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Abstract
Despite the impressive performance of ASR
models on mainstream benchmarks, their per-
formance on rare words is unsatisfactory. In
enterprise settings, often a focused list of enti-
ties (such as locations, names, etc) are available
which can be used to adapt the model to the ter-
minology of specific domains. In this paper,
we present a novel inference algorithm that im-
proves the prediction of state-of-the-art ASR
models using nearest-neighbor-based matching
on an inference-time word list. We consider
both the Transducer architecture that is useful
in the streaming setting, and state-of-the-art
encoder-decoder models such as Whisper.

In our approach, a list of rare entities is indexed
in a memory by synthesizing speech for each
entry, and then storing the internal acoustic and
language model states obtained from the best
possible alignment on the ASR model. The
memory is organized as a trie which we har-
ness to perform a stateful lookup during infer-
ence. A key property of our extension is that we
prevent spurious matches by restricting to only
word-level matches. In our experiments on pub-
licly available datasets and private benchmarks,
we show that our method is effective in signifi-
cantly improving rare word recognition.

1 Introduction

Rapid advancements in Automatic Speech Recog-
nition (ASR) technologies have broadened their ap-
plication in real-world settings. However, state-of-
the-art ASR systems often fail to recognize named
entities or critical rare words. For example, a chat-
bot we deployed in the medical domain backed
by the state-of-art Whisper ASR model, consis-
tently misrecognized In patient to impatient. Such
situations call for contextual biasing whereby the
transcription from ASR model is biased by a user-
provided list of proper nouns (e.g., names from
contact lists) or technical terms (e.g., drug names
from medical dictionaries). The accurate transcrip-
tion of such tokens could have a disproportionately

high impact on the ASR output’s value. E.g., a
spoken language understanding (SLU) module that
uses ASR outputs might carry out the desired action
as long as named entities in the spoken utterance
are correctly transcribed.

Existing contextual biasing techniques typi-
cally demand additional parameterization, either
via attention layers jointly trained with the ASR
model (Le et al., 2021a) or via dictionary mod-
ules trained with the ASR model frozen (Sun et al.,
2021). Inference-time adaptation to dictionaries
has primarily been via the shallow fusion of an ex-
ternal LM (Kannan et al., 2018). However, such a
late fusion overly biases the model to the external
LM and incurs high decoding latency especially for
streaming ASR. In our work, we address this gap
and propose a new lightweight inference-time tech-
nique PRISM (short for “AdaPtation of ASR at
Inference-time using Speech-enriched Memory")
to adapt to predefined dictionaries at test-time
with no additional training. PRISM is employed
during beam-search decoding and used to adapt
two state-of-the-art ASR architectures, encoder-
decoder models (Chan et al., 2016) and Transduc-
ers (Graves, 2012) models.

First, we use a text-to-speech (TTS) system to
synthesize speech for each dictionary entry. To
the best of our knowledge, we are the first to use
synthetic speech for contextual biasing and find
that it facilitates improved matches compared to
the use of text alone. Utilizing both speech and
text in each dictionary entry, we create a memory
mapping speech and text representations (keys) to
textual tokens (values). For encoder-decoder mod-
els, the decoder states are a natural choice for the
memory keys. However, for Transducer models,
implementing memory keys requires more delib-
eration and careful handling of the alignment of
acoustic and textual context (elaborated in §3.1).

During inference, we perform a k-nearest-
neighbor (KNN) search over the memory to retrieve



the k most similar dictionary entries. We define a
KNN probability distribution over the next token
that assigns higher probabilities to nearby mem-
ory entries and finally bias the model predictions
via a linear interpolation with the kNN probabil-
ity distribution. The memory-based matching is
implemented using an efficient trie-based search.
Notably different from prior work (Le et al., 2021a),
we avoid triggering spurious matches in the mem-
ory after only a prefix match, by maintaining a
backoff beam score that keeps track of the score
assigned by the model to a suffix if it were not
found in the trie. We show that such accounting is
essential to avoid worsening baseline performance
in the presence of a dictionary.

PRISM can be used with any existing pretrained
encoder-decoder or Transducer ASR model without
any retraining and incurs close to no delays during
inference. Using PRISM, we obtain significant
performance improvements with both Transducer
and encoder-decoder ASR over diverse dictionaries,
with up to 36% relative reductions in entity-specific
error rates on the well-known Librispeech ASR
benchmark.

2 Related Work and Background

Prior work on contextual biasing of ASRs can be
organized into three categories:

Dictionary as external language model. In the
first category, the dictionary is viewed as an exter-
nal LM. This is integrated with the ASR’s output
either via shallow fusion where ASR scores are
combined with scores from an external LM during
beam-search (Ravi et al., 2020; Liu et al., 2020;
Le et al., 2021a; Gourav et al., 2021) or deep fu-
sion where the model has access to an external
LM during training (Le et al., 2021b,a). While
shallow fusion is a popular scheme that allows for
contextual information to be combined with any
trained end-to-end ASR, it is also very sensitive to
the weight assigned to the external LM and often
helps ASR of contextual entities at the expense of
overall ASR performance (Mittal et al., 2023).

Training-time adaptation. The second category
consists of approaches that modify the ASR model
during training to incorporate contextual infor-
mation, often relying on attention-based mecha-
nisms (Jain et al., 2020; Chang et al., 2021; Huber
et al., 2021; Sathyendra et al., 2022; Sun et al.,
2023a; Munkhdalai et al., 2023; Chan et al., 2023).
Such a direct integration of contextual information

is usually more accurate than shallow fusion, but
it comes with the added overhead of retraining the
ASR model for every new dictionary to be inte-
grated.

Inference-time adaptation using dictionary. The
last category of approaches make use of a dictio-
nary during decoding (Williams et al., 2018; Huang
et al., 2020; Sun et al., 2021). PRISM falls in the
last category with two key differences from prior
work. We also synthesize speech, using TTS, for
every dictionary entry, unlike prior work that only
uses text from biasing lists/dictionaries. This facili-
tates improved matches to the dictionary terms at
test time. We enforce word-level matches using a
trie and additional beam state to avoid spurious pre-
fix matches that could otherwise seriously distort
baseline performance.

2.1 Background: ASR Models

Two prominent architectures for ASR are Trans-
ducers (Graves, 2012; Graves et al., 2013) popular
when low latency and streaming (He et al.) are im-
portant, and encoder-decoder used in state-of-the-
art ASR models such as Whisper (Radford et al.,
2022). We present a brief overview of each.

Transducers. Transducers have three modules: (1)
An audio encoder MS , (2) A text encoder ML,
and (3) A joint network MJ . Audio encoder MS

converts input speech x1, . . . ,xT to the latent rep-
resentations h1, . . . ,hT using an RNN (Cho et al.,
2014) or Transformers (Vaswani et al., 2017) or
Conformer (Gulati et al., 2020). The text encoder
ML converts each text prefix yu = y1, . . . , yu−1

to the contextual latent representation gu. The
joint network MJ combines the latent represen-
tations ht and gu, followed by a softmax layer that
outputs the distribution Pθ(y|gu,ht) over vocabu-
lary V plus the blank symbol ∅. Since no explicit
alignments between xi and yu is provided, log-
likelihood of the target sequence y is computed
during training by marginalizing over all possi-
ble alignments (t, u) using an efficient forward-
backward algorithm (Graves et al., 2013). During
inference, beam-search is used to find the best pos-
sible (t, u) alignment (Graves, 2012; Saon et al.,
2020).

Encoder-decoder. These models encode the audio
in the same way as above but the decoder converts
the text prefix yu and audio using cross-attention
on the audio states at each decoding step. Thus, the
alignment of text and audio is implicit in the cross



Figure 1: Overview of our approach for a Transducer ASR model.

attention. At decoding step u, a cross attention
from decoder to the encoder states h1, . . . ,hT pro-
vides a fixed length vector eu which is fused with
self-attention layers on the decoder to get an up-
dated decoder state du. The decoder state followed
by a softmax layer yields Pθ(y|du,h). Inference
happens via beam search.

3 Contextual biasing in PRISM

We are given a trained ASR model M and a list of
isolated word phrases D̃ = {ỹ1, . . . , ỹk} at infer-
ence time. PRISM uses D̃ to first create a memory
structure N . Subsequently, for each subsequent
input speech x, we perform a memory augmented
inference to bias its text to the words in D̃. As
stated earlier, the challenge is that recognition of
words not in D̃ should not worsen in the process. In
order to not adversely impact the streaming and la-
tency performance of M, PRISM integrates with
existing ASR decoding algorithms at the token-
level, by just modifying the token distribution at
each step of decoding.

An efficient mechanism proposed in the NLP
literature for sequence to sequence models is k-
nearest neighbor (KNN) language models (Khan-
delwal et al., 2019; Guu et al., 2020; Yogatama
et al., 2021). A key insight of KNN LMs is that
similar decoder contexts lead to similar next token
distribution. This motivates the creation of memory
in the form of a list of key-value pairs with context
as key and next-token as value.

However, applying this principle to ASR models
raises several challenges. First, we are given as in-
put only a list of isolated word phrases, and context
is missing both in terms of the missing audio input,
and an overall sentence context in which the phrase
lies. We partly offset for the lack of audio input

by resorting to TTS to generate synthetic audio for
each phrase. A second challenge is that for Trans-
ducer models, the design and extraction of context
to form the memory keys is significantly harder,
since they do not follow an encoder-decoder archi-
tecture. Finally, a flat memory in the unit of tokens
causes several spurious matches with pieces of a
whole phrase during decoding. For example, a dic-
tionary entry for "Intuit" could spurious matches to
the "In" or "it" tokens of this word. We therefore
restrict to allow only whole phrase matches. To im-
plement such whole phrase matches over multiple
steps in existing token-level decoding algorithms,
we organize the memory as a trie and maintain state
in the beam on the prefix of the trie matched so far.
Additionally, we maintain a backoff beam score
that keeps track of the model score for retraction
unless the match completes a full word. We first
present how we create the memory and then discuss
our method of interpolating default model token
distribution Pθ with lookups from the memory.

3.1 Memory Creation
Since the provided list D̃ is in text, we use a
TTS engine to create audio for the correspond-
ing phrases as described in Figure 1(a). With
this, we obtain a target domain dataset D̃T :
{. . . , (x̃i, ỹi), . . . } which is devoid of any context
in which in these utterances are being used. We
convert D̃T into a trie-based memory of key-value
pairs at the token-level as follows.

Memory keys for Transducers For Transduc-
ers, the internal representations to index are audio
encoder MS state ht and the text encoder ML

state gu for each non-blank prediction yu as they
describe both the acoustic state and contextual lan-
guage model state for the predicted token. For



Figure 2: For transducer models the best alignments
from the decoding lattice are used to generate the mem-
ory.

each utterance x̃i in D̃T , we trace the lattice of
the highest probability beam to find the best valid
alignment Ai that consists of a sequence of (ht, gu,
yu) corresponding to non-blank predictions as de-
scribed in Figure 2. We augment the beam search
algorithm to constrain the output vocabulary to the
target sequence ỹi and ∅. For instance, if the target
sequence is “Minnetonka”, and the predicted se-
quence in the beam is “Minne”, then for the subse-
quent expansion of the beam, the output vocabulary
is constrained to either ‘t’ or ∅. To further nudge
the model to predict the character ‘t’, we incremen-
tally add extra probability to the constrained token
over ∅. We find that this algorithm provides better
alignments as opposed to finding the best path in
the output lattice using a Viterbi algorithm.

Memory keys for Encoder-decoder Models We
use teacher forcing to constrain the predicted output
to the ground truth. For each inference step the
memory is the output d after the last cross-attention
block in the decoder. The value for the memory
consists of the next token as per the ground truth.

3.2 Memory Augmented Decoding

We present the framework for memory augmented
inference that applies both for Transducers and
encoder-decoder models. Both models use some
form of beam search during inference, and we mod-
ify each decoding step of beam-search as follows:

At each decoding step i, we have a current
hypothesis yu = y1, . . . , yu, a decoder state d,
a beam score s, and a next token distribution
Pθ(y|yu,h) from the model. From the memory,
that is organized as a trie, we maintain state in the
form of the trie node N that has matched a suf-
fix of yu, call it zu = yu−ℓ . . . yu where ℓ is the
depth of N . The suffix could be empty, in which
case N is root of the trie. We define a query qi
from the decoder state d, and use that to find the K-

nearest neighbors (K is a hyperparameter) from the
children of N as a set NN(N, qi) = {(kr, vr)} de-
noting key and token id of the matched neighbors.
The distance function between qi and kr is model
dependent. We use thresholds on the distances and
it is possible for the neighbor set to be empty.

When the neighbor set NN(N, qi) is non-empty
we define a distribution over the next token from
the memory lookup as:

Pknn(y|qi, N) ∝
∑

(kr,y)∈NN(N,qi)

exp(−dist(qi, kr))

(1)
The above distribution is interpolated with the to-
ken distribution from the model as

P (y|·) =

{
(1− λi)Pθ(y|·) + λiPknn(y|·) if y ∈ N

Pθ(y|·) otherwise
(2)

The KNN coefficient λi can be considered as a
hyper-parameter, but we find that deriving the value
of the KNN Coefficient dynamically using a simple
linear function on the minimum distance yields
improved performance.

λi = 1− min
(kr,vr)∈NN(N,qi)

(dist(qi, kr)) (3)

This function has the effect of increasing KNN
weight when there is a good match in the dictionary.

Unlike in previous work, one crucial step we
take to avoid spurious matches with the memory,
is to only allow the memory scores to accumulate
for full word matches. Without it, we observe that
when the actual word deviates from the dictionary
word after a prefix match, the hypothesis still car-
ries the extra probability and can lead to spurious
recognition (e.g, twin becomes twen, if the dictio-
nary has the word twente as shown in Figure 3). In
order to avoid such spurious matches and enforce
word-level match only, we maintain on the beam in
addition to the beam score s, a default score sθ that
tracks the model score of the suffix if the current
suffix zu of yu were not to match the trie. If the
next token of y does not match a child of N , we
reset the beam score s to sθ. If we reach the end of
the trie at a decoding step, the complete word has
matched and we update sθ to be the beam score s.
We will show in the ablation that such a step was
essential to avoid penalizing recognition accuracy
of words that do not match any full word in the
dictionary. The overall algorithm appears in Algo-
rithm 1 assuming a generic beam-search algorithm
for encoder-decoder model. For the Transducer
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Figure 3: Step-by-step decoding using PRISM for the reference word twin. For this example, the numbers on the
right of each step are the probability of that hypothesis. For each correct match, the probability is assumed to be
0.9. For the match in step 2, the probability before and after the interpolation are 0.95 and 0.6 respectively. With
rescoring, the interpolation probabilities are replaced by the model probability, which downgrades the hypothesis.

model, while the overall framework is the same,
the details are slightly different. We provide a de-
tailed algorithm for Transducers in Appendix B.

Algorithm 1 PRISM Inference
1: Input: Encoder state h, beam width W , max. decode

length I , Trie memory root N
2: Output: Most likely hypothesis in beam
3: Beam = {(y = ϕ,d = initial state, N, s = 1, sθ = 1)}

4: for i = 1 . . . I do
5: A = {}
6: for (y,d, N, s, sθ) ∈ Beam do
7: Pθ(y|·),d = M(h,y,d)
8: knn, λ = Near nbrs(d, N, thresholds)
9: Pknn = KNN-probs(knn,d) (Eqn: 1)

10: for k ∈ V do
11: sθ(y + k) = sθ(y)Pθ(k)
12: s(y + k) = s(y)(λPθ(k) + (1− λ)Pknn(k))
13: if k /∈ N.next then
14: s(y + k) = sθ(y + k) (forget knn scores if

incomplete trie match)
15: if k ∈ N.end then
16: sθ(y + k) = s(y + k) (reset)
17: A = A ∪ {(y + k,d, N.next(k), s(y +

k), sθ(y + k))}
18: Beam=PruneAndRecombineHyps(A,W )
19: return Sorted(Beam) =0

4 Experiments

We present an extensive comparison of PRISM
with existing methods on both state-of-the-art
Transducer (Graves et al., 2013) and encoder-
decoder (Chan et al., 2016) ASR models spanning
three different dataset settings.

Models and Implementation Details. For the
encoder-decoder models, we use two publicly-
available Whisper models (Radford et al., 2022):
Whisper-base(74M parameters) and Whisper-small
(244M parameters). Whisper was trained on over
600K hours of weakly labeled training data mined
from the web. We do not do any finetuning of the
Whisper model, and only alter the beam-search

decoder to incorporate PRISM. We used a beam-
width of 10 in all the Whisper experiments. The
Transducer model (56M parameters) is trained on a
proprietary dataset of 56K hours of labeled speech.
This model takes 240-dimensional log-Mel filter-
bank audio features as its input and predicts prob-
ability distributions over an output vocabulary of
45 English characters and a blank character. We
elaborate in Appendix A.

Memory. We use the FAISS library (Johnson
et al., 2019) to index and efficiently search through
embeddings. Recall that we index embeddings
from both the audio and text encoder for the Trans-
ducer model. We use a state-of-the-art VITS (Kim
et al., 2021) system from Coqui TTS (coqui.ai,
2023) to synthesize audio for dictionary entries.
We set the thresholds for the audio match to 0.4 and
text match to 0.05. Note that the same threshold is
used across all datasets spanning 9 different dictio-
nary lists. The text-based threshold is strict, thereby
only allowing for matches that the language model
readily permits. However, the audio-based thresh-
old is more relaxed allowing for more variability in
the audio matches to accommodate varying pronun-
ciations, noise in the audio, etc. With the Whisper
models, we use an unnormalized embedding-based
matching with a distance threshold of 250 and 1000
for the base and small models respectively. (Nor-
malized distances did not perform as well.) We
further apply a min-max normalization to these un-
normalized distances to use as a dynamic KNN
coefficient for the interpolation (outlined in Sec-
tion 3.2). For all the experiments, we use the four
nearest neighbors while searching the index.

Evaluation and Comparisons. Apart from com-
puting an overall word error rate (WER), we also
compute an entity WER (E-WER) over the spans
covered by dictionary entities in the test utterances.

We compare against three existing techniques.



test-clean test-other

TCPGen (Sun et al., 2023b)
Whisper Baseline 5.2 / 16.3 10.5 / 31.4
Whisper + TCPGen 4.8 / 12.5 10.1 / 26.5
Relative Reduction 7.7 / 23.3 3.8 / 15.6
PRISM (Ours)
Whisper Baseline 4.9 / 16.1 10.2 / 30.9
Whisper+PRISM 4.4 / 13.0 9.6 / 25.7
Relative Reduction 10.2 / 19.3 5.9 / 16.8

Table 1: Comparison of WER/E-WER on Whisper with
TCPGen on base.en model. Whisper + TCPGen num-
bers are reproduced from (Sun et al., 2023b), along with
their Whisper baseline numbers. PRISM outperforms
TCPGen on both the test sets from a superior baseline.

1. TCPGen (Sun et al., 2021) learns a distribution
over the output vocabulary that is limited by
a prefix tree constructed from the dictionaries.
TCPGen has a parameterized module, jointly
trained with the frozen ASR model, to estimate
weights signifying how much contextual bias is
required to decode the current token. TCPGen
has been used both with the Transducer model
and Whisper (Sun et al., 2021, 2023b).

2. Deep Contextual RNN-T (Le et al., 2021a) con-
sists of learnable trie-based biasing modules and
is specific to the Transducer model.

Unlike PRISM, we note that both TCPGen and
Deep Contextual RNN-T techniques require a joint
training of biasing modules with the ASR models.

Overview of Experiments. We show ASR adap-
tation experiments across multiple scenarios involv-
ing three types of datasets:
1. Librispeech (publicly-available) Dataset: We

evaluate on the popular Librispeech ASR bench-
mark (Panayotov et al., 2015) using dictionaries
from prior work (Sun et al., 2021; Le et al.,
2021a). These experiments are detailed in §4.1.

2. Enterprise Dataset: We show experiments on
a real consumer-facing chatbot application in
the medical domain (in §4.2). We evaluate on
real speech from users covering five different
intents and dictionaries of varying sizes.

3. Entity-rich Dataset: Due to the absence of
publicly-available entity-rich datasets, we cre-
ate a new benchmark with sentences that are
dense in entities such as locations, person names
and medicine names (detailed in §4.3). This
is a synthetic dataset created using TTS that

test-clean test-other

TCP Gen (Sun et al., 2021)
RNN-T 5.5 / 18.7 15.3 / 42.9
RNN-T+TCPGen 4.9 / 13.9 14.0 / 35.0
Relative Reduction 10.9 / 25.7 8.5 / 18.4
Deep Contextual RNN-T (Le et al., 2021a)
RNN-T 3.7 / 14.1 9.6 / 30.6
RNN-T+Deep Cont. 3.0 / 8.5 8.5 / 20.5
Relative Reduction 17.8 / 39.7 11.5 / 33.0
PRISM (Ours)
RNN-T 3.5 / 13.3 9.9 / 32.4
RNN-T+PRISM 3.1 / 9.3 9.0 / 20.6
Relative Reduction 11.4 / 30.1 9.1 / 36.0

Table 2: Comparison of WER/E-WER with TCP-
Gen and Deep Contextual RNN-T for RNN-T models.
PRISM obtains a 30% reduction in E-WER without
needing an external language model used in Deep Con-
textual RNN-T and outperforms TCPGen on all metrics.

lends itself nicely to detailed ablations by en-
abling fine-grained control on dictionary size,
types of entities, etc. We will publicly release
this benchmark to facilitate further research into
dictionary-based ASR adaptation.

4.1 Evaluation on Librispeech
We evaluate on the standard test-clean and test-
other splits of Librispeech (Panayotov et al., 2015).
For dictionaries, we borrow the experimental proto-
col used for TCPGen Sun et al. (2021). Biasing lists
comprise 200K rare words from the Librispeech
training set. Dynamic dictionaries are constructed
for each test utterance. Rare words in the test tran-
script are augmented with randomly sampled rare
words to create 1000-word dictionaries per test
utterance. We reuse the same dictionaries used
by Sun et al. (2021) for a fair comparison. Addi-
tionally for PRISM, we create supporting audio
for each dictionary entry using TTS.

Table 1 shows how PRISM improves over Whis-
per and how it compares to TCPGen. Whis-
per+TCPGen WERs are reproduced as it appears
in Sun et al. (2023b), along with their reported
Whisper baseline numbers. We observe that
PRISM yields superior WER and E-WER reduc-
tions on both test-other and test-clean. We achieve
significant reductions compared to TCPGen, de-
spite starting with a much stronger Whisper base-
line; in fact, our baseline numbers are almost as
good as the reported Whisper+TCPGen numbers.



Category - 1 Category - 2 Category - 3 Category - 4 Category - 5 Average

RNN-T Baseline 32.9 / 26.3 38.8 / 32.6 48.6 / 26.6 125.0 / 83.3 33.0 / 40.0 55.7 / 41.8
Whisper (small) 32.9 / 21.2 77.6 / 28.6 45.2 / 24.5 116.7 / 58.3 53.2 / 44.1 65.2 / 35.3
Peng et al. (2023) 19.2 / 13.1 63.3 / 26.5 57.1 / 40.0 58.3 / 33.3 58.7 / 30.9 51.3 / 28.8
PRISM 26.0 / 15.8 26.5 / 26.5 40.0 / 20.0 16.7 / 8.3 28.2 / 29.4 27.5 / 20.0

Table 3: Comparison of WER/E-WER on the internal medical domain dataset using an RNN-T and Whisper(small)
baseline. PRISM outperforms all the baselines on most categories for this noisy short-form internal dataset halving
the WER and E-WER.

Table 2 presents results on the Transducer ASR
comparing PRISM with both TCPGen and Deep
Contextual RNN-T baselines. PRISM outperforms
both baselines on test-other in terms of relative
WER and E-WER reductions and performs com-
parably to Deep Contextual RNN-T (and better
than TCPGen) on test-clean. For both Whisper and
Transducer models, it is noteworthy that PRISM
achieves comparable WER reductions with min-
imal overhead, compared to TCPGen and Deep
Contextual RNN-T that both require retraining.

4.2 Evaluation on Enterprise Dataset

We evaluate PRISM using data from a deployed
chatbot in the medical domain, interacting with
real users. We test on utterances drawn from five
intents/categories with keywords specific to each
category. Category-1 contains utterances with 6
domain-specific keywords (e.g., representative, au-
thorization), Category-2 has 4 keywords (e.g., phar-
macy), Category-3 has 4 keywords (e.g., acupunc-
ture), Category-4 has 2 keywords (inpatient, outpa-
tient) and Category-5 has 30 keywords (e.g., mam-
mogram, chemotherapy).

Table 3 shows evaluation results for all five
categories, using both Transducer and Whisper
baseline models, along with PRISM applied to
the Transducer model. For a test utterance in
Category-4 with the keywords inpatient and outpa-
tient, the baseline Transducer model predicts impa-
tient which is a more common word in the training
set, while Whisper predicts in patience. PRISM
fixes such errors and dramatically reduces the base-
line Transducer WER from 83.3 to 8.3 over 20 test
utterances. Other categories also significantly ben-
efit from using PRISM. The Whisper baseline is
prone to hallucinate with irrelevant content, espe-
cially when the input audio is short; Appendix C
shows some examples.

Additionally, in Table 3, we compare PRISM
with a very recently proposed technique from Peng

et al. (2023) that is applicable only to the Whisper
model. Whisper supports the use of prompts with
the decoder state to bias the predictions towards
the dictionary entries during decoding.1 Note that
this method is applicable in settings where the num-
ber of contextual entities is small, as the decoder
state is prompted on these entities. Hence, we com-
pare this technique with PRISM for the enterprise
dataset that contains a small number of keywords
in each category. We observe that PRISM signifi-
cantly outperforms the technique from Peng et al.
(2023) on our enterprise benchmark. The average
WER/E-WER from Peng et al. (2023) is 51.3/28.8
compared to 27.5/20.0 obtained using PRISM.

4.3 Evaluation on Entity-rich Dataset

We create a new entity-rich, synthetic benchmark
spanning different categories of commonly occur-
ing entities viz. locations, person names and med-
ical drugs. We use VITS TTS from the Coqui
toolkit (coqui.ai, 2023) to create both entities and
sentences for this benchmark. We use different
speakers for the dictionary entities and the test ut-
terances to mimic real settings where these speak-
ers are disjoint. This benchmark is released2 to
encourage fair comparisons of dictionary-based
adaptation techniques. Prior work on contextual
biasing either uses proprietary datasets or public
lists (like from Librispeech), but the latter is nei-
ther domain-specific nor dense in entities. Table 4
provides a brief description of our dataset, along
with entity types and sample sentences containing
these entities. Table 5 shows results from both
Transducer and Whisper models, with and without
PRISM. We note the high baseline E-WER, espe-
cially for Drugs and Location (big), indicating that
the entities are difficult for the baseline models to

1More information is available at https:
//github.com/openai/whisper/discussions/117#
discussioncomment-3727051.

2https://github.com/AshishMittal/PRISM

https://github.com/openai/whisper/discussions/117#discussioncomment-3727051
https://github.com/openai/whisper/discussions/117#discussioncomment-3727051
https://github.com/openai/whisper/discussions/117#discussioncomment-3727051


Entity #Entities #Sentences Sample Entities Sample Sentences

Location 1000 567 Chicopee, Erlanger I live in Chicopee.
(small) Minnetonka Erlanger and Minnetonka are gorgeous.
Location 2818 1628 Albemarle, Saratoga The route passes through Albemarle and Saratoga.
(big) Merthyr Tydfil Merthyr Tydfil is gorgeous.
Person 4348 4220 Beaufort, Zebadiah Zebadiah always makes sure to include others.
Names Eberhard Eberhard loves to skydive.
Drugs 2874 2874 Aclovate, Primidone Is Primidone safe to use during pregnancy?

Fluothane What is the dosage for Fluothane?

Table 4: Entity-rich dataset.

Location Location Person Drugs Average
(small) (big) Names

RNN-T
Baseline 39.1 / 70.0 37.6 / 67.7 24.7 / 19.0 36.8 / 93.5 34.6 / 62.3
PRISM 27.1 / 41.0 29.0 / 45.1 24.3 / 17.6 33.5 / 77.0 28.5 / 45.1

Whisper (small)
Baseline 24.4 / 45.1 23.5 / 45.1 12.8 / 15.3 23.3 / 82.2 21.0 / 46.9
PRISM 18.8 / 31.8 18.2 / 32.2 12.1 / 14.1 17.6 / 53.9 16.7 / 33.0

Table 5: Comparison of WER/E-WER on different entities from Entity-rich dataset. PRISM consistently out-
performs the baseline RNN-T and Whisper models yielding upto 20% and 30% reductions in WER and E-WER
respectively.

Location (Big) Drugs

PRISM 29.0 / 45.1 33.5 / 77.0
- Dynamic Coefficient 36.4 / 63.5 35.3 / 85.4
- Trie 35.4 / 53.9 36.5 / 80.3
- Rescore at false Trie exit 32.0 / 52.9 36.8 / 79.3
Audio-only Index 53.3 / 43.9 39.2 / 73.3
Text-only Index 115.2 / 99.8 139.1 / 96.8

Table 6: WER/E-WER comparison after removing core
components from PRISM for RNN-T. Using audio-
only index for RNN-T yields better E-WER, but the
overall WER degrades because of the unconstrained
hallucinations due to lack of language model context.

accurately transcribe. PRISM yields significant
WER/E-WER reductions for all entity types.

4.4 Ablations and Analysis

We use the synthetic benchmark to present an abla-
tion of various design choices that are critical to the
success of PRISM. Table 6 shows how PRISM
fares on Location (Big) and Drug entity types if:
1) we omit the dynamic KNN coefficient and use
a static coefficient instead, 2) we use a flat mem-
ory rather than a trie-based memory and, 3) we
remove the rescore feature in the trie (described
in Section 3.2) that encourages full-word matches.
We observe that each of these design choices were
important. Note that disabling the rescore feature
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Figure 4: Comparison of WER vs. #distractors in the
dictionary for Location (Big).

in the trie significantly degrades performance. This
feature is absent from all prior trie-based biasing
techniques (Sun et al., 2021; Le et al., 2021a; Sun
et al., 2023b). Table 6 also shows the importance of
indexing both audio and text embeddings. Overall
WERs degrade with using an audio-only index (due
to the lack of language modeling context), while
both overall WERs and E-WERs drastically worsen
with using a text-only index.

Figure 4 shows how PRISM behaves with vary-
ing dictionary sizes for Location (Big). For each
test utterance, we identify the gold entities from the
reference text and add a fixed number of randomly-
sampled distractors to reach the desired dictionary



Dataset No of Entities Average Tokens Memory
Location (small) 1000 10.8 50 MB
Location (large) 2818 10.7 138 MB
Person Names 4348 7.0 126 MB
Drugs 2874 11.3 132 MB

Table 7: Memory requirement of various dictionaries.

size. We see that PRISM is steady in its perfor-
mance and does not degrade in the presence of
large number of distractors.

4.5 Memory and Compute Overhead of
PRISM

We compute the memory occupied by our dictio-
nary for various entities in the entity-rich dataset
in Table 7. It is worth noting that the sizes of the
dictionaries are influenced by the number of tokens
(characters or BPE units) present in the words or
phrases within the dictionary entries. While the
Drugs entity dictionary contains fewer entries, the
average token count per entry tends to be larger
compared to the Person Names and Location entity
dictionaries.
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Figure 5: Comparison of RTF vs. #distractors in the
dictionary. Baseline RTF is 0.5

Next, we study the overhead of using PRISM
during inference. Analytically, the complexity of
the beam search algorithm for RNN-T models is
O(cBUT ), where c is the cost of the forward pass,
B is the beam size, T is the number of audio frames
in the input and U is the maximum length of the
output. PRISM method adds a lookup cost to mem-
ory in each step of the beam expansion. If the cost
of lookup is p, then the overall complexity would
become O((c + p)BUT ). We use the state-of-
the-art nearest neighbor index from Johnson et al.
(2019) which can do a fast look-up to minimize the
latency.

To highlight the minimal computational over-
head incurred by PRISM, we compute RTF (real-
time factor) scores i.e., the time it takes to decode 1
second of audio, using our Transducer model with

dictionaries of varying sizes for Location (Big).
Figure 5 shows that PRISM scales well and incurs
minor overheads with larger dictionaries.

5 Conclusion

We present PRISM, an efficient inference-time
dictionary-based ASR adaptation technique that
uses synthesized speech for dictionary entries to
facilitate improved matches. PRISM includes
an efficient trie-based memory lookup algorithm,
with effective fallback scoring mechanisms to pre-
vent spurious matches. PRISM can augment stan-
dard beam-search decoders in both Transducer and
Whisper encoder-decoder ASR models. We demon-
strate the effectiveness of PRISM with experi-
ments across diverse dictionaries containing rare
words and named entities. We obtain significant
relative WER reductions of up to 36% on entities,
yielding an overall WER reduction close to 10%,
on the challenging test-other split in Librispeech
benchmark. We also achieve superior performance
on evaluation sets drawn from an enterprise setting,
with overall and entity error rates almost reduced
by a factor of 2 (i.e., relative reductions of 40% to
55% over the baseline ASR systems).

6 Limitations

We highlight two limitations of our current work:
• PRISM relies on TTS systems to create au-

dio representations for dictionary keywords.
For many rare words, TTS might not provide
the correct pronunciation which can lead to
mismatches with the actual words during in-
ference. In ASR settings involving accented
speech and low-resource languages, this dif-
ference can be further exacerbated due to the
lack of robust TTS engines.

• Memory and runtime requirements for
PRISM are dependent on the size of the mem-
ory. This can be further optimized by quantiz-
ing the representations.
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A Implementation details

The model consists of 6 bidirectional LSTM layers
of hidden dimensionality 640 in the acoustic en-
coder and a single unidirectional 768-dimensional
LSTM layer in the text encoder. Both acoustic and
text encoders are further projected down to 256
dimensions using separate projection layers, and
a joint network combines these 256-dimensional
embeddings via a simple element-wise product,
followed by a tanh non-linearity. A final softmax
projection layer is used to produce probability dis-
tributions over an output vocabulary consisting of
45 non-blank English characters and a blank char-
acter. This model uses log-Mel filterbank audio
features augmented with delta and double-delta
spectral features (Mason and Zhang, 1991; Picone,
1993), resulting in 240-dimensional input features
spanning 20ms audio segments. As is standard
practice, audio augmentations such as speed and
tempo perturbations (Park et al., 2019) are applied
as well. The Transducer models are trained for
20 epochs using AdamW (Loshchilov and Hutter,
2017) with a maximum learning rate of 5e-4.

B Detailed PRISM algorithm for RNN-T

Here we describe PRISM algorithm for the Trans-
ducer model that follows the same structure as
Algorithm 1 defined earlier. We extend align-
ment length synchronous decoding algorithm (Saon
et al., 2020) for transducers with PRISM. The key
addition to the generic PRISM for the transducer
models are the steps in lines 13-15. Lines 13-15
show the addition of the ∅ hypothesis to move the
audio state (ht) in the RNN-T lattice. The rest of
the hypothesis expansion with non-blank characters
remains the same as the generic PRISM algorithm.
Note that PRISM can be adapted to other search
algorithms such as the time-synchronous algorithm
described in (Graves, 2012) using similar steps.

For the transducer models PRISM uses separate
indexes for audio and text embeddings. In the im-
plementation, both indexes are queried separately
with their respective thresholds. The common val-
ues obtained from the indexes are combined to
form a single output over which KNN probabilities
(described in eqn 1) are computed.

C Examples

In this section, we show anecdotal examples of how
PRISM improves over the baseline models. Table

Algorithm 2 Pseudo-code for Memory Augmented
ALSD for RNN-T
1: Input: Encoder state h, beam width W , max. decode

length I , Trie memory root N
2: Output: Most likely hypothesis in beam
3: Beam = {(y = ϕ, g0 = initial state, N, s = 1, sθ =

1)}
4: F = {}
5: for i = 1...T + I do
6: A = {}
7: for (y, gu−1, N, s, sθ) ∈ Beam do
8: u = |y|
9: t = i− u+ 1

10: if t > T then
11: continue
12: Pθ(y|·), gu = M(ht,y, gu−1)
13: s(y) = s(y)Pθ(ϕ)
14: sθ(y) = sθ(y)Pθ(ϕ)
15: A = A ∪ {(y, gu−1, N, s(y), sθ(y))}
16: if t== T then
17: F = F ∪ {(y, s(y))}
18: knn, λ = Near nbrs(gu, ht, N, thresholds)
19: Pknn = KNN-probs(knn, gu, ht) (Eqn: 1)
20: for k ∈ V do
21: sθ(y + k) = sθ(y)Pθ(k)
22: s(y + k) = s(y)(λPθ(k) + (1− λ)Pknn(k))
23: if k /∈ N.next then
24: s(y + k) = sθ(y + k) (forget knn scores if

incomplete trie match)
25: if k ∈ N.end then
26: sθ(y + k) = s(y + k) (reset)
27: A = A ∪ {(y + k, gu, N.next(k), s(y +

k), sθ(y + k))}
28: B = PruneAndRecombineHyps(A, beam_size)
29: return sorted(F ) =0



9 shows the examples from Whisper (base.en) base-
line and PRISM adapted Whisper for librispeech
dataset. Note that with PRISM many challenging
dictionary words get corrected due to robust KNN-
based matching. Next, in Table 10, we show anec-
dotal examples from the Location dataset. Many
challenging acoustic words such as Kissimmee,
Burnhamonsea, etc. are recognized correctly by
PRISM. We also show some examples from the
challenging Drugs dataset in Table 11, where hard-
to-spell medical entities are recognized correctly.

In Table 12 and 13, we show the anecdotal ex-
amples from the Location and Drugs benchmarks
for transducer models, showing great effectiveness
in improving the E-WER.



Reference Representative.
Whisper (small) For every single day.
Reference Pharmacy.
Whisper (small) Guys have a great winter every one.
Reference Representative.
Whisper (small) I will finish up before we open all right Thank you O. K. just so they can remove of.

Thank you very much I remember before they married they were in the disable.
family came home seen at the camp alarmed guruji we do not want to ruin the family in sight.

Table 8: Hallucination examples on the Internal Dataset.

Reference
the europe they had come from lay out there beyond the irish sea europe of strange tongues
and valleyed and woodbegirt and citadelled and of entrenched and marshalled races

Baseline
the europe they had come from lay out there beyond the irish sea europe of strange tongues
and valid and woodbeagert and citadeld and of entrenched and marshalled races

PRISM
the europe they had come from lay out there beyond the irish sea europe of strange tongues
and valid and woodbegirt and citadelled and of entrenched and marshalled races

Reference

american school boys read with emotions of horror of the albigenses driven beaten and
killed with a papal legate directing the butchery and of the vaudois hunted and hounded
like beasts as the effect of royal decree and they yet shall read in the history of their own
country of scenes as terrible as these in the exhibition of injustice and inhuman hate

Baseline

american schoolboys read with emotions of horror of the albiginses driven beaten and
killed with a papal legate directing the butchery and of the vaudoua hunted and hounded
like beasts as the effect of royal decree and they yet shall read in the history of their own
country of scenes as terrible as these in the exhibition of injustice and inhuman hate

PRISM

american schoolboys read with emotions of horror of the albigenses driven beaten and
killed with a papal legate directing the butchery and of the vaudois hunted and hounded
like beasts as the effect of royal decree and they yet shall read in the history of their own
country of scenes as terrible as these in the exhibition of injustice and inhuman hate

Reference fauchelevent grumbled more to himself than to jean valjean
Baseline fortunately von grumbled more to himself than to jean valjean
PRISM fauchelevent grumbled more to himself than to jean valjean
Reference and i sicut terra sine aqua
Baseline and i sycote terrasin aqua
PRISM and i sicut terra sin aqua

Table 9: Examples on Librispeech with Whisper (base.en) and PRISM. The text in the boldface are the entities
present in the index.



Reference I live in Burnhamonsea
Baseline I live in Bonamancee
PRISM I live in Burnhamonsea
Reference Irvine, Salt Lake City, and Sandown are important cities
Baseline I have unsolved Lake City and sundown my important cities
PRISM Irvine, Salt Lake City, and Sandown are important cities
Reference Telephone was invented in Kissimmee
Baseline Telephone was invented in kiss me
PRISM Telephone was invented in Kissimmee
Reference Distance between Massapequa Park and Beltsville is small
Baseline The distance between Massacre Park and belzelis mall
PRISM The distance between Massapequa Park and Beltsville is small
Reference The distance between Failsworth and Atascocita is quite large
Baseline The distance between Faresworth and Ataskasesia is quite large
PRISM The distance between Failsworth and Atascocita is quite large
Reference My house is near Aiken and Bloxwich
Baseline My house is no Akon and Blockswich
PRISM My house is no Aiken and Bloxwich

Table 10: Examples on Location (entity-rich dataset) with Whisper (small) and PRISM. The text in the boldface are
the entities present in the index.

Reference What are the common brand names of Sudafed
Baseline What are the common brand names of Sudest
PRISM What are the common brand names of Sudafed
Reference What is the recommended dosage for Flavoxate
Baseline What is the recommended dosage for Flavix 8
PRISM What is the recommended dosage for Flavoxate
Reference What should I do if I experience side effects from Epoprostenol Sodium
Baseline What should I do if I experience side effects from Epipersonal Sodium
PRISM What should I do if I experience side effects from Epoprostenol Sodium
Reference Can Diltiazem be used in combination with other medications
Baseline Candleshays can be used in combination with other medications
PRISM Can Diltiazem be used in combination with other medications

Table 11: Examples on Drugs (entity-rich dataset) with Whisper (small) and PRISM. The text in the boldface are
the entities present in the index.



Reference Preston is near to the beach but far from Warrensburg
Baseline Preston is near to the beach but far from war and spoke
PRISM Preston is near to the beach but far from Warrensburg
Reference People from Murfreesboro are generous
Baseline People from murphy sproy are generous
PRISM People from Murfreesboro are generous
Reference Cypress and Alliance are very clean
Baseline Cyprus and Alliance are very clean
PRISM Cypress and Alliance are very clean
Reference I live between Canterbury and Wichita
Baseline I live between Canterbay and which attack
PRISM I live between Canterbury and Wichita
Reference The branch of the bank is located in Los Gatos
Baseline The branch of the bank is located in Los Angeles
PRISM The branch of the bank is located in Los Gatos

Table 12: Examples on Location (entity-rich dataset) with RNN-T Baseline and PRISM. The text in the boldface
are the entities present in the index.

Reference What are the possible withdrawal symptoms if Fabrazyme is abruptly discontinued
Baseline What are the possible withdrawal symptoms if february time is abruptly discontinued
PRISM What are the possible withdrawal symptoms if Fabrazyme is abruptly discontinued
Reference Is there a generic version of Dexmedetomidine Hydrochloride
Baseline Is there a generic version of dexperate attempting hydrochloride
PRISM Is there a generic version of Dexmedetomidine Hydrochloride
Reference What is the mechanism of action of Colazal
Baseline What is the mechanism of action of colousal
PRISM What is the mechanism of action of Colazal
Reference Are there any lifestyle modifications or precautions to consider while taking Raloxifene
Baseline Are there any lifestyle modifications or precautions to consider while taking right so I think
PRISM Are there any lifestyle modifications or precautions to consider while taking Raloxifene

Table 13: Examples on Drugs (entity-rich dataset) with RNN-T Baseline and PRISM. The text in the boldface are
the entities present in the index.


