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Abstract

We identify and analyze a surprising phenomenon of Latent Diffusion Models
(LDMs) where the final steps of the diffusion can degrade sample quality. In
contrast to conventional arguments that justify early stopping for numerical stability,
this phenomenon is intrinsic to the dimensionality reduction in LDMs. We provide
a principled explanation by analyzing the interaction between latent dimension
and stopping time. Under a Gaussian framework with linear autoencoders, we
characterize the conditions under which early stopping is needed to minimize the
distance between generated and target distributions. More precisely, we show
that lower-dimensional representations benefit from earlier termination, whereas
higher-dimensional latent spaces require later stopping time. We further establish
that the latent dimension interplays with other hyperparameters of the problem
such as constraints in the parameters of score matching. Experiments on synthetic
and real datasets illustrate these properties, underlining that early stopping can
improve generative quality. Together, our results offer a theoretical foundation
for understanding how the latent dimension influences the sample quality, and
highlight stopping time as a key hyperparameter in LDMs.

1 Introduction

A pivotal advancement in the evolution of diffusion models is the introduction of the Latent Diffusion
Model [LDM, Rombach et al., 2022]. Instead of performing the computationally intensive diffusion
process in the high-dimensional pixel space, LDMs first compress the data into a lower-dimensional
latent space using a pretrained autoencoder [AE, Kingma and Welling, 2013]. The diffusion steps
then occur within this more manageable latent representation, significantly reducing computational
requirements and training time without a meaningful loss of quality. Once the generative process is
complete, a decoder maps the resulting latent vector back into a full-resolution image.

One well-documented challenge in diffusion model is the onset of numerical instability as the timestep
t approaches 0 [Song et al., 2021]. To avoid this, in practice both the training objective and the
inference-time integration are restricted to the interval [0, T − δ] [Vahdat et al., 2021] for some small,
non-zero stopping time, δ > 0. By contrast, this suggests a key benefit of LDMs, which to our
knowledge has not been explored in the literature so far: by relying on the autoencoder to reduce the
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dimensionality, the LDM provides an alternative mean to learn low-dimensional manifolds without
relying on the last few steps. This intuition motivates the following hypothesis:

In latent diffusion models, the last diffusion steps do not improve, or even degrade, sample quality.

We find empirical evidence of this hypothesis by comparing samples from a LDM with those of a
standard diffusion model directly trained in the pixel space, both trained on the dataset CelebA. In
the case of an LDM, degradation in the last sampling steps is evidenced by a rising FID score, as
illustrated in Figure 2. In contrast, this phenomenon, which happens much earlier in the diffusion
process than potential numerical instabilities close to T , is absent in standard diffusion models. Visual
inspection of the associated images confirms that their quality does not improve in the last steps of the
LDM, contrarily to standard diffusion (see Figure 4 and Figure 5). Our main contribution in this work
is to provide a theoretical justification of this observation. To this aim, we analyze the phenomenon
using Gaussian data and a linear autoencoder. This choice is deliberate, as this simplified setting
already exhibits phenomena similar to the larger-scale evidence, while being analytically tractable,
allowing us to rigorously demonstrate the effect of early stopping and dimension reduction.

2 Notations and Problem Setup

We consider a diffusion process where the initial distribution, p0, is a D-dimensional centered
Gaussian with independent components and ordered variances:

p0 = N (0,Σ), where Σ = diag(σ2
1 , . . . , σ

2
D) and σ1 ≥ . . . ≥ σD > 0. (1)

The forward diffusion
−→
Xt and corresponding backward diffusion

←−
X t (driven by the score function s)

are defined as:

d
−→
Xt = −w2

t

−→
Xtdt+

√
2w2

t d
−→
Wt,

−→
X0 ∼ p0,

d
←−
X t = (w2

T−t
←−
X t + 2w2

T−ts(
←−
X t, T − t))dt+

√
2w2

T−tdP
←−
Wt,

←−
X 0 ∼ pT ,

where pt is the distribution of
−→
Xt. We analyze this system across a hierarchy of latent spaces

by projecting the processes onto their first d components using Pd for d ∈ {1, . . . , D}. The true

projected backward process Pd
←−
XT−t and the estimated one Pd

←−
X̂ t are Gaussian

Pd
←−
XT−t ∼ N (0, a2t Id + b2tPdΣP

⊤
d ) and Pd

←−
X̂T−t = N (0, a2t Id + b2tPdΣ̂P

⊤
d ) (2)

where at =
√
1− b2t , bt = e−

∫ t
0
w2

t dt, and Σ̂ is the estimated variance matrix (learning the score
function reduces to estimating Σ).

The distance between the true and estimated distributions is quantified using the Fréchet distance (dF )
[Heusel et al., 2017], which is equivalent to the Wasserstein-2 distance [Villani, 2008] for Gaussian
distributions:

d2F (N (µ1,Σ1),N (µ2,Σ2)) = ∥µ1 − µ2∥22 + tr(Σ1 +Σ2 − 2(Σ
1/2
2 Σ1Σ

1/2
2 )1/2). (3)

We use dF (X,Y ) to denote the distance between the distributions of random variables X and Y .

3 Optimal dimension reduction and stopping time

In this section, we address the important question of how dimensionality reduction affects the
diffusion process with respect to the intrinsic geometric structure of the data. In addition, we assume
that the eigenvectors of the true covariance matrix is known, this is made explicit by assuming that
the true and estimated covariance matrices are both diagonal.

3.1 An analysis of non-monotonic behavior of Fréchet distance

This subsection examines the non-monotonic behavior of the Fréchet distance as a function of
diffusion timesteps, challenging the intuitive expectation of monotonic evolution. The proof of this
result, as well as those of the subsequent ones, can be found in the Appendix.
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Proposition 1. Let Pd
←−
X t and Pd

←−
X̂ t be given as in (2), respectively. For d ∈ {1, . . . , D},

the Fréchet distance dF (P
⊤
d Pd
←−
X t,
−→
X 0) is non-increasing with respect to t. On the other hand,

dF (P
⊤
d Pd
←−
X̂ t,
−→
X 0) is non-increasing if and only if

d∑
d′=1

(1− σd′

σ̂d′
)(1− σ̂2

d′) ≥ 0. (4)

This insight suggests that early stopping can improve the backward diffusion process, bringing the
generated distribution closer to the data distribution. We next ask the reverse question: given a
stopping time t, what is the optimal latent dimension?

3.2 Optimal projection at time t

This subsection continues our study on the interaction between the projection dimension and the
stopping time of the backward process. In contrast to the previous section, we demonstrate that for
any fixed time t, an optimal projection dimension Pd exists. We maintain the assumption of Gaussian
data with independent components (1). The optimal dimension is characterized by specific time
partitions 0 = t1 ≤ t2 ≤ . . . ≤ tD ≤ tD+1 = T and 0 = t̂1 ≤ t̂2 ≤ . . . ≤ t̂D ≤ t̂D+1 = T (given
by (7) in the Appendix) derived from the true and estimated variances, respectively. This framework
allows us to minimize the distance between the generated and target distributions.

Proposition 2. Assume that 0 < σD < · · · < σ1. Then, for d ∈ {1, . . . , D} and t ∈ [td, td+1),

dF (P
⊤
d Pd
←−
X t,
−→
X0) = min

d′∈{1,...,D}
dF (P

⊤
d′Pd′

←−
X t,
−→
X0).

Furthermore, with high probability, the σ̂d and the t̂d are well-ordered. In this case, for t ∈ [t̂d, t̂d+1)

dF (P
⊤
d Pd
←−
X̂ t,
−→
X0) = min

d′∈{1,...,D}
dF (P

⊤
d′Pd′

←−
X̂ t,
−→
X0).

This proposition shows a time-dependent trade-off: early stages of the backward process are best
approximated in lower-dimensional spaces (d increases as t → T ). Intuitively, at early times, a
lower-dimensional projection avoids introducing more noise than signal. This effect holds for both
the true and estimated scores, though a component with sufficiently large variance (4σ2

d ≥ 1) should
always be included (td = 0).

We now extend this analysis to data that inherently possesses a low-rank structure. This al-
lows us to precisely determine the two key generation parameters—dimension and stopping
time—simultaneously.

Proposition 3. Assume that Σ = diag(σ2, . . . , σ2, 0, . . . , 0) with the last D − d0 entries equal to 0.
Let ε ∈ (0, 1). Then, there exists δ̂d0 ∈ [0, T ] such that with probability 1− 2d0e

−n
8 ,

dF (P
⊤
d0Pd0

←−
X̂T−δ̂d0

,
−→
X0) = min

t∈[0,T ]
d′∈{1,...,D}

dF (P
⊤
d′Pd′

←−
X̂ t,
−→
X0).

This result demonstrates that the optimal generation strategy for low-rank data requires both early
stopping and projection. The optimal stopping time T − δ̂d0 is shown to be strictly before T ( under
the non-monotonicity condition of Proposition 1), providing a strong justification for early stopping:
it is not merely a practical solution to prevent numerical instability [Yang et al., 2023] but an optimal
strategy to minimize the distance between the generated and true data distributions.

4 Performance of the score matching ERM

The previous analysis assumed properties derived from the exact or estimated score of an independent
Gaussian distribution. In practice, the score function is learned through a regression problem known
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as score matching. Given a training sample (X1, . . . , Xn) ∼ p0, the empirical score matching
objective for learning a predictor s is:

R(s) = 1

n

n∑
i=1

Et∼T ,ε∼N (0,ID)

∥∥∥∥s(btXi + atε, t) +
ε

at

∥∥∥∥2 , (5)

where T is an absolutely continuous distribution over [0, T ].

We restrict the predictor s to a hypothesis class FC of linear functions with bounded diagonal weights:

FC = {sM (x, t) = −M(t)x :M(t) = diag(m1(t), . . . ,mD(t)),

mi ∈ L2(R+,R), ∥mi∥∞ < C} .
The condition C > 1 ensures compatibility since the backward process begins from a standard
Gaussian whose score is the identity function. Let M̂ be the optimal score minimizingR. Specializing

to the Ornstein-Uhlenbeck process (wt ≡ 1), the generated backward sample
←−̃
X t follows the SDE:

d
←−̃
X t = (

←−̃
X t + 2sM̂ (

←−̃
X t, T − t))dt+

√
2d
←−
Wt,

←−̃
X 0 ∼ N (0, ID).

We then characterize the optimal projection dimension for this latent diffusion using the Fréchet

distance between the final generated sample Pd
←−̃
XT and the initial data distribution

−→
X0.

Proposition 4. Define 1 ≤ d1 ≤ d2 ≤ D as follows:

d1 = max{d′ ∈ {1, . . . , D} : 1/C ≤ σ̂2
d′} and d2 = min

{
d′ ∈ {1, . . . , D} : 1

2C − 1
≥ 4σ2

d′

}
.

(If the corresponding set in their definition is empty, we let d1 = 1 and d2 = D, respectively.) Then,
with high probability, there exists an optimal projection dimension d1 ≤ dmin ≤ d2 such that

dF (P
⊤
dmin

Pdmin

←−̃
XT ,

−→
X0) = min

d′∈{1,...,D}

{
dF (P

⊤
d′Pd′

←−̃
XT ,

−→
X0)

}
.

Interestingly, the optimal projection can be made explicit for exponentially-decaying covariance
spectrum.
Corollary 1. Let λ > 16. Assume that Σ = diag(λ−1, . . . , λ−D) and λ ≤ C ≤ λD. Let d ∈
{1, . . . , D} be such that σ̂2

d+1 ≤ 1/C ≤ σ̂2
d. Then, with n large enough and high probability,

dmin ∈ {d, d+ 1}.

5 Generalization to arbitrary Gaussian distributions

We now explain how to generalize some of our preceding analysis from Gaussian distributions
with diagonal covariance matrices to the more general case p0 = N (0,Σ) for arbitrary Σ, and the

backward processes
←−
X t and

←−
X̂ t given as in (2) with the new general data distribution p0. To this

end, let Σ = OΛO⊤ be the eigen decomposition of Σ, where O is an orthogonal matrix and Λ is
the diagonal matrix of eigenvalues, which we assume are distinct and ordered σ2

1 > . . . > σ2
D > 0.

Then, there are timesteps 0 = t1 ≤ t2 ≤ . . . ≤ tD ≤ tD+1 = T given by (8) in the Appendix. We
show next that for this general Gaussian case, PCA projection onto d components is optimal precisely
within the interval [td, td+1).
Proposition 5. For 2 ≤ d ≤ D and t ∈ [td, td+1), we have

dF (OP⊤
d PdO

⊤←−X t,
−→
X0) = min

d′∈{1,...,D}
dF (OP⊤

d′Pd′O
⊤←−X t,

−→
X0).

However, in practical applications, one must rely on estimations derived from observed data, where
PCA is commonly used. Denote Σ̂ = 1

n

∑n
i=1 XiX

⊤
i to be the empirical covariance matrix. Applying

a spectral decomposition yields Σ̂ = Ôdiag(σ̂2
1 , . . . , σ̂

2
D)Ô

⊤, where Ô contains the orthonormal
eigenvectors and σ̂2

D < . . . < σ̂2
1 are the corresponding eigenvalues. Given u > 0, define timesteps

T̂d(u) and t̂d(u) as in (9) and (10) in the Appendix. We are now in a position to describe the optimal
projection strategy at each stopping time.
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Proposition 6. For d ∈ {1, . . . , D} and any t ∈ [T̂d(u), t̂d+1(u)], with probability 1− 2e−u,

dF (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
X0) = min

d′∈{1,...,D}
dF (ÔP⊤

d′Pd′Ô
⊤
←−
X̂ t,
−→
X0).

The analysis reveals that, for any latent dimension d, there exists a time interval where a d-dimensional
projected diffusion process minimizes the distance to the target distribution with high probability.
Notably, this result is consistent with our previous conclusions.

6 Conclusion

This paper provides a theoretical analysis of optimal stopping time in latent diffusion models, showing
its critical dependence on latent space dimensionality and its interaction with other hyperparameters
of the diffusion process, such as weight regularization in the score matching phase. Our results focus
on Gaussian distributions, given their tractability and prominence in prior theoretical works [Pierret
and Galerne, 2024, Hurault et al., 2025]. Taken together, these insights open compelling research
directions, for deepening the theoretical properties of latent diffusion models and assessing when
they can match or surpass the sampling quality of standard diffusion models.
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Appendix

A Timesteps for optimal projections
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Figure 1: ā−2 in the Ornstein-
Uhlenbeck process.

Independent Gaussian. Recall that a is defined in (2) and
that it is an increasing map from [0, T ] to [0, aT ]. We then let
ā−2 : R ∪ {∞} → [0, T ] be the extended inverse function of
a2 (see plot in Figure 1), meaning that

ā−2(x) =


0, for x < 0,

a−2(x), for x ∈ [0, a2T ],

T, for x ∈ (a2T ,∞].

(6)

In particular, for t ∈ [0, T ], ā−2(a2t ) = t. For d ∈ {2, . . . , D},
we then let

td = T−ā−2
( 3σ2

d

(1− σ2
d)+

)
and t̂d = T−ā−2

( 4σ2
d − σ̂2

d

(1− σ̂2
d)+

)
.

(7)
By convention, we let t̂1 = t1 = 0 and t̂D+1 = tD+1 = T . Observe that the times td are in increasing
order and between 0 and T .

General Gaussian. As in Section 3, we define a time partition by setting t1 = 0 and tD+1 = T ,
and defining the intermediate timesteps for d ∈ {2, . . . , D} as:

td = T − ā−2

(
3σ2

d

(1− σ2
d)+

)
, (8)

where ā−2 is given in (6). This definition, combined with the ordering of the eigenvalues, yields a
sequence 0 = t1 ≤ t2 ≤ · · · ≤ tD ≤ tD+1 = T .

Denote S(Σ) =
∑D
d′=1 max(σd, σ

2
d). For u ≥ 0 and d ∈ {2, . . . , D}, we let T̂d(u) and t̂d(u) be

T̂d(u) = T − ā−2

(
σ̂2
d − 4S(Σ)εu + 2σ̂d

√
σ̂2
d − 4S(Σ)εu

(1− σ̂2
d)+

)
, (9)

t̂d(u) = T − ā−2

(
σ̂2
d + 4S(Σ)εu + 2σ̂d

√
σ̂2
d + 4S(Σ)εu

(1− σ̂2
d)+

)
, (10)

where εu = 8C
3 (
√

D+u
n + D+u

n ). We assume that εu is sufficiently small (i.e., n large enough) so
that the square root in the definition above is well-defined and the argument of ā−2 is positive. By
convention, we set T̂1(u) = 0 and t̂D+1(u) = T . Thus, for small εu, these timesteps are ordered as

0 = T̂1(u) < t̂2(u) < T̂2(u) < · · · < t̂D(u) < T̂D(u) < t̂D+1(u) = T.

B Proofs of results

B.1 Proof of Proposition 1

We show the equivalent statement: t ∈ [0, T ] 7→ d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) is non-decreasing if and only

if (4) holds. We start by calculating the Fréchet distance d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) by using (3):

d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X 0) =

D∑
d′=d+1

σ2
d′ +

d∑
d′=1

(
b2t σ̂

2
d′ + a2t + σ2

d′ − 2σd′
√
a2t + b2t σ̂

2
d′

)

=

D∑
d′=d+1

σ2
d′ +

d∑
d′=1

(√
a2t + (1− a2t )σ̂

2
d′ − σd′

)2
.
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Since t 7→ a2t is strictly increasing with a0 = 0, the monotonicity of d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) with

respect to t is equivalent to the monotonicity with respect to a2t . By considering the function
f : [0, a2T ]→ R defined by

f(x) =

d∑
d′=1

(√
x+ (1− x)σ̂2

d′ − σd′
)2

,

we see that d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) is non-decreasing if and only if f is non-decreasing. Additionally,

f ′(x) =

d∑
d′=1

(
√
x+ (1− x)σ̂2

d′−σd′)
1− σ̂2

j√
x+ (1− x)σ̂2

d′

=

d∑
d′=1

(
1− σd′√

x+ (1− x)σ̂2
d′

)
(1−σ̂2

d′),

and

f ′′(x) =

d∑
d′=1

σd′(1− σ̂2
d′)

2

2(x+ (1− x)σ̂2
d′)

3/2
> 0.

Hence, f is convex so it is non-decreasing if and only if f ′(0) ≥ 0. Therefore,

d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) = f(a2t ) +

D∑
d′=d+1

σ2
d′

is non-decreasing if and only if f ′(0) ≥ 0, i.e., if and only if
∑d
d′=1(1−

σd′
σ̂d′

)(1− σ̂2
d′) ≥ 0. This

shows the second statement of the proposition. The monotonicity of dF (P⊤
d Pd
←−
XT−t,

−→
X0) can be

shown by replacing σ̂d′ with σd′ in the derivative f ′, which is 0 when at = 0.

B.2 Proof of Proposition 2

The first part of Proposition 2 concerns the minimization of dF (P⊤
d Pd
←−
X t,
−→
X0). Recall that td =

T − ā−2
(

3σ2
d

1−σ2
d

)
. To prove that Pd

←−
X t achieves the minimal distance to the target for t ∈ [td, td+1)

(where the time interval is fixed), we will demonstrate how the distance dF (P⊤
d Pd
←−
X t,
−→
X0) behaves as

a function of the projection dimension d. Specifically, we aim to show that, for any d ∈ {2, . . . , D},

dF (P
⊤
d Pd
←−
X t,
−→
X0) ≤ dF (P

⊤
d−1Pd−1

←−
X t,
−→
X0) iff t ≥ td. (11)

This inequality in turn implies that for a given t in a fixed interval [td, td+1), the minimum distance
dF (P

⊤
d Pd
−→
Xt,
−→
X0) is attained by the projected process Pd

−→
Xt in dimension d.

To establish them, we first explicitly compute the Fréchet distance dF (P
⊤
d Pd
−→
Xt,
−→
X0). Recall that

the Fréchet distance between two zero-mean Gaussian distributions N (0,Σ1) and N (0,Σ2) is
given by Tr(Σ1 + Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2), and that the covariance matrix of Pd

←−
X t is equal to

Pd(a
2
T−tId + b2T−tΣ)Pd. Therefore, it is possible to calculate the Fréchet distance to the target for

the projected processes directly, as, for any d ∈ {1, . . . , D},

d2F (P
⊤
d Pd
←−
X t,
−→
X 0) =

D∑
j=1

σ2
j +

d∑
j=1

(a2T−t + b2T−tσ
2
j )− 2

d∑
j=1

σj

√
a2T−t + b2T−tσ

2
j ,

so that
∆d,t := d2F (P

⊤
d Pd
←−
X t,
−→
X 0)− d2F (P

⊤
d−1Pd−1

←−
X t,
−→
X 0)

= b2T−tσ
2
d + a2T−t − 2σd

√
a2T−t + b2T−tσ

2
d,

=
√
b2T−tσ

2
d + a2T−t

(√
b2T−tσ

2
d + a2T−t − 2σd

)
,

=
√
(1− a2T−t)σ

2
d + a2T−t

(√
(1− a2T−t)σ

2
d + a2T−t − 2σd

)
,

=
√
σ2
d + a2T−t(1− σ2

d)
(√

a2T−t(1− σ2
d) + σ2

d − 2σd

)
.

We see that ∆d,t has the same sign as the term in the parenthesis on the last line, which itself has the
same sign as a2T−t(1− σ2

d)− 3σ2
d. Then,

8



• if σd ≥ 1 or 3σ2
d

1−σ2
d
≥ a2T , ∆d,t is non-positive for all t ∈ [0, T ], while td = 0 by definition;

• otherwise, ∆d,t is non-positive if and only if a2T−t ≤
3σ2

d

1−σ2
d

which is equivalent to

T − t ≤ a−2
( 3σ2

d

1− σ2
d

)
= T − td.

Putting things together, we obtain that d2F (P
⊤
d Pd
←−
X t,
−→
X 0)− d2F (P

⊤
d−1Pd−1

←−
X t,
−→
X 0) is non-positive

iff t ≥ td, which is exactly (11).

The proof in the case of estimated variances can be derived in a similar fashion as long as the
estimated variances σ̂i and times t̂i are well-ordered, which happens with high probability for a
sufficiently large sample.

B.3 Proof of Proposition 3

We first state the full proposition.

Proposition 7. Assume that Σ = diag(σ2, . . . , σ2, 0, . . . , 0) with the last D − d0 entries equal to 0,
and the estimated variances are ordered as σ̂2

1 ≥ σ̂2
2 ≥ . . . ≥ σ̂2

d0
. Let ε ∈ (0, 1). For

t ∈
[
T − ā−2

(3− ε

1 + ε

σ̂2
1

1− σ̂2
1

)
, T

)
,

with probability 1− 2d0e
− ε2n

8 , we have

dF (P
⊤
d0Pd0

←−
X̂ t,
−→
X0) = min

d′∈{1,...,D}
dF (P

⊤
d′Pd′

←−
X̂ t,
−→
X0).

If, in addition,
d0∑
d′=1

(1− σ

σ̂d′
)(1− σ̂2

d′) < 0, (12)

then
d0∑
d′=1

(1− σ√
σ̂2
d′ + (1− σ̂2

d′)a
2
t

)(1− σ̂2
d′) = 0,

has a unique solution which we denote by δ̂d0 . By convention, if the condition (12) is not satisfied, we

set δ̂d0 = 0. Then, with probability 1− 2d0e
− ε2n

8 ,

dF (P
⊤
d0Pd0

←−
X̂T−δ̂d0

,
−→
X0) = min

t∈[0,T ]
d′∈{1,...,D}

dF (P
⊤
d′Pd′

←−
X̂ t,
−→
X0).

Let ε ∈ (0, 1). We first note that according to Proposition 8, by the union bound, with probability

1− 2d0e
− ϵ2n

4(1+ϵ) ≥ 1− 2d0e
− ϵ2n

8 we have |σ2 − σ̂2
d| ≤ εσ2 for all d ∈ {1, . . . , d0}. We work under

this event in the remainder of the proof. In particular, for all d ∈ {1, . . . , d0}, σ2
d = σ2 ≥ σ̂2

1/(1+ ε).
Thus, by separating cases depending on whether 4σ2

d ≤ 1, a short calculation gives that

min
(
1,

4
1+ε σ̂

2
1 − σ̂2

1

1− σ̂2
1

)
≤ min

(
1,

4σ2
d − σ̂2

1

1− σ̂2
1

)
≤ 4σ2

d − σ̂2
d

1− σ̂2
d

.

The last inequality is derived as follows: if 4σ2
d ≤ 1, then we use the fact that x 7→ a−x

1−x is non-

increasing if a < 1. On the other hand, if 4σ2
d ≥ 1, then 4σ2

d−σ̂
2
d

1−σ̂2
d
≥ 1. Hence, by the monotonic

increase of ā−2,

t̂d = T − ā−2
(4σ2

d − σ̂2
d

1− σ̂2
d

)
9



= T − ā−2
(
min

(
1,

4
1+ε σ̂

2
1 − σ̂2

1

1− σ̂2
1

))
≥ T −min

(
T, ā−2

(3− ε

1 + ε

σ̂2
1

1− σ̂2
1

))
= max

(
0, T − ā−2

(3− ε

1 + ε

σ̂2
1

1− σ̂2
1

))
= T − ā−2

(3− ε

1 + ε

σ̂2
1

1− σ̂2
1

)
.

Thus, t ≥ T − ā−2
(

3−ε
1+ε

σ̂2
1

1−σ̂2
1

)
implies t ≥ t̂d for every d ∈ {1, . . . , d0}. On the other hand,

t < T = t̂d for all d ∈ {d0 + 1, . . . , D} since σd = σ̂d = 0. From here we deduce the desired result
applying Proposition 2.

In this second part, we study under the event where |σ2 − σ̂2
d| ≤ σ2 for every d ∈ {1, . . . , d0},

which holds with probability 1 − 2d0e
−n/8 by Proposition 8. To prove the desired result, we first

show that the minimum of the distance dF (P
⊤
d0
Pd0
←−
X̂ t,
−→
X0) is attained at t = T − δ̂d0 , as per

its definition. We consider two cases depending on whether condition (12) is satisfied. First, if
condition (12) holds, the proof of Proposition 1 establishes that a2

T−δ̂d0
is the unique zero of the

derivative d
da2t

d2F (P
⊤
d0
Pd0
←−
X̂ t,
−→
X0). This confirms that T − δ̂d0 is the unique minimizer of the distance.

Conversely, if condition (12) is not satisfied, then δ̂d0 = 0. In this scenario, the squared distance

d2F (P
⊤
d0
Pd0
←−
X̂ t,
−→
X0) is a non-increasing function of t and thus attains its minimum at the endpoint

t = T . This result is consistent, as t = T = T − δ̂d0 .

We remark by Proposition 2 that, since t̂d = T for every d ∈ {d0 + 1, . . . , D}, for every t ∈ [0, T ],

dF (P
⊤
d0Pd0

←−
X̂T−δ̂d0

,
−→
X0) ≤ dF (P

⊤
d0Pd0

←−
X̂ t,
−→
X0) ≤ dF (P

⊤
d Pd
←−
X̂ t,
−→
X0).

Observe that t̂1 = maxd∈{1,...,d0} t̂d, which is in the same order of σ̂d. This is due to the fact that
x 7→ a−x

1−x is non-increasing if a < 1. Then from the proof of Proposition 2 we deduce that, for t ≥ t̂1
and d ∈ {1, . . . , d0}, that

dF (P
⊤
d0Pd0

←−
X̂T−δ̂d0

,
−→
X0) ≤ dF (P

⊤
d0Pd0

←−
X̂ t,
−→
X0) < dF (P

⊤
d Pd
←−
X̂ t,
−→
X0).

If t̂1 = 0, the proof is finished. Note that this is the case if σ2 ≥ 1/4, since 4σ2−σ̂2
1

(1−σ̂2
1)+
≥ 1. We study

from now the case where t̂1 > 0 and σ2 ≤ 1/4, with t ≤ t̂1 and d ∈ {1, . . . , d0}. We do this by

showing for every dimension d ∈ {1, . . . , d0}, dF (P⊤
d Pd
←−
X̂ t,
−→
X0) is non-increasing on [0, t̂1]. This

implies

dF (P
⊤
d0Pd0

←−
X̂T−δ̂d0

,
−→
X0) ≤ dF (P

⊤
d0Pd0

←−
X̂ t̂d0

,
−→
X0) ≤ dF (P

⊤
d Pd
←−
X̂ t̂d0

,
−→
X0) ≤ dF (P

⊤
d Pd
←−
X̂ t,
−→
X0).

In the remainder of the proof, we show, for d ∈ {1, . . . , d0}, that dF (P⊤
d Pd
←−
X̂ t,
−→
X0) is non-increasing

on [0, t̂1]. This is equivalent to proving that dF (P⊤
d Pd
←−
X̂T−t,

−→
X0) is non-decreasing on [T − t̂1, T ].

Recall that, as in the proof as Proposition 1,

d2F (P
⊤
d Pd
←−
X̂T−t,

−→
X0) =

d0∑
d′=d+1

σ2 +

d∑
d′=1

(√
a2t + (1− a2t )σ̂

2
d′ − σ

)2
.

Consider fd given by

fd(x) =

d∑
d′=1

(√
x+ (1− x)σ̂2

d′ − σ
)2
.

10



What we want to show is equivalent to f being non-decreasing on [a2
T−t̂1

, a2T ]. Since fd is convex
as proven in Proposition 1, it is sufficient to show that f ′ is positive at a2

T−t̂1
. All in all, since the

derivative of fd is

f ′
d(x) =

d∑
d′=1

(
1− σ√

σ̂2
d′ + (1− σ̂2

d′)x

)
(1− σ̂2

d′),

if we are able to show that for any d′ ≤ d0,

(1− σ√
σ̂2
d′ + (1− σ̂2

d′)a
2
T−t̂1

)(1− σ̂2
d′) ≥ 0, (13)

then

f ′
d(a

2
T−t̂) =

d∑
d′=1

(
1− σ√

σ̂2
d′ + (1− σ̂2

d′)a
2
T−t̂1

)
(1− σ̂2

d′) ≥ 0.

The result above is twofold. First, we get that dF (P
⊤
d Pd
←−
X̂T−t,

−→
X0) is increasing on the in-

terval of interest. This also interestingly shows that the minimum of the Frobenius distance

t 7→ dF (P
⊤
d0
Pd0
←−
X̂ t,
−→
X0) is reached after t̂1. Since by definition the minium is reached at T − δ̂d0 ,

we get that T − δ̂d0 ≥ t̂.

The only thing remaining is to show (13). Recall that t̂1 = T − ā−2
(

4σ2−σ̂2
1

1−σ̂2
1

)
, and that we assumed

t̂1 > 0, which implies 4σ2−σ̂2
1

1−σ̂2
1

< a2T . On the other hand, recall that we work under the event that

|σ2 − σ̂2
1 | ≤ σ2. Hence, σ̂2

1 ≤ 2σ2 < 1 and 4σ2−σ̂2
1

1−σ̂2
1

> 0. Therefore, by definition of t̂1, we have

a2
T−t̂1 =

4σ2 − σ̂2
1

1− σ̂2
1

.

From here, we prove (13). We rewrite (13) as

1− σ√
σ̂2
d′ + (1− σ̂2

d′)a
2
T−t̂

≥ 0.

⇔ σ2 ≤ σ̂2
d′ + (1− σ̂2

d′)
4σ2 − σ̂2

1

1− σ̂2
1

⇔ σ2 ≤ σ̂2
d′ + (1− σ̂2

d′)
(
1− 1− 4σ2

1− σ̂2
1

)
⇔ σ2 ≤ 1− (1− σ̂2

d′)
1− 4σ2

1− σ̂2
1

⇔ (1− σ̂2
d′)

1− 4σ2

1− σ̂2
1

≤ 1− σ2.

Therefore, since σ̂d′ < 1,we deduce that (13) is equivalent to showing:

1− 4σ2

1− σ̂2
1

≤ 1− σ2

1− σ̂2
d′
.

To show this, recall the bound σ̂2
1 ≤ 2σ2 < 1. Thus,

1− 4σ2

1− σ̂2
1

≤ 1− 4σ2

1− 2σ2
= 1− σ2 2

1− 2σ2
≤ 1− σ2 ≤ 1− σ2

1− σ̂2
d′
,

which derives the desired inequality and we conclude the proof.
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B.4 Derivation of the optimal score function in FC

We begin by rewriting the expression of the score matching objective in the following form:

R(sM ) =
1

n

n∑
i=1

Et∼T ,ε∼N (0,ID)

∥∥∥∥sM (btXi + atε, t) +
ε

at

∥∥∥∥2
=

1

n

n∑
i=1

Et∼T ,ε

∥∥∥∥−M(t)(btXi + atε) +
ε

at

∥∥∥∥2 (since sM (x, t) = −M(t)x)

=
1

n

n∑
i=1

D∑
d=1

Et∼T ,εd

[(
md(t)(btXik + atεd)−

εd
at

)2]
.

To find the optimal M(t), we note that the objective and the constraint are separable across the time
interval [0, T ]. The objective is also separable across the dimensions d ∈ {1, . . . , D}. Hence it
suffices to minimize the quantity

r(md(t)) :=
1

n

n∑
i=1

Eεd
[(

md(t)(btXik + atεd)−
εd
at

)2]
separately over md(t) ∈ [−C,C] for each t ∈ [0, T ] and d ∈ {1, . . . , D}. Observe that the function
r : [−C,C]→ R is a quadratic function. Its derivative is

r′(m) =
1

n

n∑
i=1

Eεd
[
2

(
m(btXid + atεd)−

εd
at

)
(btXid + atεd)

]
,

=
2

n

n∑
i=1

(
m(b2tX

2
id + a2t )− 1

)
(since E[εd] = 0,E[ε2d] = 1),

= m

(
a2t + b2t

1

n

n∑
i=1

X2
id

)
− 1.

Therefore, the minimum of r over [−C,C] is attained at

m̂d(t) = min

(
C,

1

a2t + b2t σ̂
2
d

)
,

which concludes the proof.

B.5 Proof of Proposition 4

Since the Fréchet distance is determined by the variance for centered random variables, the first step

of the proof is to deduce the variance of Pd
←−̃
X 0 for all d. Denote for 1 ≤ d ≤ D, the variance of

←−̃
X t,d

by Vt,dd. It is known [see, for instance, Särkkä and Solin, 2019, Section 5.5] that Vt,dd follows the
following ODE:

dVt,dd
dt

= 2(1− 2m̂d(T − t))Vt,dd + 2, V0,dd = 1. (14)

An important intermediate step in this proof is to show the following:

(
√
Vt,dd − σd)

2 ≤ σ2
d , if d ≤ d1, (15)

(
√
Vt,dd − σd)

2 ≥ σ2
d , if d ≥ d2. (16)

To do so, we first develop an explicit expression for Vt,dd:

Vt,dd = exp

(∫ t

0

2(1− 2m̂d(T − τ))dτ

)
+ 2

∫ t

0

exp

(∫ t

s

2(1− 2m̂d(T − τ))dτ

)
ds. (17)

If C < 1
a20+b

2
0σ̂

2
d
= 1

σ̂2
d

, let t′d be the unique solution in [0, T ] of the equation C = m̂d(T − t′d) =
1

a2
T−t′

d
+b2

T−t′
d
σ̂2
d

. Otherwise, we set t′d = T , which is always the case for d ≤ d1. Remark that if

σ̂d ≥ 1, then 1
a2t+b

2
t σ̂

2
d
≤ 1 ≤ C. Thus, for such dimension d, we always have t′d = T and d ≤ d1.
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We derive an explicit expression for the term VT,dd. We first calculate the first part by plugging in
the exact form of m̂d. To do so, we recall that at =

√
1− e−2t and bt = e−t. Also note that m̂d

is decreasing on [0, T ], more precisely it is equal to C on [0, T − t′d] and equal to 1/(a2t + b2t σ̂
2
d)

for t ∈ [T − t′d, T ]. With these keys facts in mind, we begin by calculating the following integrand,
which for s = 0 gives the first term in (17) and is the integrand of the second term.

exp

(∫ T

s

2(1− 2m̂d(T − τ))dτ

)

= exp

(∫ T−s

0

2(1− 2m̂d(τ))dτ

)

= e2(T−s) exp

(
−4
∫ T−s∨t′d

0

m̂d(τ)dτ

)
exp

(
−4
∫ T−s

T−s∨t′d
m̂d(τ)dτ

)

= e2(T−s)e−4C(T−s∨t′d)e−4(s∨t′d−s)

(
1− (1− σ̂2

d)e
−2(T−s∨t′d)

1− (1− σ̂2
d)e

−2(T−s)

)2

, (18)

where, in the last line, we use the following:∫
m̂d(τ)dτ =

∫ (
1 +

e−2τ (1− σ̂2
d)

1− (1− σ̂2
d)e

−2τ

)
dτ = τ +

1

2
log
(
1− (1− σ̂2

d)e
−2τ
)
.

By substituting s = 0, we see that the first term in (17) is equal to

exp

(∫ T

0

2(1− 2m̂d(T − τ))dτ

)
= e−2T e−4(C−1)(T−t′d)

(
1− (1− σ̂2

d)e
−2(T−t′d)

1− (1− σ̂2
d)e

−2T

)2

. (19)

Next, we focus on deriving an explicit expression of the second term in (17). We plug in the term
(18) and deduce that

2

∫ T

0

exp

(∫ T

s

2(1− 2m̂d(T − τ))dτ

)
ds

= 2(

∫ T

t′d

+

∫ t′d

0

)e2(T−s)e−4C(T−s∨t′d)e−4(s∨t′d−s)

(
1− (1− σ̂2

d)e
−2(T−s∨t′d)

1− (1− σ̂2
d)e

−2(T−s)

)2

ds

= 2

∫ T

t′d

e2(T−s)e−4C(T−s)ds

+ 2

∫ t′d

0

e2(T−s)e−4C(T−t′d)e−4(t′d−s)

(
1− (1− σ̂2

d)e
−2(T−t′d)

1− (1− σ̂2
d)e

−2(T−s)

)2

ds

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+ (1− (1− σ̂2
d)e

−2(T−t′d))2e−4(C−1)(T−t′d)
∫ t′d

0

2e−2(T−s)

(1− (1− σ̂2
d)e

−2(T−s))2
ds

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+
(1− (1− σ̂2

d)e
−2(T−t′d))2e−4(C−1)(T−t′d)

1− σ̂2
d

[
1

1− (1− σ̂2
d)e

−2(T−s)

]t′d
0

.

We see that the last term can be rewritten in the following form[
1

1− (1− σ̂2
d)e

−2(T−s)

]t′d
0

=
1

1− (1− σ̂2
d)e

−2(T−t′d)
− 1

1− (1− σ̂2
d)e

−2T

=
(1− σ̂2

d)(e
−2(T−t′d) − e−2T )

(1− (1− σ̂2
d)e

−2T )(1− (1− σ̂2
d)e

−2(T−t′d))
.
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Thus, we derive that

2

∫ T

0

exp

(∫ T

s

2(1− 2m̂d(T − τ))dτ

)
ds

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+
(1− (1− σ̂2

d)e
−2(T−t′d))e−4(C−1)(T−t′d)

1− (1− σ̂2
d)e

−2T
(e−2(T−t′d) − e−2T ) . (20)

Therefore, by summing up the two terms (19) and (20), we deduce that

VT,dd =
1

2C − 1
(1− e(2−4C)(T−t′d))

+
(1− (1− σ̂2

d)e
−2(T−t′d))e−4(C−1)(T−t′d)

1− (1− σ̂2
d)e

−2T
(e−2(T−t′d) − e−2T )

+ e−2T e−4(C−1)(T−t′d)

(
1− (1− σ̂2

d)e
−2(T−t′d)

1− (1− σ̂2
d)e

−2T

)2

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+ e−4(C−1)(T−t′d) 1− (1− σ̂2
d)e

−2(T−t′d)

1− (1− σ̂2
d)e

−2T

×

(
e−2(T−t′d) − e−2T + e−2T 1− (1− σ̂2

d)e
−2(T−t′d)

1− (1− σ̂2
d)e

−2T

)

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+ e−4(C−1)(T−t′d) 1− (1− σ̂2
d)e

−2(T−t′d)

1− (1− σ̂2
d)e

−2T

× e−2(T−t′d) − 2(1− σ̂2
d)e

−2(2T−t′d) + (1− σ̂2
d)e

−4T

1− (1− σ̂2
d)e

−2T

=
1

2C − 1
(1− e(2−4C)(T−t′d))

+ e(2−4C)(T−t′d) 1− (1− σ̂2
d)e

−2(T−t′d)

1− (1− σ̂2
d)e

−2T

1− 2(1− σ̂2
d)e

−2T + (1− σ̂2
d)e

−2(T+t′d)

1− (1− σ̂2
d)e

−2T
.

We remark that, for d ≤ d1 we have t′d = T and we may simplify the expression of VT,dd to

VT,dd = σ̂2
d

1− 2(1− σ̂2
d)e

−2T + (1− σ̂2
d)e

−4T

1− 2(1− σ̂2
d)e

−2T + (1− σ̂2
d)

2e−4T
. (21)

Before we prove (15) and (16), we categorize the behavior of Vt,dd according to the value of σ̂d and
we summarize the result in the following lemma, the proof of which we delay to the end of this proof.

Lemma 1. For d ∈ {1, . . . , D}. If σ̂d ≥ 1, then Vt,dd ≥ 1 for every t ∈ [0, T ]. If σ̂d ≤ 1, then
Vt,dd ≤ 1 for every t ∈ [0, T ].

Let us deduce from (21), for d ≤ d1, (
√
VT,dd − σd)

2 ≤ σ2
d. We work under the high probability

event that |σ2
d − σ̂2

d| ≤ σ2
d for every d ∈ {1, . . . , D}, we split the proof into three cases:

• If σd > 1 then σ̂d ≥ 1, from (21), we see that VT,dd < σ̂2
d ≤ 4σ2

d, with high probability.
Thus, (

√
VT,dd − σd)

2 ≤ max((0− σd)
2, (2σd − σd)

2) ≤ σ2
d.

• If σd ∈ [ 12 , 1) which implies that σ̂d < 1, then VT,dd ≤ 1, we then have (
√
VT,dd − σd)

2 ≤
max((0− σd)

2, (1− σd)
2) ≤ σ2

d.
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• If σd = 1, we again split cases depending on whether σ̂d ≥ 1. We get the same bounds as in
the two previous cases.

• Finally, if σd ≤ 1
2 , with high probability, |σ2

d− σ̂2
d| ≤ σ2

d. Hence, σ̂2
d ≤ 2σ2

d ≤ 1
2 . Observing

that the fraction in (21) is bounded by 1/(1− σ̂2
d), we deduce that

VT,dd ≤
σ̂2
d

1− σ̂2
d

≤ 2σ̂2
d ≤ 4σ2

d, ∀d ≤ d1,

which gives the desired bound.

Next, for d ≥ d2, remark by definition of t′d that 1

1−(1−σ̂2
d)e

−2(T−t′
d
)
= C. Also note that the definition

of d2 and the fact that C > 1 implies that σ̂2
d < 1. Hence,

VT,dd =
1

2C − 1
+ e(2−4C)(T−t′d)

(
(1− 2(1− σ̂2

d)e
−2T + (1− σ̂2

d)e
−2(T+t′d))

C(1− (1− σ̂2
d)e

−2T )2
− 1

2C − 1

)

≥ 1

2C − 1
+ e(2−4C)(T−t′d)

(
1

C
− 1

2C − 1

)
≥ 1

2C − 1
.

Therefore, for d ≥ d2 we deduce that

VT,dd ≥
1

2C − 1
≥ 4σ2

d.

To summarize, we derived the following bounds
(
√
VT,dd − σd)

2 ≤ σ2
d, ∀d ≤ d1,

and
(
√
VT,dd − σd)

2 ≥ σ2
d, ∀d > d2.

By definition of the Fréchet distance, we have

d2F (P
⊤
d Pd
←−̃
XT ,

−→
X0) =

d∑
j=1

(
√
VT,jj − σj)

2 +

D∑
j=d+1

σ2
j ,

we deduce that, for any d < d1 ≤ d2 < d′,

dF (P
⊤
d1Pd1

←−̃
XT ,

−→
X0) =

d1∑
j=1

(
√

VT,jj − σj)
2 +

D∑
j=d1+1

σ2
j

=

d∑
j=1

(
√
VT,jj − σj)

2 +

d1∑
j=d+1

(
√
VT,jj − σj)

2 +

D∑
j=d1+1

σ2
j

≤
d∑
j=1

(
√
VT,jj − σj)

2 +

D∑
j=d+1

σ2
j

= dF (P
⊤
d Pd
←−̃
XT ,

−→
X0),

and

dF (P
⊤
d2Pd2

←−̃
XT ,

−→
X0) =

d2∑
j=1

(
√
VT,jj − σj)

2 +

D∑
j=d2+1

σ2
j

=

d2∑
j=1

(
√
VT,jj − σj)

2 +

d′∑
j=d2+1

σ2
j +

D∑
j=d′+1

σ2
j

≤
d′∑
j=1

(
√
VT,jj − σj)

2 +
D∑

j=d′+1

σ2
j

= dF (P
⊤
d′Pd′

←−̃
XT ,

−→
X0).

Therefore, the minimum of dF (P⊤
d Pd
←−̃
XT ,

−→
X0) must occur between d1 and d2.
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Proof of Lemma 1. Recall that Vt,dd satisfies the ODE (14)

dVt,dd
dt

= 2(1− 2m̂d(T − t))Vt,dd + 2, V0,dd = 1.

Assume that σ̂d > 1 and by contradiction that Vt,dd < 1 for some t ∈ [0, T ]. Let t0 = inf{t : Vt,dd <
1}, by continuity, we have Vt0,dd = 1. Then we have[dVt,dd

dt

]
t=t0

= 2(1− 2m̂d(T − t0))Vt0,dd + 2 = 2
(
1− 2

1− e−2t + e−2tσ̂2
d

)
+ 2,

where we use the fact that Vt0,dd = 1. The last term can be rewritten as

4(σ̂2
d − 1)e−2t

1− e−2t + e−2tσ̂2
d

.

Hence we have [
dVt,dd

dt ]t=t0 > 0 which contradicts the definition of t0. Hence Vt,dd ≥ 1 for all
t ∈ [0, T ]. The case for σ̂d < 1 can be derived similarly.

B.6 Derivation of special cases of Proposition 4

First, consider the scenario where the learning capacity is unconstrained, effectively setting C =∞,
while the data covariance matrix is nonsingular. In this case, the condition on d1 becomes 0 ≤ σ̂2

d,
which is trivially satisfied for all d ∈ {1, . . . , D}, implying d1 = D. The condition for d2 becomes
0 > 4σ2

d, which holds for none of d, thus implying d2 = D. Therefore, when C =∞, Proposition 4
entails that dmin = D. This result is somewhat expected: if the score function is learned perfectly,
the diffusion process can be reversed in the full ambient space, enabling sampling from the target
distribution without any need for dimensionality reduction.

Second, consider the scenario addressed in Proposition 3 where the true data distribution lies within a
d0-dimensional linear subspace, i.e., σd0+1 = · · · = σD = 0 and σ1 = · · · = σd0 = σ. Assume that
C is sufficiently large to ensure that 1/C ≤ min(σ2,mind′∈{1,...,d0} σ̂

2
d′). Therefore, for d ≤ d0,

one has 1
C ≤ σ̂2

d (which is not satisfied anymore for d beyond d0), leading to d1 = d0. On the other
hand, for d > d0 we have 1

2C−1 ≥ 0 = 4σd. Hence d0 = d1 ≤ d2 ≤ d0, which implies d2 = d0.
Thus, Proposition 4 predicts dmin = d0. This suggests that the projection onto the subspace in which
the data distribution lies is the optimal sampling strategy, which is in line with the recommendation
of Proposition 3.

Proof of Corollary 1. By the definition of d, we have d1 = d. It remains to prove that d2 ≤ d+ 1.
With n large enough and high probability, we have σ̂d+1 ≥ σ2

d+1/2. Therefore,

1

4(2C − 1)
≥ 1

8C
≥

σ̂2
d+1

8
≥

σ2
d+1

16
=

λ−(d+1)

16
≥ λ−(d+2),

where we use the fact that λ ≥ 16. This shows that d2 < d+ 2. Hence d2 ≤ d+ 1.

B.7 Proof of Proposition 5

The proof follows by observing that the covariance matrix of OPdO
⊤←−X t is given by

cov[OP⊤
d PdO

⊤←−X t] = Odiag(a2T−t + b2T−tσ
2
1 , . . . , a

2
T−t + b2T−tσ

2
d, 0, . . . , 0)O

⊤.

Therefore, we have the following explicit form of the Fréchet distance between OP⊤
d PdO

⊤←−X t and
−→
X0:

dF (OP⊤
d PdO

⊤←−X t,
−→
X0) =

D∑
j=1

σ2
j +

d∑
j=1

(a2T−t + b2T−tσ
2
j )− 2

d∑
j=1

σj

√
a2T−t + b2T−tσ

2
j .

The proof is concluded by using the same argument as in the proof of Proposition 2.
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B.8 Proof of Proposition 6

Recall that Λ̂ = diag(σ̂2
1 , . . . σ̂

2
D) the matrix of eigenvalues of the estimated covariance matrix

Σ̂ = 1
n

∑n
i=1 XiX

⊤
i . We first remark that

cov[ÔP⊤
d PdÔ

⊤
←−
X̂ t] = Ôdiag(a2T−t + b2T−tσ̂

2
1 , . . . , a

2
T−t + b2T−tσ̂

2
d, 0, . . . , 0)Ô

⊤

= Ô(a2T−tP
⊤
d Pd + b2T−tP

⊤
d PdΛ̂)Ô

⊤.

Denote the covariance matrix of ÔP⊤
d PdÔ

⊤←−X t by Σ̂d(t). Recall that the Fréchet distance between
two centered Gaussian distributions is

d2F (N (0,Σ1),N (0,Σ2)) = tr(Σ1 +Σ2 − 2(Σ
1/2
2 Σ1Σ

1/2
2 )1/2).

In the case of interest for us, we get

d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) =

D∑
d′=1

σ2
d′ +

d∑
d′=1

(a2T−t + b2T−tσ̂
2
d′)− 2tr((Σ̂1/2

d (t)ΣΣ̂
1/2
d (t))1/2).

We now argue that tr((Σ̂1/2
d (t)ΣΣ̂

1/2
d (t))1/2) is approximately

∑d
d′=1 σ̂d′

√
a2T−t + b2T−tσ̂

2
d′ . Ob-

serve that the two quantities are equal when Σ and Σ̂ commute, which was the case in the previous
sections where we assumed that both matrices were diagonal. By Proposition 9, with probability
1− 2e−u, we have Σ ⪯ 1

1−εu Σ̂, where ⪯ denotes the Loewner order [see, for instance, Horn and
Johnson, 2012, Definition 7.7.1]. Hence,

Σ̂
1/2
d (t)ΣΣ̂

1/2
d (t) ⪯ 1

1− εu
Σ̂

1/2
d (t)Σ̂Σ̂

1/2
d (t),

by Lemma 2 (i). Since square root is a matrix monotonic function (see Lemma 2 (ii)), we derive that

tr((Σ̂1/2
d (t)ΣΣ̂

1/2
d (t))1/2) ≤

√
1

1− εu
tr((Σ̂1/2

d (t)Σ̂Σ̂
1/2
d (t))1/2)

≤ (1 + εu)tr((Σ̂
1/2
d (t)Σ̂Σ̂

1/2
d (t))1/2),

where we use εu ≤ 1/2 in the last inequality. Then, by the commutativity of Σ̂d(t) and Σ̂,

tr((Σ̂1/2
d (t)Σ̂Σ̂

1/2
d (t))1/2)

= tr(Ô(a2T−tP
⊤
d Pd + b2T−tP

⊤
d PdΛ̂)

1/4Λ̂1/2(a2T−tP
⊤
d Pd + b2T−tP

⊤
d PdΛ̂)

1/4Ô⊤)

= tr(ÔΛ̂1/2(a2T−tP
⊤
d Pd + b2T−tP

⊤
d PdΛ̂)

1/2Ô⊤)

=

d∑
d′=1

σ̂d′
√
a2T−t + b2T−tσ̂

2
d′ .

By combining the results, we obtain

tr((Σ̂1/2
d (t)ΣΣ̂

1/2
d (t))1/2) ≤ (1 + εu)

d∑
d′=1

σ̂d′
√
a2T−t + b2T−tσ̂

2
d′ .

We may use the same argument to derive a similar lower bound, and thus deduce that∣∣∣tr((Σ̂1/2
d (t)ΣΣ̂

1/2
d (t))1/2)1/2)−

d∑
d′=1

σ̂d′
√
a2T−t + b2T−tσ̂

2
d′

∣∣∣ ≤ εu

d∑
d′=1

σ̂d′
√
a2T−t + b2T−tσ̂

2
d′ .

Note that if σ̂d′ ≥ 1, then
√
a2T−t + b2T−tσ̂

2
d′ ≤ σ̂d′ . Hence σ̂d′

√
a2T−t + b2T−tσ̂

2
d′ ≤ σ̂2

d′ . On the

other hand, if σ̂d < 1, then
√
a2T−t + b2T−tσ̂

2
d′ ≤ 1 and σ̂d′

√
a2T−t + b2T−tσ̂

2
d′ ≤ σ̂d′ . Therefore, by

recalling that S(Σ) =
∑D
d′=1 max(σ̂d′ , σ̂

2
d′), we deduce that∣∣∣tr((Σ̂1/2

d (t)ΣΣ̂
1/2
d (t))1/2)1/2)−

d∑
d′=1

σ̂d′
√

a2T−t + b2T−tσ̂
2
d′

∣∣∣ ≤ S(Σ)εu.
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The Fréchet distance dF (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) may now be bounded by

∣∣∣d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt)−

( D∑
d′=1

σ2
d′ +

d∑
d′=1

(a2T−t + b2T−tσ̂
2
d′)− 2

d∑
d′=1

σ̂d′
√
a2T−t + b2T−tσ̂

2
d′

)∣∣∣
≤ 2S(Σ)εu.

Hence, for d ∈ {2, . . . , D},∣∣∣d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt)− d2F (ÔP⊤

d−1Pd−1Ô
⊤
←−
X̂ t,
−→
Xt)

−
√
a2T−t + b2T−tσ̂

2
d(
√

a2T−t + b2T−tσ̂
2
d − 2σ̂d)

∣∣∣ ≤ 4S(Σ)εu.

We show in the following that if t ≥ T̂d(u), then

d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) ≤ d2F (ÔP⊤

d−1Pd−1Ô
⊤
←−
X̂ t,
−→
Xt).

Observe that,

d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) ≤ d2F (ÔP⊤

d−1Pd−1Ô
⊤
←−
X̂ t,
−→
Xt)

+ b2T−tσ̂
2
d + a2T−t − 2σ̂d

√
b2T−tσ̂

2
d + a2T−t + 4S(Σ)εu

= d2F (ÔP⊤
d−1Pd−1Ô

⊤
←−
X̂ t,
−→
Xt)

+ (
√
a2T−t(1− σ̂2

d) + σ̂2
d − σ̂d)

2 − σ̂2
d + 4S(Σ)εu. (22)

Hence, for t such that the last term (22) is non-positive, we have d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) ≤

d2F (ÔP⊤
d−1Pd−1Ô

⊤
←−
X̂ t,
−→
Xt). We now show that this is true when t ≥ T̂d(u). To do so, we

split our argument in two cases. We first consider the scenario where σ̂d ≥ 1. In this case, by
definition, T̂d(u) = 0 and therefore we prove the result holds for all t ∈ [0, T ]. Observe that√
a2T−t(1− σ̂2

d) + σ̂2
d ∈ [1, σ̂d], therefore

(22) ≤ (1− σ̂d)
2 − σ̂2

d + 4S(Σ)εu = 1− 2σ̂d + 4S(Σ)εu ≤ 1− 2σ̂d + σ̂d ≤ 0,

where the last inequality holds for sufficiently small εu.

Now we consider the case where σ̂d < 1, and hence
√
a2T−t(1− σ̂2

d) + σ̂2
d ≥ σ̂d. Therefore,

(22) ≤ 0⇔
√
a2T−t(1− σ̂2

d) + σ̂2
d ≤ σ̂d +

√
σ̂2
d − 4S(Σ)εu.

By squaring both sides and rearranging the terms, we deduce that

(22) ≤ 0⇔ a2T−t ≤
σ̂2
d − 4S(Σ)εu + 2σ̂d

√
σ̂2
d − 4S(Σ)εu

1− σ̂2
d

,

and we conclude by observing that the last inequality is equivalent to t ≥ T̂d(u). We derive with a
similar argument that if t ≤ t̂d(u) then

d2F (ÔP⊤
d PdÔ

⊤
←−
X̂ t,
−→
Xt) ≥ d2F (ÔP⊤

d−1Pd−1Ô
⊤
←−
X̂ t,
−→
Xt),

and we conclude the proof.

Remark. We can again in this case consider the same scenario as in Proposition 3 where the
eigenvalues of the covariance matrix are equal. This can be an interesting direction for future work,
as to generalize the previous results to this more general setup.

18



C Bounds on Gaussian estimation

In this section, we give some bounds for the estimation error for Gaussian distributions.
Proposition 8. Let (X1, . . . , Xn) be sample drawn independently from N (0, σ2). Then, for ε > 0,
we have

P
[∣∣ 1
n

n∑
i=1

X2
i − σ2

d

∣∣ ≤ εσ2
d

]
≥ 1− 2 exp

(
− ε2n

4(ε+ 1)

)
.

Proof. By Ghosh [2021], if Z ∼ χ2(p) and u > 0,

P[|Z − p| ≥ u] ≤ 2 exp
(
− u2

4(p+ u)

)
.

The result then unfolds from standard manipulations after observing that 1
σ2

∑n
i=1 X

2
i follows a

χ2(n).

Proposition 9. Let Σ be a semi-definite positive D×D matrix, and assume the sample (X1, . . . , Xn)
is drawn independently fromN (0,Σ). Then, there is a universal constant C such that, with probability
1− 2e−u, the empirical covariance matrix Σ̂ = 1

n

∑n
i=1 XiX

⊤
i satisfies:

−8C

3
(

√
D + u

n
+

D + u

n
)Σ ⪯ Σ̂− Σ ⪯ 8C

3

(√D + u

n
+

D + u

n

)
Σ,

where ⪯ denotes the Loewner order.

Proof. It is shown in Vershynin [2018, Theorem 4.6.1] that, with probability 1− 2e−u,

∥Σ−1/2Σ̂Σ−1/2 − ID∥op ≤ K2C(

√
D + u

n
+

D + u

n
),

where ∥ · ∥op denotes the operator norm and K is a constant satisfying

∥X⊤x∥ψ2 ≤ K∥X⊤x∥L2 , ∀x ∈ RD,

where ∥X∥ψ2
= inf{K > 0 : E[eX2/K2

] ≤ 2}. It is shown in Vershynin [2018, Section 2.6.1] that,
if X follows a centered Gaussian distribution with standard deviation σ, then ∥X∥ψ2

= σ
√

8/3 and
∥X∥L2

= σ. Hence, K =
√
8/3 in our case and we have

−8C

3
(

√
D + u

n
+

D + u

n
)ID ⪯ Σ−1/2Σ̂Σ−1/2 − Id ⪯

8C

3
(

√
D + u

n
+

D + u

n
)ID.

By multiplying Σ1/2 from left and right for both side, we derive that

−8C

3
(

√
D + u

n
+

D + u

n
)Σ ⪯ Σ̂− Σ ⪯ 8C

3
(

√
D + u

n
+

D + u

n
)Σ.

D Useful Lemma

In this section we provide some lemma that will be useful throughout the whole paper [see also, Horn
and Johnson, 2012, Section 7.7].
Lemma 2. Let A,B be two symmetric D × D real matrices, and S be an arbitrary D × D real
matrix. The following statements hold:

(i) If A ⪯ B, then S⊤AS ⪯ S⊤BS.

(ii) If A2 ⪯ B2, then A ⪯ B. In particular if A and B are semi-definite positive, then
A ⪯ B ⇒

√
A ⪯

√
B.
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E Experiment details

E.1 Natural image experiment

Common details. We use the dataset CelebA and CelebA-HQ [Liu et al., 2015]. We use a U-Net
model [Ronneberger et al., 2015] and an Adam optimizer [Kingma, 2014]. The diffusion model uses
rectified flow noise schedule [Liu et al., 2022]. The code was implemented in JAX [Bradbury et al.,
2018].

Training of AE. We train an VQ-VAE using the VQ-GAN loss [Esser et al., 2021] for 1.95 million
step on 20 TPUv2. The VQ-VAE encodes the images to a latent space of shape 64 × 64 × 3 and
reaches an 2k-rFID score of 2.44. Other hyperparameters for training is summarized in Table 1.

Name Value
Coefficient of the adversarial loss 0.1
Coefficient of the generator loss 100

Coefficient of the LPIPS loss 1.0
Coefficient of the discriminator loss 0.01

Number of embeddings of the vector quantizer 8192
Optimizer Adam with standard hyperparameters

EMA decay 0.9999
Learning rate 10−5

Batch size 16

Table 1: Hyperparameters for training VQ-VAE on CelebA-HQ.

Training of LDM. We train an LDM on the images encoded by the AE we described above. We
train for 5.25 million steps on 8 TPUv6. We summarize the hyperparameters used in Table 2.

Name Value
Noise schedule Rectified Flow

Number of sampling steps 250
Optimizer Adam with standard hyperparameters

EMA decay 0.9999
Learning rate 10−4

Batch size 16

Table 2: Hyperparameters for training LDM on encoded images of CelebA-HQ.

Name Value
Noise schedule Rectified Flow

Number of sampling steps 250
Optimizer Adam with standard hyperparameters

EMA decay 0.9999
Learning rate 10−4

Batch size 128

Table 3: Hyperparameters for training diffusion model on CelebA.

Training pixel diffusion model on CelebA. We train a diffusion model on CelebA. We train for 1
million steps on 12 TPUv2. We summarize the hyperparameters in Table 3.
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Results. We previously introduced some results in Section 1. Here, we present additional evidence
regarding the quality of the generated images. We observe (Figure 4) that in the final few steps, the
sample of LDM does not change visibly. On the contrary, the images generated in pixel space (Figure
5) are still denoised even in the last steps.

Synthetic Gaussian data. In the experiment of Figure 3, we generate data using Gaussian dis-
tribution with covariance matrices equal to diag(1, 0.6, 0.62, . . . , 0.66, 10−10, 10−10) (left) and
diag(10, 0.2, 0.2, 0.2, 0, 0) (right). We then generate sample by first estimating the variances with the
data with 1k sample, then solving the backward SDE separately for each projection. We generate
new sample using the Ornstein-Uhlenbeck process with T = 2 and 1000 discretization steps.
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Figure 2: (left) FID-30k score of latent diffusion model on CelebA-HQ, with latent shape 64×64×3.
(right) FID-30k score of standard diffusion model (trained in pixel space) on CelebA64 (64× 64× 3).
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Figure 3: Plots of d2F (P
⊤
d Pd
←−
X̂ t,
−→
X0) as a function of the diffusion time t, for two sets of variances

(σ1, . . . , σD). (left) All the σi are nonzero. As expected from Proposition 2, the d-dimensional
projection is optimal in [td, td+1). (right) The data is supported on a linear subspace of dimension
d0 = 4 with D = 6. As expected from Proposition 3, we observe that the minimum distance is
achieved in dimension d0 and with early stopping. LogSNR in the x-axis is a remapping of time t,
defined as log(b2t/a

2
t ), which we use to increase readability. Experimental details are in Appendix E.
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Figure 4: The final steps of LDM do not improve image quality.
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Figure 5: The quality of sample in diffusion on pixel space is still increasing in the final few steps.
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