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ABSTRACT

Vertex embedding of graph-structured data offers the advantage of representing
the graph in a low-dimensional continuous space, but it does not guarantee the
preservation of distances. In this paper, we introduce a general distortion measure
that can be integrated into loss functions. The distortion loss can be used as a
regularization term, effectively maintaining pairwise distance relationships during
embedding. We also show that Gaussian kernel embedding is a form of minimum-
distortion embedding. Furthermore, we analyze and compare the strengths of
different distortion measures through theoretical analysis. Finally, we demonstrate
the effectiveness of distortion regularization across multiple downstream tasks using
benchmark datasets. The results confirm that regularization based on distortion is
effective and generally improves the performance of downstream tasks.

1 INTRODUCTION

With graph-structured data, the typical graph learning process first embeds the graph into a latent space,
often with lower dimensions, and then applies machine learning algorithms on these embeddings for
subsequent tasks. Creating high-quality graph representations in a continuous latent space is crucial
for the performance of downstream tasks, especially when the encoder is trained in a self-supervised
manner, and the downstream decoder only uses the learned representations without gradient flows
propagating back to the encoder.

A powerful approach for scenarios with limited or no labeled data is contrastive learning (Zheng et al.,
2022; Velickovic et al., 2019; Zhu et al., 2020; 2021; Thakoor et al., 2021; Xia et al., 2022; Lee et al.,
2022). With the InfoNCE loss (van den Oord et al., 2018), constrastive learning effectively creates
a self-supervised task that learns representations from unlabeled data, making it a cornerstone of
modern self-supervised learning. However, avoiding representation collapse is a critical component
of constrastive learning. Without addressing collapse, the self-supervised objective would fail. A
variety of ad hoc techniques, e.g., diverse data augmentations (Zhu et al., 2021; Lee et al., 2022;
Li et al., 2023), large negative sample sets (Xia et al., 2022; He et al., 2024b), or architectural
constraints (Grill et al., 2020; He et al., 2024a), are employed to maintain representation diversity.
The representation scattering mechanism proposed in He et al. (2024a) is a cost-effective approach to
address representation collapse.

Representation scattering might be important for contrastive learning. However, it may not be
necessary for other learning methods. A more general principle for graph learning, which applies
to all encoders and decoders, is distance preservation—ensuring that the exact distance relation-
ships between nodes in the original graph are maintained when representing them as vectors in a
lower-dimensional space. Mathematically, a distance-preserving embedding f aims to ensure that
dH(f(xi), f(xj)) ≈ g(dS(xi, xj)), where g is some function relating sample space distances dS to
embedding space distances dH .

The concept of distance preservation, independent of specific distance measures in the graph and
embedding spaces, is crucial for ensuring that the learned embeddings effectively capture the graph’s
topological properties, such as proximity or connectivity, as well as patterns of nodal features, such
as similarity or directional alignment. What specific distance measures should be used in the sample
space and the embedding space depends on the tasks at hand. Along with appropriate distance
measures, distance-preserved embeddings of a lower dimension can capture both structural and
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feature-based patterns, allowing not only improved efficiency but also improved performance for
downstream tasks.

To measure how well an encoder preserves the distances in the sample space, a concept called “distor-
tion” initially emerged in the field of geometry and metric embeddings (Johnson & Lindenstrauss,
1984) to measure geometric distortion (Tenenbaum et al., 2000) can be extended to graph-structured
data to measure topological distortion. A distortion measure quatifies how the distances between
the embedded points deviate from the original distances in the sample space. The deviation can be
measured in the form of differences, ratios, or differences in rankings. Different distortion measures
differ in how well they preserve the original graph’s distances.

Despite extensive efforts to preserve topological properties in graph embedding, most research has
concentrated on developing graph embedding algorithms or encoders. At the same time, progress has
been made in developing distortion measures to reduce distortion in Euclidean embeddings. Some
methods have examined hyperbolic embeddings for hierarchical and tree-like structures (Nickel &
Kiela, 2017). However, a universal distortion measure that is independent of embedding algorithms
and sufficiently versatile for various learning tasks has yet to be established.

The goal of this paper is to show that minimum-distortion is a key principle for graph embedding. The
work does not involve proposing a new embedding algorithm but focuses on adding regularization on
distortion to existing algorithms. Minimum-distortion graph embedding inherently prevents embed-
ding collapse, resulting in dispersed node representations. Embeddings with distortion regularization
outperform their counterparts in downstream tasks, as demonstrated by experimental results, by
effectively preserving both local and global topological properties of the input graph rather than
prioritizing representation diversity.

The primary contributions of this paper are outlined below, with the first point serving as the primary
motivation:

1. Demonstrate that minimum-distortion is a fundamental principle for graph embedding,
and introduce a generic distortion measure that effectively preserves distance relationships
during embedding.

2. Assess different distortion measures and their relative strengths.

3. Established the equivalence between Gaussian kernel embedding and a particular form of
minimum-distortion embedding.

2 PROXIMITY-PRESERVING GRAPH EMBEDDING

Proximity-preserving is a widely used strategy in graph embedding. In such embedding methods,
proximity in a graph is preserved when embedded into a manifold in an embedding space. Mathemat-
ically, proximity-preserving graph embedding can be described as a mapping f : V → Rd, where
V is the set of nodes and Rd is the d-dimensional embedding space, such that a proximity function
(e.g., adjacency, cosine similarity of node feature vectors, or path-based similarity) in the graph is
approximated by a proximity function in the embedding space. For example, first-order proximity
aims to minimize ∥f(u)− f(v)∥2 (or maximize cosine similarity) if nodes u and v are connected
in the graph, while second-order proximity aims to minimize ∥f(u)− f(v)∥2 (or maximize cosine
similarity) if u and v share many neighbors. Large-scale Information Network Embedding (LINE) in
Tang et al. (2015) is an example of preserving both first-order and second-order proximity.

Although proximity-preserving graph embedding has a clear conceptual definition, there’s no universal
implementable definition for proximity. Choosing which type of proximity to prioritize is subjective
and task-dependent. In this paper, we leave the choice of proximity definition to the application end,
and discuss another aspect of proximity-preserving graph embedding—distortion. As Pei et al. (2020)
pointed out, while graph topological patterns are preserved, geometry patterns may be distorted. In
our discussion, we use the concept of distance — the opposite of proximity—to discuss how distortion
can be prevented. While previous work Pei et al. (2020) uses curvature regulation to minimize the
distortion indirectly, we aim to directly minimize distortion during the training of the algorithm.

Ideally, an embedding algorithm f should strictly preserve pairwise distances after removing scaling
effects. A less restrictive requirement is that f should at least preserve the rankings of pairwise
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distances. The mean average precision (MAP) is a local measure to quantify deviations in rankings,
and the Spearman’s footrule distance, or the F-distance (see section 5 for the formal definition), is a
global measure. However, the orderings of distances cannot be conveniently used in machine learning
training due to the difficulty in gradient propagation.

3 MINIMUM-DISTORTION GRAPH EMBEDDING

3.1 A GENERIC DISTORTION MEASURE

A continuously differentiable function that quantifies the distortion is necessary to enable direct
distortion regularization. Let f : V → Rd represent an embedding algorithm. We omit specific
choices of distance measures, using symbolic notation dH and dS to denote the embedding space
distance and the sample space distance, respectively. Let ρ(i, j) represent the normalized ratio of the
distance in the embedding space to the distance in the sample space, defined as:

ρ(i, j) =
dH(f(i), f(j))

dS(i, j)

∑
u,v∈V

dS(u, v)∑
u,v∈V

dH(f(u), f(v))
, for i ̸= j. (1)

Using the ratio of normalized distances has the benefit that, under uniform scaling of the distances,
the ratio ρ(i, j) = 1.

The network-wide distortion is defined as:

Dρ(f) =
1(
n
2

) ∑
i̸=j

|ρ(i, j)− 1| (2)

If all embeddings collapse to one point at some iteration during training,
∑

u,v∈V
dH(f(u), f(v)) = 0.

To avoid dividing by zero, we add a small constant ϵ to it, then dH(f(i),f(j))∑
u,v∈V

dH(f(u),f(v))+ϵ = 0
ϵ = 0,

thus creating significant distortion. Minimizing distortion will drive ρ(i, j) close to 1 and move the
embeddings away from the collapsing point. Therefore, minimizing distortion implicitly scatters the
embeddings.

A distortion measure should be invariant under uniform scaling of distances in either the source or
target space. This is formally defined as the scale-invariance property.
Definition 1 (Scale-Invariance). For an embedding algorithm f : (V, dS) → (Rd, dH), the distortion
measure D(f, dS , dH) is scale-invariant if D(f, λdS , µdH) = D(f, dS , dH), for all λ, µ > 0.

Being scale-invariant means the distortion measure depends only on the relative relationships between
distances, not on their absolute scales; therefore, embeddings that differ solely in units of measurement
will have zero distortion according to D.
Theorem 1. Dρ is scale-invariant.

Proof for Theorem 1 can be found in Appendix A.

3.2 LEARNING MINIMUM-DISTORTION EMBEDDING

The distortion loss corresponding to the distortion measure Dρ is given as:

Lρ =
1(
n
2

) ∑
i ̸=j

(ρ(i, j)− 1)2 (3)

To learn the minimum-distortion embeddings, we can directly minimize the distortion loss during
training. Lρ can be used either as the sole optimization criterion or as a regularization term included
in the total loss function.
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The choises of distance measures dH and dS are task-dependent. Sample space distance can be
the distance between two nodes on the graph. A widely used distance measure is the shortest path
distance. It can also be the distance between two feature vectors, e.g., the Eucliden distance or cosine
dissimilarity between two feature vectors. Embedding space distance is the distance between two
embeddings. It can also be the Euclidean distance or cosine dissimilarity.

The cosine dissimilarity used in this paper is defined as:

d(v1, v2) = 1− ⟨v1, v2⟩
∥v1∥∥v2∥

This definition satisfies the properties of non-negativity (i.e., d(v1, v2) ≥ 0), symmetry (i.e.,
d(v1, v2) = d(v2, v1)), and identity (i.e., d(v, v) = 0).

4 GAUSSIAN KERNEL EMBEDDING IS A TYPE OF MINIMUM-DISTORTION
EMBEDDING

Gaussian kernels are frequently used in machine learning and statistics to represent data points or
distributions in a high-dimensional feature space (Sriperumbudur et al., 2010; Gretton et al., 2012;
Muandet et al., 2017; Zhuang et al., 2023; Li & Yuan, 2024; Zhao et al., 2025). In this paper, we
demonstrate that Gaussian kernel embedding is a type of minimum-distortion embedding.

4.1 GAUSSIAN KERNEL EMBEDDING (GKE)

Let F and d denote the feature dimensions in the sample space and embedding space, respectively.
Gaussian kernel embedding uses the following embedding algorithm to map a vector x ∈ RF to its
embedding vector h ∈ Rd,

hi(x) = ci exp

(
−∥x− µi∥2

2σ2

)
, for i = 1 . . . d. (4)

If we normalize h such that ∥h∥2 = 1, choose dH(h(x), h(y)) = 1− ⟨h(x), h(y)⟩, and dS(x, y) =
∥x− y∥2, let z = x+y

2 , then we have the following relationship between dS and dH :

1− dH(h(x), h(y)) = ⟨h(x), h(y)⟩ =

(
d∑

i=1

c2i exp

(
−∥z − µi∥2

σ2

))
· exp

(
−∥x− y∥2

2σ2

)
. (5)

Let Sd denote the first term:

Sd =

d∑
i=1

c2i exp

(
−∥z − µi∥2

σ2

)
(6)

By setting c2i = 1
d , Sd becomes the normalized sum of Gaussian PDFs,

Sd =
1

d

d∑
i=1

exp

(
−∥z − µi∥2

σ2

)
(7)

If the points µi are i.i.d. samples from a probability distribution with density p(µ), Sd is the sample
mean of the random variable exp

(
−∥z−µi∥2

σ2

)
. We next analyze the convergence property of Sd.

4.1.1 CASE 1: d → ∞

By the law of large numbers, the sample mean Sd converges almost surely to the expectation as
d → ∞ provided that the expectation is finite:

4
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Sd → Eµ∼p

[
exp

(
−∥z − µ∥2

σ2

)]
=

∫
RF

p(µ) exp

(
−∥z − µ∥2

σ2

)
dµ. (8)

Let C = Eµ∼p

[
exp

(
−∥z−µ∥2

σ2

)]
denote the expectation. We show that C is bounded: Since

Gaussian kernel is bounded ( i.e., exp
(
−∥z−µ∥2

σ2

)
≤ 1) and integrable,∫

RF

exp

(
−∥z − µ∥2

σ2

)
dµ =

(
πσ2

)F/2
, (9)

and p(µ) satisfies
∫
RF p(µ)dµ = 1, the integral of the expectation is bounded:

0 ≤ C ≤
∫
RF

p(µ) · 1 dµ = 1 (10)

The exponential decay of the kernel ensures C is finite for any valid probability density p(µ).

Therefore, with d → ∞,

dH(h(x), h(y)) → 1− C exp

(
−∥x− y∥2

2σ2

)
. (11)

dH satisfies the following properties:

• Non-negativity: dH(h(x), h(y)) ≥ 0.

• Symmetry: dH(h(x), h(y)) = dH(h(y), h(x)).

• If we set c2i = 1
Cd , then

dH(h(x), h(y)) → 1− exp

(
−∥x− y∥2

2σ2

)
, (12)

which leads to additional properties:

– Identity: dH(h(x), h(x)) = 0.
– Identity of indiscernibles: dH(h(x), h(y)) = 0 ⇐⇒ x = y.

4.1.2 CASE 2: FINITE d

For finite dimensional embedding, Sd as the sample mean of d i.i.d. random variables has the
following expectation and variance:

E[Sd] = Eµ∼p

[
exp

(
−∥z − µ∥2

σ2

)]
= C, Var(Sd) =

1

d
Var
(
exp

(
−∥z − µ∥2

σ2

))
. (13)

Since exp
(
−∥z−µ∥2

σ2

)
≤ 1, the variance is bounded, and Var(Sd) ∝ 1

d . Thus, Sd concentrates
around C as d increases.

4.2 LEARNING GAUSSIAN KERNEL EMBEDDING

To learn the Gaussian kernel embedding, we use the following loss function and use σ2 as a hyperpa-
rameter:

LGKE =
∑
x ̸=y

(
⟨h(x), h(y)⟩ − exp

(
−∥x− y∥2

2σ2

))2

. (14)

This loss function corresponds to a distortion measure DGKE(h):

5
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DGKE(h) =
∑
x̸=y

∣∣∣⟨h(x), h(y)⟩ − exp

(
−∥x− y∥2

2σ2

) ∣∣∣
=
∑
x ̸=y

∣∣∣dH(h(x), h(y))−
(
1− exp

(
−dS(x, y)

2

2σ2

)) ∣∣∣ (15)

with the sample space employing Euclidean distance and the embedding space employing cosine
dissimilarity as distance measures. Therefore, Gaussian kernel embedding with loss function LGKE is
a type of minimum-distortion embedding with distortion function DGKE.

Theorem 2 (Large dimension embedding). As d → ∞, LGKE → 0 and DGKE → 0, Gaussian Kernel
Embedding preserves the orderings of pairwise distances via a nonlinear mapping.

5 COMPARISON OF DISTORTION MEASURES

5.1 CONDITIONS FOR OPTIMALITY OF DISTORTION MEASURES

We analyze whether an embedding f with zero distortion under a specific distortion measure ensures
strict distance preserving. We discuss four representative works, each representing a category.

• Distortion measure Dρ(f) defined in Equation (2).
Dρ = 0 requires ρ(i, j) = 1, which requires

dH(f(i), f(j)) = k · dS(i, j), with k =

∑
u̸=v dH(f(u), f(v))∑

u̸=v dS(u, v)
.

This requires exact linear scaling of all pairwise distances, preserving both distances and
their orderings.

• GKE distortion measure DGKE defined in Equation (15).
DGKE = 0 requires

dH(h(x), h(y)) = 1− exp

(
−dS(x, y)

2

2σ2

)
.

dH increases in dS , preserving the orderings of distances exactly, but preserving the magni-
tudes of distances via a nonlinear mapping.

• Spearman’s footrule as a distortion measure (Diaconis & Graham, 1977; Spearman, 1906).

DF (f) =
2

n(n− 1)

n−1∑
i=1

F (πi
S , π

i
H) =

2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

∣∣∣πi
S(j)− πi

H(j)
∣∣∣,

where πi
S and πi

H are permutations of nodes by dS(i, :) and dH(f(i), :), respectively, and
π(j) is the rank of item j in permutation π.
DF = 0 requires identical orderings in πi

S and πi
H , preserving the orderings of distances

but not necessarily the magnitudes of distances.

• Mean Average Precision (MAP), proposed as a distortion measure in Nickel & Kiela (2017).

MAP(f) =
1

|V|
∑
v∈V

1

|Nv|

|Nv|∑
i=1

|Nv ∩Hv(i)|
|Hv(i)|

.

Nv is the set of neighbors of node v on the graph, and |Nv| is the degree of node v; Hv(i) is
the smallest set of nodes that includes the i-th nearest neighbor of v in the embedding space.
Zero distortion means MAP = 1, which requires the |Nv| closest nodes in the embedding
space to be identical to Nv , focusing only on local neighborhood preservation.

6
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5.2 STRICTNESS OF DISTORTION MEASURES

A distortion measure D quantifies the deviation between the distances dS(x, y) in the original space
and the distances dH(f(x), f(y)) in the target space. Next, we analyze how sensitive a distortion
measure is to various deviations.
Definition 2 (Relative Strictness of Distortion Measures: A ≻ B). A distortion measure A is stricter
than a distortion measure B, denoted as A ≻ B, if optimality in A implies optimality in B, but the
converse is not true.

The condition optimality in A implies optimality in B, but the converse is not true can be expressed
using set notation: define SA = {f | A(f) = 0} and SB = {f | B(f) = 0}, then SA ⊂ SB . A is
stricter because its optimality condition is more restrictive; therefore, the set SA is smaller.
Theorem 3. Dρ ≻ DF ≻ MAP, and DGKE ≻ DF ≻ MAP.

Definition 3 (Strictness Measure for Deviation from Linear Maps: A
L
≻ B). If the optimality of A

requires f to be a linear map that scales distances by a constant k > 0, while the optimality of B
allows functions that are not scaled maps, then A is a stricter measure for deviation from linear maps,

denoted as A
L
≻ B.

A
L
≻ B indicates that A imposes a more stringent condition for zero distortion and is more sensitive

to deviation from a linear map, assigning non-zero distortion to any function that fails to maintain a
constant distance ratio, while B may tolerate such deviation.

Theorem 4. Dρ

L
≻ DGKE, Dρ

L
≻ DF , and Dρ

L
≻ MAP.

Proofs for theorems are available in Appendix A.

6 EXPERIMENT

We evaluate our model on three node-level tasks — node classification, node clustering, and node
similarity search — following the evaluation protocol of Lee et al. (2022). We also evaluate it on one
link-level task — link prediction — following the evaluation protocol of Kipf & Welling (2016).

6.1 NODE CLASSIFICATION

Distortion regularization is used in both supervised and unsupervised settings for node classification.

6.1.1 UNSUPERVISED EMBEDDING GENERATION AND SUPERVISED CLASSIFICATION

In the unsupervised setting, we pretrain an encoder model to generate embeddings and then use cross-
entropy loss Lce on labeled data for node classification. There is no backpropagation of gradients to
the pretrained model from the second stage.

For the encoder, we adopt the SGRL-style online-target model, but add a distortion regularization
term in both the online and target models, where the distance measures for both dS and dH are cosine
dissimilarity, Lonline

SGRL and Ltarget
SGRL are the original loss functions used in SGRL:

Lonline
total = Lonline

SGRL + λonlineLρ, Ltarget
total = Ltarget

SGRL + λtargetLρ,

The decoder model is a simple logistic regression classifier, which is the same as in He et al. (2024a).

We label our method as Ours-SGRL and compare the original SGRL with Ours-SGRL on five
benchmark datasets, including WikiCS (Mernyei & Wiki-CS, 2020), Amazon Computers and Amazon
Photo (McAuley et al., 2015), Coauthor-CS and Coauthor-Physics (Sinha et al., 2015). Data splitting
follows the same protocol as in He et al. (2024a); Lee et al. (2022); Thakoor et al. (2021).

Table 1 shows the averages and standard deviations of the F1-scores for baselines before and after
distortion regularization. Results are based on training 200 epochs for each. It demonstrates that
adding distortion regularization improves the performance of the original model for the most part.
Additional comparisons with more baselines are shown in Table 4 (See Appendix B.1).

7
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Table 1: Node classification accuracy. X, A, Y denote the node attributes, adjacency matrix, and labels in
the datasets. The ’+’ notation is used in two-stage training methods — unsupervised embedding generation
followed by supervised classification. (X, A) + Y denotes X and A are used to generate node embeddings
through an unsupervised approach, and these embeddings are then used with labeled data Y to train a classifier
in a supervised manner. The best results in each category are highlighted in bold. Results for one-stage training
baselines are from He et al. (2024a).

Method Data WikiCS Computers Photo Co.CS Co.Physics

Two-stage training
SGRL (X, A) + Y 79.45 ± 0.10 90.19 ± 0.11 93.11 ± 0.06 93.45 ± 0.03 96.01 ± 0.04
Ours-SGRL (X, A) + Y 79.47 ± 0.10 90.23 ± 0.08 93.32 ± 0.10 93.45 ± 0.05 95.99 ± 0.04

One-stage training
GCN X, A, Y 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16
Ours-GCN X, A, Y 78.71 ± 0.47 89.29 ± 0.52 92.95 ± 0.48 93.07 ± 0.19 95.87 ± 0.09

6.1.2 SEMI-SUPERVISED NODE CLASSIFICATION

In semi-supervised node classification, we use an end-to-end training strategy: use the cross-entropy
loss Lce as the primary loss, and incorportate the distortion loss Lρ as a regularization term with a
hyperparameter λ1 controlling the strength of regularization. Assume there are C classes and the
training set includes m data points. The model is trained with the following loss function.

Lnode
total = Lnode

ce + λ1Lρ = − 1

m

m∑
i=1

C∑
k=1

yi,k log(p̂i,k) + λ1Lρ (16)

We adopt the GCN model for end-to-end training and add the distortion loss Lρ as a regularization
term. Our method is labeled as Ours-GCN in Table 1. Data splitting and result evaluation follow
the same protocols as in 6.1.1. Compared to the baseline GCN (Kipf & Welling, 2017), Ours-GCN
shows improved classification performance across all datasets.

6.2 CLUSTERING AND SIMILARITY SEARCH

Clustering and similarity search are two node-level tasks used to evaluate unsupervised learning. We
follow the protocol of Lee et al. (2022) for evaluating results.

Table 2: (left) Performance on clustering measured by NMI and h-score. (Right) Performance on similarity
search measured by Sim@5 and Sim@10. Optimal results are shown in bold. Results are from running 200
training epochs.

SGRL Ours-SGRL SGRL Ours-SGRL

WikiCS NMI 0.4239 0.4241 Sim@5 0.7968 0.7967
h-score 0.4426 0.4430 Sim@10 0.7825 0.7825

Computers NMI 0.5282 0.5273 Sim@5 0.8883 0.8900
h-score 0.5637 0.5553 Sim@10 0.8785 0.8809

Photo NMI 0.6719 0.6730 Sim@5 0.9186 0.9200
h-score 0.6736 0.6742 Sim@10 0.9115 0.9136

Co.CS NMI 0.7512 0.7540 Sim@5 0.9036 0.9071
h-score 0.7837 0.7854 Sim@10 0.8971 0.9020

Co.Physics NMI 0.7186 0.7288 Sim@5 0.9523 0.9518
h-score 0.7324 0.7418 Sim@10 0.9480 0.9474

To evaluate clustering performance, we use two metrics: Normalized Mutual Information (NMI)
and Homogeneity score (h-score). NMI assesses the mutual information between the true labels
and the predicted cluster assignments, scaled to fall between 0 and 1. A higher NMI signifies better
clustering, with 1 indicating perfect agreement and 0 indicating no mutual information. In contrast,
h-score measures how much each cluster contains members from a single class based on true class
labels. It ranges from 0 to 1, where 1 signifies perfectly homogeneous clusters (all members in a
cluster belong to the same class) and 0 indicates poor homogeneity. The left panel of Table 2 shows
the comparison between SGRL and Ours-SGRL. Additional comparisons with more baselines are

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

shown in Table 5 (See Appendix B.2). To evaluate the performance of node similarity search, we
use Sim@5 and Sim@10. Sim@n measures the proportion of the top n nearest neighbors based on
cosine similarity that share the same true label as the query node, averaged over multiple queries.
The right panel of Table 2 shows that Ours-SGRL generally outperforms SGRL. Comparisons with
more baselines are shown in Table 6 in Appendix B.3.

6.3 LINK PREDICTION

We adopt the GAE model in Kipf & Welling (2016) for link prediction, and add distortion regulariza-
tion into the loss function. The encoder consists of two graph convolutional layers. The decoder first
calculates the inner product between two normalized node vectors (hi ∈ Rd is the normalized row
vector of H), and then uses the logistic sigmoid function as the activation function:

Encoder: H = GCN(X,A), H ∈ Rn×d, Decoder: p(Aij = 1|hi, hj) = σ(h⊤
i hj).

Let Ẽ denote the set of links in the training set. The link prediction model is trained as follows:

Llink
total = Llink

ce + λ2Ldis = − 1

|Ẽ|

∑
(i,j)∈Ẽ

Aij log p(Aij |hi, hj) + λ2Ldis. (17)

The first term is the cross-entropy loss for link prediction; the second term is the distortion loss Ldis,
representing either Lρ or LGKE.

To evaluate link prediction performance, we examine the area under the ROC curve (AUC) and
average precision (AP) over three datasets: Cora, CiteSeer, and PubMed (Sen et al., 2008). Models
are trained on an incomplete version of these datasets where parts of the citation links have been
removed, while all node features are kept. Link splitting follows the protocol in Kipf & Welling
(2016): the training set contains 85% of the citation links; the validation and test sets are from
previously removed edges and the same number of randomly sampled pairs of disconnected nodes
(non-edges). The validation and test sets contain 5% and 10% of citation links, respectively.

We compare the link prediction results with the GAE and VGAE models in Kipf & Welling (2016),
with a grid search for hyperparameters: hidden dimension d ∈ {16, 32, 64}, learning rate lr ∈
{0.01, 0.02}, and regularization term λ2 ∈ {0.25, 0.5, 0.75, 1.0, 2.0}. Weight initialization follows
the method in Glorot & Bengio (2010). We train these models for 200 epochs with Adam optimizer.
Our methods are labeled as Ours-Lρ and Ours-LGKE in Table 3. In Ours-Lρ, Lρ is used to substitute
Ldis in Eq. (17), and cosine dissimilarity is used as the distance measures for both dS and dH in
Lρ. In Ours-LGKE, LGKE is used. Across three datasets, our methods consistently outperforms the
baseline GAE, with Ours-Lρ performing the best and Ours-LGKE the second best.

Table 3: Link prediction performance (AUC and AP, in percentage) on Cora, CiteSeer, and PubMed datasets.
Optimal results are shown in bold and suboptimal results are in italics. Results are from training 200 epochs.

Cora CiteSeer PubMed

AUC AP AUC AP AUC AP

GAE 97.59 ± 0.67 97.03 ± 0.94 96.66 ± 0.38 96.02 ± 0.50 97.34 ± 0.26 96.95 ± 0.26
VGAE 92.62 ± 1.83 91.98 ± 1.78 89.71 ± 1.42 88.87 ± 1.67 93.60 ± 0.60 93.23 ± 0.57
Ours-LGKE 97.79 ± 0.23 97.31 ± 0.33 96.99 ± 0.36 96.49 ± 0.48 97.82 ± 0.16 97.46 ± 0.15
Ours-Lρ 98.52 ± 0.38 98.17 ± 0.48 98.76 ± 0.19 98.48 ± 0.33 98.73 ± 0.09 98.46 ± 0.15

7 CONCLUSION

In this paper, we introduce a distortion regularization method for graph embedding. This additive
approach directly enhances the performance of many SOTA methods, with consistent improvements
observed across several downstream tasks, indicating a negative correlation between distortion in
embeddings and performance. We also provide an explanation for the strong performance of Gaussian
kernel embedding through the perspective of minimum distortion. Future work will investigate the
relationship between distortion and performance across a wider range of embedding methods.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent—a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pp. 855–864. ACM, 2016.

Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning on
graphs. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp.
4116–4126. PMLR, 2020.

Dongxiao He, Lianze Shan, Jitao Zhao, Hengrui Zhang, Zhen Wang, and Weixiong Zhang. Exploita-
tion of a latent mechanism in graph contrastive learning: Representation scattering. In Advances in
Neural Information Processing Systems, volume 37, 2024a.

Dongxiao He, Jitao Zhao, Cuiying Huo, Yongqi Huang, Yuxiao Huang, and Zhiyong Feng. A
new mechanism for eliminating implicit conflict in graph contrastive learning. In Thirty-Eighth
AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pp. 12340–12348.
AAAI Press, 2024b.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics, 26:189–206, 1984. doi: 10.1090/conm/026/737400. URL
https://doi.org/10.1090/conm/026/737400.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. In NIPS Workshop on Bayesian
Deep Learning, 2016.

10

https://doi.org/10.1561/2200000088
https://doi.org/10.1561/2200000088
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1977.tb01624.x
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1977.tb01624.x
https://doi.org/10.1090/conm/026/737400


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised learning on
graphs. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Con-
ference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March
1, 2022, pp. 7372–7380. AAAI Press, 2022.

Haifeng Li, Jun Cao, Jiawei Zhu, Qinyao Luo, Silu He, and Xuying Wang. Augmentation-free graph
contrastive learning of invariant-discriminative representations. IEEE Trans. Neural Networks
Learn. Syst., 2023. doi: 10.1109/TNNLS.2023.3278671.

Tong Li and Ming Yuan. On the optimality of gaussian kernel based nonparametric tests against
smooth alternatives. Journal of Machine Learning Research, 25(334):1–62, 2024. URL http:
//jmlr.org/papers/v25/20-1228.html.

Haoran Ma, Xin Chen, Xin Wang, Pengfei Wang, and Chao Shi. Wembed: Weighted embedding for
signed networks. Knowledge-Based Systems, 304:112468, 2024.

Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Santiago, Chile, August 9-13,
2015, pp. 43–52. ACM, 2015.

Peter Mernyei and Cangea Wiki-CS. A wikipedia-based benchmark for graph neural networks. arXiv
preprint arXiv:2007.02901, 2020.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Arthur Gretton. Kernel mean
embedding of distributions: A review and beyond. Foundations and Trends in Machine Learn-
ing, 10(1-2):1–141, 2017. doi: 10.1561/2200000060. URL https://doi.org/10.1561/
2200000060.
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and Michal Valko. Bootstrapped representation learning on graphs. In ICLR 2021 Workshop on
Geometrical and Topological Representation Learning, 2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

L. Vankadara and U. von Luxburg. Measures of distortion for machine learning. In Proceedings
Neural Information Processing Systems, 2018.

Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
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APPENDIX

A PROOFS FOR THEOREMS

A.1 PROOF FOR THEOREM 1

Let d′S(x, y) = λdS(x, y) for all pairs (x, y). Then,∑
u,v

d′S(u, v)

d′S(i, j)
=

∑
u,v

dS(u, v)

dS(i, j)
.

Similarly, let d′H(x, y) = µdH(x, y) for all pairs (x, y). Then,

d′H(f(i), f(j))∑
u,v

d′H(f(u), f(v))
=

dH(f(i), f(j))∑
u,v

dH(f(u), f(v))
.

In either case, the ρ(i, j) defined in Eq. (1) remains the same. Therefore, Dρ(f, λdS , µdH) =
Dρ(f, dS , dH). This proves that Dρ is scale-invariant.

A.2 PROOF FOR THEOREM 2

When d → ∞, from Eq. (12), we have

dH(h(x), h(y)) → 1− exp

(
−∥x− y∥2

2σ2

)
,

⟨h(x), h(y)⟩ → exp

(
−∥x− y∥2

2σ2

)
,

therefore, LGKE → 0 and DGKE → 0.

Let dS(x, y) = ∥x− y∥2. When DGKE = 0,

dH(h(x), h(y)) → 1− exp

(
−dS(x, y)

2

2σ2

)
,

therefore, for any two pairs (x, y) and (u, v), dH(h(x), h(y)) ≤ dH(h(u), h(v)) if and only if
dS(x, y) ≤ dS(u, v), thus, the orderings of pairwise distances are preserved.

A.3 PROOF FOR THEOREM 3

1). Show that Dρ ≻ DF : The optimal value for Dρ is Dρ = 0. If Dρ(f) = 0 for an embedding
algorithm f , then it makes ρ(i, j) = 1 for all pairs i ̸= j. Therefore, there exists a constant k > 0
such that dH(f(i), f(j)) = k · dS(i, j). Since uniform scaling preserves the order of the distances in
the sample space, DF (f) = 0, achieving optimality in DF .

2). Show that DGKE ≻ DF : The optimal value for DGKE is DGKE = 0. If DGKE(f) = 0 for
an embedding algorithm f , then dH(h(x), h(y)) = 1 − exp

(
−dS(x,y)2

2σ2

)
. Since dH increases

monotonicly with dS , f preserves the order of distances in the sample space, therefore DF (f) = 0,
achieving optimality in DF .

3). Show that DF ≻ MAP: The optimal value for DF is DF = 0, and the optimal value for
MAP is MAP = 1. DF = 0 requires the distance orderings by dH to completely agree with the
orderings by dS . If DF (f) = 0 for an embedding algorithm f , then for each node v, Hv(i) ⊆ Nv for
i = 1, . . . , |Nv|, provided that the distance measure dS used in computing DF is consistent with the
distance measure used in defining Nv on the graph. Therefore, MAP (f) = 1, achieving optimality
in MAP.
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A.4 PROOF FOR THEOREM 4

Dρ(f) = 0 requires f to be a linear map that scales distances by a constant k > 0: dH(f(i), f(j)) =
k · dS(i, j). Any deviations from a linear map will result in Dρ(f) > 0.

DGKE(f) = 0 allows f to be a nonlinear map: dH = 1− exp
(
− d2

s

2σ2

)
makes DGKE = 0, but there

does not exist a constant k > 0 such that dH = kdS for all pairs.

DF (f) = 0 allows f to be non-linear map: there exists a non-linear map f such that πi
S(j) = πi

H(j),
but dH(f(i), f(j)) ̸= kdS(i, j).

Since there exists a non-linear map f that achieves DF (f) = 0, such f will also achieve MAP = 1.

B PERFORMANCE COMPARISON WITH MORE BASELINE METHODS

B.1 NODE CLASSIFICATION

Additional comparisons with more baselines are shown in Table 4. SGRL-n stands for training SGRL
for n epochs. Ours-SGRL and SGRL-200 are the results of 200 epochs of training.

Results for SGRL-1000 and other baseline methods are from He et al. (2024a), which shows SGRL-
1000 is the best among all other baselines including Node2vec (Grover & Leskovec, 2016), Deepwalk
(Perozzi et al., 2014), DGI (Velickovic et al., 2019), GRACE (Zhu et al., 2020), GCA (Zhu et al.,
2021), iGCL (Li et al., 2023), GBT (Bielak et al., 2022), BGRL (Thakoor et al., 2021), AFGRL (Lee
et al., 2022), and MVGRL (Hassani & Ahmadi, 2020).

The WikiCS dataset includes 20 predefined training-validation-testing splits. Classification results
using these preset splits are shown for both the baseline methods and our methods. For other datasets,
since there are no standard data splits, we use random 10%-90% splits.

Hyperparameters for distortion regularization are chosen through grid search: in Ours-GCN, λ1 ∈
{0.025, 0.05, 0.1, 0.25}. In Ours-SGRL, λonline ∈ {0.5, 0.7, 0.9} and λtarget ∈ {0.05, 0.1}. The
hyperparameters of the original SGRL model remain unchanged.

Table 4: Node classification accuracy. X, A, Y denote the node attributes, adjacency matrix, and labels in
the datasets. The ’+’ notation is used in two-stage training methods — unsupervised embedding generation
followed by supervised classification. (X, A) + Y denotes X and A are used to generate node embeddings
through an unsupervised approach, and these embeddings are then used with labeled data Y to train a classifier
in a supervised manner.

Method Data WikiCS Computers Photo Co.CS Co.Physics

Two-stage training
Node2vec A + Y 71.79 ± 0.05 84.39 ± 0.08 89.67 ± 0.12 85.08 ± 0.03 91.19 ± 0.04
DeepWalk A + Y 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15
GRACE (X, A) + Y 77.97 ± 0.63 86.50 ± 0.33 92.46 ± 0.18 92.17 ± 0.04 -
DGI (X, A) + Y 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52
BGRL (X, A) + Y 76.86 ± 0.74 89.69 ± 0.37 93.07 ± 0.38 92.59 ± 0.14 95.48 ± 0.08
GBT (X, A) + Y 76.65 ± 0.62 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17 95.07 ± 0.17
MVGRL (X, A) + Y 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03
GCA (X, A) + Y 77.94 ± 0.67 87.32 ± 0.50 92.39 ± 0.33 92.84 ± 0.15 -
ProGCL (X, A) + Y 78.45 ± 0.04 89.55 ± 0.16 93.64 ± 0.13 93.67 ± 0.12 -
AFGRL (X, A) + Y 77.62 ± 0.49 89.88 ± 0.33 93.22 ± 0.28 93.27 ± 0.17 95.69 ± 0.10
iGCL (X, A) + Y 78.83 ± 0.08 89.41 ± 0.06 93.02 ± 0.06 93.52 ± 0.04 94.77 ± 0.20
SGRL-1000 (X, A) + Y 79.40 ± 0.10 90.23 ± 0.03 93.95 ± 0.03 94.15 ± 0.04 96.23 ± 0.01
SGRL-200 (X, A) + Y 79.45 ± 0.10 90.19 ± 0.11 93.11 ± 0.06 93.45 ± 0.03 96.01 ± 0.04
Ours-SGRL (X, A) + Y 79.47 ± 0.10 90.23 ± 0.08 93.32 ± 0.10 93.45 ± 0.05 95.99 ± 0.04

One-stage training
Raw Features X, Y 71.98 ± 0.00 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00
GCN X, A, Y 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16
Ours-GCN X, A, Y 78.71 ± 0.47 89.29 ± 0.52 92.95 ± 0.48 93.07 ± 0.19 95.87 ± 0.09
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B.2 CLUSTERING

Results for DGI and SGRL-1000 are from He et al. (2024a), and results for GRACE, BGRL, and
AFGRL are from Lee et al. (2022).

Table 5: Performance on Clustering in terms of NMI and h-score.
GRACE DGI BGRL AFGRL SGRL-1000 SGRL-200 Ours-SGRL

WikiCS NMI 0.4282 0.4312 0.3969 0.4132 0.4188 0.4239 0.4241
h-score 0.4423 0.4498 0.4156 0.4307 0.4369 0.4426 0.4430

Computers NMI 0.4793 0.4630 0.5364 0.5520 0.5380 0.5282 0.5273
h-score 0.5222 0.4836 0.5869 0.6040 0.5705 0.5637 0.5553

Photo NMI 0.6513 0.5487 0.6841 0.6563 0.6788 0.6719 0.6730
h-score 0.6657 0.5557 0.7004 0.6743 0.6786 0.6736 0.6742

Co.CS NMI 0.7562 0.7162 0.7732 0.7859 0.7961 0.7512 0.7540
h-score 0.7909 0.7428 0.8041 0.8161 0.8216 0.7837 0.7854

Co.Physics NMI - 0.6540 0.5568 0.7289 0.7232 0.7186 0.7288
h-score - 0.6868 0.6018 0.7354 0.7366 0.7324 0.7418

B.3 SIMILARITY SEARCH

Results for GRACE, GCA, BGRL, and AFGRL are from Lee et al. (2022).

Table 6: Performance on similarity search measured by Sim@5 and Sim@10.
GRACE GCA BGRL AFGRL SGRL-200 Ours-SGRL

WikiCS Sim@5 0.7754 0.7786 0.7739 0.7811 0.7968 0.7967
Sim@10 0.7645 0.7673 0.7617 0.7660 0.7825 0.7825

Computers Sim@5 0.8738 0.8826 0.8947 0.8966 0.8883 0.8900
Sim@10 0.8643 0.8742 0.8855 0.8890 0.8785 0.8809

Photo Sim@5 0.9155 0.9112 0.9245 0.9236 0.9186 0.9200
Sim@10 0.9106 0.9052 0.9195 0.9173 0.9115 0.9136

Co.CS Sim@5 0.9104 0.9126 0.9112 0.9180 0.9036 0.9071
Sim@10 0.9059 0.9100 0.9086 0.9142 0.8971 0.9020

Co.Physics Sim@5 - - 0.9504 0.9525 0.9523 0.9518
Sim@10 - - 0.9464 0.9486 0.9480 0.9474

C RELATED WORK

This work relates closely to several areas of machine learning, including proximity-preserving graph
embedding, measures of distortion, and general minimum distortion embedding (not limited to
graphs).

Some well-known examples of proximity-preserving graph embedding methods include DeepWalk
(Perozzi et al., 2014), Node2Vec (Grover & Leskovec, 2016), and LINE (Tang et al., 2015). DeepWalk
is a scalable method for learning node embeddings by combining random walks with the Word2Vec
skip-gram model. It treats random walks as sequences analogous to sentences in natural language
processing, capturing local graph structure through node co-occurrences. The method produces
continuous vector representations that preserve social and structural relationships and is a pioneer for
proximity-preserving embedding. Node2Vec extends DeepWalk by introducing a flexible, biased
random walk strategy that balances local and global exploration of graph neighborhoods, controlled
by parameters p and q. This allows Node2Vec to capture diverse connectivity patterns. LINE is a
pioneering approach for embedding large-scale information networks into low-dimensional vector
spaces while preserving both first-order and second-order proximity, which has influenced later
proximity-preserving embedding methods, such as HOPE (Ou et al., 2016) and APP (Zhou et al.,
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2017). While DeepWalk, Node2Vec, and LINE only preserve symmetric proximities, APP preserves
asymmetric proximity. HOPE, on the other hand, preserves asymmetric transitivity.

Unlike all previous work, we regulate distortion directly through the loss function. Since Dρ measures
pairwise distance deviations for any pair, with matching distance measures, it can preserve the kth-
order proximity for any k ≥ 1 and covers both symmetric and asymmetric proximity.

Literature presents a wide range of distortion measures, some based on differences between two
distances (Nowak et al., 2024), and some based on ratios of two distances (Abraham et al., 2005;
2007; 2011; Vankadara & von Luxburg, 2018). Similar to the σ-distortion in Vankadara & von
Luxburg (2018), our distortion measure Dρ is also based on the ratio of two distances, but it uses
normalized distances, so only the relative change matters. In contrast, σ-distortion directly uses the
unnormalized distances; therefore, large ratios dominate the small ratios. Other notable work includes
WEmbed (Ma et al., 2024), which leverages a weighted distortion measure inspired by hyperbolic
geometry to preserve complex signed graph structures.

In contrast, some methods employ embedding algorithms that indirectly minimize distortion. For
example, curvature regularization is introduced in Pei et al. (2020) to reduce distortion in proximity-
preserving node embedding. In Pei et al. (2020), distortion is defined as the distance divergence (ratio)
between an embedding manifold and its ambient Euclidean space. Isomap (Tenenbaum et al., 2000)
is a novel algorithm for nonlinear dimensionality reduction that preserves the intrinsic geometry
of data on a low-dimensional manifold by using geodesic distances estimated through a nearest-
neighbor graph, extending classical multidimensional scaling (MDS) to capture nonlinear structures
effectively. Poincaré embedding was introduced in Nickel & Kiela (2017) for embedding hierarchical
graph structures within the Poincaré ball model of hyperbolic space, leveraging its geometry to
preserve tree-like and complex network properties with low distortion, directly addressing distortion
in non-Euclidean spaces.

Directly finding embeddings with minimum distortion is also pursued in mathematical programming.
The term “minimum-distortion embedding” (MDE) was first formalized in Agrawal et al. (2021) as
a constrained optimization problem, which can incorporate various distortion functions. Distortion
functions are all functions of Euclidean distances. It was shown that only in a few special cases can
MDE problems be solved exactly; for other cases, they can only be approximated by using a projected
quasi-Newton method. In this paper, we directly minimize distortion in the learning objective for
various graph learning tasks, and use distortion as a regularization term in the loss function, whereas
in Agrawal et al. (2021), selecting embeddings involves finding an exact or approximate solution to
the MDE problem, implemented within a mathematical programming framework.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

The paper is written with assistance from LLMs. We use LLMs to find information such as LaTeX
commands and symbols, Python packages and library functions.
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