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ABSTRACT

Inverse protein folding, the process of designing sequences that fold into a specific
3D structure, is crucial in bio-engineering and drug discovery. Traditional methods
rely on experimentally resolved structures, but these cover only a small fraction
of protein sequences. Forward folding models like AlphaFold offer a potential
solution by accurately predicting structures from sequences. However, these models
are too slow for integration into the optimization loop of inverse folding models
during training. To address this, we propose using knowledge distillation on
folding model confidence metrics, such as pTM or pLDDT scores, to create a
faster and end-to-end differentiable distilled model. This model can then be used
as a structure consistency regularizer in training the inverse folding model. Our
technique is versatile and can be applied to other design tasks, such as sequence-
based protein infilling. Experimental results show that our method outperforms
non-regularized baselines, yielding up to 3% improvement in sequence recovery
and up to 45% improvement in protein diversity while maintaining structural
consistency in generated sequences. Anonymized code for this work is available at
https://anonymous.4open.science/r/AFDistill-28C3

1 INTRODUCTION

Eight of the top ten best-selling drugs are engineered proteins, making inverse protein folding a
crucial challenge in bio-engineering and drug discovery (Arnum, 2022). Inverse protein folding
involves designing amino acid sequences that fold into a specific 3D structure. Computationally, this
task is known as computational protein design and has been traditionally addressed by optimizing
amino acid sequences against a physics-based scoring function (Kuhlman et al., 2003). Recently, deep
generative models have been introduced to learn the mapping from protein structure to sequences
(Jing et al., 2020; Cao et al., 2021; Wu et al., 2021; Karimi et al., 2020; Hsu et al., 2022; Fu & Sun,
2022). While these models often use high amino acid recovery, TM score, and low perplexity as
success criteria, they overlook the primary goal of designing novel and diverse sequences that fold
into the desired structure and exhibit novel functions.

In parallel, recent advancements have also greatly enhanced protein representation learning (Rives
et al., 2021; Zhang et al., 2022), structure prediction from sequences (Jumper et al., 2021; Baek
et al., 2021b), and conditional protein sequence generation (Das et al., 2021; Anishchenko et al.,
2021). While inverse protein folding has traditionally focused on sequences with resolved structures,
which represent less than 0.1% of known protein sequences, a recent study improved performance by
training on millions of AlphaFold-predicted structures (Hsu et al., 2022). Despite this success, large-
scale training is computationally expensive. A more efficient method could be to use a pre-trained
forward folding model to guide the training of the inverse folding model.

In this work we construct a framework where the inverse folding model is trained using a loss
objective that consists of regular sequence reconstruction loss, augmented with an additional structure
consistency loss (SC) (see Fig. 1 for system overview). One way of implementing this would be
to use folding models, e.g., AlphaFold, to estimate structure from generated sequence, compare it
with ground truth and compute TM score to regularize the training. However, a challenge in using
Alphafold (or similar) directly is computational cost of inference (see Fig. 2), and the need of ground
truth reference structure. Internal confidence structure metrics from folding model can be used
instead. However, that approach is still slow for the in-the-loop optimization. To address this, we:
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Figure 1: Overview of the proposed AFDistill system. AFDistill contrasts with traditional methods
(red line) that use models like AlphaFold to predict protein structure, which is then compared to the
actual structure. This method is slow due to model inference times (refer Fig. 2). An alternative (blue
line) uses internal metrics from folding model without structure prediction but remains slow and less
precise. Our solution, distills AlphaFold’s confidence metrics into a faster, differentiable model that
offers accuracy akin to AlphaFold, allowing seamless integration into the training process (green
line). The improved inverse folding model’s inference is shown on the right.

(i) Carry out knowledge distillation on AlphaFold and incorporate the resulting model, AFDistill
(fixed), into the regularized training of the inverse folding model, which is referred to as structure
consistency (SC) loss. The major novelty here is that AFDistill enables direct prediction of TM or
LDDT scores of a given protein sequence bypassing the structure estimation or the access to ground
truth structure. Primary practical benefits of our model include being fast, precise, and end-to-end
differentiable. Employing SC loss during training for downstream tasks can be seen as integrating
AlphaFold’s domain expertise into the model, thereby offering additional boost in its performance.

(ii) Perform extensive evaluations, demonstrating that our proposed system surpasses existing bench-
marks in structure-guided protein sequence design by achieving lower perplexity, higher amino
acid recovery, and maintaining proximity to the original protein structure. Additionally, our system
enhances sequence diversity, a key objective in protein design. Due to a trade-off between sequence
and structure recovery, our regularized model offers better sequence diversity while maintaining struc-
tural integrity. Importantly, our regularization technique is versatile, as evidenced by its successful
application in sequence-based protein infilling, where we also observe performance improvement.

(iii) Lastly, our SC metric can either be used as regularization for inverse folding, infilling and other
protein optimization tasks (e.g., (Moffat et al., 2021)) which would benefit from structural consistency
estimation of the designed protein sequence, or as an affordable AlphaFold alternative that provides
scoring of a given protein, reflecting its structural content.

2 RELATED WORK

Forward Protein Folding. Recent computational methods for predicting protein structure from
its sequence include AlphaFold (Jumper et al., 2021), which uses multiple sequence alignments
(MSAs) and pairwise features. Similarly, RoseTTAFold (Baek et al., 2021a) integrates sequence, 2D
distance map, and 3D coordinate information. OpenFold (Ahdritz et al., 2022) replicates AlphaFold
in PyTorch. However, due to the unavailability of MSAs for certain proteins and their inference
time overhead, MSA-free methods like OmegaFold (Wu et al., 2022), HelixFold (Fang et al., 2022),
ESMFold (Lin et al., 2022), and Roney & Ovchinnikov (2022) emerged. These leverage pretrained
language models, offering accuracy on par with or exceeding AlphaFold and RoseTTAFold based on
the input type.

Inverse Protein Folding. Recent algorithms address the inverse protein folding problem of finding
amino acid sequences for a specified structure. (Norn et al., 2020) used a deep learning method
optimizing via the trRosetta structure prediction network (Yang et al., 2020). (Anand et al., 2022) de-
signed a deep neural network that models side-chain conformers structurally. In contrast, (Jendrusch
et al., 2021) employed AlphaFold (Jumper et al., 2021) in an optimization loop for sequence genera-
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Figure 2: Inference times for protein sequences using our AFDistill model compared to alternatives
are displayed on the left. AFDistill maintains fast inference for longer sequences: 0.028s for 1024-
length and 0.035s for 2048-length. Timings for AlphaFold and OpenFold (Ahdritz et al., 2022) do not
include MSA search times, which can range from minutes to hours. Values for HelixFold (Fang et al.,
2022), OmegaFold (Wu et al., 2022), and ESMFold (Lin et al., 2022) are from their publications. The
center plot shows kernel density of true vs. AFDistill-predicted TM scores (Pearson’s correlation:
0.77), while the right displays a similar plot for pLDDT values (Pearson’s correlation: 0.76). Refer to
Section 3 for details.

tion, though its use is resource-intensive due to MSA search. MSA-free methods like OmegaFold,
HelixFold, and EMSFold are quicker but still slow for optimization loops.

In this work, we propose knowledge distillation from the forward folding algorithm AlphaFold, and
build a student model that is small, practical and accurate enough. We show that the distilled model
can be efficiently used within the inverse folding model optimization loop and improve quality of
designed protein sequences.

3 ALPHAFOLD DISTILL

Knowledge distillation (Hinton et al., 2015) transfers knowledge from a large complex model, in
our case AlphaFold, to a smaller one, here this is the AFDistill model (see Fig. 3). Traditionally,
the distillation would be done using soft labels, which are probabilities from AlphaFold model, and
hard labels, the ground truth classes. However, in our case we do not use the probabilities as they are
harder to collect or unavailable, but rather the model’s predictions (pTM/pLDDT) and the hard labels,
TM/LDDT scores, computed based on AlphaFold’s predicted 3D structures.

Scores to Distill TM-score (Zhang & Skolnick, 2004) measures the mean distance between struc-
turally aligned Cα atoms, scaled by a length-dependent distance parameter, while LDDT (Mariani
et al., 2013) calculates the average of four fractions using distances between atom pairs based on
four tolerance thresholds within a 15Å inclusion radius. Both metrics range from 0 to 1, with higher
values indicating more similar structures. pTM and pLDDT are AlphaFold-predicted metrics for a
given protein sequence, representing the model’s confidence in the estimated structure. pLDDT is a
local per-residue score, while pTM is a global confidence metric for overall chain reconstruction. In
this work, we interpret these metrics as indicators of sequence quality or validity for downstream
applications (see Section 4).

3.1 DATA

Using Release 3 (January 2022) of AlphaFold Protein Structure Database (Varadi et al., 2021),
we collected a set of 907,578 predicted structures. Each of these predicted structures contains 3D
coordinates of all the residue atoms as well as the per-resiude pLDDT confidence scores.

To avoid data leakage to the downstream applications, we first filtered out the structures that have
40% sequence similarity or more to the validation and test splits of CATH 4.2 dataset (discussed in
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Figure 3: Distillation overview. Top diagram shows the training of AFDistill. The scores from
AlphaFold’s confidence estimation are denoted as pTM and pLDDT, while the scores which are
computed using ground truth and the AlphaFold’s predicted 3D structures are denoted as TM and
LDDT. These values are then discretized and treated as class labels during cross-entropy (CE)
training. Note that the training based on TM/LDTT is limited since the number of known ground
truth structures is small. The bottom diagram shows the inference stage of AFDistill, where for each
protein sequence it estimates pTM and pLDDT scores.

Table 1: Statistics from January 2022 (left side) and July 2022 (right size) releases of the AlphaFold
database. For the earlier release, we created multiple datasets for pTM and pLDDT estimation, while
for the later, larger release we curated datasets only for pLDDT estimation.

Release 3 (January 2022) Release 4 (July 2022)

Name Size Name Size

Original 907,578 Original 214,687,406
TM 42K 42,605 pLDDT balanced 1M 1,000,000
TM augmented 86K 86,811 pLDDT balanced 10M 10,000,000
pTM synthetic 1M 1,244,788 pLDDT balanced 60M 66,736,124
LDDT 42K 42,605
pLDDT 1M 905,850

Section 4). Then, using the remaining structures, we created our pLDDT 1M dataset (see Table 1),
where each protein sequence is paired with the sequence of per-residue pLDDTs. Additionally, to
reduce the computational complexity of AFDistill training, we limited the maximum protein length
to 500 by randomly cropping a subsequence.
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Figure 4: Distribution of the (p)TM/(p)LDDT scores in various datasets used in AFDistill training.

We created datasets based on true TM and LDDT values using predicted AlphaFold structures.
Specifically, using the PDB-to-UniProt mapping, we selected a subset of samples with matching
ground truth PDB sequences and 3D structures, resulting in 42,605 structures. We denote these
datasets as TM 42K and LDDT 42K (see Table 1). Fig. 4 shows their score density distribution, which
is skewed towards higher values. To address data imbalance, we curated two additional TM-based
datasets. TM augmented 86K was obtained by augmenting TM 42K with a set of perturbed original
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Table 2: Validation loss of AFDistill on datasets from Table 1 (For more details, see Tables 5 and 6.)

Training data Val CE loss Training data Val CE loss

TM 42K 1.10 LDDT 42K 3.39
TM augmented 86K 2.12 pLDDT 1M 3.24
pTM synthetic 1M 2.55 pLDDT balanced 1M 2.63

pLDDT balanced 10M 2.43
pLDDT balanced 60M 2.40

protein sequences (permuted/replaced parts of protein sequence), estimating their structures with
AlphaFold, computing corresponding TM-score, and keeping the low and medium range TM values.
pTM synthetic 1M was obtained by generating random synthetic protein sequences and feeding
them to AFDistill (pre-trained on TM 42K data), to generate additional data samples and collect
lower-range pTM values. The distribution of the scores for these additional datasets is also shown in
Fig. 4, where both TM augmented 86K and pTM synthetic 1M datasets are less skewed, covering
lower (p)TM values better.

Using Release 4 (July 2022) with over 214M predicted structures, we observed a similar high
skewness in pLDDT values. To mitigate this, we filtered out samples with upper-range mean-pLDDT
values, resulting in a 60M sequences dataset, with additional 10M and 1M versions created. Their
density is shown in Fig. 4.

In summary, AFDistill is trained to predict both the actual structural measures (TM, LDDT, computed
using true and AlphaFold’s predicted structures) as well as AlphaFold’s estimated scores (pTM and
pLDDT). In either case the estimated structural consistency (SC) score is well correlated with its
target (refer to Fig.2) and can be used as an indicators of protein sequence quality or validity.

3.2 MODEL

AFDistill model is based on ProtBert (Elnaggar et al., 2020), a Transformer BERT model (420M
parameters) pretrained on a large corpus of protein sequences using masked language modeling.
For our task we modify ProtBert head by setting the vocabulary size to 50 (bins), corresponding to
discretizing pTM/pLDDT in range (0,1). For pTM (scalar) the output corresponds to the first ⟨CLS⟩
token of the output sequence, while for pLDDT (sequence) the predictions are made for each residue
position.

PDB ID 2qe9, chain A PDB ID 1cw5, chain A PDB ID 1hn3, chain A

Figure 5: Examples of 3D protein structures from the dataset, corresponding to high, medium, and
low actual TM scores (top row in legend), as well as AFDistill predictions, trained on TM 42K
(middle row) and TM augmented 86K (bottom row).

3.3 DISTILLATION EXPERIMENTAL RESULTS

In this section, we discuss the model evaluation results after training on the presented datasets. To
address data imbalance, we used weighted sampling during minibatch generation and Focal loss (Lin
et al., 2017) instead of traditional cross-entropy loss. Table 2 shows results for (p)TM-based datasets.
AFDistill trained on TM 42K performed the best, followed by augmented and synthetic data. For
(p)LDDT-based datasets, increasing scale and data balancing improved validation performance.
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Figure 6: Dataset examples of the per-residue predictions for two AFDistill models (blue and green
lines), build on pLDDT balanced 1M and 60M datasets, versus the AlphaFold predictions (red line).

Figure 7: Evaluation results for GVP with SC regularization are shown with various AFDistill
pretraining datasets on the x-axis. The left y-axis displays sequence metrics (recovery and diversity
gains), and the right y-axis shows structure metrics (TM and SC scores). Blue and orange solid
bars represent recovery and diversity gains over the vanilla GVP baseline (38.6 in recovery, 15.1
in diversity, and 0.79 in TM score). Olive and purple bars display predicted SC and test set TM
scores, respectively, while dashed cyan bar shows the baseline GVP TM score. TM 42K and TM
augmented 86K pretrained AFDistill models achieve the best overall performance, with high diversity
and moderate improvement in sequence and structure recovery.

In Fig. 2 we show kernel density plots of the true vs pTM scores and pLDDT values on the entire
validation set. Majority of the density is concentrated along the diagonal, indicating that the predicted
scores match well with the ground truth. The mismatches are grouped in off-diagonal regions, but
these areas have low density, indicating that the predictions are still accurate. Moreover, since the
data for TM 42K is skewed towards 1.0 (top density plot in Fig. 4), most of the data is clustered in
upper left corner. On the other hand, for the dataset pLDDT bal 60M which is balanced (bottom
panel in Fig. 4), the predictions and true values are spread more uniformly along the diagonal.

Finally, in Fig. 5 and 6, we show a few examples of the data samples together with the corresponding
AFDistill predictions. Fig. 2 and Fig. 12, 13 (in Appendix) also show plots of SC (pTM or pLDDT)
versus TM score, indicating that AFDistill is a viable tool for regularizing protein representation
to enforce structural consistency or structural scoring of protein sequences, reflecting its overall
composition and naturalness (in terms of plausible folded structure).

4 INVERSE PROTEIN FOLDING DESIGN

In this section we demonstrate the benefit of applying AFDistill as a structure consistency (SC) score
for solving the task of inverse protein folding, as well as for the protein sequence infilling as a means
to novel antibody generation. The overall framework is presented in Fig. 1 (following the green line in
the diagram), where the traditional inverse folding model is regularized by our SC score. Specifically,
during training, the generated protein is fed into AFDistill, for which it predicts pTM or pLDDT
score, and combined with the original CE training objective results in

L = LCE + αLSC, (1)

where LCE =
∑N

1 LCE(si, ŝi) is the CE loss, si is the ground truth and ŝi is the generated protein
sequence, LSC =

∑N
i=1(1 − SC(ŝi)) is the structure consistency loss, N the number of training

sequences, and α is the weighting scalar for the SC loss, in our experiment it is set to 1.
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Metrics We use standard sequence evaluation metrics to measure prediction design quality. Re-
covery (0-100) is the normalized average of exact matches between predicted and ground truth
sequences. Diversity (0-100) is the complement of the average recovery for pairwise comparisons in a
set. We aim for high recovery and high diversity rates. Perplexity measures sequence likelihood, with
lower values indicating better performance. For structure evaluation, we use TM-score and structure
consistency (SC) score, which is AFDistill’s output for a given input.

4.1 RESULTS

We present experimental results for several recently proposed deep generative models for protein
sequence design accounting for 3D structural constraints. For the inverse folding tasks we use CATH
4.2 dataset, curated by (Ingraham et al., 2019). The training, validation, and test sets have 18204,
608, and 1120 structures, respectively. While for protein infilling we used SabDab (Dunbar et al.,
2013) dataset curated by (Jin et al., 2021) and focus on infilling CDR-H3 loop. The dataset has 3896
training, 403 validation and 437 test sequences.

2 21 13 3 2 21 13 3

Figure 8: The comparison between baseline GVP (left) and SC regularized GVP (right) using
AFDistill pre-trained on TM augmented 86K dataset shows 15 generated protein sequences from
each model. Green cells with * indicate amino acid identity with ground truth (top red row), while
blue cells represent novelty. The shade of blue indicates amino acid frequency in the column (darker
= more frequent, lighter = rare). High recovery and diversity rates are seen with many green and
light blue cells. Bottom plots display AlphaFold estimated structures (green) and ground truth (red).
Recovery is 40.8 and diversity is 11.2 for GVP, while for GVP+SC, it is 42.8 and 22.6, respectively.
SC-regularized GVP has accurate reconstructions with high sequence diversity, while GVP alone
exhibits more inconsistencies, marked with arrows.

GVP Geometric Vector Perceptron GNNs (GVP) (Jing et al., 2020) is the inverse folding model,
that for a given target backbone structure, represented as a graph over the residues, replaces dense
layers in a GNN by simpler layers, called GVP layers, directly leveraging both scalar and geometric
features. This allows for the embedding of geometric information at nodes and edges without reducing
such information to scalars that may not fully capture complex geometry. The results of augmenting
GVP training with SC score regularization are shown in Fig. 7 (see also Appendix, Table 13 for
additional results).

Baseline GVP without regularization achieves 38.6 in recovery, 15.1 in diversity, and 0.79 in TM score
on the test set. Employing SC regularization leads to consistent improvements in sequence recovery
(1-3%) and significant diversity gain (up to 45%) while maintaining high TM scores. pTM-based SC
scores show a better overall influence on performance compared to pLDDT-based ones. It’s important
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Figure 9: Distribution of recovery and diversity values across residues in generated structures. Left
Table shows the analsys with respect to core (≥ 24 neighbors), surface (≤ 16 neighbors) and all
residue categories. Right Figure shows similar analysis with respect to solvent-exposed surface area.

to note that AFDistill’s validation performance on distillation data doesn’t always reflect downstream
application performance. For example, TM augmented 86K outperforms TM 42K, despite having
slightly worse validation CE loss. This suggests that augmented models may enable more generalized
sequence-structure learning and provide a greater performance boost for inverse folding models.

Fig. 8 further demonstrates the effect of recovery and diversity on protein sequences and AlphaFold-
generated 3D structures for GVP and GVP+SC models. GVP+SC achieves higher diversity while
retaining accurate structure. Recovery and diversity scores are 40.8 and 11.2 for GVP, and 42.8 and
22.6 for GVP+SC, respectively. The bottom plots display AlphaFold estimated structures (green) and
ground truth (red). Despite its high sequence diversity, GVP+SC shows very accurate reconstructions
(average TM score 0.95), while GVP exhibits more inconsistencies (TM score 0.92), marked with
blue arrows.

Table 3: Evaluation results of ProteinMPNN trained with and without SC regularization (AFDistill
trained on TM aug 86K dataset). The values in parenthesis show gain on test set of using SC-
regularized training as compared to original training.

Recovery Diversity Perplexity

ProteinMPNN ProteinMPNN
+SC ProteinMPNN ProteinMPNN

+SC ProteinMPNN ProteinMPNN
+SC

Backbone Noise 0.02 47.7 47.5 (-0.4%) 22.5 24.3 (+8.0%) 5.1 5.1 (+0.0%)
Backbone Noise 0.1 43.8 44.0 (+0.5%) 28.1 30.4 (+8.2%) 5.3 5.4 (+1.9%)
Backbone Noise 0.2 39.5 39.9 (+1.0%) 31.3 34.4 (+9.9%) 5.8 5.8 (+0.0%)
Backbone Noise 0.3 36.3 36.4 (+0.0%) 33.0 37.8 (+14.6%) 6.2 6.3 (+1.6%)

We also conducted a core/surface analysis similar to Hsu et al. (2022) to examine recovery and
diversity distribution across residues in generated structures. Residues were categorized by the
density of neighboring Cα atoms within 10A (core: ≥ 24 neighbors; surface: ≤ 16 neighbors). Using
SC-regularized GVP results on TM 42K dataset, we computed recovery and diversity scores per class
(Fig. 9). Core residues, being more constrained, better match ground truth with less diversity. Surface
residues, being less constrained, exhibit lower recovery but higher diversity as the model has more
freedom in selecting residues.

Additionally, we plot the solvent-exposed surface area sas versus recovery and diversity, computed
per residue (see right panel in Fig. 9). As expected, the recovery plot shows negative correlation and
diversity plot shows positive correlation as the surface area increases. Solvent-exposed surface area
was calculated using GROMACS software suite gro with default parameters.

Note on sequence diversity In Section G of Appendix we offer a set of experiments to shed some
light on why SC regularization leads to improved sequence diversity. In particular in Fig.14 we
show that the main source of diversity is in the limited guidance from AFDistill about the specific
sequence to generate to match a given 3D structure, since it does not have access to the structural
information, allowing many relevant sequences with high pTM/pLDDT to be considered as good
candidates. AFDistill regularization during training injects candidate sequences which have high
pTM/pLDDT scores, therefore likely matching the input structure better, thus ensuring high recovery
rate. At the same time these sequences differ from the ground truth, thus promoting diversity (see
Section G for more details).
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Table 4: Experiments on PiFold comparing the performance metrics on the test set of CATH 4.2 for
different model variants (original vs SC-regularized training based on different AFDistill models)
using greedy and sampled decoding strategies. The values in parentheses represent the percentage
change with respect to the original PiFold model.

Original TM 42K TM aug 86K TM synth 1M LDDT 42K pLDDT 1M pLDDT bal 60M

Rec Perp Rec Perp Rec Perp Rec Perp Rec Perp Rec Perp Rec Perp
Greedy 51.1 4.8 50.9 5.0 51.0 4.8 50.5 5.2 50.8 4.9 50.9 4.8 51.1 4.7

(-0.4%) (+4.0%) (-0.2%) (+0.0%) (-1.2%) (+8.3%) (-0.6%) (+2.1%) (-0.4%) (+0.0%) (+0.0%) (-2.1%)

Rec Div Rec Div Rec Div Rec Div Rec Div Rec Div Rec Div
Sampled 42.6 52.4 42.5 60.7 42.8 60.2 42.4 61.1 42.3 60.9 42.5 60.5 42.9 60.0

(-0.2%) (+15.8%) (+0.5%) (+14.9%) (-0.5%) (+16.6%) (-0.7%) (+16.2%) (-0.2%) (+15.5%) (+0.7%) (+14.5%)

ProteinMPNN ProteinMPNN model Dauparas et al. (2022) is a recent protein design model, which
is based on message passing neural network (MPNN) with specific modifications to improve amino
acid sequences recovery of proteins given their backbone structures. The model incorporates structure
features, edge updates, and an autoregressive approach for decoding the sequences. In Table 3 we
compared the results of original unmodified training of ProteinMPNN to the SC-regulared training
(AFDistill model trained on TM aug 86K dataset). We also varied ProteinMPNN internal parameter,
which adds noise to the input backbone protein structure. As can be seen, SC regularization maintains
high recovery and perplexity rates while improving the diversity of the generated protein sequences.
Backbone noise, which is a part of ProteinMPNN model, can also be seen as a form of regularization,
however while the increase in noise leads to improved sequence diversity it also leads to the decrease
in amino acid recovery rate. SC regularization, on the other hand, promotes diverse generation and
maintains high sequence recovery rates.

PiFold PiFold Gao et al. (2023) is another recent protein design model which introduces a new
residue featurizer and stacked PiGNNs (protein inverse folding graph neural networks). The residue
featurizer constructs residue features and introduces learnable virtual atoms to capture information
that could be missed by real atoms. The PiGNN layer learns representations from multi-scale residue
interactions by considering feature dependencies at the node, edge, and global levels. In Table 4
we present the results of original and SC-regularized PiFold (using different AFDistill models). We
note that the original PiFold evaluation was based on using greedy decoding to generate a sequence.
Following the standard practice (GVP, GraphTrans, ProteinMPNN, etc), we have included also the
results based on sampling (using 100 samples per sequence) to match other works and compute
sequence diversity score. The results show that SC regularization based on AFDistill trained on
TM aug 86K results in a near-identical recovery rate compared to the original model, while notably
enhancing sequence diversity. This indicates an improvement in PiFold’s performance by maintaining
recovery rates while increasing the variety of generated sequences. Also observe a decrease in
recovery rates for sampled generation as compared to greedy decoding across all the models.

Additional Experiments In Section H of Appendix we present additional experiments using ESM-
IF Hsu et al. (2022) and Graph Transformer (Wu et al., 2021). Finally, in addition to protein design,
we also examine the effect of SC regularization on a protein infilling task to design complementarity-
determining regions (CDRs) of an antibody sequence.

5 CONCLUSION

In this work we introduce AFDistill, a distillation model based on AlphaFold, which for a given
protein sequence estimates its structural consistency (SC: pTM or pLDDT) score. We provide
experimental results to showcase the efficiency and efficacy of the AFDistill model in high-quality
protein sequence design, when used together with many of the current state of the art protein inverse
folding models or large protein language model for sequence infilling. Our AFDistill model is fast
and accurate enough so that it can be efficiently used for regularizing structural consistency in protein
optimization tasks, maintaining sequence and structural integrity, while introducing diversity and
variability in the generated proteins.
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Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, Bo Zhang, Arkadiusz Nowaczynski, Bei Wang,
Marta M Stepniewska-Dziubinska, Shang Zhang, Adegoke Ojewole, Murat Efe Guney, Stella
Biderman, Andrew M Watkins, Stephen Ra, Pablo Ribalta Lorenzo, Lucas Nivon, Brian Weitzner,
Yih-En Andrew Ban, Peter K Sorger, Emad Mostaque, Zhao Zhang, Richard Bonneau, and
Mohammed AlQuraishi. OpenFold: Retraining AlphaFold2 yields new insights into its learning
mechanisms and capacity for generalization. bioRxiv, 2022.

Namrata Anand, Raphael Eguchi, Irimpan I Mathews, Carla P Perez, Alexander Derry, Russ B Altman,
and Po-Ssu Huang. Protein sequence design with a learned potential. Nature communications, 13
(1):1–11, 2022.

Ivan Anishchenko, Samuel J Pellock, Tamuka M Chidyausiku, Theresa A Ramelot, Sergey Ovchin-
nikov, Jingzhou Hao, Khushboo Bafna, Christoffer Norn, Alex Kang, Asim K Bera, et al. De novo
protein design by deep network hallucination. Nature, 600(7889):547–552, 2021.

Patricia Van Arnum. Pharma Pulse: Top-Selling Small Molecules and Biologics,
2022. URL https://www.dcatvci.org/features/pharma-pulse-top/
selling-small-molecules-biologics/.

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N Kinch, and R Dustin Schaeffer. Accurate prediction of protein
structures and interactions using a three-track neural network. Science, 373(6557):871–876, 2021a.

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein
structures and interactions using a three-track neural network. Science, 373(6557):871–876, 2021b.

Yue Cao, Payel Das, Vijil Chenthamarakshan, Pin-Yu Chen, Igor Melnyk, and Yang Shen. Fold2seq:
A joint sequence (1d)-fold (3d) embedding-based generative model for protein design. In Interna-
tional Conference on Machine Learning, pp. 1261–1271. PMLR, 2021.

Payel Das, Tom Sercu, Kahini Wadhawan, Inkit Padhi, Sebastian Gehrmann, Flaviu Cipcigan,
Vijil Chenthamarakshan, Hendrik Strobelt, Cicero Dos Santos, Pin-Yu Chen, et al. Accelerated
antimicrobial discovery via deep generative models and molecular dynamics simulations. Nature
Biomedical Engineering, 5(6):613–623, 2021.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–based
protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

James Dunbar, Konrad Krawczyk, Jinwoo Leem, Terry Baker, Angelika Fuchs, Guy Georges, Jiye
Shi, and Charlotte M. Deane. SAbDab: the structural antibody database. Nucleic Acids Research,
42(D1), 11 2013.

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rihawi, Yu Wang, Llion Jones, Tom
Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, et al. ProtTrans: towards cracking the
language of life’s code through self-supervised deep learning and high performance computing.
arXiv preprint arXiv:2007.06225, 2020.

Xiaomin Fang, Fan Wang, Lihang Liu, Jingzhou He, Dayong Lin, Yingfei Xiang, Xiaonan Zhang,
Hua Wu, Hui Li, and Le Song. HelixFold-Single: Msa-free protein structure prediction by using
protein language model as an alternative. arXiv preprint arXiv:2207.13921, 2022.

10

https://www.gromacs.org/index.html
https://www.cgl.ucsf.edu/chimera/data/sasa-nov2013/sasa.html
https://www.cgl.ucsf.edu/chimera/data/sasa-nov2013/sasa.html
https://www.dcatvci.org/features/pharma-pulse-top/selling-small-molecules-biologics/
https://www.dcatvci.org/features/pharma-pulse-top/selling-small-molecules-biologics/


Under review as a conference paper at ICLR 2024

Tianfan Fu and Jimeng Sun. SIPF: Sampling Method for Inverse Protein Folding. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 378–388,
2022.

Zhangyang Gao, Cheng Tan, and Stan Z. Li. Pifold: Toward effective and efficient protein inverse
folding. In International Conference on Learning Representations, 2023.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015. URL http://arxiv.
org/abs/1503.02531.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander
Rives. Learning inverse folding from millions of predicted structures. bioRxiv, 2022.

John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
based protein design. Advances in neural information processing systems, 32, 2019.

Michael Jendrusch, Jan O Korbel, and S Kashif Sadiq. AlphaDesign: A de novo protein design
framework based on AlphaFold. bioRxiv, 2021.

Wengong Jin, Jeremy Wohlwend, Regina Barzilay, and Tommi Jaakkola. Iterative refinement graph
neural network for antibody sequence-structure co-design. arXiv preprint arXiv:2110.04624, 2021.

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learning
from protein structure with geometric vector perceptrons. arXiv preprint arXiv:2009.01411, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, and Anna Potapenko. Highly accurate
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A LIMITATIONS OF THE PROPOSED WORK

Although our proposed AFDistill system is novel, efficient and showed promising results during
evaluations, there are a number of limitations of the current approach:

• AFDistill dependency on the accuracy of the AlphaFold forward folding model: The quality
of the distilled model is directly related to the accuracy of the original forward folding
model, including the biases inherited from it.

• Limited coverage of protein sequence space: Despite the advances in AlphaFold forward
folding models, they are still limited in their ability to accurately predict the structure of
many protein sequences, including the TM score and pLDDT confidence metrics, that
AFDistill relies on.

• Uncertainty in structural predictions: The confidence metrics (TM score and pLDDT)
used in the distillation process are subject to uncertainty, which can lead to errors in the
distilled model’s predictions and ultimately impact the quality of the generated sequences in
downstream applications.

• The need for a large amount of computational resources: The training process of AFDistill
model requires significant computational resources. However, this might be mitigated by
the amortization effect where the high upfront training cost in downstream applications pays
in terms of cheap and fast inference through the model.

B BACKGROUND ON PROTEIN DESIGN

A protein is a linear chain of variable length made up of twenty amino acids, also called residues.
These are denoted by 20 characters (A-Alanine, G-Glycine, I-Isoleucine, L-Leucine, P-Proline,
V-Valine, F-Phenylalanine, W-Tryphtophan, Y-Tyrosine, D-Aspartic Acid, E-Glutamic Acid, R-
Arginine, H-Histidine, K-Lysine, S-Serine, T-Threonine, C-Cystene, M-Methionine, N-Asparagine,
Q-Glutamine). Each amino acid has the same core structure (backbone), consisting of alpha carbon
atom Cα, connected to an amino group NH2, carboxyl group COOH and hydrogen atom H . The
backbone is identical in all amino acids, while the variable group, called side chain, which is also
attached to alpha carbon Cα, is always different and determines the amino acid, including its chemical
and mechanical properties. Amino acids are attached to each other by a covalent bond, known as
peptide bond (carboxyl group COOH of one amino acid and the amino group NH2 of the other
amino acid combine, releasing water molecule H2O and create a peptide bond). In this work, as is
commonly done, we define protein 3D structure specified only by the Cα atoms of amino acids.

The protein inverse folding task is to draw a sequence from the true distribution of n-length sequences
of amino acids Y ∈ {1, . . . , 20}, conditioned on a fixed protein structure, such that the designed
protein folds into that structure. The protein structure can be represented as an attributed graph
G = (V,E) with node features V = {v1, . . . , vN}, describing each residue and edge features
E = {eij}, capturing relationships between them. Thus, the final conditional distribution we are
interested in modeling is: P (Y |X) = p(yi, . . . , yn|X), which is known as computational protein
design task.

Protein structures are intrinsically dynamic and each structure thus possess high designability, i.e.
the total number of amino acid sequences that can fold to a target protein structure is high, without
losing stability of the structure. The highly designable structures always enjoy beneficial properties
such as higher thermodynamic stability, mutational stability, fast folding, functional robustness, etc.
Therefore, we need to learn a “soft” function that can model this high designability associated with a
protein structure, i.e. generating diverse sequences for a given protein structure.

C ALPHAFOLD MODEL OVERVIEW

A schematic overview of AlphaFold model is shown in Fig. 10, which it takes as input a protein
sequence and produces as output, among others, the predicted 3D structure, as well as the confidence
estimates of its prediction, pTM and pLDDT, which measure the estimated confidence of how well
the predicted and ground truth structures match.
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Figure 10: Overview of the inference stage in AlphaFold model. Given an input protein sequence,
first the search is performed in genetic database to find similar sequences and construct multiple
sequence alignments (MSA). Then a structure database search is done to find similar 3D structures
and construct templates. The MSA and templates are fed into EvoFormer module, whose output is
then sent to the Structure module, which is finally completed with the multiple output heads. The
3D structure head generates predicted 3D protein structure, while pLDDT and pTM heads estimate
the confidence of the computed structure. Optionally, the generated structure together with the
intermediate states are recycled and sent back to update/correct MSA and template representations
for further processing and improvement.

D AFDISTILL TRAINING

Tables 5, 6 show the validation performance of AFDistill trained on each of the (p)TM-based and
(p)LDDT-based datasets, respectively. Table 7 shows results on (p)LDDT chain-based datasets. Note
that (p)LDDT chain is the dataset, similar to (p)TM datasets, where for each sequence we associate a
single scalar, in this case the average of all the per-reside (p)LDDT values.

E AFDISTILL SCATTER PLOTS OF PREDICTIONS

In Fig. 11 we show scatter plots of the true vs pTM scores and pLDDT values on the entire validation
set. We see a clear diagonal pattern in both plots, where the predicted and true values match. There
are also some number of incorrect predictions (reflected along the off-diagonal), where we see that
for the true scores in the upper range, the predicted scores are lower, indicating that AFDistill tends
to underestimate them.

Figure 11: A scatter plot of the true and predicted TM score (left panel, data: TM 42K) and pLDDT
(right panel, data: pLDDT bal 60M) for the data presented in main text in Fig. 2.
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Table 5: Validation CE loss for the AFDistill model trained on each of the (p)TM-based datasets. To
address data imbalance during training, we employed weighted sampling for minibatch generation
to so that the TM-scores cover their range (0,1) close to uniform distribution. Moreover, we also
used Focal loss (Lin et al., 2017) in place of the standard cross-entropy (CE) loss (the evaluation
is still done using CE loss across all the training setups). Based on the validation loss, we see that
the AFDistill model trained on TM 42K dataset performed the best, followed by the dataset with
augmentations, and the synthetic performed the worst. We also see that weighted sampling and
focal loss do help in addressing the data imbalance problem, although for TM augmented 86K, the
balanced augmentation seemed to help better and the best performance was for the case when no
weighted sampling is applied and the traditional CE loss is used. As shown in Section 4, the validation
performance on the distillation data may not always indicate the performance on the downstream
applications, where in particular we observed that the Distill model, trained on TM augmented 86K
dataset, overall performed better than TM 42K, while having slightly worse validation CE loss.

Data Training Validation

Weighted sampling Focal loss (γ) CE loss

TM 42K

– – 1.33
+ – 1.37
+ 1.0 1.16
+ 3.0 1.10
+ 10.0 1.29

TM augmented 86K

– – 2.12
+ 1.0 2.15
+ 3.0 2.19
+ 10.0 2.25

pTM synthetic 1M

– – 2.90
+ 1.0 2.75
+ 3.0 2.55
+ 10.0 3.20

Table 6: Validation CE loss for AFDistill trained on each of the (p)LDDT-based datasets. We see that
weighted sampling coupled with Focal loss, performed the best.

Data Training Validation

Weighted sampling Focal loss (γ) CE loss

LDDT 42K

- - 3.47
+ 1.0 3.44
+ 3.0 3.42
+ 10.0 3.39

pLDDT 1M

- - 3.27
+ 1.0 3.28
+ 3.0 3.25
+ 10.0 3.24

F ARCHITECTURAL AND TRAINING DETAILS

F.1 AFDISTILL

Table 8 shows architectural details of AFDistill and ProtBert, while in Table 9 we present training
details for AFDistill for two experimental setups. In all the experiments we used A100 GPUs. From
the tables we can see that the AFDistill (420 M parameters) training takes approximately 24 hours
on 1 GPU for TM 42K dataset, and 7 days on 8 GPUs for pLDDT balanced 60M dataset. Note
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Table 7: Validation CE loss for the AFDistill model trained on each of the (p)LDDT chain-based
datasets. (p)LDDT chain is the dataset, similar to (p)TM datasets, where for each sequence we
associate a single scalar, in this case the average of all the per-reside (p)LDDT values. Similar as
before, we see that the use of weighted sampling coupled with Focal loss helps in boosting the model
performance. We also see that increasing the scale of data (which is already balanced) improves the
performance even further.

Data Training Validation

Weighted Sampling Focal loss (γ) CE loss

LDDT chain 42K

- - 3.69
+ 1.0 3.57
+ 3.0 3.63
+ 10.0 3.59

pLDDT chain 1M

- - 3.29
+ 1.0 3.36
+ 3.0 3.30
+ 10.0 3.31

pLDDT chain balanced 1M – – 2.45

pLDDT chain balanced 10M – – 2.24

pLDDT chain balanced 60M – – 2.21

that AFDistill training cost is amortized: the model is trained once and reused it many downstream
applications. During training of the downstream applications, AFDistill model needs to be kept in
memory to compute SC (structural consistency) score.

Table 8: Architectural details of AFDistill and ProtBert (which is used to initialize AFDistill training).

Model Number of
parameters

Number of
layers

Hidden
layer size

Number of
heads

Vocab
size Pretraining Data Reference

ProtBert 420M 30 1024 16 30
(20 amino acids + 10 aux tokens)

BFD100
(572 GB, 2B proteins)

Uniref100
(150 GB, 216M proteins)

(Devlin et al., 2018)

AFDistill 420M 30 1024 16 50
(50 bins, TM/pLDDT (0,1))

TM 42K
(20 MB, 42K sequences)

pLDDT balanced 60M
(100 GB, 60M sequences)

–

Table 9: Training details for AFDistill for two experimental setups: small - using TM 42K dataset,
and large - using AFDistill pLDDT balanced 60M.

Model Learning rate Batch size Optimizer GPUs Training time

AFDistill TM 42K 1e−6 10 Adam 1 × A100, 40GB 1 day
AFDistill pLDDT bal 60M 1e−6 10 Adam 8 × A100, 40GB 7 days

F.2 PROTEIN DESIGN

Table 10 shows training details for GVP and ProteinMPNN models. Additionally, we note that for the
original PiFold model it takes 60 epochs (6 hours on 1 GPU) to train the model, while for PiFold+SC
it takes 60 epochs (8 hours on 1 GPU) to do the training. The increased training time is due to
frequent validations (which involves sampling 100 samples per sequence for recovery and diversity
computations). Note, that once the downstream application is trained, AFDistill is not used during
inference.
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Table 10: Training details for GVP and ProteinMPNN (original, as well as SC-regularized using
our AFDistill model). Note that although AFDistill has 420M parameters, these are not part of the
learnable model parameters, therefore are not counted towards the total.

Setup Parameters Learning rate Batch size Optimizer GPUs Training time

GVP / GVP+SC 1M 1e−3 3000 res/batch Adam 1 × A100, 40GB 1 day
ProteinMPNN / ProteinMPNN + SC 1.6M varied 5000 res/batch Adam 1 × A100, 40GB 2 days

G GVP TRAINING DETAILS

An example of GVP training progress regularized by the structure consistency (SC) score computed
by the AFDistill model (pre-trained on various (p)TM-based datasets) is shown in Fig. 12. This figure
shows that although SC score may be less accurate on the absolute scale, on the relative scale we
can see it accurately detecting decays and improvements in the sequence quality as the GVP trains.
Similarly, in Fig. 13 we show scatter plots of estimated pTM versus true TM scorefor GVP-generated
protein sequences regularized by SC score.
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Figure 12: Example of the training progress (on CATH 4.2 dataset) of the GVP model regularized
by the structure consistency (SC) score computed by the AFDistill model pre-trained on different
datasets. Each plot shows the results for one of the Distill pre-training datasets, where the blue
line represents the SC score computed by the AFDistill model (in this case generating pTM value),
while the orange line shows the actual TM score computed between the ground truth structure and
the AlphaFold’s estimated 3D structures for a GVP-generated protein sequences. The last plot on
the right shows the original, unregularized GVP training, where SC score was computed but never
applied as part of the loss. It can be seen that SC correlates well with the TM score for TM 42K,
while for others (TM augmented 86K and pTM synthetic 1M datasets) it tends to underestimate true
TM score. Therefore, SC score may be less accurate on the absolute scale, while on the relative scale
we can see that it can accurately detect decays and improvements in the sequence quality as the GVP
trains. And the latter is of particular importance for SC to be a regularization loss during training,
since it can clearly identify the ill-generated protein sequences early in the training (lower SC scores)
and recognize well-defined sequences later during the training (higher SC scores).

G.1 EFFECT OF USING AFDISTILL TRAINED FROM SCRATCH

We also experimented with AFDistill models trained from scratch (as opposed to starting from
pre-trained ProtBert), but observed worse performance. As an example, we trained AFDistill from
scratch on TM42K dataset. The validation CE loss during distillation was 1.5 (versus 1.1 when using
pre-trained ProtBert model). Moreover, training of AFDistill model from scratch takes longer (3 days
vs 1 day). When regularizing GVP with AFDistill from scratch, we get similar recovery rate (39.4 vs
39.6) but lower sequence diversity (15.9 vs 21.1), which confirms the benefit of common practice of
fine-tuning the pretrained models as opposed to starting from random models weights.

G.2 EFFECT OF STRUCTURE CONSISTENCY (SC) SCORE ON GVP PERFORMANCE

For protein design (e.g., using GVP as a base model) the objective is CE + SC (cross-entropy +
AFDistill structure consistency score). In Fig. 14 we present the effect of SC magnitude on the GVP
performance on the test set of CATH dataset. As can be seen, when only the CE term is present
(the blue left most bar in both panels, representing the original GVP), the model is encouraged to
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pTM versus TM for GVP+SC (AFDistill trained on TM 42K) across training epochs

pTM versus TM for GVP+SC (AFDistill trained on TM augmented 86K) across training epochs

Figure 13: Estimated pTM versus true TM score (based on AlphaFold structure prediction) for GVP-
generated protein sequences regularized by SC score. The top row shows results for SC computed by
AFDistill model trained on TM 42K, while the bottom row is for AFDistill trained on TM augmented
86K. The columns in each row correspond to the progress as GVP trains. Note that the top row
corresponds to the first left plot in Fig. 12, while the bottom row corresponds to the second plot in
Fig. 12. It can be observed that in the earlier stages of GVP training, the generated protein sequences
are of poor quality, reflected in pTM and TM scores that are spread across the (0,1) range. On the
other hand, as the training progresses, the generated sequences are getting better and the pTM/TM
score is concentrated more in the upper range. Another observation is that for AFDistill trained on
TM 42K dataset, the predicted and true TM score are better aligned across the diagonal (compare
with orange and blue lines on the left plot in Fig. 12), while for AFDistill trained on TM augmented
86K dataset, pTM tends to underestimate true TM score. These plots show that AFDistill is viable
sequence scoring tool, which fairly accurately measures the structural consistency of the generated
protein sequences. Combined with the fact that it is fast and end-to-end differentiable, shows its
potential for many of the protein optimization problems.

CE
CE+1*SC

CE+2*SC
CE+4*SC

CE+8*SC
CE+16*CS

CE+32*SC
0

10

20

30

40

50

Te
st

 R
ec

ov
er

y 38.6 39.8
37.5

34.8
31.0 30.9

10.6

CE
CE+1*SC

CE+2*SC
CE+4*SC

CE+8*SC
CE+16*CS

CE+32*SC
0

10

20

30

40

50

Te
st

 D
iv

er
sit

y

15.1

22.1 22.2 22.8 24.9 25.9

37.5

GVP Training Regime

Figure 14: The effect of Structure Consistency (SC) loss on the performance of GVP. Left panel
shows the amino acid recovery rate and the right panel shows the diveristy rate on the test set of
CATH dataset. The horizontal y-axis shows the different choices of objective function during training:
CE is the cross-entropy loss, SC is the Structure Consistency score computed by AFDistill.

recover the specific ground truth protein sequence for a given 3D structure, and this promotes model
accuracy, and high amino acid recovery rate, while also resulting in low diversity. On the other hand,
when only the SC term is present (the pink right most bar, reprenting CE+32*SC, i.e., when SC
completely dominates and CE can be ignored), this results in poor and degenerated protein sequences.
This is expected, since AFDistill alone cannot guide GVP which sequence it should generate to
match the given input 3D structure. Recall, that AFDistill has no information about the structure, and
since many of the relevant protein sequences can have high pTM/pLDDT, all of them could be good
candidates, and this promotes high diversity and low recovery. Consequently, when both CE and
SC terms are present and when appropriate balance between them is found (in our case it is CE+SC,
corresponding to the orange bar in both panels), we get a full benefit, i.e., the accurate recovery and
high diversity of the generated protein sequences.
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Model Recovery Recovery Change Diversity Diversity Change

1 GVP-GNN (1M)
Jing et al. (2020) 40.2 – NA –

2 GVP-GNN (1M)
Hsu et al. (2022) 42.2 – NA –

3 GVP-GNN (1M) + AlphaFold2 data
Hsu et al. (2022) 38.6 -3.6 (-8.5%) NA –

4 GVP-GNN (1M)
(our experiment) 38.6 – 15.1 –

5 GVP-GNN (1M) + SC
(our experiment) 39.6 +1.0 (+2.6%) 21.1 +6.0(+39.7%)

6 GVP-GNN-large (21M)
Hsu et al. (2022) 39.2 – NA –

7 GVP-GNN-large (21M)
(our experiment) 39.0 – 16.7 –

8 GVP-GNN-large (21M) + SC
(our experiment) 40.1 +1.1(+2.8%) 19.3 +2.6(+15.6%)

Table 11: Comparison of amino acid recovery rate of protein sequences generated by GVP on the test
split of CATH dataset. First row is the original result from GVP authors, rows 2 and 3 show the results
from ESM authors, and row 4 shows the result from our experiments. A small difference between
the values in first, second and forth rows can be attributed to some discrepancies in experimental
settings as well as model initialization. We can see that a simple data augmentation baseline results
in 3.6 (or 8.5%) drop of recovery relative to the unaugmented GVP (1M). On the other hand, the use
of SC regularization leads to 1.0 (or 2.6%) gain in recovery, signaling the benefit of the proposed
distillation approach. For the GVP-GNN-large (21M) model, shown in rows 6, 7 and 8 we were able
to recover results closer to the published ones (39.0 vs their 39.2). And when SC is applied, we again
see a boost in recovery (40.1 vs 39.0), and diversity (19.3 vs 16.7).

H ADDITIONAL PERFORMANCE COMPARISONS OF SC REGULARIZATION

H.1 ESM-IF

In this Section we compare GVP-GNN (1M and 21M) performance under different training scenarios
(CATH only and CATH + AlphaFold2 data) and present the results in Tables 11 and 12. The first
row in Table 11 is the recovery rate of the original GVP-GNN (1M) model as reported in Jing et al.
(2020). The following two rows (2 and 3) are the results presented in the work of Hsu et al. (2022)
(ESM-IF). Their evaluation showed that the vanilla GVP achieved a slightly higher recovery rate of
42.2. GVP+AlphaFold2 represents the GVP trained on augmented dataset (CATH + AlphaFold2-
generated structure/sequence pairs). Interestingly, this simple data augmentation baseline showed
worse performance as compared to the original GVP, and the authors had to significantly increase
GVP capacity (from 1M to 21M) to get any benefit from the data augmentation. Moreover, note
that such a data augmentation idea can also serve as the baseline for our approach of AFDistill
regularization, since AFDistill was trained on AlphaFold2-generated data and it can be thought of as
a compressed representation of that data.

The rows (4 and 5) show our evaluation results of the vanilla GVP-GNN (1M), achieving slightly
lower base recovery rate of 38.6, while this same GVP but trained with AFDistill regularization
achieves a boost in recovery (39.6) and significant increase in the sequence diversity ( +39.7% as we
showed in Fig. 7). On GVP-GNN-large (21M) model we were able to recover results closer to the
published ones (39.0 vs their 39.2). And when SC is applied we again see a boost in recovery (40.1
vs 39.0), and diversity (19.3 vs 16.7).

Finally, in Table 12 we followed the setup of Hsu et al. (2022) and trained GVP-GNN-large (21M)
on large dataset of CATH+AlphaFold2 (12M sequences) and evaluated on CATH test set. The second
row in the table shows our that our experiment recovered results similar to the ones reported in
Hsu et al. (2022), while in third row we present the SC-regularized training using our AFDistill
model. Clearly, the sequence recovery was improved and even more so the diversity of the generated
sequences went up from 13.8 to 18.5.
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Model Recovery Recovery Change Diversity Diversity Change

1 GVP-GNN-large (21M)
Hsu et al. (2022) 50.8 – NA –

2 GVP-GNN-large (21M)
(our experiment) 50.5 – 13.8 –

3 GVP-GNN-large (21M) + SC
(our experiment) 50.9 +0.4(+0.8%) 18.5 +4.7(+34.0%)

Table 12: Comparison of amino acid recovery rate of protein sequences generated by GVP-GNN-
large (21M) on the test split of CATH dataset, while trained on CATH + AlphaFold2 dataset (12M
sequences). As observed before on experiment in GVP-GNN-large (21M) + SC when trained on
CATH only, here when SC is applied, we see a minor boost in recovery (40.9 vs 50.5), and more
significant increase in protein sequence diversity (13.8 vs 18.5).

Therefore, comparing data augmentation and model distillation for the task of protein design, we see
that for the GVP models (1M and 21M), AFDistill offers a clear advantage, providing a modest boost
in recovery, while significantly increasing diversity of the generated sequences. This improvement
after applying SC regularization occurs because the baseline techniques, which rely on CE in
training, primarily emphasize accurate sequence recovery, neglecting other protein sequences that
can achieve the desired structure. SC regularization encourages the consideration of many relevant
and diverse protein sequences with high pTM/pLDDT scores as strong candidate sequences. This
results in a moderate improvement in recovery and a significantly larger boost in diversity. Moreover,
the distillation overhead is amortized, as we train AFDistill once and use it in many downstream
applications. The data augmentation would require additional computational cost in every downstream
application.

H.2 GRAPH TRANSFORMER

Figure 15: Evaluation results of Graph Transformer model trained with SC score regularization.
Baseline model with no regularization achieves 25.2 in recovery, 72.2 in diversity and 0.81 in TM
score on the test set.

We evaluated the effect of SC score on Graph Transformer (Wu et al., 2021), another inverse
folding model, which seeks to improve standard GNNs to represent the protein 3D structure. Graph
Transformer applies a permutation-invariant transformer module after GNN module to better represent
the long-range pair-wise interactions between the graph nodes. The results of augmenting Graph
Transformer training with SC score regularization are shown in Fig. 15 (see also Appendix, Table 14
for additional results). Baseline model with no regularization has 25.2 in recovery, 72.2 in diversity
and 0.81 in TM score on the test set. As compared to GVP (Fig. 7), we can see that for this model,
the recovery and diversity gains upon SC regularization are smaller. We also see that TM score of
regularized model (TM 42K and TM augmented 86K pretraining) is slightly higher as compared to
pLDDT-based models.

H.3 PROTEIN INFILLING

Our proposed structure consistency regularization is quite general and not limited to the inverse
folding task. Here we show its application on protein infilling task. Recall, that while the inverse
folding task considers generating the entire protein sequence, conditioned on a given structure,
infilling focuses on filling specific regions of a protein conditioned on a sequence/structure template.
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Figure 16: Evaluation results of Protein Infilling model trained with SC regularization. Baseline
model achieves 41.5 in recovery, 14.5 in diversity and 0.80 in TM score on the test set. Similar as
for the other applications, we see an improvement in the sequence recovery and even bigger gain in
diversity. TM score shows that the resulting 3D structure remains close to the original, confirming
the benefit of using SC score for training regularization.

The complementarity-determining regions (CDRs) of an antibody protein are of particular interest as
they determine the antigen binding affinity and specificity. We follow the framework of (Jin et al.,
2021) which formulates the problem as generation of the CDRs conditioned on a fixed framework
region. We focus on CDR-H3 and use a baseline pretrained protein model ProtBERT (Elnaggar
et al., 2020) finetuned on the infilling dataset, and use ProtBERT+SC as an alternative (finetuned with
SC regularization). The CDR-H3 is masked and the objective is to reconstruct it using the rest of
the protein sequence as a template. The results are shown in Fig. 16 (see also Appendix, Table 15
for additional results). Baseline model achieves 41.5 in recovery, 14.5 in diversity, and 0.80 in TM
score on the test set. Similar as for the other applications, we see an improvement in the sequence
recovery and even bigger gain in diversity, while using the AFDistill pretrained on TM 42K and TM
augmented 86K, together with the pLDDT balanced datasets. TM score shows that the resulting 3D
structure remains close to the original, confirming the benefit of using SC for training regularization.

I AFDISTILL EVALUATION ON DOWNSTREAM APPLICATIONS

Finally, in Tables 13 14, and 15 we show detailed results for GVP and Graph Transformer inverse
folding task as well as protein infilling task. The table combines all the choices for AFDistill
pretraining, showing their validation accuracy, and presents the corresponding performance on the
downstream application without (top row in each table) and with SC regularization (all the following
rows).
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Distill model GVP

Data Training Validation Recovery Diversity Perplexity pTM/
pLDDT

TM
scoreWeighted

sampling
Focal
loss CE loss

– – – – 38.6 15.1 6.1 0.80 0.79

TM
42K

. + – 1.37 36.8 22.2 6.3 0.78
+ 1.0 1.16 37.6 21.1 6.0 0.87
+ 3.0 1.10 39.6 21.1 5.9 0.84 0.84
+ 10.0 1.29 37.9 18.4 6.0 0.80

TM augmented
86K

– – 2.12 38.3 22.2 5.9 0.73
+ 1.0 2.15 39.8 22.1 5.8 0.78 0.85
+ 3.0 2.19 37.8 19.8 6.1 0.73
+ 10.0 2.25 38.5 21.2 5.9 0.72

TM synthetic
1M

– – 2.90 38.8 21.4 5.8 0.73
+ 1.0 2.55 39.1 22.5 5.9 0.77 0.81
+ 3.0 2.75 39.0 21.9 5.8 0.74
+ 10.0 3.20 39.0 22.0 5.9 0.69

LDDT
42K

– – 3.47 39.0 18.9 5.8 0.74 0.78
+ 1.0 3.44 38.7 22.5 5.8 0.73
+ 3.0 3.42 38.9 21.2 5.8 0.73
+ 10.0 3.39 38.5 22.3 5.9 0.72

PLDDT
1M

. – – 3.27 39.3 16.5 5.9 0.76 0.79
+ 1.0 3.28 38.8 15.5 5.9 0.72
+ 3.0 3.25 38.9 18.2 5.8 0.78
+ 10.0 3.24 38.4 16.2 6.0 0.73

LDDT chain
42K

– – 3.69 38.8 20.0 5.8 0.74
+ 1.0 3.57 39.3 16.3 5.8 0.79 0.78
+ 3.0 3.63 38.9 15.9 5.9 0.72
+ 10.0 3.59 37.9 23.2 6.0 0.73

pLDDT chain
1M

– – 3.29 39.4 17.4 5.8 0.78
+ 1.0 3.36 38.7 16.3 5.8 0.76
+ 3.0 3.30 39.6 18.3 5.7 0.79 0.77
+ 10.0 3.31 38.2 20.1 6.0 0.76

pLDDT
balanced 1M – – 2.63 39.1 17.1 5.8 0.75 0.82

pLDDT
balanced 10M – – 2.43 39.3 17.7 5.9 0.73

pLDDT
balanced 60M – – 2.40 39.8 17.5 5.9 0.74 0.81

pLDDT chain
balanced 1M – – 2.45 38.6 16.6 5.9 0.73

pLDDT chain
balanced 10M – – 2.24 39.1 17.8 5.8 0.73

pLDDT chain
balanced 60M – – 2.21 39.7 17.9 5.9 0.74 0.82

Table 13: Evaluation results of GVP inverse folding task, trained without (top row) and with SC
regularization (all other rows). The table combines all the choices for AFDistill pretraining and
showing their validation accuracy, as well as the corresponding performance on the downstream
application. We select the best performance for each experiment based on the highest recovery rate
(marked in bold).
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Distill model Graph Transformer

Data Training Validation Recovery Diversity Perplexity pTM/
pLDDT

TM
scoreWeighted

sampling
Focal
loss CE loss

– – – – 25.2 72.2 7.2 0.80 0.81

TM
42K

+ – 1.37 24.1 74.4 7.4 0.81
+ 1.0 1.16 25.2 73.2 7.2 0.86
+ 3.0 1.10 25.8 74.5 7.2 0.83 0.80
+ 10.0 1.29 24.9 73.9 7.3 0.81

TM augmented
86K

– – 2.12 25.0 73.3 7.1 0.78
+ 1.0 2.15 25.9 74.0 7.1 0.80 0.82
+ 3.0 2.19 24.9 73.4 7.3 0.76
+ 10.0 2.25 24.8 73.4 7.2 0.79

TM synthetic
1M

– – 2.90 25.3 73.2 7.1 0.72
+ 1.0 2.55 25.5 73.9 7.2 0.79 0.75
+ 3.0 2.75 25.2 73.5 7.2 0.77
+ 10.0 3.20 24.9 74.2 7.2 0.76

LDDT
42K

– – 3.47 25.4 73.2 7.1 0.75
+ 1.0 3.44 25.7 74.2 7.1 0.72 0.76
+ 3.0 3.42 25.5 74.4 7.2 0.73
+ 10.0 3.39 25.3 22.3 7.2 0.72

pLDDT
1M

– – 3.27 25.6 73.4 7.1 0.79
+ 1.0 3.28 25.4 74.1 7.2 0.78
+ 3.0 3.25 25.6 74.3 7.1 0.79 0.79
+ 10.0 3.24 25.4 74.0 7.1 0.77

LDDT chain
42K

– – 3.69 25.3 74.1 7.2 0.76
+ 1.0 3.57 25.8 74.3 7.1 0.75 0.80
+ 3.0 3.63 25.5 74.2 7.1 0.77
+ 10.0 3.59 25.6 74.1 7.2 0.76

pLDDT chain
1M

– – 3.29 25.3 74.3 7.1 0.78
+ 1.0 3.36 25.2 74.1 7.1 0.76
+ 3.0 3.30 25.6 74.4 7.2 0.79 0.81
+ 10.0 3.31 25.3 74.3 7.1 0.77

pLDDT
balanced 1M – – 2.63 25.8 74.2 7.1 0.70

pLDDT
balanced 10M – – 2.43 25.7 74.5 7.1 0.73

pLDDT
balanced 60M – – 2.40 26.0 74.2 7.2 0.74 0.78

pLDDT chain
balanced 1M – – 2.45 25.7 74.3 7.1 0.72

pLDDT chain
balanced 10M – – 2.24 25.9 74.4 7.1 0.74

pLDDT chain
balanced 60M – – 2.21 25.9 74.5 7.2 0.72 0.77

Table 14: Evaluation results of Graph Transformer inverse folding task, trained without (top row) and
with SC regularization (all other rows). The table combines all the choices for AFDistill pretraining
and showing their validation accuracy, as well as the corresponding performance on the downstream
application. We select the best performance for each experiment based on the highest recovery rate
(marked in bold).
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Distill model CDR Infill

Data Training Validation Recovery Diversity Perplexity pTM/
pLDDT

TM
scoreWeighted

sampling
Focal
loss CE loss

– – – – 41.5 14.5 6.8 0.80 0.85

TM
42K

+ – 1.37 41.9 15.7 6.5 0.81
+ 1.0 1.16 42.4 16.6 6.3 0.77 0.85
+ 3.0 1.10 41.7 14.6 6.7 0.78
+ 10.0 1.29 40.8 14.4 6.6 0.79

TM augmented
86K

– – 2.12 42.8 15.5 6.5 0.78 0.84
+ 1.0 2.15 41.6 14.8 6.6 0.74
+ 3.0 2.19 41.3 14.6 6.7 0.76
+ 10.0 2.25 40.9 15.4 6.8 0.79

TM synthetic
1M

– – 2.90 41.8 16.0 6.6 0.79
+ 1.0 2.55 41.9 15.9 6.7 0.79 0.84
+ 3.0 2.75 41.3 16.1 6.6 0.77
+ 10.0 3.20 40.9 16.2 6.7 0.78

LDDT
42K

– – 3.47 41.3 15.1 6.5 0.83
+ 1.0 3.44 40.3 15.5 6.7 0.84
+ 3.0 3.42 40.8 14.4 6.8 0.81
+ 10.0 3.39 41.9 14.9 6.6 0.79 0.84

pLDDT
1M

– – 3.27 41.8 15.4 6.3 0.85 0.83
+ 1.0 3.28 40.7 14.3 6.5 0.85
+ 3.0 3.25 41.7 17.2 6.5 0.84
+ 10.0 3.24 41.6 16.1 6.6 0.85

LDDT chain
42K

– – 3.69 40.8 15.1 6.7 0.77
+ 1.0 3.57 40.9 15.7 6.6 0.85
+ 3.0 3.63 41.7 15.2 6.9 0.84 0.85
+ 10.0 3.59 41.6 15.2 6.8 0.83

pLDDT chain
1M

– – 3.29 40.5 16.1 6.6 0.81
+ 1.0 3.36 40.8 17.1 6.5 0.88
+ 3.0 3.30 41.0 15.0 6.5 0.85
+ 10.0 3.31 41.8 15.4 6.3 0.87 0.85

pLDDT
balanced 1M – – 2.63 42.1 15.8 6.4 0.75 0.83

pLDDT
balanced 10M – – 2.43 42.0 14.9 7.0 0.76

pLDDT
balanced 60M – – 2.40 42.1 16.5 6.3 0.73

pLDDT chain
balanced 1M – – 2.45 41.1 18.0 6.1 0.75

pLDDT chain
balanced 10M – – 2.24 41.3 17.0 6.7 0.74

pLDDT chain
balanced 60M – – 2.21 41.9 17.5 6.3 0.73 0.83

Table 15: Evaluation results of Protein Infilling task, trained without (top row) and with SC regular-
ization (all other rows). The table combines all the choices for AFDistill pretraining and showing
their validation accuracy, as well as the corresponding performance on the downstream application.
We select the best performance for each experiment based on the highest recovery rate (marked in
bold).
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