural network forward. However,
this complicates the use of hyperbolic geometry in neural networks because the imposition of an
extra structure on hyperbolic space beyond its manifold properties—making the approach somehow
non-geometric. A second problem with using hyperbolic points as intermediate features is that these
points can stray far from the origin (just as Euclidean DNNs require high dynamic range Kalamkar
et al. (2019)), especially for deeper networks. This can cause significant numerical issues when the
space is represented with ordinary floating-point numbers: the representation error is unbounded
and grows exponentially with the distance from the origin. Much careful hyperparameter tuning is
required to avoid this “NaN problem” Sala et al. (2018); Yu & De Sa (2019; 2021). These issues
call for a simpler and more principled way of using hyperbolic geometry in DNNs.

In this paper, we propose such a simple approach for learning with hyperbolic space. The insight is to
(1) encode the hyperbolic geometric priors only at the input via an embedding into hyperbolic space,
which is then (2) mapped once into Euclidean space by a random feature mapping ϕ : Hn → Rd that
(3) respects the geometry of hyperbolic space in that its induced kernel k(x,y) = E[⟨ϕ(x), ϕ(y)⟩]
is isometry-invariant, i.e. k(x,y) depends only on the hyperbolic distance between x and y, fol-
lowed by (4) passing these Euclidean features through some downstream Euclidean network. This
approach both avoids the numerical issues common in previous approaches (since hyperbolic space
is only used once early in the network, numerical errors will not compound) and eschews the need
for augmenting hyperbolic space with any additional non-geometric structure (since we base the
mapping only on geometric distances in hyperbolic space). Our contributions are as follows:

• In Section 4 we propose a random feature extraction called HyLa which can be sampled to be
an unbiased estimator of any isometry-invariant kernel on hyperbolic space. This generalizes the
classic method of random Fourier features proposed for Euclidean space by Rahimi et al. (2007).

• In Section 5 we show how to adopt HyLa in an end-to-end graph learning architecture that si-
multaneously learns the embedding of the initial objects and the Euclidean graph learning model.

• In Section 6, we evaluate our approach empirically. Our HyLa-networks demonstrate better per-
formance, scalability and computation speed than existing hyperbolic networks: HyLa-networks
consistently outperform HGCN, even on a tree dataset, with 12.3% improvement while being
4.4× faster. Meanwhile, we argue that our method is an important hyperbolic baseline to com-
pare against due to its simple implementation and compatibility with any graph learning model.

2 RELATED WORK

Hyperbolic space. n-dimensional hyperbolic space Hn is usually defined and used via a model, a
representation of Hn within Euclidean space. Common choices include the Poincaré ball (Nickel
& Kiela, 2017) and Lorentz hyperboloid model (Nickel & Kiela, 2018). We develop our approach
using the Poincaré ball model, but our methodology is independent of the model and can be applied
to other models. The Poincaré ball model is the Riemannian manifold (Bn, gp) with Bn = {x ∈
Rn : ∥x∥ < 1} being the open unit ball and the Riemannian metric gp and metric distance dp being

gp(x) = 4(1− ∥x∥2)−2ge and dp(x,y) = arcosh
(
1 + 2 ∥x−y∥2

(1−∥x∥2)(1−∥y∥2)

)
.

where ge is the Euclidean metric. To encode geometric priors into neural networks, many versions
of hyperbolic neural networks have been proposed. But while (matrix-) addition and multiplication
are essential to develop a DNN, hyperbolic space is not a vector space with well-defined addition
and multiplication. To handle this issue, several approaches were proposed in the literature.
Gyrovector space. Many hyperbolic networks, including HNN (Ganea et al., 2018), HNN++
(Shimizu et al., 2020), HVAE (Mathieu et al., 2019), HGAT (Zhang et al., 2021a), and GIL Zhu
et al. (2020), adopt the framework of gyrovector space as an algebraic formalism for hyperbolic
geometry, by equipping hyperbolic space with non-associative addition and multiplication: Möbius
addition ⊕ and Möbius scalar multiplication ⊗, which is defined for x,y ∈ Bn and a scalar r ∈ R

x⊕ y := (1+2⟨x,y⟩+∥y∥2)x+(1−∥x∥2)y
1+2⟨x,y⟩+∥x∥2∥y∥2 , r ⊗ x := tanh(r tanh−1(∥x∥)) x

∥x∥ .

However, Möbius addition and multiplication are complicated with a high computation cost; high
level operations such as Möbius matrix-vector multiplication are even more complicated and numer-

2

Under review as a conference paper at ICLR 2023

ically unstable (Yu & De Sa, 2021; Yu et al., 2022), due to the use of ill-conditioned functions like
tanh−1. Also problematic is the way hyperbolic space is treated as a gyrovector space rather than a
manifold, meaning this approach can not be generalized to other manifolds that lack this structure.
Push-forward & Pull-backward. Since many operations are well-defined in Euclidean space but
not in hyperbolic space, a natural idea is to map Hn to Rd via some mappings, apply well-defined
operations in Rd, then map the results back to hyperbolic space. Many works, including HATN
(Gulcehre et al., 2018), HGCN (Chami et al., 2019), HGNN (Liu et al., 2019), HGAT (Zhang et al.,
2021a), Lorentzian GCN (Zhang et al., 2021b), and GIL Zhu et al. (2020), adopt this method:

• pull the hyperbolic points to Euclidean space with a “pull-backward” mapping;
• apply operations such as multiplication and convolution in Euclidean space; and then
• push the resulting Euclidean points to hyperbolic space with a “push-forward” mapping.

Since hyperbolic space and Euclidean space are different spaces, no isomorphic maps exist between
them. A common choice of the mappings (Chami et al., 2019; Liu et al., 2019) is the exponential map
expx(·) and logarithm map logx(·), where x is usually chosen to be the origin O. The exponential
and logarithm maps are mappings between the hyperbolic space and its tangent space TxHn, which
is an Euclidean space contains gradients. The exponential map maps a vector v ∈ TxHn at x to
another point expx(v) in Hn (intuitively, expx(v) is the point reached by starting at x and moving
in the direction of v a distance ∥v∥ along the manifold), while the logarithm map inverts this.

This approach is more straightforward and natural in the sense that hyperbolic space is only treated
as a manifold object with no more structures added, so it can be generalized to general manifolds
(although it does privilege the origin). However, expo(·) and logo(·) are still complicated and
numerically unstable. Both push-forward and pull-backward mappings are used at every hyperbolic
layer, which incurs a high computational cost in both the model forward and backward loop. As a
result, this prevents hyperbolic networks from scaling to large graphs. Moreover, the Push-forward
& Pull-backward mappings act more like nonlinearities instead of producing meaningful features.
Kernel Methods and Horocycle Features. Cho et al. (2019) proposed hyperbolic kernel SVM
for nonlinear classification without resorting to ill-fitting tools developed for Euclidean space. Their
approach differs from ours in that they map hyperbolic points to another (higher-dimensional) hyper-
bolic feature space, rather than an Euclidean feature space. They also constructed feature mappings
only for the Minkowski inner product kernel: it’s unknown how to construct feature mappings of
their type for general kernels. Another work by Fang et al. (2021) develops several valid positive
definite kernels in hyperbolic spaces and investigates their usages; they do not provide any sampling-
based features to approximate these kernels. Wang (2020) constructed hyperbolic neuron models
using a push-forward mapping along with the hyperbolic Poisson kernel Pn(x,ω) = (1−∥x∥2

∥x−ω∥2)
n−1

for x ∈ Bn, ω ∈ ∂Bn as the backbone of an even more complicated feature function. Sonoda et al.
(2022) theoretically proposes a continuous version of shallow fully-connected networks on non-
compact symmetric space (including hyperbolic space) using Helgason-Fourier transform, where
some network functions coincidentally share some similarities to features proposed in this paper.

3 BACKGROUND

Laplace operator (Euclidean). The Laplace operator ∆ on Euclidean space Rn is defined as the di-
vergence of the gradient of a scalar function f , i.e., ∆f = ∇·∇f =

∑n
i=1

∂2f
∂x2

i
. The eigenfunctions

of ∆ are the solutions of the Helmholtz equation −∆f = λf, λ ∈ R, and can form an orthonormal
basis for the Hilbert space L2(Ω) when Ω ∈ Rn is compact (Gilbarg & Trudinger, 2015), i.e., a
linear combination of them can represent any function/model that is L2-integrable. A notable pa-
rameterization for these eigenfunctions are the plane waves, given by f(x) = exp(i⟨ω,x⟩), where
ω ∈ Rn and ⟨·, ·⟩ is the Euclidean inner product. A standard result given in Helgason (2022) states
that any eigenfunction of ∆ can be written as a linear combination of these plane waves (Theo-
rem A.1). The famous result of Rahimi et al. (2007) used these eigenfunctions to construct feature
maps, called random Fourier features, for arbitrary shift-invariant kernels in Euclidean space.
Theorem 3.1 (Bochner’s theorem, Rudin (2017)). For any shift-invariant continuous kernel
k(x,y) = k(x−y) on Rn, let p(ω) be its Fourier transform and ξω(x) = exp(i⟨ω,x⟩). Then k is
positive definite if and only if p ≥ 0, in which case if we draw w proportionally to p,

k(x− y) =
∫
Rn p(ω) exp(i⟨ω,x− y⟩) dω = k(0) · Eω∼p [ξω(x)ξω(y)

∗].

3

Under review as a conference paper at ICLR 2023

Since both the probability distribution p(ω) and the kernel k(x − y) are real, the integral is un-
changed when we replace the exponential with a cosine. Rahimi et al. (2007) leveraged this to
produce real-valued features by setting zω,b(x) =

√
2 cos(⟨ω,x⟩ + b), arriving at a real-valued

mapping that satisfies the condition Ew∼p,b∼Unif[0,2π] [zω,b(x)zω,b(y)] = k(x− y). Rahimi et al.
(2007) approximated functions such as Gaussian, Laplacian and Cauchy kernels with this technique.

Laplace-Beltrami operator (Hyperbolic). The Laplace-Beltrami operator L is the generalization
of the Laplace operator to Riemannian manifolds, defined as the divergence of the gradient for any
twice-differentiable real-valued function f , i.e., Lf = ∇ · ∇f . In the n-dimensional Poincaré disk
model Bn, the Laplace-Beltrami operator takes the form (Agmon, 1987)

L = 1
4 (1− ∥x∥2)2

∑n
i=1

∂2

∂x2
i
+ n−2

2 (1− ∥x∥2)
∑n

i=1 xi
∂

∂xi
.

O w

x

ξ(w, x)

⟨w, x⟩

Figure 1: Euclidean hyperplane.

Just as in the Euclidean case, the eigenfunctions of L in hyper-
bolic space can be derived by solving the Helmholtz equation.
We might hope to find analogs of the “plane waves” in hyper-
bolic space that are eigenfunctions of L. One way to approach
this is via a geometric interpretation of plane waves.

ξ(w, z)

w

z

O
⟨w, z⟩

Figure 2: Hyperbolic horocycle.

In the Euclidean case, for unit vector ω and scalar λ, f(x) =
exp(iλ⟨ω,x⟩) is called a “plane wave” because it is constant on
each hyperplane perpendicular to ω. We can interpret ⟨ω,x⟩ as
the signed distance from the origin O to the hyperplane ξ(ω,x)
which contains x and is perpendicular to w (Figure 1).

In the Poincaré ball model of hyperbolic space, the geometric
analog of the hyperplane is the horocycle. For any z ∈ Bn

and unit vector ω (i.e., ω ∈ ∂Bn), the horocycle ξ(ω, z) is
the Euclidean circle that passes through ω, z and is tangent
to the boundary ∂Bn at ω, as indicated in Figure 2. We let
⟨ω, z⟩H denote the signed hyperbolic distance from the origin
O to the the horocycle ξ(ω, z). In the Poincaré ball model, this takes the form ⟨ω, z⟩H =
log((1−∥z∥2)/∥z−ω∥2). If we define the “hyperbolic plane waves” exp(µ⟨ω, z⟩H), where µ ∈ C.
Unsurprisingly, they are indeed eigenfunctions of the hyperbolic Laplacian (Agmon, 1987).

L exp(µ⟨ω, z⟩H) = µ(µ− n+ 1)e(µ⟨ω, z⟩H).

Since we are interested in finding real eigenfunctions (via the same exp-to-cosine trick used in
Rahimi et al. (2007)), we restrict our attention to µ that yield a real eigenvalue. This happens when
µ = n−1

2 + iλ for real λ, in which case the eigenvalue is µ(µ−n+1) = −λ2− (n− 1)2/4. Just as
the Euclidean plane waves exp(i⟨ω,x⟩) span the eigenspaces of the Euclidean Laplacian, the same
result holds for these “hyperbolic plane waves” (Theorem A.2).

4 HYLA: EUCLIDEAN FEATURES FROM HYPERBOLIC EMBEDDINGS

In this section, we present HyLa, a feature mapping that can approximate an isometry-invariant
kernel over hyperbolic space Hn in the same way that the random Fourier features of Rahimi et al.
(2007) approximate any shift-invariant kernel over Rn. In place of the Euclidean plain waves, which
are the eigenfunctions of the Euclidean Laplacian, here we derive our feature extraction using the
hyperbolic plain waves, which are eigenfunctions of the hyperbolic Laplacian. Since the hyperbolic
plane wave exp((n−1

2 −iλ)⟨⟨ω,x⟩H) is an eigenfunction of the real operator L with real eigenvalue,
so will this function multiplied by any phase exp(−ib), as will its real part. Call the result of this

HyLaλ,b,ω(z) = exp
(
n−1
2 ⟨ω, z⟩H

)
cos (λ⟨ω, z⟩H + b) . (1)

This parameterization, which we call HyLa (for Hyperbolic Laplacian features), yields real-valued
eigenfunctions of the Laplace-Beltrami operator with eigenvalue −λ2−(n−1)2/4. HyLa eigenfunc-
tons have the nice property that they are bounded in almost every direction, as ⟨ω, z⟩H approaches
0 as z approaches any point on the boundary of Bn except ω. Note that HyLa eigenfunctions are
invariant to isometries of the space: any isometric transformation of HyLa yields another HyLa
eigenfunction with the same λ but a transformed ω (depending on how the isometry acts on the
boundary ∂Bn). It is easy to compute, parameterized by continuous instead of discrete parameters,

4

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7
d(x, y)

0.0

0.2

0.4

0.6

0.8

1.0

Ke
rn

el
 V

al
ue

k(x, y)
Heat Kernel

Figure 3: Visualization of the kernel k(x,y) when ρ(λ) = N (0, 0.52). (left) Distributions of
k(x,y) and the heat kernel (at temperature t = 6) in 3D hyperbolic space; (middle) k(x,O) in 2D
Poincaré disk model; (right) ⟨ϕ(x), ϕ(y)⟩ for HyLa features based on D = 1000 samples.
and are analogous to random Fourier features. Moreover, HyLa can be extended to eigenfunctions
on other manifolds (e.g. symmetric spaces) since we only use manifold properties of Hn.

We show that for any λ ∈ R, under uniform sampling of ω and b, the product
HyLaλ,b,ω(x)HyLaλ,b,ω(y) is an unbiased estimate of an isometry-invariant kernel k(x,y).
Theorem 4.1. Let ω be sampled uniformly (under the Euclidean metric) from the boundary ∂Bn

and let b be sampled uniformly from [0, 2π]. Then E [HyLaλ,b,ω(x)HyLaλ,b,ω(y)] = kλ(x,y) for
any λ ∈ R and x,y ∈ Hn, where the function kλ is an isometry-invariant kernel given by

kλ(x,y) =
1
2 · 2F1

(
n−1
2 + iλ, n−1

2 − iλ; n
2 ;

1
2 (1− cosh(dH(x,y)))

)
,

where 2F1 is the hypergeometric function, defined via analytic continuation by the power series

2F1 (a, b; c; z) =
∑∞

n=0
(a)n(b)n

(c)n
zn

n! = 1 + ab
c

z
1! +

a(a+1)b(b+1)
c(c+1)

z2

2! + · · · (|z| < 1).
Note that despite the presence of an i in the formula, this kernel is clearly real because the hyper-
geometric function satisfies the properties 2F1(a, b; c; z) = 2F1(b, a; c; z) and 2F1(a, b; c; z)

∗ =

2F1(a
∗, b∗; c∗; z∗). In practice, as with random Fourier features, instead of choosing one single λ,

we select them at random from some distribution ρ(λ). The resulting kernel will be an isometry-
invariant kernel that depends on the distribution of λ, as follows:

k(x,y) = 1
2

∫∞
−∞ 2F1

(
n−1
2 + iλ, n−1

2 − iλ; n
2 ;

1
2 (1− cosh(dH(x,y)))

)
· ρ(λ) dλ. (2)

This formula gives a way to derive the isometry-invariant kernel from a distribution ρ(λ); if we are
interested in finding a feature map for some particular kernel, we can invert this mapping to get a
distribution for λ which will produce the desired kernel.
Theorem 4.2. Suppose that k(x,y) = k(dH(x,y)) is an isometry-invariant positive semidefinite
kernel. Assume the existence of an associated density ρ(λ) with the kernel, then

ρ(λ) = λ tanh (πλ2)
∫
Bn

∫
∂Bn k(dH(z,O)) exp

(
(n−1

2 − iλ)⟨ω, z⟩H
)
dω dz.

i.e., ρ(λ) is the spherical transform of the kernel, and if we draw λ proportional to ρ, ω uniformly
on ∂Bn, and b uniformly on [0, 2π], then

k(0) · E [HyLaλ,b,ω(x)HyLaλ,b,ω(y)] = kλ(x,y) = k(x,y).

Although Theorem 4.2 lets us find a HyLa distribution for any isometric kernel, for simplicity in
this paper, because the closed-forms of many kernels in Hn are not available, rather than arriving
at a distribution via this inverse, we will instead focus on the case where ρ is a Gaussian. This
corresponds closely to a heat kernel (Grigor’yan & Noguchi, 1998), as illustrated in Figure 3 (left).

We will use HyLa eigenfunctions to produce Euclidean features from hyperbolic embeddings, using
the same random-features approach as Rahimi et al. (2007). Concretely, to map from Hn to RD,
we draw D independent samples λ1, . . . , λD from ρ, D independent samples ω1, . . . ,ωD uniform
from ∂Bn, and D independent samples b1, . . . , bD uniform from [0, 2π], and then output a feature
map ϕ the kth coordinate of which is ϕk(x) =

1√
D
HyLaλk,bk,ωk

(x). It is easy to see that this will
yield feature vectors with E [⟨ϕ(x), ϕ(y)⟩] = k(x,y) as given in Eq. 2.

We visualize the kernel k(x,O) for ρ(λ) = N (0, 0.25) in the 2-dimensional Poincarè disk in
Figure 3, evaluating the integral in Eq. 2 using Gauss–Hermite quadrature. In Figure 3 (right), we
sample random HyLa features with D = 1000 and plot ⟨ϕ(x), ϕ(O)⟩. Visibly, the HyLa features
approximate the kernel well. A discussion of the estimation error is provided in Appendix B.

Connection to Euclidean Activation. There is a close connection between the HyLa eigenfunction
and the Euclidean activations used in Euclidean fully connected networks. Given a data point x ∈
Rn, a weight ω ∈ Rn, a bias b ∈ R and nonlinearity σ, a Euclidean DNN activation can be

5

Under review as a conference paper at ICLR 2023

written as σ(⟨ω,x⟩ + b) = σ(∥ω∥⟨ ω
∥ω∥ ,x⟩ + b). In hyperbolic space, for z ∈ Bn, ω ∈ ∂Bn,

λ ∈ R, b ∈ R and σ = cos, we can reformulate the HyLa eigenfunction as HyLaλ,b,ω(z) =

σ (λ⟨ω, z⟩H + b) exp
(
n−1
2 ⟨ω, z⟩H

)
, HyLa generalizes Euclidean activations to hyperbolic space,

with an extra factor exp
(
n−1
2 ⟨ω, z⟩H

)
from the curvature of Hn.

From a functional perspective, any f ∈ L2(Hn) can be expanded as an infinite linear combination
(integral form) of HyLa (Theorem 4.3 in Sonoda et al. (2022)). This statement holds whenever
the non-linearity σ is a tempered distribution on R, i.e., the topological dual of the Schwartz test
functions, including ReLU and cos. Though the features will not approximate a kernel on hyperbolic
space if σ ̸= cos, this suggests variants of HyLa with other nonlinearities may be interesting to study.

5 HYLA FOR GRAPH LEARNING

In this section, we show how to use HyLa to encode geometric priors for end-to-end graph learning.

Background on Graph Learning. A graph is defined formally as G = (V,A), where V represents
the vertex set consisting of n nodes and A ∈ Rn×n represents the symmetric adjacency matrix. Be-
sides the graph structure, each node in the graph has a corresponding d-dimensional feature vector:
we let X ∈ Rn×d denote the entire feature matrix for all nodes. A fraction of nodes are associated
with a label indicating one (or multiple) categories it belongs to. The node classification task is to
predict the labels of nodes without labels or even of nodes newly added to the graph.

An important class of Euclidean graph learning model is the graph convolutional neural network
(GCN) (Kipf & Welling, 2016; Defferrard et al., 2016). The GCN is widely used in graph tasks
including semi-supervised learning for node classification, supervised learning for graph-level clas-
sification, and unsupervised learning for graph embedding. Many complex graph networks and
GCN variants have been developed, such as the graph attention networks (GAT, Veličković et al.
(2017)), FastGCN (Chen et al., 2018), GraphSage (Hamilton et al., 2017), and others (Velickovic
et al., 2019; Xu et al., 2018). An interesting work to understand GCN is simplifying GCN (SGC,
Wu et al. (2019)): a linear model derived by removing the non-linearities in a K-layer GCN as:
f(A,X) = softmax(SKXW), where S is the “normalized” adjacency matrix with added self-
loops and W is the trainable weight. Note that the pre-processed features SKX can be computed
before training, which enables large graph learning and greatly saves memory and computation cost.

End-to-End Learning with HyLa. We propose a feature-extracted architecture via the following
recipe: embed the data objects (graph nodes or features, detailed below) into some space (e.g.,
Euclidean or hyperbolic), map the embedding to Euclidean features X via the kernel transformation
(e.g., RFF or HyLa), and finally apply an Euclidean graph learning model f(A,X). This recipe only
manipulates the input of the graph learning model and hence, this architecture can be used with any
graph learning model. The graph model and the hyperbolic embedding are learned simultaneously
with backpropagation. In theory, the embedding space can be any desired space, just use the same
Laplacian recipe to construct features. Below we only show the pipeline for hyperbolic space, while
we also include Euclidean space (with random Fourier features) as a baseline in our experiments.

Algorithm 1 End-to-End HyLa
input: n objects, Poincaré disk Bd0 , HyLa feature
dimension d1, adjacency matrix A, node feature ma-
trix X, graph neural network f
initialize Z ∈ Rn×d0 {hyperbolic embeddings}
sample boundary pts matrix Ω ∈ Rd1×d0 , eigenval-
ues Λ ∈ Rn×d1 and biases B ∈ Rn×d1

compute P=⟨Ω,Z⟩H∈Rn×d1{Horocycle distance}
compute X=exp

(
n−1
2 P

)
cos(Λ ·P+B) {HyLa}

if embedding features: X = XX ∈ Rn×d1

return Y = f(A,X) {e.g., SGC}

Directly Embed Graph Nodes. We em-
bed each node into a low dimensional hy-
perbolic space Bd0 as hyperbolic embed-
ding Z ∈ Rn×d0 for all nodes in the graph,
which can be either a pretrained fixed em-
bedding or as parameters learnt together
with the subsequent graph learning model
during training time. To compute with
the HyLa eigenfunctions, first sample d1
points uniformly from the boundary ∂Bd0

to get Ω ∈ Rd1×d0 , then sample d1
eigenvalues and biases separately from
N (0, s2) and Uniform([0, 2π]) to get Λ,B ∈ Rd1 , where s is a scale constant. The resulting feature
matrix (X ∈ Rn×d1) computation follows; please refer to Algorithm 1 for a detailed breakdown.
The mapped features X are then fed into the chosen graph learning model f(A,X) for prediction.

6

Under review as a conference paper at ICLR 2023

Embed Features. One can also embed the given features into hyperbolic space so as to derive the
node features implicitly. Specifically, when a node feature matrix X ∈ Rn×d is given, we initialize
a hyperbolic embedding for each of the d dimensions to derive hyperbolic embeddings Z ∈ Rd×d0 .
The Euclidean features X can be computed in the same manner following Algorithm 1. However,
to get the new node feature matrix, an extra aggregation step X = XX ∈ Rn×d1 is required before
fedding into a graph learning model.

Embedding graph nodes is better-suited for tasks where no feature matrix is available or meaning-
ful features are hard to derive. However, the size of the embedding Z will be proportional to the
graph size, hence it may not scale to very large graphs due to memory and computation constraints.
Furthermore, this method can only be used in a transductive setting, where nodes in the test set are
seen during training. In comparison, embedding features can be used even for large graphs since the
dimension d of the original feature matrix is usually fixed and much lower than the number of nodes
n. Note that as the hyperbolic embeddings are built for each feature dimension, they can be used in
both transductive and inductive settings, as long as the test data shares the same set of features as
the training data. One limitation is that its performance depends on the existence of a feature matrix
X that contains sufficient information for learning.

Any graph learning model can be used in the proposed feature-extracted architecture. In our ex-
periments, we focus primarily on the simple linear graph network SGC, which takes the form
f(A,X) = softmax(AKXW) with a trainable weight matrix W. Note that just as the vanilla
SGC case, AK or AKX can be pre-computed in the same way before training and inference. For
the purpose of end-to-end learning, we jointly learn the embedding parameter Z and weight W in
SGC during the training time. It’s also possible to adopt a two-step approach, i.e., first pretrain a hy-
perbolic embedding following (Nickel & Kiela, 2017; 2018; Sala et al., 2018; Sonthalia & Gilbert,
2020; Chami et al., 2019), then fix the embedding and train the graph learning model only. We defer
this discussion to Appendix D due to page limit.

6 EXPERIMENTS

6.1 NODE CLASSIFICATION

Task and Datasets. The goal of this task is to classify each node into a correct category. We use
transductive datasets: Cora, Citeseer and Pubmed (Sen et al., 2008), which are standard citation net-
works benchmarks, following the standard splits adopted in Kipf & Welling (2016). We also include
datasets adopted in HGCN (Chami et al., 2019) for comparison: disease propagation tree and Air-
port. Yhe former contains tree networks simulating the SIR disease spreading model (Anderson &
May, 1992), while the latter contains airline routes between airports from OpenFlights. To measure
scalability, we supplement our experiment by predicting community structure on a large inductive
dataset Reddit following Wu et al. (2019). More experimental details are provided in Appendix E.

Experiment Setup. Since all datasets contain node features, we choose to embed features most of
the time, since it applies to both small and large graphs, and transductive and inductive tasks. The
only exception is the Airport dataset, which contains only 4 dimensional features—here, we use
HyLa/RFF after embedding the graph nodes to produce better features X. We then use SGC model
as softmax(AKXW), where both W and Z are jointly learned.

Baselines. On Disease, Airport, Pubmed, Citeseer and Cora dataset, we compare our HyLa/RFF-
SGC model against both Euclidean models (GCN, SGC and GAT) and Hypebolic models (HGCN,
LGCN and HNN) using their publicly released version in Table 1, where all hyperbolic models
adopt a 16-dimensional hyperbolic space for consistency and a fair comparison. For the largest
Reddit dataset, a 50-dimensional hyperbolic space is used. We also compare against the reported
performance of supervised and unsupervised variants of GraphSAGE and FastGCN in Table 1. Note
that GCN-based models (e.g., HGCN, LGCN) could not be trained on Reddit because its adjacency
matrix is too large to fit in memory, unless a sampling way is used for training. Worthy to mention,
despite of the fact that standard Euclidean GCN literature (Kipf & Welling, 2016; Wu et al., 2019)
train the model for 100 epochs on the node classification task, most hyperbolic (graph) networks in-
cluding HGCN, LGCN, GIL1 report results of training for (5-)thousand epochs with early stopping.

1We cannot replicate results of GIL from their public code.

7

Under review as a conference paper at ICLR 2023

Table 1: Test accuracy/Micro F1 Score (%) averaged over 10 runs on node classification task.
Performance of some baselines are taken from their original papers. OOM: Out of memory.

Dataset Disease Airport Pubmed Citeseer Cora
Hyperbolicity δ 0 1.0 3.5 5.0 11

GCN 69.7± 0.4 81.4± 0.6 78.1± 0.2 70.5± 0.8 81.3± 0.3
SGC 69.5± 0.2 80.6± 0.1 78.9± 0.0 71.9± 0.1 81.0± 0.0
GAT 70.4± 0.4 81.5± 0.3 79.0± 0.3 72.5± 0.7 83.0± 0.7
HGCN 74.5± 0.9 90.6± 0.2 80.3± 0.3 64.0± 0.6 79.9± 0.2
LGCN 81.3± 4.0 57.6± 0.7 77.8± 0.7 65.9± 0.8 78.0± 0.6
HNN 41.0± 1.8 80.5± 0.5 69.8± 0.4 52.0± 1.0 54.6± 0.4
RFF-SGC 83.4± 1.9 94.8± 0.8 77.6± 0.1 71.3± 0.6 81.6± 0.4
HyLa-SGC 86.8± 2.1 95.2± 0.5 80.3± 0.9 72.6± 1.0 82.5± 0.5

Model Test F1

GCN OOM
HGCN OOM
LGCN OOM
SAGE-mean 95.0
SAGE-GCN 93.0
FastGCN 93.7
SGC 94.9
RFF-SGC 93.9
HyLa-SGC 94.5

60 40 20 0 20 40
t-SNE-x

60

40

20

0

20

40

t-S
NE

-y

60 40 20 0 20 40 60 80
t-SNE-x

60

40

20

0

20

40

60

t-S
NE

-y

20 0 20 40 60 80
1st Principal Direction

4

2

0

2

4

6

2n
d

Pr
in

cip
al

 D
ire

ct
io

n

Figure 4: Visualization of node HyLa features on Cora, Airport and Disease datasets, where nodes of
different classes are indicated by different colors. (left) t-SNE on Cora; (middle) t-SNE on Airport;
(right) PCA on Disease.

For a fair comparison, we train all models for a maximum of 100 epochs with early stopping, except
from HGCN2, whose results were taken from the original paper trained for 5,000 epochs.

Analysis. Our feature-extracted architecture is particularly strong and expressive to encode geomet-
ric priors for graph learning from Table 1. Together with SGC, HyLa-SGC outperforms state-of-
the-art hyperbolic models on nearly all datasets. In particular, HyLa-SGC beats not only Euclidean
SGC/GCN, but also an attention model GAT, except on the Cora dataset with a comparable perfor-
mance. For the tree network disease with lowest hyperbolicity (more hyperbolic), the improvements
of HyLa-SGC over HGCN is about 12.3%! The results suggest that the more hyperbolic the graph is,
the more improvements will be gained with HyLa. On Reddit, HyLa-SGC outperforms sampling-
based GCN variants, SAGE-GCN and FastGCN by more than 1%. However, the performance is
close to SGC, which may indicate that the extra weights and nonlinearities are unnecessary for this
particular dataset. Notably, RFF-SGC, embedding into Euclidean space and using RFF, sometimes
can be better than GCN/SGC, while HyLa-SGC is consistently bettter than RFF-SGC.

Visualization. In Figure 4, we visualize the learned node Euclidean features using HyLa on Cora,
Airport and Disease datasets with t-SNE (Van der Maaten & Hinton, 2008) and PCA projection.
This shows that HyLa achieves great label class separation (indicated by different colors).

6.2 TEXT CLASSIFICATION

Task and Datsets. We further evaluate HyLa on transductive and inductive text classification task
to assign documents labels. We conducted experiments on 4 standard benchmarks including R52
and R8 of Reuters 21578 dataset, Ohsumed and Movie Review (MR) follows the same data split as
Yao et al. (2019); Wu et al. (2019). Detailed dataset statistics are provided in Table 4.

Experiment Setup. In the transductive case, previous work Yao et al. (2019) and Wu et al. (2019)
apply GCN and SGC by creating a corpus-level graph where both documents and words are treated
as nodes in the graph. For weights and connections in the graph, word-word edge weights are
calculated as pointwise mutual information (PMI) and word-document edge weights as normalized
TF-IDF scores. The weights of document-document edges are unknown and left as 0. We follows
the same data processing setup for the transductive setting, and embed the whole graph since only
the adjacent matrix is available. In the inductive setting, we take the sub-matrix of the large matrix in

2HGCN requires pretraining embeddings from a link prediction task to achieve reported results on node
classification task for Pubmed and Cora.

8

Under review as a conference paper at ICLR 2023

Table 2: Test accuracy (%) averaged over 10 runs on transductive and inductive text classification
task except from the LR mode. Bold numbers: best in both transductive and inductive setting;
Underlined numbers: best in inductive setting.

Setting Methods R8 R52 Ohsumed MR

Trans-
ductive

TextGCN 97.1± 0.1 93.5± 0.2 68.4± 0.6 76.7± 0.2
TextSGC 97.2± 0.1 94.0± 0.2 68.5± 0.3 75.9± 0.3
RFF-SGC 96.5± 0.3 94.0± 0.5 67.2± 0.4 73.1± 0.4
HyLa-SGC 96.9± 0.4 94.1± 0.3 67.3± 0.5 76.2± 0.3

Inductive
TextGCN 95.8± 0.3 88.2± 0.7 57.7± 0.4 74.8± 0.3

LR 93.3 85.6 56.6 73.0
HyLa-LR 97.4± 0.2 93.5± 0.2 64.9± 0.3 75.5± 0.3
RFF-LR 97.0± 0.4 92.2± 0.2 61.6± 0.3 76.0± 0.3

the transductive setting, including only the document-word edges as the node representation feature
matrix X, then follow the procedure in Section 5 to embed features and apply HyLa/RFF to get X.
Since the adjacency matrix of documents is unknown, we replace SGC with a logistic regression
(LR) formalized as Y = softmax(XW). We train all models for a maximum of 200 epochs and
compare it against TextSGC and TextGCN in Table 2.

Performance Analysis. In the transductive setting, HyLa-based models can match the performance
of TextGCN and TextSGC. The corpus-level graph may contain sufficient information to learn the
task, and hence HyLa-SGC does not seem to outperform baselines, but still has a comparable per-
formance. HyLa shows extraordinary performance in the inductive setting, where less information
is used compared to the (transductive) node level case, i.e. a submatrix of corpus-level graph. With
a linear regression model, it can already outperform inductive TextGCN, sometimes even better than
the performance of a transductive TextGCN model, which indicates that there is indeed redundant
information in the corpus-level graph. From the results on the inductive text classification task, we
argue that HyLa (with features embedding) is particularly useful in the following three ways. First,
it can solve the OOM problem of classic GCN model in large graphs, and requires less memory
during training, since there are limited number of lower level features (also X is usually sparse), and
there is no need to build a corpus-level graph anymore. Second, it is naturally inductive as HyLa is
built at feature level (for each word in this task), it generalizes to any unseen new nodes (documents)
that uses the same set of words. Third, the model is simple: HyLa follows by a linear regression
model, which computes faster than classical GCN models.

0 5 10 15 20 25 30 35 40

relative training time

70

72

74

76

78

80

82

te
st

 a
cc

ur
ac

y
(%

) SGC
1 ×

GCN
3.4 ×

GAT
33.8 ×

HNN
6.6 ×

HGCN
41.7 ×

LGCN
29.5 ×

HyLa-SGC
9.5 ×

Figure 5: Performance over training time on
Pubmed. HyLa-SGC achieves best performance
with minor computation slowdown.

Efficiency. Following Wu et al. (2019), we
measure the training time of HyLa-based mod-
els on the Pubmed dataset, and we compare
against both Euclidean models (SGC, GCN,
GAT) and Hyperbolic models (HGCN, HNN).
In Figure 5, we plot the timing performance
of various models, taking into account the pre-
computation time of the models into train-
ing time. We measure the training time on
a NVIDIA GeForce RTX 2080 Ti GPU and
show the specific timing statistics in Appendix.
HyLa-based models achieve the best perfor-
mance while incurring a minor computational slowdown, which is 4.4× faster than HGCN.

7 CONCLUSION

We propose a simple and efficient approach to using hyperbolic space in neural networks, by deriv-
ing HyLa as an expressive feature using the Laplacian eigenfunctions. Empirical results on graph
learning tasks show that HyLa can outperform SOTA hyperbolic networks. HyLa sheds light as a
principled approach to utilizing hyperbolic geometry in an entirely different way to previous work.
Possible future directions include (1) using HyLa with non-linear graph networks such as GCN to
derive even more expressive models; and (2) adopting more numerically stable representations of
the hyperbolic embeddings to avoid potential “NaN problems” when learning with HyLa.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Shmuel Agmon. On the spectral theory of the laplacian on noncompact hyperbolic manifolds.
Journées Équations aux dérivées partielles, pp. 1–16, 1987.

Roy M Anderson and Robert M May. Infectious diseases of humans: dynamics and control. Oxford
university press, 1992.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, 2013.

Brian H Bowditch. A course on geometric group theory. 2006.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. Advances in neural information processing systems, 32:4868–4879, 2019.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Wei Chen, Wenjie Fang, Guangda Hu, and Michael W Mahoney. On the hyperbolicity of small-
world and treelike random graphs. Internet Mathematics, 9(4):434–491, 2013.

Eli Chien, Puoya Tabaghi, and Olgica Milenkovic. Hyperaid: Denoising in hyperbolic spaces for
tree-fitting and hierarchical clustering. arXiv preprint arXiv:2205.09721, 2022.

Hyunghoon Cho, Benjamin DeMeo, Jian Peng, and Bonnie Berger. Large-margin classification in
hyperbolic space. In The 22nd international conference on artificial intelligence and statistics,
pp. 1832–1840. PMLR, 2019.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29:3844–3852, 2016.

Pengfei Fang, Mehrtash Harandi, and Lars Petersson. Kernel methods in hyperbolic spaces. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10665–10674,
2021.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. arXiv
preprint arXiv:1805.09112, 2018.

David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second order, volume
224. springer, 2015.

Alexander Grigor’yan and Masakazu Noguchi. The heat kernel on hyperbolic space. Bulletin of the
London Mathematical Society, 30(6):643–650, 1998.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al. Hyperbolic attention
networks. arXiv preprint arXiv:1805.09786, 2018.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Sigurdur Helgason. Groups and geometric analysis: integral geometry, invariant differential oper-
ators, and spherical functions, volume 83. American Mathematical Society, 2022.

Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network
analysis. Journal of the american Statistical association, 97(460):1090–1098, 2002.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
et al. A study of bfloat16 for deep learning training. arXiv preprint arXiv:1905.12322, 2019.

10

Under review as a conference paper at ICLR 2023

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. arXiv preprint
arXiv:1910.12892, 2019.

Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota Tomioka, and Yee Whye Teh. Con-
tinuous hierarchical representations with poincaré variational auto-encoders. Advances in neural
information processing systems, 32, 2019.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
tions. Advances in neural information processing systems, 30:6338–6347, 2017.

Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In International Conference on Machine Learning, pp. 3779–3788. PMLR,
2018.

Ali Rahimi, Benjamin Recht, et al. Random features for large-scale kernel machines. In NIPS,
volume 3, pp. 5. Citeseer, 2007.

Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in complex networks. Phys-
ical review E, 67(2):026112, 2003.

Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and
visualization. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Walter Rudin. Fourier analysis on groups. Courier Dover Publications, 2017.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
embeddings. In International conference on machine learning, pp. 4460–4469. PMLR, 2018.

Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina
Eliassi-Rad. Collective classification in network data. AI Magazine, 29(3):93–106, 2008.

Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. arXiv
preprint arXiv:2006.08210, 2020.

Sho Sonoda, Isao Ishikawa, and Masahiro Ikeda. Fully-connected network on noncompact
symmetric space and ridgelet transform based on helgason-fourier analysis. arXiv preprint
arXiv:2203.01631, 2022.

Rishi Sonthalia and Anna Gilbert. Tree! i am no tree! i am a low dimensional hyperbolic embedding.
Advances in Neural Information Processing Systems, 33:845–856, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. ICLR (Poster), 2(3):4, 2019.

Ming-Xi Wang. Laplacian eigenspaces, horocycles and neuron models on hyperbolic spaces. 2020.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

11

Under review as a conference paper at ICLR 2023

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 7370–7377, 2019.

Tao Yu and Chris De Sa. Numerically accurate hyperbolic embeddings using tiling-based models.
Advances in neural information processing systems, 2019.

Tao Yu and Christopher M De Sa. Representing hyperbolic space accurately using multi-component
floats. Advances in Neural Information Processing Systems, 34, 2021.

Tao Yu, Went Guo, Jianan Canal Li, Tiancheng Yuan, and Christopher De Sa. Mctensor:
A high-precision deep learning library with multi-component floating-point. arXiv preprint
arXiv:2207.08867, 2022.

Steve Zelditch. Eigenfunctions of the Laplacian on a Riemannian manifold, volume 125. American
Mathematical Soc., 2017.

Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Fanny Ye. Hyperbolic graph
attention network. IEEE Transactions on Big Data, 2021a.

Yiding Zhang, Xiao Wang, Chuan Shi, Nian Liu, and Guojie Song. Lorentzian graph convolutional
networks. In Proceedings of the Web Conference 2021, pp. 1249–1261, 2021b.

Shichao Zhu, Shirui Pan, Chuan Zhou, Jia Wu, Yanan Cao, and Bin Wang. Graph geometry inter-
action learning. Advances in Neural Information Processing Systems, 33:7548–7558, 2020.

12

Under review as a conference paper at ICLR 2023

A THEOREMS

Theorem A.1 (Helgason (2022); Zelditch (2017)). All smooth eigenfunctions of the Euclidean
Laplacian ∆ on Rn are

f(x) =
∫
Sn−1 e

iλ⟨ω,x⟩dT (ω),

where λ ∈ C − {0} and T is an analytic functional (or hyperfunction), i.e., an element of the dual
space of the space of analytic functions on Sn−1.
Theorem A.2 (Helgason (2022); Zelditch (2017)). All smooth eigenfunctions of the Hyperbolic
Laplacian L on Bn are

f(z) =
∫
∂Bn exp((iλ+ n−1

2)⟨ω, z⟩H) dT (ω),

where λ ∈ C and T is an analytic functional (or hyperfunction).
Lemma A.3 (Expression of k(x,O)). Denote ζλ,ω(z) = exp

(
(n−1

2 + iλ)⟨ω, z⟩H
)
, then the cor-

responding kernel kλ(x,O) for a particular value of λ defined as

kλ(x,O) = E [HyLaλ,b,ω(x)HyLaλ,b,ω(y)] =
1

2
· E
ω
[ζλ,ω(O)∗ζλ,ω(x)] =

1

2
· E
ω
[ζλ,ω(x)] (3)

takes the form

kλ(x,O) =
1

2
· 2F1

(
n− 1

2
+ iλ,

n− 1

2
− iλ;

n

2
;
1

2
(1− cosh(dH(x,O)))

)
,

where the expectation in Equation 3 is taken over ω drawn uniformly from the n-dimensional unit
sphere.

Proof. Recall that for x in the n-dimensional Poincare ball Bn and ω ∈ ∂Bn,

⟨ω,x⟩H = log

(
1− ∥x∥2

∥x− ω∥2

)
.

Let γ = n−1
2 + iλ, expanding Equation 3 out,

kλ(x,O) =
1

2
· E
ω

[
exp

(
γ log

(
1− ∥x∥2

∥x− ω∥2

))]

=
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

))
E
ω

[
exp

(
γ log

(
1 + ∥x∥2

∥x− ω∥2

))]

=
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

))
E
ω

(∥x− ω∥2

1 + ∥x∥2

)−γ

=
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

))
E
ω

(∥x∥2 − 2ωTx+ ∥ω∥2

1 + ∥x∥2

)−γ
 ,

and if we let

u =
−2 ∥x∥
1 + ∥x∥2

,

and let x̂ denote the unit vector in the direction of x, then this becomes

kλ(x,O) =
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

))
E
ω

[(
1 + ux̂Tω

)−γ
]
.

Expanding this out using the Binomial Formula (which is valid here because |u| < 1), we get

kλ(x,O) =
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

))
E
ω

[∞∑
k=0

(
−γ

k

)
uk
(
x̂Tω

)k]

=
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

)) ∞∑
k=0

(
−γ

k

)
uk E

ω

[(
x̂Tω

)k]
.

13

Under review as a conference paper at ICLR 2023

Since this expected value is 0 for odd k, this becomes

kλ(x,O) =
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

)) ∞∑
k=0

(
−γ

2k

)
u2k E

ω

[(
x̂Tω

)2k]
.

But x̂Tω has the same the distribution as the inner product of two uniform random unit vectors in n
dimensions. The square of this is well known to be Beta-distributed with parameters (12 ,

n−1
2). So

we can write this as

kλ(x,O) =
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

)) ∞∑
k=0

(
−γ

2k

)
u2k E

w

[
wk
]
,

where w ∼ Beta(12 ,
n−1
2). Of course, the moments of the Beta distribution are well-known to be

E
w

[
wk
]
=

(
1
2

)(k)(
n
2

)(k) ,
where x(k) denotes the Pochhammer symbol representing the rising factorial. On the other hand,(

−γ

2k

)
=

(−γ)(2k)

(2k)!

where x(k) denotes the Pochhammer symbol representing the falling factorial. Since x(k) =

(−1)k(−x)(k), we can write this in terms of rising factorials as(
−γ

2k

)
=

(γ)(2k)

(2k)!
.

So substituting everything in, we have

kλ(x,O) =
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

)) ∞∑
k=0

(γ)(2k)

(2k)!
· u2k ·

(
1
2

)(k)(
n
2

)(k) .
Next, observe that(

1

2

)(k)

=

k−1∏
m=0

(
1

2
+m

)
= 2−k

k−1∏
m=0

(2m+ 1) = 4−k · (2k)!
k!

.

So this becomes

kλ(x,O) =
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

)) ∞∑
k=0

(γ)(2k)

k!
· u2k · 4−k · 1(

n
2

)(k) .
Next, we leverage the famous identity that

γ(2k) = 4k
(γ
2

)(k)(γ + 1

2

)(k)

to get

kλ(x,O) =
1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

)) ∞∑
k=0

1

k!
·
(γ
2

)(k)
·
(
γ + 1

2

)(k)

· u2k · 1(
n
2

)(k)
=

1

2
· exp

(
γ log

(
1− ∥x∥2

1 + ∥x∥2

))
· 2F1

(
γ + 1

2
;
γ

2
;
n

2
;u2

)
.

Since

u2 =
4 ∥x∥2

1 + 2 ∥x∥2 + ∥x∥4
,

14

Under review as a conference paper at ICLR 2023

it follows that

1− u2 =
1− 2 ∥x∥2 + ∥x∥4

1 + 2 ∥x∥2 + ∥x∥4
=

(
1− ∥x∥2

1 + ∥x∥2

)2

and √
1− u2 − 1

2
√
1− u2

=
−∥x∥2

1− ∥x∥2
.

Recall the classic formula (https://functions.wolfram.com/
HypergeometricFunctions/Hypergeometric2F1/17/ShowAll.html) that

2F1

(
a, a+

1

2
; c; z

)
= (1− z)

−a
2F1

(
2a, 2c− 2a− 1; c;

√
1− z − 1

2
√
1− z

)
.

Substituting z = u2, a = γ
2 , and c = n

2 yields

kλ(x,O) =
1

2
· 2F1

(
γ, n− γ − 1;

n

2
;
−∥x∥2

1− ∥x∥2

)

=
1

2
· 2F1

(
n− 1

2
+ iλ,

n− 1

2
− iλ;

n

2
;
−∥x∥2

1− ∥x∥2

)
.

Therefore,

−∥x∥2

1− ∥x∥2
=

− tanh2(D/2)

1− tanh2(D/2)
=

− tanh2(D/2)

sech2(D/2)
= − sinh2(D/2) =

1

2
(1− cosh(D)) ,

where D = dH(x,O). So we get a final expression

kλ(x,O) =
1

2
· 2F1

(
n− 1

2
+ iλ,

n− 1

2
− iλ;

n

2
;
1

2
(1− cosh(dH(x,O)))

)
.

The proof is done here. We further make a remark here. Recall that for the Poincaré ball model,

d(x,O) = 2 log

 ∥x∥+ 1√
1− ∥x∥2

= log

(
(∥x∥+ 1)

2

1− ∥x∥2

)

= log

(
1 + ∥x∥
1− ∥x∥

)
= 2artanh(∥x∥).

Therefore,

log

(
1− ∥x∥2

1 + ∥x∥2

)
= log

(
1− tanh2(D/2)

1 + tanh2(D/2)

)
= log

(
sech2(D/2)

1 + tanh2(D/2)

)
= log

(
1

sinh2(D/2) + cosh2(D/2)

)
= log

(
1

sinh2(D/2) + cosh2(D/2)

)
= − log (cosh(D)) .

And on the other hand,

u =
−2 tanh(D/2)

1 + tanh2(D/2)
= tanh(D).

15

https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/17/ShowAll.html
https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/17/ShowAll.html

Under review as a conference paper at ICLR 2023

then we can also write the kernel as

kλ(x,O) =
1

2
· exp

(
−
(
n− 1

2
+ iλ

)
log (cosh(D))

)
· 2F1

(
n+ 1

4
+ i

λ

2
,
n− 1

4
+ i

λ

2
;
n

2
; tanh(D)2

)
,

where D = dH(x,O).

Lemma A.4 (Isometry-invariance). The kernel defined by

kλ(x,y) =
1

2
·E
ω
[ζλ,ω(x)

∗ζλ,ω(y)] =
1

2
·E
ω

[
exp

(
(
n− 1

2
− iλ)⟨x,ω⟩H + (

n− 1

2
+ iλ)⟨y,ω⟩H

)]
is isometry-invariant.

Proof. Let g be any isometry of the space, then observe the geometric identity (Helgason, 2022):

⟨g ◦ x, g ◦ ω⟩ = ⟨x,ω⟩+ ⟨g ◦O, g ◦ ω⟩. (4)

Take ω = g−1 ◦ ω in Equation 4, it follows that

⟨g ◦ x,ω⟩ = ⟨x, g−1 ◦ ω⟩+ ⟨g ◦O,ω⟩.

Take x = g−1 ◦O in Equation 4, it follows that

0 = ⟨O,ω⟩ = ⟨g−1 ◦O,ω⟩+ ⟨g ◦O, g ◦ ω⟩,

i.e.,
⟨g−1 ◦O,ω⟩ = −⟨g ◦O, g ◦ ω⟩,

replace g−1 with g, then
⟨g ◦O,ω⟩ = −⟨g−1 ◦O, g−1 ◦ ω⟩.

By definition,

kλ(x,y) =
1

2
· E
ω

[
exp

(
(
n− 1

2
− iλ)⟨x,ω⟩H + (

n− 1

2
+ iλ)⟨y,ω⟩H

)]
. (5)

Now assume, g ◦ y = O, then consider

kλ(g ◦ x,O) =
1

2
· E
ω
[ζλ,ω(g ◦ x)∗ζλ,ω(O)] =

1

2
· E
ω
[ζλ,ω(g ◦ x)∗]

=
1

2
· E
ω

[
exp

((
n− 1

2
− iλ

)
⟨g ◦ x,ω⟩

)]
=

1

2
· E
ω

[
exp

((
n− 1

2
− iλ

)(
⟨x, g−1 ◦ ω⟩+ ⟨g ◦O,ω⟩

))]
=

1

2
· E
ω

[
exp

((
n− 1

2
− iλ

)(
⟨x, g−1 ◦ ω⟩ − ⟨g−1 ◦O, g−1 ◦ ω⟩

))]
=

1

2
· E
ω

[
exp

((
n− 1

2
− iλ

)(
⟨x, g−1 ◦ ω⟩ − ⟨y, g−1 ◦ ω⟩

))]
=

1

2
·
∫
Sn−1

exp

((
n− 1

2
− iλ

)(
⟨x, g−1 ◦ ω⟩ − ⟨y, g−1 ◦ ω⟩

))
ρ1(ω)dω,

where ρ1(ω) is a uniform distribution over the sphere, use ω̂ = g−1 ◦ ω as a change of variable,
then

kλ(g ◦ x,O) =

∫
Sn−1

exp

((
n− 1

2
− iλ

)(
⟨x, g−1 ◦ ω⟩ − ⟨y, g−1 ◦ ω⟩

))
ρ1(ω)dω

=

∫
Sn−1

exp

((
n− 1

2
− iλ

)
(⟨x, ω̂⟩ − ⟨y, ω̂⟩)

)
ρ1(g ◦ ω̂)d(g ◦ ω̂).

We claim that the mapping g acts on the boundary with the Jacobian given by

d(g ◦ ω̂)

d(ω̂)
=

1

2
· exp((n− 1) · ⟨g−1 ◦O, ω̂⟩) = 1

2
·

(
1−

∥∥g−1 ◦O
∥∥2

∥g−1 ◦O − ω̂∥2

)n−1

, (6)

16

Under review as a conference paper at ICLR 2023

then

kλ(g ◦ x,O) =
1

2
·
∫
Sn−1

exp

((
n− 1

2
− iλ

)
(⟨x, ω̂⟩ − ⟨y, ω̂⟩)

)
ρ1(g ◦ ω̂)d(g ◦ ω̂)

=
1

2
·
∫
Sn−1

exp

((
n− 1

2
− iλ

)
(⟨x, ω̂⟩ − ⟨y, ω̂⟩)

)
ρ1(g ◦ ω̂) exp((n− 1) · ⟨g−1 ◦O, ω̂⟩)d(ω̂)

=
1

2
·
∫
Sn−1

exp

((
n− 1

2
− iλ

)
(⟨x, ω̂⟩ − ⟨y, ω̂⟩) + (n− 1) · ⟨y, ω̂⟩

)
ρ1(g ◦ ω̂)d(ω̂)

=
1

2
·
∫
Sn−1

exp

((
n− 1

2
− iλ

)
⟨x, ω̂⟩+

(
n− 1− n− 1

2
+ iλ

)
⟨y, ω̂⟩

)
ρ1(g ◦ ω̂)d(ω̂)

=
1

2
·
∫
Sn−1

exp

((
n− 1

2
− iλ

)
⟨x, ω̂⟩+

(
n− 1

2
+ iλ

)
⟨y, ω̂⟩

)
ρ1(g ◦ ω̂)d(ω̂).

Since ρ1 is a uniform distribution, this is

kλ(g ◦ x,O) =
1

2
· Ê
ω

[
exp

((
n− 1

2
− iλ

)
⟨x, ω̂⟩+

(
n− 1

2
+ iλ

)
⟨y, ω̂⟩

)]
,

compared with Equation 5, it follows that kλ(g◦x,O) = kλ(x,y). Since kλ(g◦x,O) only depends
on dH(g◦x,O) = dH(x, g

−1◦O) = dH(x,y) from Lemma A.3, then kλ(x,y) is distance-invariant,
and hence isometry-invariant.

It suffices to prove Equation 6, i.e.,

d(g ◦ ω)

d(ω)
=

(
1−

∥∥g−1 ◦O
∥∥2

∥g−1 ◦O − ω∥2

)n−1

,

clearly it holds when g is an rotation, it suffices to show this for a translation isometry. Denote
Inv(x) = x

∥x∥2 , then in the Poincarè Ball model, all translation isometry takes the form

Ta(x) = −a+ (1− ∥a∥2) Inv(Inv(x)− a),

where both x,a in the Poincarè Ball model and Ta(a) = O, T−1
a (O) = a. Thus,

Ta(ω) = −a+(1−∥a∥2) Inv(Inv(ω)−a) = −a+(1−∥a∥2) Inv(ω−a) = −a+(1−∥a∥2) ω − a

∥ω − a∥2
,

where we use the fact ∥ω∥ = 1. Since the integral is taken over the unit sphere with ∥ω∥ =
1, ∥Ta(ω)∥ = 1, we consider only the mapping of Ta restricted to the first n− 1 (free) dimensions,
with an abuse of notation, regard ω as an n − 1 dimensional vector. Then the Jacobian of Ta(ω)
with respect to ω is

dTa(ω) = (1− ∥a∥2)d(ω − a

∥ω − a∥2
),

we can calculate that

d(
ω − a

∥ω − a∥2
) =

∥ω − a∥2 dω − (ω − a) · 2(ω − a)⊺dω

∥ω − a∥4

=
1

∥ω − a∥2
· ∥ω − a∥2 − 2(ω − a) · (ω − a)⊺

∥ω − a∥2
dω

=
dω

∥ω − a∥2
·

(
In−1,n−1 −

2(ω − a) · (ω − a)⊺

∥ω − a∥2

)
,

then
dTa(ω)

dω
=

1− ∥a∥2

∥ω − a∥2

(
In−1,n−1 −

2(ω − a) · (ω − a)⊺

∥ω − a∥2

)
,

note the relation that
det(I+ xy⊺) = 1 + x⊺y,

17

Under review as a conference paper at ICLR 2023

then

det(In−1,n−1 −
2(ω − a) · (ω − a)⊺

∥ω − a∥2
) = 1− 2(ω − a)⊺ · (ω − a)

∥ω − a∥2
= 1− 2 = −1,

then the absolute value of determinant of the Jacobian is

|det(dTa(ω)

dω
)| = |det

(
1− ∥a∥2

∥ω − a∥2
(In−1,n−1 −

2(ω − a) · (ω − a)⊺

∥ω − a∥2
)

)
|

=

(
1− ∥a∥2

∥ω − a∥2

)n−1

=

(
1−

∥∥g−1 ◦O
∥∥2

∥ω − g−1 ◦O∥2

)n−1

,

with which a change of variable would give

d(g ◦ ω)

d(ω)
=

(
1−

∥∥g−1 ◦O
∥∥2

∥g−1 ◦O − ω∥2

)n−1

,

which finishes the proof.

Proof of Theorem 4.1. As a result of Lemma A.3 and Lemma A.4, the expression for kλ(x,y)
follows:

kλ(x,y) =
1

2
· 2F1

(
n− 1

2
+ iλ,

n− 1

2
− iλ;

n

2
;
1

2
(1− cosh(dH(x,y)))

)
,

where 2F1 is the hypergeometric function, we can also apply the Euler transformation to get

kλ(x,y) =
1

2
·
(
1

2
(1 + cosh(dH(x,y)))

)1−n
2

· 2F1

(
1

2
+ iλ,

1

2
− iλ;

n

2
;
1

2
(1− cosh(dH(x,y)))

)
.

If we let
z =

1

2
(1− cosh(dH(x,y)))

then this is written more succinctly as

kλ(x,y) =
1

2
· (1− z)

1−n
2 · 2F1

(
1

2
+ iλ,

1

2
− iλ;

n

2
; z

)
.

We can also write this as a Legendre function,

kλ(x,y) =
1

2
· (1− z)

1−n
2 · Γ

(n
2

)
· z

2−n
4 · (1− z)

n−2
4 · P 1−n

2

− 1
2+iλ

(1− 2z)

=
1

2
· (z(1− z))

2−n
4 · Γ

(n
2

)
· P 1−n

2

− 1
2+iλ

(1− 2z)

Observe that

z(1− z) =
1

4

(
1− cosh2(dH(x,y))

)
=

1

4

(
− sinh2(dH(x,y))

)
and similarly

1− 2z = cosh(dH(x,y)).

This is manifestly real because

kλ(x,y) =
1

2
·

∞∑
k=0

k−1∏
m=0

(
n−1
2 +m+ iλ

) (
n−1
2 +m− iλ

)(
n
2 +m

)
(1 +m)

· 1
2
(1− cosh(dH(x,y)))

=
1

2
·

∞∑
k=0

k−1∏
m=0

(
n−1
2 +m

)2
+ λ2(

n
2 +m

)
(1 +m)

· 1
2
(1− cosh(dH(x,y))) .

18

Under review as a conference paper at ICLR 2023

If we draw HyLa features using a distribution ρ over λ, then the resulting approximated kernel will
be

k(x,y) =
1

2
·
∫ ∞

−∞
kλ(x,y) · ρ(λ) dλ

=
1

2
·
∫ ∞

−∞
2F1

(
n− 1

2
+ iλ,

n− 1

2
− iλ;

n

2
;
1

2
(1− cosh(dH(x,y)))

)
· ρ(λ) dλ.

Proof of Theorem 4.2. Denote

ϕλ(z) =

∫
Sn−1

ζλ,ω(z)dω =

∫
Sn−1

exp

(
(
n− 1

2
+ iλ)⟨ω, z⟩H

)
dω,

which are basic spherical functions. For any x,y ∈ Bn, assume gy is an isometry that maps y to
the origin, i.e., gy ◦ y = O, denote x̂ = gy ◦ x, then kλ(x,y) = kλ(x̂,O) for any λ, note that

kλ(x̂,O) =
1

2
·
∫
Sn−1

exp

(
(
n− 1

2
+ iλ)⟨ω, x̂⟩H

)
ρ1(ω)dω

=
1

2
· 1

Area(Sn−1)

∫
Sn−1

exp

(
(
n− 1

2
+ iλ)⟨ω, x̂⟩H

)
dω

=
1

2
· 1

Area(Sn−1)
ϕλ(x̂),

where we use the fact that ρ1(ω) is a uniform distribution over the sphere. Assume the existence of
an associated density ρ(λ) with the kernel, then

k(x,y) = k(dH(x,y)) = k(dH(x̂,O))

=

∫ ∞

−∞
kλ(x,y) · ρ(λ) dλ

=

∫ ∞

−∞
kλ(x̂,O) · ρ(λ) dλ

=
1

2
·
∫ ∞

−∞

1

Area(Sn−1)
ϕλ(x̂) · ρ(λ) dλ

=
1

2
· 1

Area(Sn−1)

∫ ∞

−∞
ϕλ(x̂) · ρ(λ) dλ

=
1

πArea(Sn−1)

∫ ∞

−∞

ρ(λ)

λ tanh (πλ2)
· ϕλ(x̂) · |c(λ)|−2 dλ

where |c(λ)|−2 = πλ
2 tanh πλ

2 when λ ∈ R. Note that the last integral is exactly the inverse
spherical transform (Helgason, 2022) of ρ(λ)

λ tanh (πλ
2)

, hence it can be derived in the reverse direction

by taking the spherical transform of k(dH(x̂,O)), i.e.,

ρ(λ)

λ tanh (πλ2)
=

∫
Bn

k(dH(x̂,O))ϕ−λ(x̂)dx̂.

Hence ρ(λ) can be derived as

ρ(λ) = λ tanh (
πλ

2
)

∫
Bn

k(dH(x̂,O))ϕ−λ(x̂)dx̂

= λ tanh (
πλ

2
)

∫
Bn

∫
∂Bn

k(dH(z,O)) exp

(
(
n− 1

2
− iλ)⟨ω, z⟩H

)
dωdz.

Therefore, given an isometry-invariant positive semidefinite kernel k(x,y) = k(dH(x,y)), we can
compute ρ(λ) following the above expression if it exists, then the rest of the theorem follows.

19

Under review as a conference paper at ICLR 2023

0 200 400 600 800 1000
Sampling Number

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Av

er
ag

ed
 E

st
im

at
io

n
Er

ro
r

Figure 6: Averaged estimation error of HyLa to the kernel

B CONCENTRATION OF THE KERNEL ESTIMATION

The readers may wonder whether there is a concentration behavior using the random variable
⟨ϕ(x), ϕ(y)⟩ to approximate k(x,y). Unfortunately, the eigenfunction ϕ(x) itself is not a sub-
Gaussian so as to derive a concentration bound in a straightforward way, but we do provide a nu-
merical experiment to measure the estimation behavior. For the estimation in Figure 3, we sampled
1, 000 different eigenfunctions.

We first fix a set of 1, 000 points xi by uniformly sampling over 2-dimensional hyperbolic space,
then approximate the kernel k(o,xi) using ⟨ϕ(xi), ϕ(o)⟩ by sampling with an increasing number
of eigenfunctions, ranging from 50 to 1, 000. At last, we compute the mean absolute error of the
estimation ⟨ϕ(xi), ϕ(o)⟩ to the true kernel value k(o,xi). We plot the mean estimation error in
Figure 6, which seems to be an exponentially decay, it’s an interesting future work to investigate this
estimation error.

C NODE EMBEDDING VS FEATURE EMBEDDING

When HyLa is adopted at node level, i.e., each vertex/node vi in the graph is associated with a
hyperbolic embedding parameter zi ∈ Bd0 . Then the inner product of HyLa features ⟨ϕ(zi), ϕ(zj)⟩
of vertex vi, vj approximates some kernel k(zi, zj). The optimization of zi encourages learning of
the kernel on the hyperbolic space to solve the task.

When HyLa is adopted at feature level, i.e., each column dimension of the node feature X ∈ Rn×d

is associated with a hyperbolic embedding parameter zi ∈ Bd0 . The HyLa feature associated to each
vertex/node vi is then computed as

∑d
k=1 Xikϕ(zk), where

∑d
k=1 Xik = 1 if a row-normalization

is applied on the original node features.

Therefore, the inner product of two node HyLa features is

⟨
d∑

k=1

Xikϕ(zk),

d∑
l=1

Xjlϕ(zl)⟩ =
d∑

k,l=1

XikXjl⟨ϕ(zk), ϕ(zl)⟩,

20

Under review as a conference paper at ICLR 2023

Table 3: Node classification Dataset statistics.
Setting Dataset # Nodes # Edges Classes Features

Trans-
ductive

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500

Disease 1,044 1,043 2 1,000
Airport 3,188 18,631 4 4

Inductive Reddit 233K 11.6M 41 602

Table 4: Text classification Dataset statistics.
Dataset # Docs # Words Average Length Classes

R8 7, 674 7688 65.72 8
R52 9, 100 8892 69.82 52
Ohsumed 7400 14157 135.82 23
MR 10662 18764 20.39 2

which in expectation equals a linear combination of kernels, i.e.,
∑d

k,l=1 XikXjlk(zk, zl). There-
fore, it captures a much more complicated kernel relation on the hyperbolic space than directly
embedding nodes.

D TWO-STEP APPROACH

For the purpose of end-to-end learning, in our experiments, we jointly learn the embedding param-
eter Z and weight W in SGC during the training time, as detailed in subsection E.2. It’s possible
to adopt a two-step approach, i.e., first pretrain a hyperbolic embedding, then fix the embedding
and train the graph learning model only. In the first step, for example, optimization-based methods
(Nickel & Kiela, 2017; 2018) and combinatorial construction methods (Sala et al., 2018; Sonthalia
& Gilbert, 2020) can be adopted by supervising the graph connectivity. However, these methods
only utilize the graph structure information, but ignore the node feature information X, which leads
to a natural performance degradation. In comparison, as shown in experiments and analyzed in Ap-
pendix C, our end-to-end learning of HyLa can be used to embed features and enables learning a
complex kernel representation to avoid this shortcoming. Intuitively, the graph connectivity infor-
mation can be too general for downstreaming tasks which rely more on semantic information. It’s
not clear to us how to encode the semantic information (node features) into embedding following
e.g., (Nickel & Kiela, 2017; 2018).

Another way (Chami et al., 2019) of deriving a pretrained hyperbolic embedding that might take
semantic information into consideration is to train a link prediction model, however, this method is
not efficient as HGCN, shown in Figure 5.

E EXPERIMENT DETAILS

E.1 TASK AND DATASET

We provide a detailed description/table of used datasets in Table 3 and Table 4.

1. Citation Networks. Cora, Citeseer and Pubmed Sen et al. (2008) are standard citation
network benchmarks, where nodes represent papers, connected to each other via citations.
We follow the standard splits Kipf & Welling (2016) with 20 nodes per class for training,
500 nodes for validation and 1000 nodes for test.

2. Disease propagation tree Chami et al. (2019). This is tree networks simulating the SIR
disease spreading model Anderson & May (1992), where the label is whether a node was
infected or not and the node features indicate the susceptibility to the disease. We use
dataset splits of 30/10/60% for train/val/test set.

3. Airport. We take this dataset from Chami et al. (2019). This is a transductive dataset where
nodes represent airports and edges represent the airline routes as from OpenFlights. Air-
port contains 3,188 nodes, each node has a 4 dimensional feature representing geographic
information (longitude, latitude and altitude), and GDP of the country where the airport
belongs to. For node classification, labels are chosen to be the population of the country
where the airport belongs to. We use dataset splits of 524/524 nodes for val/test set.

4. Reddit. This is a much larger graph dataset built from Reddit posts, where the label is the
community, or “subreddit”, that a post belongs to. Two nodes are connected if the same
user comments on both. We use a dataset split of 152K/24K/55K follows Hamilton et al.
(2017); Chen et al. (2018), similarly, we evaluate HyLa inductively by following Wu et al.

21

Under review as a conference paper at ICLR 2023

Table 5: Hyper-parameters for node classification.
Dataset d0 d1 K s lr1 lr2 # Epochs

Disease 16 100 5 1.0 0.05 0.0001 100
Airport 16 1000 2 0.01 0.5 0.1 100
Pubmed 16 100 5 0.1 0.5 0.001 200
Citeseer 16 500 5 1.0 0.1 0.001 100
Cora 16 100 2 1.0 0.1 0.01 100
Reddit 50 1000 2 0.5 0.1 0.001 100

Table 6: Hyper-parameters for text classification.
Transductive Setting Inductive Setting

Dataset d0 d1 s lr1 lr2 d0 d1 s lr1 lr2

R8 50 500 0.5 0.01 0.0001 50 500 0.5 0.001 0.0001
R52 50 500 0.5 0.1 0.0001 50 1000 0.5 0.008 0.0001
Ohsumed 50 500 0.5 0.01 0.0001 50 1000 0.1 0.001 0.0001
MR 30 500 0.5 0.1 0.0001 50 500 0.5 0.01 0.0001

(2019): we train on a subgraph comprising only training nodes and test with the original
graph.

E.2 TRAINING DETAILS.

We use HyLa together with SGC model as softmax(AKXW), where the HyLa feature matrix
X ∈ Rn×d1 is derived from the hyperbolic embedding Z ∈ Rn×d0 using Algorithm 1. Specifically,
we randomly sample constants of HyLa features X by sampling the boundary points ω uniformly
from the boundary ∂Bn, eigenvalue constants λ from a zero-mean s-standard-deviation Gaussian
and biases b uniformly from [0, 2π]. These constants remain fixed throughout training.

We use cross-entropy as the loss function and jointly optimize the low dimensional hyperbolic em-
bedding Z and linear weight W simultaneously during training. Specifically, Riemannian SGD
optimizer Bonnabel (2013) (of learning rate lr1) for Z and Adam Kingma & Ba (2014) optimizer
(of learning rate lr2) for W. RSGD naturally scales to very large graph because the graph con-
nectivity pattern is sufficiently sparse. We adopt early-stopping as regularization. We tune the
hyper-parameter via grid search over the parameter space. Each hyperbolic embedding is initialized
around the origin, by sampling each coordinate at random from [−10−5, 10−5].

E.3 HYPER-PARAMETERS

We provide the detailed values of hyper-parameters for node classification and text classification
in Table 5 and Table 6 respectively. Particularly, we fix K = 2 for the text classification task and
train the model for a maximum of 200 epochs without using any regularization (e.g. early stopping).
Also note that in the transductive text classification setting, HyLa is used at node level, hence the
size of parameters will be proportional to the size of graph, in which case, d0 and d1 can not be too
large so as to avoid OOM. In the inductive text classification setting, there is no such constraint as
the dimension of lower level features is not very large itself. Please check the code for more details.

F TIMING

We show the specific training timing statistics of different models on Pubmed dataset in Table 7.
Particularly for HGCN model, in order to achieve the report performances, we follow the same
training procedure using public code, which is divided into two stages: (1) a link prediction task on
the dataset to learn hyperbolic embeddings, and (2) use the pretrained embeddings to train a MLP
classifier. Hence, we add the timing of both stages as the timing for HGCN.

22

Under review as a conference paper at ICLR 2023

Table 7: Training time on Pubmed.
Model Timing (seconds)

SGC 0.37
GCN 1.25
GAT 12.52
HNN 2.41
HGCN 15.41
LGCN 10.93
HyLa-SGC 3.51

23

	Introduction
	Related Work
	Background
	HyLa: Euclidean Features from Hyperbolic Embeddings
	HyLa for Graph Learning
	Experiments
	Node Classification
	Text Classification

	Conclusion
	Theorems
	Concentration of The Kernel Estimation
	Node Embedding vs Feature Embedding
	Two-Step Approach
	Experiment Details
	Task and Dataset
	Training details.
	Hyper-parameters

	Timing

