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MORPHEUS : A Foundation Model for Multivariate Time Series Forecasting
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Abstract
Multivariate time series are vital for capturing
complex interactions among variables in a num-
ber of domains including finance, e-commerce,
and climate science. Research in this space is
predominantly focused on developing bespoke
models tailored to specific tasks, with relatively
little exploration into foundation models that offer
universal forecasting capabilities. We address this
gap with two contributions: a novel framework
that adapts traditional tokenization techniques to
multivariate time series, integrating multiple tar-
get and feature series into a unified model allow-
ing us to leverage existing foundation models for
language; and an innovative synthetic data gener-
ation process to overcome data scarcity, enabling
robust model training. Our approach handles di-
verse covariates and is validated through extensive
experiments, demonstrating superior performance
over current state-of-the-art methods.

1. Introduction
Time series forecasting is a fundamental task in various
domains, including finance, economics, meteorology, and
supply-chain management (Chatfield, 2000; De Gooijer &
Hyndman, 2006; Lim & Zohren, 2021) where accurate pre-
dictions can drive critical decision-making processes.

The literature on time-series forecasting can broadly be
divided in two: univariate, and multivariate forecasting.
The former aims to predict future values of a single se-
quence based solely on its historical observations. More
precisely, given a time series y1:c = (y1, . . . , yc) of real-
valued, uniformly-spaced observations yt, t ∈ [c] of a quan-
tity of interest, the objective is to forecast its future values
yc+1:c+h = (yc+1, . . . , yc+h) over a desired forecasting
horizon h. For this univariate forecasting task, a variety
of approaches have been proposed, ranging from statistical
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methods such as ARIMA (Box et al., 2015), ETS (Hynd-
man et al., 2002; 2008b;a), and Theta (Assimakopoulos &
Nikolopoulos, 2000), to more modern deep-learning based
approaches based on RNNs (Zhao et al., 2017; Lai et al.,
2018), CNNs (Bai et al., 2018; Hewage et al., 2020; Wang
et al., 2023), and MLPs (Oreshkin et al., 2019; Zeng et al.,
2023). While successful, these models are of limited use
in scenarios requiring the simultaneous consideration of
multiple interdependent variables. The latter multivariate
forecasting case involves multiple sequences of data points
over time, providing a richer representation by capturing
interactions among various quantities of interest. Formally,
given a time series Y1:c = (y1, . . . ,yc) of real-valued,
uniformly-spaced observations yt = (y1,t, . . . , yn,t), t ∈
[c] of n quantities of interest (endogenous variables), as
well as an auxiliary time series X1:c+h = (x1, . . . ,xc+h)
corresponding to observations of m exogenous features
xt = (x1,t, . . . , xm,t), t ∈ [c + h] with known future val-
ues over the desired forecasting horizon h, the objective is
to forecast the future values of the endogenous variables
Yc+1:c+h = (yc+1, . . . ,yc+h) over the forecasting horizon.
While there is a growing body of work aimed at addressing
this more general problem, (Zhou et al., 2021; 2022; Wu
et al., 2021; Liu et al., 2023; Lim et al., 2021; Salinas et al.,
2020; Das et al., 2023; Wang et al., 2024b;a; Zhang & Yan,
2023; Woo et al., 2022), it is largely focused on develop-
ing bespoke, application-specific models that need to be
trained from scratch for the task at hand. This limits their
applicability as such custom models are prone to overfitting,
particularly in domains such as finance where the prevalent
data are small and noisy.

The development of foundation models for universal fore-
casting—large models pretrained on diverse data for various
tasks, adaptable with minimal fine-tuning—has transformed
fields like natural language processing and computer vision.
However, their application to multivariate forecasting re-
mains underexplored. Notable efforts include LLMTime
(Gruver et al., 2024) and Time-LLM (Jin et al., 2024) which
utilize pretrained LLMs with adapters or novel tokenization
techniques to leverage the learned knowledge of LLMs and
adapt their output to time series modeling. More recent ap-
proaches such as TimesFM (Das et al., 2024) and Chronos
(Ansari et al., 2024), employ stacked transformer architec-
tures specifically for time series data but remain limited
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to univariate forecasting due to their reliance on existing
language model architectures in a blackbox manner.

A key hurdle in this area is that most foundation models
are based on language models, which inherently operate
on single sequences. This creates a challenge in adapting
them for multivariate time series, as it is unclear how to
effectively flatten multiple interdependent variables into a
single sequence while maintaining the integrity of the trans-
former’s attention mechanism. MOIRAI (Woo et al., 2024)
attempts to address this by concatenating multiple variates
into a single series and using a permutation invariant atten-
tion mechanism, but our experiments indicate limitations
in this approach for multivariate forecasting, suggesting the
need for alternative methodologies.

Another significant challenge is the scarcity of large-scale
multivariate time series datasets, essential for training robust
foundation models. Unlike the abundance of language data,
multivariate time series data is often limited, fragmented,
and domain-specific, posing a barrier to developing and fine-
tuning large foundation models (Woo et al., 2024; Das et al.,
2024; Ansari et al., 2024).

This work aims at addressing these two challenges through
intuitive yet performant ideas, which we describe below.

2. Methodology
We address these aforementioned challenges by proposing a
simple yet effective scheme to flatten multidimensional time
series data through interleaving of covariates with special
separator tokens, enabling the use of existing language archi-
tectures in a near blackbox manner. Additionally, we intro-
duce a novel synthetic data generation process to augment
real multivariate time series data, facilitating the pretraining
of our foundation model. We detail our methodology below.

2.1. Modeling

We introduce a versatile “interleaving” method to effectively
manage high-dimensional multivariate data that is compat-
ible with any sequence-to-sequence architecture. Given a
target series Y1:c of past observations for n endogenous
covariates and an auxiliary series X1:c+h of past and future
observations for m exogenous covariates, we construct an
interleaved series comprising all ((n + m) × c + m × h)
variables to predict Yc+1:c+h. As shown in Figure 1, the
interleaved series (I) starts with a Feature Separator (FS)
token, followed by the earliest observation x1 of the exoge-
nous features, a Target Separator (TS), and then the earliest
observation y1 of the target endogenous series. The or-
der of exogenous and endogenous variables is arbitrary but
consistent. This pattern is repeated for all time points in
the historical context up to the first point in the prediction
window (c + 1), where interleaving ends after the Target

yt

Output token probability distribution
P (T1) P (T2) . . . . . . P (TN )

Transformer (Self-Attention) Module

FS T11 T21 TS Ty1 FS T12 T22 TS Ty2 · · · · · · FS T1t T2t TS

T11 T12 . . . T1t T21 T22 . . . T2t Ty1 Ty2 . . . T yt−1

x11 x12 . . . x1t x21 x22 . . . x2t y1 y2 . . . yt−1

Output prediction

Variate-1
Data

Variate-2
Data

Target
Data

Variate-1
Tokens

Variate-2
Tokens

Target
Tokens

Interleaved tokens
with separator

Figure 1. Architecture for MORPHEUS illustrating a case with 2
exogenous features and 1 endogenous target. The feature and target
series are discretized to map real-valued observations into model
tokens, and then interleaved using Feature and Target Separators
(FS, TS). The interleaved series is passed through a stack of T5
transformer blocks to produce the next token, which is then mapped
back to a real value which is our forecast.

Separator, as the endogenous values beyond this point are
unknown and need forecasting.

This interleaving method ensures that more recent observa-
tions are positioned closer to the end of the context, which
is particularly important for transformers, known to focus
more on the end of the context. Unlike stacking covari-
ate embeddings, altering the context length from c to c+ l
during interleaving does not affect the relative position of to-
kens in the existing context with respect to the target token.
This allows us to train models to be more robust against
variations in context length. This setup simplifies the task
to next-token prediction, allowing the interleaved sequence
to be input into any sequence-to-sequence model to forecast
endogenous values, one time point at a time, until the entire
prediction window is covered.

While this approach can be integrated with any sequence-to-
sequence architecture, we apply our method to the Chronos
T5 model (Ansari et al., 2024), a model originally designed
for univariate forecasting to extend its capabilities to the
multivariate case. Our choice of Chronos is motivated by the
following factors: (a) It has demonstrated state-of-the-art
performance across numerous open-source and proprietary
benchmarks; (b) it employs a transformer-based architec-
ture, which is extensively studied and well-understood in
the literature; and (c) it operates without assumptions re-
garding the distribution of output tokens and does not alter
its pipeline based on data characteristics such as frequency
(e.g., hourly, daily).
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Our choice of this underlying “base” model necessitates an-
other key step - discretizing and tokenizing our underlying
real valued multivariate time series, since T5 is fundamen-
tally a language model architecture for predicting tokens
from a finite vocabulary. We do so by quantizing our inter-
leaved real-valued series into 4,094 bins ranging from -15
to 15, and tokenizing the bins. Special tokens are assigned
to the Feature Separator and Target Separator, with token
numbers 0 and 1, respectively. The remaining 4,092 tokens
are sequentially allocated to the bins within the specified
range to generate token numbers. This tokenized series is
fed into the T5 transformer, which is trained to predict a
probability distribution over potential output tokens. During
inference, we sample a desired number of output tokens
from the predicted distribution and use their median as our
final point forecast. While we use the T5 family, this method
can be easily adapted to other next-token prediction models
with minimal adjustments to the tokenization strategy.

2.2. Synthetic Data Augmentation

To address data scarcity, we propose a novel multivariate
synthetic data generation procedure, which we use to aug-
ment real timeseries data, the combination which is then
used to pretrain our foundation model. Similar ideas have
been proposed before in (Ansari et al., 2024; Dooley et al.,
2024; Das et al., 2024). This is important since multivariate
time series are particularly scarce: even within the relatively
large time series data corpus LoTsa (Woo et al., 2024), less
than 2% contain covariates.

Our synthetic data generation approach is based on the hy-
pothesis that time series are realizations of an underlying
Hidden Markov Model with causal links to observed vari-
ables. We generate synthetic data by sampling this hidden
time series for each feature-target pair, ensuring all feature
and target series are partial or total realizations of this hidden
series.

Building upon the synthetic data generation algorithm in
(Ansari et al., 2024), we sample up to M kernels from an
underlying kernel bank, per feature-target tuple. This serves
as the hidden Markov state for the tuple. Next, each feature
and target series are generated by sampling up to N kernels
from the above-sampled M kernels, independently with re-
placement. Depending on choice of (M , N , K), we can
produce targets with lot of common kernels with features or
almost independent of features.This is directly comparable
to real-world data where target and feature series can rely
on the same ‘hidden’ variable, like electricity usage across
homes (known) can rely on the outside weather (unknown),
or cases where targets are only partially reliant on the asso-
ciated features, like people with a cold (known) could rely
on outside temperature (unknown) or be reliant on other fac-
tors like a flu outbreak. We call this the MySTiC A dataset.

We augment our MySTiC A dataset, with a complimentary
approach, MySTic B, where features are made by sampling
up to 3 kernels from the original kernel bank, and the target
is produced as a weighted sum of polynomial functions of
these generated features. This produces synthetic features
with higher correlation than MySTiC A.

3. Training, Evaluation and Results
3.1. Training

Our model training consists of two steps: pre-training on a
synthetic dataset via the MySTiC algorithm and fine-tuning
on real-world and synthetic datasets. The MORPHEUS
model uses a T5-tiny transformer with 8 million parameters.

Pre-training uses MySTiC A and B datasets at a 2:1 ratio
to acclimate the model to interleaved multivariate data and
diverse input types. Fine-tuning involves 10% synthetic and
90% real-world data, with real-world sampling based on
size, ensuring a minimum 2% for small datasets to prevent
extreme sub-sampling. Additional details on datasets used
for model training and evaluation, training hyperparameters
are in Table 3, Table 4 and Table 5.

3.2. Evaluation

We extensively evaluate MORPHEUS and compare it
against other open-source time series foundation models
(Chronos, MOIRAI), and several bespoke multivariate time
series models from recent literature. We focus on the fore-
casting problem i.e. predicting the endogenous target yt+1

for the next step using its historical values yt−c:t, and
known (both historical and future) exogenous covariate
values Xt−c:t+1, for time series from a wide variety of
application domains.

Using a fixed context length of 256 time periods, we report
the Mean Absolute Scaled Error (MASE), calculated as
the ratio of the Mean Absolute Error (MAE) of the model
to the MAE of a naive model predicting the last observed
target value. Except for foundational models (Chronos,
MOIRAI, MORPHEUS), models are trained specifically
for each dataset and table combination. For instance, to
report MASE for the 2-feature US Treasury dataset using
a Vanilla NN Model, which contains 50 tables, we train
50 individual models, one per table, and report the mean
MASE for over all tables. Additional details on data splits
and “in-domain” vs. “zero-shot” datasets are in Table 3
and Table 4. Additional details regarding training these
non-foundation models is specified in Appendix E

3.3. Results

The results in Table 1 indicate that MORPHEUS consis-
tently achieves the lowest average MASE across diverse
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MySTiC-
B

MySTiC-
A

US Trea-
sury

GB Trea-
sury

Etth1 Etth2 Ettm1 Ettm2 Electricity Traffic Weather Illness All

2 Features Chronos 0.43 0.30 1.09 1.21 1.01 0.60 1.08 0.73 0.74 0.51 1.04 1.06 0.82
MOIRAI 0.83 0.77 1.23 1.67 0.96 0.95 1.14 1.13 0.80 0.57 1.19 1.22 1.04
MORPHEUS 0.25 0.27 0.58 0.68 1.02 0.54 1.06 0.68 0.77 0.51 1.00 1.19 0.71
DLinear 2.33 5.46 1.08 14.01 1.00 0.69 1.00 0.64 0.85 0.75 1.19 1.93 2.58
LightTS 6.08 0.97 1.67 4.48 1.10 0.84 1.06 0.90 0.97 0.77 1.41 1.87 1.84
Non-
stationary
Transformer

0.63 1.24 0.66 1.25 0.98 0.54 1.03 0.64 1.03 0.56 1.06 1.31 0.91

TFT 1.42 1.57 0.77 1.46 0.97 0.45 1.02 0.57 0.90 0.50 1.02 2.00 1.05
TiDE 1.54 1.57 1.10 3.62 1.03 0.81 1.00 0.67 0.91 0.89 1.26 1.86 1.35
TimeMixer 0.82 0.74 1.02 1.48 0.99 0.52 1.01 0.60 0.91 0.61 1.09 1.70 0.96
TimeXer 0.34 0.49 0.59 0.51 0.96 0.48 1.00 0.63 0.89 0.52 1.05 1.01 0.71
Vanilla NN 0.39 0.57 0.55 0.96 0.96 0.51 1.01 0.61 0.92 0.52 1.05 1.06 0.76
iTransformer 0.32 0.49 0.56 0.84 0.97 0.45 1.01 0.59 0.88 0.49 1.09 1.01 0.72

5 Features Chronos 0.60 0.24 1.09 - 1.01 0.60 1.07 0.73 0.74 0.51 1.04 1.07 0.79
MOIRAI 0.75 0.75 1.22 - 0.92 0.98 1.11 1.10 0.76 0.59 1.19 1.24 0.96
MORPHEUS 0.22 0.30 0.50 - 1.04 0.57 1.09 0.70 0.77 0.45 0.99 1.39 0.73
DLinear 2.07 2.43 1.07 - 1.00 0.69 1.00 0.64 0.85 0.74 1.19 1.93 1.24
LightTS 1.04 1.28 1.70 - 1.12 0.87 1.07 0.79 0.98 0.76 1.29 1.88 1.16
Non-
stationary
Transformer

0.70 1.32 0.59 - 0.99 0.57 1.03 0.66 1.07 0.59 1.07 - 0.86

TFT 0.81 1.35 0.63 - 0.97 0.46 1.01 0.58 0.91 0.50 1.02 1.68 0.90
TiDE 1.40 1.26 1.09 - 1.03 0.80 1.00 0.66 0.91 0.88 1.25 1.98 1.11
TimeMixer 0.76 0.72 1.03 - 0.99 0.52 1.01 0.60 0.91 0.62 1.10 1.27 0.87
TimeXer 0.39 0.40 0.53 - 0.96 0.48 1.01 0.63 0.88 0.52 1.05 1.01 0.71
Vanilla NN 0.39 0.47 0.45 - 0.95 0.52 1.01 0.61 0.90 0.50 1.09 0.99 0.72
iTransformer 0.34 0.41 0.49 - 0.97 0.45 1.01 0.59 0.88 0.48 1.07 1.00 0.70

Table 1. MASE of different models across feature sets (lower is better; bold for best, underlined for second-best). MASE is ratio of the
model MAE (Mean Absolute Error) to a naive model MAE. Naive model is a model which repeats the last available target value as a
forecast. Note: GB Treasury dataset only has 2 features, hence the 5 feature metrics cannot be computed

datasets, either outperforming or matching the best bench-
mark models on both 2 and 5 feature datasets. TimeXer and
iTransformer follow closely but these are trained specifically
for each dataset and table combination.

On synthetic datasets generated with MySTiC algorithms,
MORPHEUS excels, likely due to pre-training on similar
data. Chronos ranks second, performing well on MySTiC-A
due to kernel similarities with its training data, but struggles
on MySTiC-B where targets have explicit linear and poly-
nomial dependencies on features. For real-world datasets,
two categories emerge:

1) Etth1, Ettm1, Weather, Illness: Most models fail to sur-
pass the naive model, which repeats the last value, due to
insufficient feature information or complex dependencies.
MORPHEUS maintains a desirable MASE around 1 (ex-
cept for Illness dataset). iTransformer and TimeXer are also
doing very well defaulting to naive estimate as opposed to
other models like LightTS, DLinear. Chronos handles these
datasets effectively, maintaining a MASE around 1.

2) US & GB Treasury, Etth2, Ettm2, Electricity, Traffic:
Benchmark models generally outperform the naive model,
with MASE scores below 1. MORPHEUS is either the best
or among the top performers across these datasets. TimeXer
and iTransformer are also strong performers. Chronos per-
forms well except on US and GB Treasury datasets, where
feature information is crucial for predicting target variables.
These datasets contain historical yield curve data, where pre-
dicting yields at each maturity in isolation is challenging, as
evidenced by the performance of all models in the univariate

prediction scenario in Table 6. The multivariate prediction
problem becomes feasible when additional points on the
curve are considered. MOIRAI is unable to outperform
other models even though it is able to support covariates.

4. Conclusion
In this paper, we make progress towards developing a foun-
dation model for multivariate forecasting by introducing
a simple, yet effective interleaving strategy that integrates
multiple target and feature series into a single unified model
without any loss of information, allowing us to leverage
existing foundation model frameworks designed for natu-
ral language. Additionally, we address the time series data
scarcity problem through an innovative synthetic data gener-
ation process, ensuring effective and robust model training.
These advancements enable the development of a new mul-
tivariate time series foundation model that offers predictive
performance that is competitive with state-of-the-art be-
spoke models across diverse datasets. The techniques are
adaptable to any sequence-to-sequence architecture, paving
the way for a universal model capable of general multivari-
ate forecasting.

Our work leaves open several avenues for future research,
the most compelling ones being developing more sophisti-
cated synthetic data generation processes that more closely
mimic real world patterns, and applying our interleaving
scheme to base models other than the T5 used in our work.
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A. Synthetic Data Generation Details
In this section, we provide formal algorithms that detail our synthetic data generation process described in Section 2.2, with
algorithm 1 describing the generation of dataset MySTiC A, and algorithm 2 describing the generation of dataset MySTiC B.
In this paper, the synthetic dataset MySTiC refers to the combination of MySTiC A and MySTiC B datasets. Additional
details regarding these synthetic datasets are in Table 2

Algorithm 1 MySTiC A Series Generation

1: Input: KernelBank (size K), M , N , S
2: Output: Dataset
3: Dataset← {}
4: for each i from 1 to S do
5: F ← UniformRandom(1, 11)
6: Tuple← {}
7: HiddenState← Sample(KernelBank, M )
8: for each Feature in 1 to F do
9: SampledKernels← Sample(HiddenState, N , with replacement)

10: FeatureSeries← Combine(SampledKernels)
11: Add FeatureSeries to Tuple
12: end for
13: SampledKernels← Sample(HiddenState, N , with replacement)
14: TargetSeries← Combine(SampledKernels)
15: Add TargetSeries to Tuple
16: Add Tuple to Dataset
17: end for
18: Return Dataset

Algorithm 2 MySTiC B Series Generation

1: Input: KernelBank (size K), MaxFeatures (N ), NumTuples (S)
2: Output: Dataset
3: Dataset← {}
4: for each Tuple in 1 to S do
5: F ← UniformRandom(1, 11)
6: Features← {}
7: Weights← {}
8: for each FeatureIndex in 1 to 11 do
9: Feature← Sample(KernelBank, N )

10: Weight← SampleWeight()
11: Features.append(Feature)
12: Weights.append(Weight)
13: end for
14: t← 0
15: for each Feature in Features do
16: Polynomial←MapToRandomPolynomial(Feature, MaxDegree d)
17: t← t+ Polynomial×Weight
18: end for
19: ConvolutionArray← Sample([-1, 1], 3)
20: T ← Convolve(t,ConvolutionArray)
21: Dataset.append(T)
22: end for
23: Return Dataset
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MySTiC A MySTiC B

Number of Tuples 250000 100000
Maximum Features 11 11
Length of Tuples 1000 1000
Weight in Final Dataset 2 1

Table 2. Comparison of MySTiC A and MySTiC B

B. Dataset Statistics

Dataset Split
# Tables # Observations

0 2 5 0 2 5
Features Features Features Features Features Features

ETTh1 train 1 15 6 13,936 627,120 501,696
test 1 10 6 3,484 104,520 125,424

ETTh2 train 1 15 6 13,936 627,120 501,696
test 1 10 6 3,484 104,520 125,424

ETTm1 train 1 15 6 55,744 2,508,480 2,006,784
test 1 10 6 13,936 418,080 501,696

ETTm2 train 1 15 6 55,744 2,508,480 2,006,784
test 1 10 6 13,936 418,080 501,696

Electricity train 1 1,500 750 21,043 94,693,500 94,693,500
test 1 50 50 5,261 789,150 1,578,300

GB Treasury train 1 1 - 261 783 -
test 1 1 - 59 177 -

Illness train 1 15 6 772 34,740 27,792
test 1 15 6 194 8,730 6,984

Traffic train 1 1,000 500 14,035 42,105,000 42,105,000
test 1 50 50 3,509 526,350 1,052,700

US Treasury train 6 168 336 45,012 3,781,008 15,124,032
test 6 50 50 7,344 183,600 367,200

Weather train 1 190 350 42,156 24,028,920 88,527,600
test 1 50 50 10,540 1,581,000 3,162,000

Table 3. Statistics on open source datasets used for training and testing.

We have integrated several open-source datasets (Zhou et al., 2021; Goswami et al., 2024) into our training and testing
pipeline. These datasets are primarily sampled daily across various domains, except for ETTh and ETTm, which are sampled
at 1-hour and 15-minute intervals respectively.

To prepare these datasets, we processed the raw data to create train/test splits with varying numbers of features. For the
US and GB Treasury datasets, we used data from "2020-01-01" onwards to form the test split. For all other datasets,
the test split comprises the last 20% of the data. Within each dataset split, we further generate sub-datasets with different
numbers of features by randomly sampling the feature and target columns.

To illustrate this process, consider the US Treasury dataset, which includes daily yields for US Treasuries from 1990 to 2024.
We create train and test splits by splitting the data at "2020-01-01". Each split contains daily yields for eight maturities:
3 M, 6 Mo, 1 Yr, 2 Yr, 3 Yr, 5 Yr, 7 Yr, and 10 Yr. To form a sub-dataset with two features, we randomly select
two columns from the 8 available columns and then choose a target from the remaining six columns. This process is repeated
to create multiple sub-datasets (referred to as “# Tables” in Table 3) for each dataset. The number of sub-datasets that can be
created depends on the number of columns in the original dataset. For instance, the GB Treasury dataset has only three
columns, allowing for only one sub-dataset with two features and none with five features.
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Table 3 and Table 4 provide more information on the datasets used for model training and evaluation. Datasets are split into
2 and 5 feature sets by sampling features randomly. We divide datasets by time periods to create splits for ”unseen” periods.
For the US Treasury dataset, training data is up to December 31, 2019, and test data from January 1, 2020. A 2-feature test
table is constructed by sampling 3 columns from the test split, using 2 as features and 1 as the target, repeated to create
50 test tables. An optional train dataset is created for fine-tuning, categorized as ”in-domain” if used for fine-tuning, or
”zero-shot” otherwise.

In our model testing, we exclusively use the target variable to evaluate performance. In the univariate scenario (i.e., when “#
Features” = 0), there is typically only one target variable available for most datasets, resulting in “# Tables” = 1. For the
US Treasury datasets, we considered all yields as potential targets, except for 3 M and 10 Yr. This choice reflects the
common industry practice of interpolating yields based on surrounding points along the yield curve.

The last 25% of the “train” split is used as validation set in the MORPHEUS training process.

C. Datasets used for training & evaluation
The datasets used for traning and evaluation are classified into in-domain and zero-shot categories as shown in Table 4 below.
In-domain datasets are used in the second stage of training process (as described in 3.1). Zero-shot datasets are only used for
evaluation and to report metrics.

Dataset MORPHEUS MOIRAI Chronos

US Treasury In-domain - -
GB Treasury Zero-shot - -
ETTh1 Zero-shot Zero-shot Zero-shot
ETTh2 Zero-shot Zero-shot Zero-shot
ETTm1 Zero-shot Zero-shot Zero-shot
ETTm2 Zero-shot Zero-shot Zero-shot
Traffic Zero-shot In-domain Zero-shot
Electricity In-domain Zero-shot In-domain
Weather In-domain In-domain Zero-shot
Illness In-domain - -

Table 4. Evaluation of datasets across different models.

D. MORPHEUS Training & evaluation parameters
The model training and evaluation described in 3.1 uses hyperparameters from the Table 5. For evaluation, models are
limited to a fixed context length of 256 periods. Depending on their architecture, they may use varying amounts of data for
inference. MORPHEUS for instance, is trained to handle context lengths up to 512 tokens. When incorporating feature
data into the interleaving framework, the context size increases to 2560 tokens for a dataset with 2 features and 1 target, as
each time period requires 5 tokens (2 features, 1 target, 1 TS, 1 FS). Truncating to the most recent 512 tokens reduces the
effective context length to approximately 103 time periods, potentially impacting performance. Despite this limitation, we
maintain a 256 context length for other models in our evaluations.

Parameter Pre-training Fine-tuning Evaluation

Learning Rate 0.001 0.001 -
Number of Steps 100,000 20,000 -
Context Length 512 512 512
Prediction Length 4 4 1
Batch Size 256 256 256
Number of Samples - - 50

Table 5. Training and Evaluation Parameters
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E. Benchmark model settings
In this section, we make a few clarifying remarks regarding model parameters chosen for training the bespoke multivariate
forecasting models (i.e. non-foundation models) specified in Table 1. Fundamentally, these models, although they model
cross variate dependencies, they do not support exogenous variables (i.e. variates whose value is known in the prediction
window). In order to overcome this, we allow these models to “cheat” by peeking into the future for the exogenous variates.
We do so by intentionally shifting all timeseries corresponding to exogenous variates back by duration equal to the length
of the prediction window, effectively pushing the future information for these variates into the past context window. The
second key modification we make is the length of the context window available to these models. While we technically allow
a lookback window of length 256 time periods, in our experimental evaluation, we observed a substantial degradation in
forecasting performance (in terms of MASE) for all these bespoke models. We therefore shrunk the lookback window to a
much shorter length through preliminary hyperparameter tuning on a small random sample of datasets from our experimental
setup. The ideal lookback windows were found to be pretty small - ranging from 12-20 in length. The lookback window
size was then fixed for every model for the rest of the experiments. No additional hyperparameter tuning was performed for
optimization or model architectures, and default parameters were used from their open-source implementations, which we
obtained from https://github.com/thuml/Time-Series-Library.git.

F. Univariate Results
We compare the performance of various models in univariate prediction scenario, where the target is forecasted using only
the past target data. The setup for each model is described below:

• Linear Model: For a given context, we fit an Ordinary Least Squares (OLS) model with an autoregressive (AR) lag of
order 1 for all features and target variables. We perform a rolling forecast, fitting one model per context (past 256 time
steps) and making a 1-step ahead prediction.

• MOIRAI: Using the pretrained model, we conduct zero-shot predictions with a context length of 256. We select the
”small” variant of the MOIRAI model because its size, approximately 14 million parameters, is the closest to that of
our pretrained MORPHEUS model.

• Chronos: For comparison, we include results from the “tiny” model variant. Since it only supports univariate
predictions, we use the target variable and perform zero-shot predictions with a context length of 256. The “tiny”
variant was selected to match the size of our pretrained MORPHEUS model.

US Treasury GB Treasury ETTh1 ETTh2 ETTm1 ETTm2 Traffic Electricity Weather Illness All

Linear 1.01 0.94 1.00 1.01 1.01 1.06 1.02 1.02 1.05 1.11 1.02
Chronos 1.07 1.21 1.01 0.61 1.07 0.73 0.50 0.74 1.03 1.06 0.90
MORPHEUS 1.27 1.34 1.09 0.55 1.17 0.69 0.51 0.78 1.06 1.05 0.95
MOIRAI 1.21 1.39 1.19 0.80 1.31 1.21 0.45 0.83 1.24 1.18 1.08

Table 6. MASE scores of different models on univariate datasets (lower is better; bold for best, underlined for second-best)
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