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Abstract

The table reasoning task aims to answer the
question according to the given table. Currently,
using Large Language Models (LLMs) is the
predominant method for table reasoning. Most
existing methods employ a fixed tabular format
to represent the table, which could limit the
performance since different instances and mod-
els suit different tabular formats. We prove the
claim through quantitative analysis of experi-
mental results, where different instances and
models perform differently using various tab-
ular formats. Building on this discussion, we
propose FLEXTAF-Single and FLEXTAF-Vote
to enhance table reasoning performance by em-
ploying flexible tabular formats. Specifically,
(1) FLEXTAF-Single trains a classifier to pre-
dict the most suitable tabular format based on
the instance and the LLM and utilize the format
to reason. (ii) FLEXTAF-Vote integrates the re-
sults across different formats. Our experiments
on WikiTableQuestions and TabFact bring aver-
age improvements of 2.3% and 4.4%, thereby
validating the effectiveness of our methods'.

1 Introduction

Table reasoning is a crucial task in natural language
processing that aims to automatically extract and
infer information from tables (Dong et al., 2022).
In this task, a model needs to answer the ques-
tion based on the table, with each question-table
pair referred to as an instance. Given the superior
commonsense and logical reasoning capabilities of
Large Language Models (LLMs), researchers in-
creasingly utilize them for table reasoning, which is
the mainstream method (Chen, 2023; Zhang et al.,
2024d). Therefore, we focus on how to solve the
table reasoning task with LLMs in this paper.
Some previous works enhance table reasoning
by designing prompts (Cheng et al., 2023; Zhang
et al., 2024e; Lee et al., 2024), such as Chain-of-
Table (Wang et al., 2024), which prompts the LLM

'Our code and prompts will be released upon acceptance.

(a) Input Information
[Question What is the first player name? ]

List Database
CREATE TABLE information (Name
[“Name”, “Nation”, ...] text, Nation text, ...);
[FLiv”, “US.A”, .. ™
I

/
values in columns: Name: Liv...; ...
*/

Reason with Database
SELECT Name FROM information
ORDER BY Name LIMIT [;

&7 Answer is Ava

(b) Input Information
[Question What is the area of the stadium named Bin? ]

Reason with List
def solver (table):

for row in table[1:]: ...
Answer is Liv

List Database
CREATE TABLE information (...,
[...,, “Stadium”, “Area”, ...], ||Stadium text, Areaint, ...);
[..., “Bin”, “340", ...], /*

.

values in columns: ...Stadium: Bin...
*/

Reason with Database
SELECT Area FROM information
WHERE Stadium = ‘Bin’;

¥ Answer is 340 v

Reason with List
def solver (table):

... return table[i][7]
Answer is Bin

Figure 1: The table reasoning performance varies with
tabular formats. The List format is convenient for se-
quential indexing, while the Database format facilitates
the search for columns that meet specific conditions.

to iteratively reason with natural language and pro-
grams. While previous methods provide a fixed tab-
ular format in their prompts, Singha et al. (2023);
Sui et al. (2024); Deng et al. (2024) argue that
different table reasoning tasks have different most
suitable tabular formats. However, existing works
analyze from the task aspect without considering
that solving different instances demands distinct
reasoning skills (Shi et al., 2020; Chen et al., 2023;
Liu et al., 2024a). For example, as shown in Fig-
ure 1, solving instance (a) involves sequential in-
dexing, facilitated by the List format, while solving
instance (b) requires identifying columns that sat-
isfy specific conditions, making the Database for-
mat more suitable. Therefore, using a fixed tabular
format for all instances could limit performance.
Additionally, models vary in their reasoning capa-
bilities (Bhandari et al., 2024; Zhang et al., 2024a),
so the most suitable format could differ for models.



Based on the above discussion, we focus on the
impact of tabular formats on the table reasoning
performance of LLMs from the following two as-
pects: (i) We claim that different instances and
LLMs require distinct most suitable tabular for-
mats > ; (if) We propose to enhance table reasoning
by predicting the most suitable tabular format or
assembling the results from multiple formats.

First, we discuss that the most suitable tabular
formats depend on the instance and the LLM. We
conduct exploratory experiments utilizing different
tabular formats, instances, and LLMs. The results
present that table reasoning performance varies sig-
nificantly with different formats and LLMs. Based
on the above analysis, we propose FLEXTAF,
which includes FLEXTAF-Single and FLEXTAF-
Vote, to enhance the table reasoning performance
through flexible tabular formats. FLEXTAF-Single
identifies the most suitable format based on the in-
stance and the LLM by training the classifier and
then utilize the format to reason. FLEXTAF-Vote
determines the final answer by voting on results
obtained from multiple formats. In comparison, al-
though FLEXTAF-Single requires training data but
only infers once, FLEXTAF-Vote is training-free
but with expensive inference costs.

To demonstrate the effectiveness of our meth-
ods, we conduct experiments on WikiTableQues-
tions (Pasupat and Liang, 2015) and TabFact (Chen
et al., 2020). Compared to the best results of using
the fixed format with greedy decoding and self-
consistency (Wang et al., 2023), FLEXTAF-Single
and FLEXTAF-Vote show average improvements
of 2.3% and 4.4% with comparable inference costs,
confirming the effectiveness. Further analysis re-
veals that certain instances can only be resolved by
a format, proving the most suitable tabular formats
for different instances are distinct.

Our contributions are as follows:

1. We claim the most suitable tabular formats for
different instances and LLMs are distinct.

2. We propose FLEXTAF, including FLEXTAF-
Single and FLEXTAF-Vote, to enhance table
reasoning by utilizing flexible tabular formats.

3. FLEXTAF-Single and FLEXTAF-Vote achieve
average gains of 2.3% and 4.4% over the best
results of using fixed formats with greedy de-
coding and self-consistency, demonstrating the
effectiveness of our methods.

>We define the most suitable tabular format as the one
that enables the model to solve a given instance correctly.

2 Preliminaries

We first claim that the most suitable tabular formats
for different instances and LLMs are distinct. Since
resolving different instances requires diverse abil-
ities (Chen et al., 2023; Cheng et al., 2023; Chen
et al., 2024b), it is necessary to tailor tabular for-
mats for each instance accordingly. Additionally,
the capabilities of different models vary (Cao et al.,
2023; Bhandari et al., 2024; Zhang et al., 2024a),
resulting in different tabular formats suitable for
different LLMs. We further discuss from the per-
spective of experimental results in this section.

We select five popular formats, including Mark-
down, Dict, List, Pandas, and Database, following
previous works (Singha et al., 2023; Cheng et al.,
2023; Wang et al., 2024; Liu et al., 2024a). Descrip-
tions of these formats are provided in Appendix A.
We quantitatively analyze how tabular formats af-
fect the table reasoning performance of LLMs from
the aspects of the instance and the model.

2.1 Different Instances Suit Different Tabular
Formats

Table 4 presents the percentage of instances that
can only be correctly resolved by each tabular for-
mat. It can be observed that, even for all instances
belonging to a dataset and the same table reason-
ing task, different instances suit different tabular
formats. Specifically, existing some instances are
suitable for only one tabular format, while other
formats cannot accurately solve them. Furthermore,
each tabular format is uniquely suited to certain in-
stances, with some formats correctly solving over
20% of the instances exclusively. The results indi-
cate that, for a given LLM, the most suitable tabular
formats vary according to the specific instances.

2.2 Different Models Suit Different Tabular
Formats

Table 1 demonstrates that the most suitable tabular
format varies across models and the performance
gap arises due to different formats. For instance,
Llama3 (Meta, 2024) and gpt-4o (OpenAl et al.,
2024) exhibit significantly better performance with
the Markdown format compared to other formats,
while DeepSeek-Coder (Guo et al., 2024) performs
better with Dict and Database formats than with
Markdown. We employ a Chi-square test to demon-
strate significant differences in the distribution of
the most suitable tabular formats across different
models, as detailed in Appendix D.
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Figure 2: The overview of FLEXTAF. FLEXTAF-Single consists of two steps: (i) Classification: A classifier we
trained predicts the most suitable tabular format based on the given instance and model. (ii) Reasoning: Using the
predicted format, the LLM solves the instance by representing the table accordingly. FLEXTAF-Vote consists of
two steps: (i) Reasoning: Various formats are employed to represent the table and facilitate reasoning with the LLM,
resulting in multiple answers. (i7) Vote: The final answer is determined using a voting mechanism.

3 Methodology

In this section, we introduce FLEXTAF, which con-
sists of FLEXTAF-Single and FLEXTAF-Vote. The
overview of FLEXTAF is shown in Figure 2.

3.1 Task Definition

FLEXTAF focuses on the table reasoning task,
which can be formally defined as follows: Given an
instance I comprising a natural language question
() and a table 7', the table reasoning task aims to
derive the corresponding answer A = M(F(T), Q),
where M represents the model and F denotes the tab-
ular format. To effectively solve the table reasoning
task, the probability that the generated answer A
matches the gold answer A* should be maximized.

3.2 FLEXTAF-Single

As discussed in §2, it is essential to determine the
most suitable tabular format, so FLEXTAF-Single
tries to find the most suitable format by training a
classifier given the instance and LLM.

3.2.1 Classification

Classification aims to predict the most suitable
tabular format from a set of candidate formats
based on the instance and the model. It can be
formally expressed as F = CLSy(I),F € Far =
[FM(F(T), Q) = A*}.

Training Data Collection To train the classifier
which is used to predict the most suitable tabular
format for the given instance I and the LLM M,
we annotate the training data with M. Specifically,
for each instance in the training set, we utilize all
candidate tabular formats to reason respectively
and evaluate the correctness of each answer. We
then collect the set of most suitable tabular formats
for each instance in the training data, denoted as

{Fy.z, }» for which M can correctly reason with the
format on the instance I;, and use these as the train-
ing data for our classifier. Additionally, we take a
data filtering strategy to remove instances from the
training set where more than half of the candidate
formats are correct or where none are correct, as
such instances do not effectively highlight differ-
ences between the tabular formats.

Learning Objective Since there could be multi-
ple formats in Fj; ;, we apply a multi-label classi-
fication training method (Godbole and Sarawagi,
2004; Tsoumakas and Katakis, 2007; Herrera et al.,
2016), where each label denotes a tabular for-
mat. Moreover, we utilize a binary relevance
method (Godbole and Sarawagi, 2004) for multi-
label classification. Specifically, the tabular for-
mats are serialized and transformed into binary
vectors for each instance. During training, we
adopt Binary Cross-Entropy Loss, normalized by
the number of instances [V, as follows:

L(g,y) =
N IF]

B % Z Z[yirl()g(@ir) + (1 = yir)Log(1 — gir)]

=1 r=1
3.
Among them, |F| refers to the total number of can-
didate tabular formats, y;, indicates the gold value
for the instance ¢ on tabular format r, with possible
values of 0 or 1, and §;, represents the predicted
probability for instance ¢ on the tabular format 7.

Predicting Tabular Format After obtaining the
classifier, we predict the most suitable tabular for-
mat F. We regularize the predicted scores of all
formats and select one format with the highest prob-
ability as our classification result F.



3.2.2 Reasoning

After predicting the most suitable table format F,
we utilize the predicted format for table reasoning.
Specifically, we represent the table with the pre-
dicted format F in the prompt and employ the LLM
to derive the final answer.

3.3 FLEXTAF-Vote

FLEXTAF-Single requires manual data annotation,
which could be difficult to obtain, so we propose
FLEXTAF-Vote to obtain the final answer by inte-
grating the results from multiple tabular formats,
inspired by Qin et al. (2023); Luo et al. (2024).

3.3.1 Reasoning

We first construct multiple table reasoning prompts,
representing the table with different formats in each
prompt. Then we use the prompts to reason with
the LLM, obtaining multiple answers accordingly.

3.3.2 Vote

We retain the most consistent result across multiple
results by adopting a voting mechanism, which can
be formally expressed as the following equation.

3.2)

Here, |F| is the total number of candidate formats,
A, is the answer obtained from the tabular format
F,, and A is each possible answer. The function
1(f) returns 1 if f is true and O otherwise. In the
event of a tie, we select the answer with the highest
logarithmic probability following Luo et al. (2024).

3.4 Comparison

To better employ our two methods, we examine
their application scenarios. (i) FLEXTAF-Single
is ideal for scenarios where high-efficiency on-
line reasoning is required, although it necessitates
prior training data annotation and classifier training.
(if) FLEXTAF-Vote suits scenarios where annotated
data is unavailable while maintaining a certain tol-
erance for real-time reasoning efficiency.

4 Experiments

4.1 Settings

4.1.1 Datasets

We use WikiTableQuestions (Pasupat and Liang,
2015) and TabFact (Chen et al., 2020) datasets
to evaluate FLEXTAF, following previous works

(Cheng et al., 2023; Liu et al., 2024a; Wang et al.,
2025). WikiTableQuestions is a mainstream dataset
for table question answering, containing diverse
questions across domains, which requires answer-
ing the question based on the table. TabFact is a
prominent dataset for the table fact verification task,
which needs to determine whether a claim is en-
tailed or refuted by the table. We show the results
on TableBench (Wu et al., 2024) in Appendix B.

4.1.2 Maetric

We employ accuracy as the evaluation metric for
WikiTableQuestions and TabFact, following the
previous works (Pasupat and Liang, 2015; Chen
et al., 2020), and use accuracy to evaluate the clas-
sifier. Accuracy measures the ability to generate
the gold answer, which is achieved only when the
predicted exactly matches the gold answer. Since
FLEXTAF-Single aims to identify the most suitable
format, we adopt accuracy to assess whether the
top format predicted is in suitable formats.

4.1.3 Models

For Classification, we use ELECTRA-Large (Clark
et al.,, 2020), and for Reasoning, we employ
Llama3 (Meta, 2024), DeepSeek-Coder (Guo et al.,
2024), and gpt-40 (OpenAl et al., 2024). Llama3
and DeepSeek-Coder are popular open-source gen-
eral and code LLMs, respectively, for their out-
standing performance, and gpt-4o is considered
one of the leading closed-source models. Limited
by the computing resources, we evaluate the perfor-
mance of gpt-40 on sampled 128 instances. We do
not evaluate the performance of FLEXTAF-Single
on gpt-4o, since it requires the result of the model
on the training set. We choose ELECTRA-Large
due to its superior performance in language com-
prehension and question-answering tasks compared
to other pre-trained models of similar size.

4.1.4 Implementation Details

We adopt Markdown, Dict, List, Pandas, and
Database as tabular formats (introduced in Ap-
pendix A), which are commonly used in previous
works (Singha et al., 2023; Cheng et al., 2023;
Ye et al., 2023; Wang et al., 2024) and generally
have high performance across datasets and models.
To enhance the table reasoning performance, we
utilize the Chain-of-Thought (CoT) prompt (Wei
et al., 2022) for Markdown and the Program-of-
Thought (PoT) prompt (Chen et al., 2023; Gao
et al., 2023) for other formats. In addition, for



WikiTQ TabFact

Tabular Format Llama3 DeepSeek-Coder | gpt-4o' Llama3 DeepSeek-Coder | gpt-4o'

8B 70B 6.7B 33B - 8B 70B 6.7B 33B -
Markdown 47.7 63.3 32.2 31.2 71.9 75.2 86.4 60.4 63.6 77.3
Dict 43.0 56.4 | 25.6 53.6 68.0 65.5 80.0 | 63.9 78.0 75.0
List 30.5 56.3 19.2 50.8 57.8 57.4 77.5 63.7 75.4 75.0
Pandas 39.2 52.3 39.7 48.8 55.5 47.8 73.6 | 62.5 75.9 82.0
Database 31.0 48.2 41.8 45.5 51.6 65.0 75.0 70.7 76.3 75.8
FLEXTAF-Single | 50.5 69.1 | 46.3 54.5 - 77.0 87.1 | 70.9 78.3 -
A +2.8 +5.8 | +4.5 +0.9 - +1.8 +40.7 | +0.2 +2.0 -

Table 1: The accuracy of reasoning using a fixed tabular format with greedy decoding and FLEXTAF-Single,
across four LLMs on WikiTableQuestions (WikiTQ) and TabFact. The best performance for each LLM and dataset
is marked in bold. ' represents the result of gpt-4o on sampled 128 instances. A denotes the improvement of
FLEXTAF-Single relative to the best performance of using a fixed format with greedy decoding for each LLM and

dataset.

WikiTQ TabFact
Tabular Format Llama3 DeepSeek-Coder | gpt-4o' Llama3 DeepSeek-Coder | gpt-4of
8B 70B 6.7B 33B - 8B 70B 6.7B 33B -
Markdown 49.1 62.8 32.1 29.7 72.7 75.2 86.7 60.9 63.6 78.9
Dict 44.8 58.1 28.7 59.7 71.0 67.9 80.9 71.9 82.4 91.4
List 35.4 59.7 27.5 55.6 61.7 59.8 78.0 66.9 78.0 89.8
Pandas 41.4 56.2 43.9 54.4 60.9 56.0 74.7 67.2 79.2 84.4
Database 35.2 48.6 42.5 46.4 54.7 69.5 76.0 70.7 77.2 83.6
FLEXTAF-Vote 55.7 69.9 | 51.4 60.9 76.6 80.3 88.5 | 77.9 84.4 93.8
A +6.6 +7.1 | +7.5 +1.2 +3.9 +5.1 +1.8 | +6.0 +2.0 +2.4

Table 2: The accuracy of reasoning using a fixed tabular format with self-consistency decoding (Wang et al., 2023)
and FLEXTAF-Vote, across four LLMs on WikiTQ and TabFact. The best performance for each LLM and dataset
is marked in bold. ' represents the result of gpt-4o on sampled 128 instances. A denotes the improvement of
FLEXTAF-Vote relative to the best performance of using a fixed format with self-consistency for each LLM and

dataset.

the open-source models, we apply 4-shot and 2-
shot prompts respectively on WikiTableQuestions
and TabFact, since the questions in WikiTableQues-
tions are more challenging. Due to the superior
performance of gpt-4o0, we adopt the zero-shot
prompts. To further improve the performance on
WikiTableQuestions, we use different demonstra-
tions for each tabular format, and we explore the
results with unified demonstrations in §4.3.1. De-
tailed prompts are provided in Appendix C. We
train the tabular format classifier for each LLM
on each dataset, with detailed training information
in Appendix E. For self-consistency (Wang et al.,
2023), we set temperature to 0.1 which can bring
optimal performance across most formats within
temperature < 0.8. To ensure a fair comparison
with FLEXTAF-Vote, we set sampling_n to 5.

4.2 Main Experiment

Table 1 and Table 2 compare FLEXTAF-Single
with using a fixed format with greedy decoding,

and FLEXTAF-Vote with using a fixed format
with self-consistency (Wang et al., 2023), respec-
tively. We observe that: (/) FLEXTAF-Single and
FLEXTAF-Vote surpass the best results achieved
by the fixed format with greedy decoding and self-
consistency, by an average of 2.3% and 4.4% re-
spectively, with comparable computational costs,
proving our claims in §2. (ii) Compared to flexi-
ble tabular formats, the fixed format restricts the
performance even with self-consistency. Moreover,
self-consistency with Markdown improves slightly
or even decreases compared to greedy decoding
because self-consistency instability in CoT (Chen
et al., 2024a; Renze and Guven, 2024), and dimin-
ished instruction following ability at higher temper-
atures (Zeng et al., 2024; Peeperkorn et al., 2024).
Additionally, the tables reveal that:

The improvement of FLEXTAF on the more
challenging dataset is more significant. Both
FLEXTAF-Single and FLEXTAF-Vote achieve per-
formance improvement across datasets, underscor-



MD Dict List PD DB
477 43.0 305 39.2 16.1

ACCmax — Accmin

31.6

Table 3: The accuracy on WikiTQ using Llama3-8B
with greedy decoding, employing unified demonstra-
tions in the prompts, which are different from the
prompts in the main experiments. MD denotes Mark-
down, PD denotes Pandas, and DB denotes Database.

ing their efficacy. Specifically, the performance
on WikiTQ is significantly better compared to the
simpler TabFact. Despite higher classification ac-
curacy on TabFact (Table 5), FLEXTAF-Single
shows limited improvement due to the already high-
performance baseline. Moreover, FLEXTAF-Vote
exhibits less improvement on TabFact due to the
greater overlap between simper instances correctly
solved by different formats (see Appendix F).

FLEXTAF-Single shows superior performance
on the general model compared to the code
model. The tabular formats suitable for the code
model are closely related to the code with smaller
differences, resulting in limited classifier perfor-
mance, so FLEXTAF-Single exhibits less improve-
ment on the code models.

FLEXTAF-Vote performs better than FLEXTAF-
Single consistently. Although the performance
of FLEXTAF-Single is constrained by classifica-
tion accuracy (see Table 5), it demonstrates high
reasoning efficiency with only one inference. In
contrast, FLEXTAF-Vote achieves superior perfor-
mance because instances could be resolved cor-
rectly by multiple formats, and errors produced
by different formats exhibit diversity. However,
FLEXTAF-Vote is less efficient in reasoning.

4.3 Analysis

We select Llama3-8B for subsequent experiments
due to its high reasoning efficiency. Moreover, we
conduct more experiments on WikiTQ, because it
encompasses more diverse questions (Pasupat and
Liang, 2015; Chen et al., 2020; Dong et al., 2022;
Shi et al., 2020). To better illustrate that different
instances are suitable for different tabular formats,
we present detailed instances in Appendix H.

4.3.1 Is the impact of tabular formats due to
the different demonstrations?

We conduct experiments with unified demonstra-
tions in the prompts for each format and present
the results in Table 3. Specifically, we adopt the
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Figure 3: The overlap between instances solved by tab-
ular formats achieved by Llama3-8B on WikiTQ. The
values represent the proportion of instances that can be
solved by the tabular format corresponding to the verti-
cal axis, within the instances solvable by the format on
the horizontal axis.

Model Scale \ MD Dict List PD DB
Llama3 8B 246 7.1 4.6 5.9 8.3

70B 16.0 1.7 2.2 1.8 4.3
Deep.C. 6.7B ‘ 24.7 6.7 3.7 11.0 13.6

33B 156 3.9 33 44 7.5

Table 4: The percentage of instances that can only be
correctly solved by one tabular format, in all instances
that the tabular format can correctly solve in WikiTQ.
Deep.C. denotes DeepSeek-Coder.

demonstrations of the same questions with different
formats, manually annotating the rationale and pro-
grams. Detailed prompts are shown in Appendix C.
Table 3 indicates that the tabular formats continue
to significantly affect performance, with the perfor-
mance gap widening with unified demonstrations.

4.3.2 Are the tabular formats suitable for
different instances different?

We analyze the overlap between instances correctly
solved by each format and the proportion of in-
stances that can only be solved by a specific format,
as shown in Figure 3 and Table 4. Figure 3 il-
lustrates that: (i) The overlaps between instances
correctly solved by each format are all < 80%, in-
dicating the distinctions among formats. (if) The
Dict and Pandas formats exhibit higher overlap due
to their superior performance (see Table 2), while
the DB and List formats have lower overlap. The
overlaps between instances solved by different for-
mats on TabFact are provided in Appendix F.
Table 4 presents that: (i) Certain instances can
only be accurately solved using a specific for-
mat, highlighting the differences between formats.
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Figure 4: The accuracy of FLEXTAF-Single and
FLEXTAF-Vote using Llama3-8B on WikiTQ with dif-
ferent numbers of candidate tabular formats, as candi-
date tabular formats are added from left to right.

(i) Markdown and Database formats resolve a
greater proportion of instances due to their distinct
structures compared to the programming formats.
Figure 3 and Table 4 claim that different instances
suit different tabular formats.

4.3.3 How does the number of candidate
tabular formats affect FLEXTAF?

We perform experiments using varying numbers of
candidate formats and present results in Figure 4,
where formats are added in descending order of
performance. We observe: (i) The performance of
FLEXTAF-Single gradually stabilizes as the num-
ber of candidate formats increases. The classifi-
cation performance does not always improve due
to the increased difficulty with a higher number of
labels (Wang et al., 2021; Audibert et al., 2024).
(if) FLEXTAF-Vote varies greatly with the increase
in the number of formats due to its reliance on
the performance of each format. FLEXTAF-Vote
does not exceed FLEXTAF-Single with two candi-
dates, as it selects from two different answers only
by comparing probabilities, which do not accu-
rately indicate correctness (Wang et al., 2023; Por-
tillo Wightman et al., 2023; Quevedo et al., 2024).
Therefore, we select 5 formats as candidates, con-
sidering the performance of our two methods.

4.3.4 How to further improve the
classification performance?

We analyze both the overall accuracy and the ac-
curacy of instances that can be correctly solved by
only one format, as these instances most distinctly
highlight the unique features of each format. The
classification results are presented in Table 5. We
observe that: (i) The classification performance
of predicting larger-scale LLMs is better than that
of smaller-scale LLMs. This is attributed to the
greater robustness of larger-scale LLMs (Howe
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Figure 5: The accuracy of classification and FLEXTAF-
Single, with the change of the maximum threshold of
the number of labels in the training data.

et al., 2024), which results in more consistent fea-
tures in instances correctly solved with the same
format. (ii) The classification performance of each
format is positively correlated with the size of its
training data (see Appendix E). Therefore, future
improvements in classification performance can be
achieved by reducing noise in the data and increas-
ing the scale of the training data.

4.3.5 How does the data filtering strategy
affect FLEXTAF-Single?

We compare various strategies by adjusting the
maximum threshold of the number of labels in each
training data instance. The experimental results
are shown in Figure 5. We find that: (i) As the
maximum label count rises, overall performance
improves, peaking at 3 labels, which demonstrates
that training with < 3 labels per instance works
best, because the increased amount of training data
aids the model training. (ii) When the label count
goes above 3, performance drops. This shows why
filtering training data is important, as instances
easily resolved by most formats are often simpler
and fail to effectively capture the unique features
of each label, thus negatively impacting training.

4.4 Case Study

To better illustrate that different instances suit dif-
ferent tabular formats, we present an instance from
WikiTQ. As illustrated in Figure 6, when using
the Dict format, Llama3-70B generates an incor-
rect program that processes all table rows with-
out excluding a special "-" row. Conversely, with
Markdown, the model ignores the "-" line and cor-
rectly identifies the country that won the most gold



WikiTQ TabFact

Format Llama3 DeepSeek-Coder Llama3 DeepSeek-Coder

8B 70B | 6.7B 33B 8B 70B | 6.7B 33B
Markdown | 78.7 73.8 | 47.1 20.3 64.3 67.1 | 253 36.0
Dict 279 23.8 | 35.1 46.7 25.0 14.3 | 37.5 36.0
List 34 29.6 9.7 19.4 20.0 25.0 0.0 0.0
Pandas 2.1 10.0 | 28.6 30.1 0.0 11.1 | 22.7 7.7
Database 14.3 15.6 | 50.6 29.7 18,5  26.7 | 31.3 29.6
Overall | 69.6 822 | 68.5 731 | 79.6 888 | 74.3 80.6

Table 5: The overall classification accuracy of FLEXTAF-Single using four LLMs, and the classification accuracy
for instances that can only be correctly solved by a single format, with the best performance marked in bold.

Input Information

[Question who won the most gold medals? ]
Table
Rank Nation Gold Total
1 Brazil 7 15
Total 16 62

Reason with Dict
def solver(table):
max_gold, winner =0, ""
for row in table:
if row["Gold"] > max_gold:
max_gold, winner =
row["Gold"], row["Nation"]
return winner
Answer is Total x

Reason with Markdown
We need to look at the
"Gold" column of the table
provided. According to the
table, Brazil won the most
gold medals with 7, so the
answer is: Brazil

Answer is Brazil

Figure 6: An instance from the WikiTQ test set using
Llama3-70B with Markdown and Dict tabular formats.

medals. Therefore, for this instance, Markdown
proves more suitable than Dict with Llama3-70B.
Additional instances are provided in Appendix H.

5 Related Works

The table reasoning task aims to answer the natural
language question based on the table (Dong et al.,
2022; Zhang et al., 2024d; Dong and Wang, 2024).
LLM-based methods have become predominant
due to their superior performance of table reasoning
(Wei et al., 2022; Chen, 2023; Zhao et al., 2023;
Chen et al., 2023). Some works focus on enhancing
table reasoning ability by fine-tuning LLMs (Zhang
et al., 2024b; Bian et al., 2024; Zhang et al., 2024c;
Patnaik et al., 2024; Wu and Feng, 2024; Gardner
et al., 2024; Li et al., 2024). Also, some works
improve table reasoning performance by designing
prompts (Zhao et al., 2023; Ye et al., 2023; Nahid
and Rafiei, 2024a,b; Lee et al., 2024; Wang et al.,
2024; Zhao et al., 2024) or aggregating diverse
results (Ni et al., 2023; Liu et al., 2024a).
Previous works generally employ a fixed tabular
format across varying instances, regardless of the
specific LLM used, which could limit the perfor-
mance. Since Sui et al. (2024) demonstrate that the

performance of table understanding tasks, such as
Cell Lookup and Size Detection, varies with dif-
ferent tabular formats, and propose self-augmented
prompting, which employs LLMs to extract critical
table contents and summarize them into natural lan-
guage descriptions. Building on this, Singha et al.
(2023) evaluate the performance of additional tabu-
lar formats and investigate the effects of noise op-
erations like Shuffle Columns and Transpose Table
on table understanding. They analyze that the LLM
adopts different tabular formats, causing varying
robustness on table understanding. Similarly, Deng
et al. (2024) examine the different performance of
text-based and image-based formats.

However, existing studies primarily discuss the
impact of different tabular formats from the per-
spective of tasks, ignoring the impact of the in-
stances and LLMs. Therefore, we claim that dif-
ferent instances and models suit different tabular
formats, based on which, we propose FLEXTAF to
improve the table reasoning performance by flexi-
bly employing tabular formats.

6 Conclusion

In this paper, we explore the impact of tabular for-
mat on table reasoning performance from two as-
pects. (i) We claim from the perspective of experi-
mental results that different instances and models
have different most suitable tabular formats. (i) We
propose our methods. FLEXTAF-Single use the
classifier to predict the most suitable tabular format
according to the instance and the LLM. FLEXTAF-
Vote obtains the results from multiple formats and
employs the voting mechanism to get the final re-
sult. We build experiments on WikiTableQuestions
and TabFact. Compared with the best performance
of using a fixed format with greedy decoding and
self-consistency, FLEXTAF-Single and FLEXTAF-
Vote increase by 2.3% and 4.4% on average respec-
tively, demonstrating their effectiveness.



Limitations

(i) The variety of table formats used in our experi-
ments is somewhat limited, where in future work,
we will explore allowing LLMs to autonomously
determine the appropriate table format for each
question, aiming to further enhance table-based
reasoning performance; (ii) Our experiments are
conducted only in English, where in future work,
we plan to evaluate our methods across a broader
range of languages to further validate their effec-
tiveness.

Ethics Statement

Every dataset and model used in the paper is ac-
cessible to the public, and our application of them
adheres to their respective licenses and conditions.
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A Introduction to Five Tabular Formats

In this section, we introduce the five tabular formats
used in experiments: Markdown, Dict, List, Pandas,
and Database. The Markdown format refers to the
representing tables in the Markdown language. The
Dict format employs List[Dict: [str, Any]l]
to index the table, in which each row is stored in a
dictionary, and the column name of each column
is indexed as the key of the dictionary. The List
format adopts List[List[Any]] to index the table,
in which each row, including the header, is stored
in the list, and each column needs to be indexed
with the serial number of the column. The Pandas
format is a Python code snippet that uses the Pandas
DataFrame API to define the table, which points
out each line of the table and the header. Database
format refers to the format of representing a table
as a database, describing the column name with a
CREATE statement, and listing specific values.

B Additional Experiments

TableBench (Wu et al., 2024) is a dataset that is
closer to industrial scenarios, containing 18 ques-
tion classifications. We use Llama3.1-Instruct-
8B (Llama3.1-8B) for the experiment, employ the
zero-shot prompt, and keep other settings consis-
tent with the main experiment. We adopt Rouge-
L (Lin, 2004) as the evaluation metric following
TableBench. The results of greedy decoding us-
ing the fixed tabular formats and the results of
FLEXTAF are shown in Table 6. The results reveal
that FLEXTAF-Single and FLEXTAF-Vote consis-
tently surpass the best performance of using the
fixed format, proving the effectiveness. Moreover,
on the more challenging dataset, the greater per-
formance gap between different tabular formats
suggests the use of flexible tabular formats.

C Prompts with Each Tabular Format

In this section, we present the prompts used in
experiments.

C.1 Prompts for Main Experiments

The prompts for WikiTQ (Pasupat and Liang, 2015)
in main experiments with a single tabular format
are shown in Table 7, Table 8, Table 9, Table 10,
and Table 11. And the prompts for TabFact (Chen
et al., 2020) in main experiments with a single
tabular format are shown in Table 12, Table 13,
Table 14, Table 15, and Table 16. It can be found
that only the demonstrations with the Database
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format are different among the prompts for WikiTQ.
If we use the same demonstrations as other prompts,
the SQL given in the prompt is too complicated to
reduce the reasoning performance of the model.

C.2 Prompts for Experiments of Unifying
Demonstrations

We present the prompt with the unified demonstra-
tions in this subsection. From Table 7, Table 8,
Table 9 and Table 10, it can be seen that the demon-
strations used in the Markdown, Dict, List, and
Pandas are unified, so we only change the prompt
with the Database format, which is shown in Ta-
ble 17.

D Tabular Format Distributions on
Models

In this section, we show the specific process of
proving that the tabular format is distributed differ-
ently on the model, which is discussed in §2.

Specifically, we take the number correctly rep-
resented on each model as the observed frequency
O;, calculate the average correct number of each
format under different models as the expected fre-
quency F;, and calculate the Chi-square statistics
as Equation D.1.

xr=>"

The corresponding degree of freedom dof is
dof = (Npy — 1) x (N, — 1), where N, is the
number of models, and NNV, is the number of tabular
formats. According to the calculated Chi-square
X2 and the corresponding degree of freedom do f,
we find the corresponding P-value from the square
distribution table, which is less than 0.05, proving
that there is a distinct difference in the distribution
of the correct tabular formats on different models.

(0; — E;)?

E (D.1)

E Details of Training the Classifier in
FLEXTAF-Single

In this section, we introduce the details of training
the classifier in FLEXTAF-Single. Our model is
implemented with PyTorch (Paszke et al., 2019)
and transformers (Wolf et al., 2020). We present
training details in Table 18, and we summarize the
training data size employed for training the classi-
fier to predict each LLLM across various datasets in
Table 19. We count the proportion of each tabular
format in the training data for different LLMs and



Method Markdown Dict List Pandas Database
Greedy decoding 23.9 216 6.9 6.1 22.0
FLEXTAF-Single 25.0

Self-consistency 26.5 26.1 173 10.4 22.7
FLEXTAF-Vote 31.2

Table 6: The Rouge-L of using a fixed tabular format and FLEXTAF, using Llama3.1-8B on TableBench.
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Figure 7: The proportion of each tabular format in the training data.

datasets, as shown in Figure 7. Specifically, to com-
pare the proportions of different tabular formats in
the training data, we calculate the proportion of
each format to all labels of all instances in the train-
ing data.

F Overlap between Tabular Formats

In this section, we analyze the overlap between
instances correctly solved by different tabular for-
mats, which is shown in Figure 8. The overlap
between instances solved by different tabular for-
mats is all < 100%, which proves that different
instances are suitable for different tabular formats.
We can find that: (i) The overlap caused by us-
ing DeepSeek-Coder is greater than that caused
by Llama3 because DeepSeek-Coder is better at
code formats. The difference between code formats
such as Dict and List is smaller than that between
code formats and natural language formats, such
as Markdown. (ii) The overlap caused by employ-
ing large-scale LLMs is more serious than that of
small-scale LLMs because the large-scale LLMs
have higher table reasoning performance, leading
to more instances correctly solved by tabular for-
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mats. (iii) The overlap on TabFact is greater than
that on WikiTQ because the questions of TabFact
are simpler and easier to solve by more tabular
formats.

G Comparison FLEXTAF with Oracle

In this section, we compare the performance of
FLEXTAF with that of Oracle, as shown in Table 20.
We observe that: (i) The excellent oracle perfor-
mance shows that there exist differences between
different formats, which further suggests that dif-
ferent instances have their suitable tabular formats.
(i0) The performance of FLEXTAF-Single is limited
by classification and has a gap with the oracle per-
formance, since the Pre-trained Language Model
(PLM) cannot predict the behavior of LLMs well
(Qin et al., 2024; Liu et al., 2024b; Bowman, 2023).
However, we do not conduct experiments to fine-
tune LLMs for classification limited by computing
resources. (iii) The performance of FLEXTAF-Vote
also has a gap with the oracle performance, because
the voting mechanism we adopt does not make full
use of the rich semantic information in the LLM so-
lutions, causing the limited improvement (Ni et al.,
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Figure 8: The overlap among instances that are correctly solved with each tabular format using four LLMs on two
datasets. The value represents the proportion that can be solved by the tabular format corresponding to the vertical
axis in the instances that are solved by the format corresponding to the horizontal axis.

1122 2023).

1123 H Cases Study

1124 To clearly show the impact of the table, we show
1125 more instances in WikiTQ in this section, as shown
1126 in Figure 9. We observe that: (i) For the first in-
1127 stance with the question "what is the highest points
1128 scored by an opponent?", DeepSeek-Coder-33B
1129 correctly solves the instance with the Dict format,
1130 while Llama3-70B is suitable for Markdown and
1131 Pandas formats. (ii) When we use the same model
1132 Llama3-70B, the last instance with the question "in
1133 cycle 4, how many contestants are older than 207"
1134 is solved correctly with Dict, which is different
1135 from the previous instance. The cases claim that
1136 different instances and LLMs have different most
1137 suitable tabular formats.
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Question
what is the highest points scored by an opponent?
Table

‘Question :
cycle 4,how many contestants are older than 20
able

‘Question
‘what is the highest points scored by an opponent?
Table

Opponent Score ... i Opponent Score :: Contestant Age
at Toronto Argonauts ~ 13-6 § : atToronto Argonauts  13-6 : : Isabelle Raisa 16
: vs. Montreal Alouettes  14-12 i vs. Montreal Alouettes  14-12 ... : Nadine Trinker 21
‘DeepSeek-Coder-33b Llama3-70b lama3-70b
‘def solver(table): def solver(table):
: max_points =0 :1 max_points = 0
for row in table: i for row in table: i: for row in table:
points = int(row["Score"].split("—")[0]) v score = row["Score"].split("-") i if int(row["Age"]) > 20:
if points > max_points: opponent_points = int(score[1]) count += |
max_points = points i if opponent_points > max_points: 1 return count
return max_points i max_points = opponent_points
‘Answer i1 return max_points
45 Answer
17
‘Pandas
‘def solver(table): Pandas import pandas as pd
¢ import pandas as pd def solver(table) :: contestants_over_20 = table[table["Age"] >
table[['Team_Score', 'Opponent_Score']] = import pandas as pd : 20].shape[0]

‘table['Score'] str.split(—', expand=True) max_points_scored = table['Score'].apply(lambda x:
table['Team_Score'] = table['Team_Score'].astype(int) : :int(max(x.split('-')[0], x.split('—')[1]))).max()
return table['Opponent_Score'].astype(int).max() :1 return max_points_scored

return contestants_over_20",

nswer
: :Error occurred

‘Answer

Answer
17 45 larkdown
: * ‘To find out how many contestants were older than 20 in
‘Markdown Markdown { ‘Cycle 4, we need to look at the "Age" column of the

‘To find out the highest amount of points scored in a To find out what is the highest amount of points scored
‘game by an opponent, we need to look at the "Score" in a game by an opponent, we need to look at the "Score":
‘column of the table provided. According to the table, the : ‘column of the table provided. According to the table, the
‘highest amount of points scored in a game by an - highest amount of points scored in a game by an :
‘opponent is 38, which was scored against Hamilton opponent is 45, so the answer is: 45

ble provided. According to the table, the contestants
der than 20 are Sabrina Angelika Rauch(21), Katharin:
ihalovi(23), Michaela Schopf(21), Christine :
iener(20), Bianca Ebelsberger(24), Nadine
rinker(21), and Dzejlana Lana(20), so the answer is:

éTiger-Cats, so the answer is: 38 Answer nswer
‘Answer 45
38

Figure 9: Two instances of WikiTQ test set using Llama3-70B and DeepSeek-Coder-33B with Markdown and Dict
tabular format.
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The prompt with the Markdown format for WikiTQ.

Please answer the question with the given table, present the final result in the format "..., so the answer is: (answer)":
Please note that utilize the format, do not include periods. Here are some instances you may refer to:
table:
| Aircraft | Description | MamGrossWezght | Totaldiskarea | MazdiskLoading |
___‘___|___ _ = - =
| RobinsonR — 22 | nghtutzlztyhelzcopter | 1,3701b(635kg) | 497 ft(46.2m) | 2.61b/ ft(14kg/m) |
| Bell206 B3JetRanger | Tw"boshaftutzlztyhelzcopter | 3,2000b(1,451kg) | 872ft(81.1m) |
3.7/ ft(18kg/m) |
CH — 47DChinook | Tandemrotorhelicopter | 50,0000b(22,680kg) | 5,655ft(526m) |
8.81b/ ft(43kg/m) |
| MilMi — 26 | Heavy — lifthelicopter | 123, 5001b(56,000kg) | 8,495 ft(789m) | 14.51b/ ft(7T1kg/m) |
CH — 53ESuperStallion | Heavy — lifthelicopter | 73,5001b(33,300kg) | 4,900ft(460m) |
1516/ ft(72kg/m) |
utterance:
What is the max gross weight of the Robinson R-22?
answer:
To find out what is the max gross weight of Robinson R-22, we need to look at the "Max Gross Weight" column of
the table provided. According to the table, the max gross weight of the Robinson R-22 is 1,370 1b (635 kg), so the
answer is: 1,370 1b (635 kg)
table:
| Player | No. | Nationality | Posztzon \ YearsmToronto | School /ClubTeam |
fm = —fim——fim— =i === — i ——
| MarkBaker | 3 | UnitedStates | Guard | 1998 99 | OhioState |
| MarcusBanks | 3 | UnitedStates | Guard | 2009 — 10 | UNLV |
| LeandroBarbosa | 20 | Brazil | Guard | 2010 — 2012 | T'ilibra/Copimaz(Brazil) |
| RasualButler | 9 | UnitedStates | Guard — Forward | 2011 — 12 | LaSalle |
utterance:
How many players were with the school or club team La Salle?
answer:
To count the number of players with the school or club team La Salle, we need to look at the "School/Club Team"
column of the table provided. According to the table, there are 1 player whose School/Club Team is La Salle, so the
answer is: 1
table:
| Model \ 1991 | 1995 | 1996 | 1997 | 1998 | 1999 \ 2000 | 2001 | 2002 | 2003 | 2004 |

|
| SkodaFelicia | 172,000 | 210,000 | — | 288,458 | 261, 127 | 241,256 | 148,028 | 44, 963 | — |

| SkodaOctavia | — | — | — | 47,876 | 102,373 | 143,251 | 158 503 | 164,134 | 164 017 | 165,635 |
181,683 |

| SkodaFabia | — | — | —| —| — | 823 ] 128,872 | 250,978 | 264,641 | 260,988 | 247, 600 |

| SkodaSuperb | — | —|—|—|—|—|— 1177 16,867 | 23,135 | 22,392 |

utterance:

is the number on skoda fabia for 1999 more or less than 1000?

answer:

To find out if the number on the Skoda Fabia for 1999 is more or less than 1000, we need to look at the data provided
for the "Skoda Fabia" in "1999", which is 823, that is, the number for the Skoda Fabia in 1999 is less than 1000, so
the answer is: less

table:

Place | Rider | Country | Team | Pomts | Wins |

m——fimm i ——fm—— = = ——|

1| SylvainGeboers | Belgium | Suzukz | 3066 | 3]

2| AdolfWeil | Germany | Maico | 2331 | 2 |

3 | JohnBanks | UnitedKingdom | CZ | 971 | 0 |

4 | MarkBlackwell | UnitedStates | Husquarna | 604 | 0 |

5| BradLackey | UnitedStates | CZ | 603 | O |

6 | GaryJones | UnitedStates | Yamaha | 439 0 |

| 7| JohnDeSoto | UnitedStates | Suzuki | 425 | 0 |

utterance:

which country had the most riders that placed in the top 20 of the 1971 trans-ama final standings?

answer:

To find out which country had the most riders in the top 20, we need to look at the "Country" column of the table
provided and count the number of times each country appears. According to the table, United States had the most
riders, so the answer is: United States

table:

<table>

utterance:

<utterance>

answer: 17

Table 7: The prompt with the Markdown format used in the main experiments for WikiTQ.



The prompt with the Dict format for WikiTQ.

Answer the question with the given table using python code.

You should generate a function with the following signature without any other parameters. Here are some instances
you may refer to:

table = [
{
"Aircraft”: "Robinson R-22",
"Description”: "Light utility helicopter”,
"Max Gross Weight"”: "1,370 1lb (635 kg)",

}?
]

utterance: What is the max gross weight of the Robinson R-22?
def solver(table):
for row in table:
if row["Aircraft”] == "Robinson R-22":
return row["Max Gross Weight"]

table = [...]
utterance: How many players were with the school or club team La Salle?
def solver(table):

players_la_salle = set()

for row in table:

if row["”School/Club Team”] == "La Salle”: players_la_salle.add(row["Player”])
return len(players_la_salle)

table = [...]
utterance: is the number on skoda fabia for 1999 more or less than 10007?
def solver(table):
for row in table:
if row["Model”] == "Skoda Fabia"”: num_1999 = row["1999"].replace(”,”, "")
if int(num_1999) > 1000: return "more"”
else: return "less”
return "less”

table = [...]
utterance: which country had the most riders that placed in the top 20 of the 1971
trans-ama final standings?
def solver(table):
country_counts = {}
for row in table:
country = row["Country"]
if country in country_counts: country_counts[country] += 1
else: country_counts[country] = 1
max_riders = max(country_counts.values())
countries_with_max_riders = [country for country, count in country_counts.items()
if count == max_riders]
return countries_with_max_riders[0]

Based on the above demonstrations, answer the following utterance with the following table using Python code.
table = <table>

utterance: <utterance>
def solver(table):
# Your code here

Table 8: The prompt with the Dict format used in the main experiments for WikiTQ. Due to the limited length of the
paper, we do not list the contents of all the tables in the demonstrations, which are the same tables in Table 7. We
will release the full prompt upon the acceptance.
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The prompt with the List format for WikiTQ.

Answer the question with the given table using python code.

You should generate a function with the following signature without any other parameters. Here are some instances
you may refer to:

table = [
L
"Aircraft”,
"Description”,
"Max Gross Weight”,

:ly

L
"Robinson R-22",
"Light utility helicopter”,
"1,370 1lb (635 kg)",

:ly

]
utterance: What is the max gross weight of the Robinson R-22?
def solver(table):
for row in table[1:]:
if row[@] == "Robinson R-22": return row[2]

table = [...]
utterance: How many players were with the school or club team La Salle?
def solver(table):
players_la_salle = set()
for row in table[1:]:
if row[5] == "La Salle”: players_la_salle.add(row[0])
return len(players_la_salle)

table = [...]
utterance: is the number on skoda fabia for 1999 more or less than 10007?
def solver(table):
for row in table[1:]:
if row[@] == 'Skoda Fabia':
if row[6] == "-" or int(row[6].replace(”,”, "")) < 1000: return "less"
else:mreturn "more"”

table = [...]
utterance: which country had the most riders that placed in the top 20 of the 1971
trans-ama final standings?
def solver(table):
country_counts = {3}
for row in table[1:]:
country = row[2]
if country in country_counts: country_counts[country] += 1
else: country_counts[country] = 1
max_riders = max(country_counts.values())
countries_with_max_riders = [country for country, count in country_counts.items()
if count == max_riders]
return countries_with_max_riders[@]

Based on the above demonstrations, answer the following utterance with the following table using Python code.
table = <table>

utterance: <utterance>

def solver(table):

# Your code here

Table 9: The prompt with the List format used in the main experiments for WikiTQ. Due to the limited length of the
paper, we do not list the contents of all the tables in the demonstrations, which are the same tables in Table 7. We
will release the full prompt upon the acceptance. 19



The prompt with the Pandas format for WikiTQ.

Answer the question with the given table using python code.

You should generate a function with the following signature without any other parameters. Here are some instances
you may refer to:

table = pd.DataFrame([
L
"Robinson R-22",
"Light utility helicopter”,
"1,370 1b (635 kg)",

:ly

1, columns = [
"Aircraft”,
"Description”,

"Max Gross Weight",

]
)
utterance: What is the max gross weight of the Robinson R-22?
def solver(table):
import pandas as pd
max_gross_weight_r22 = table[table["Aircraft”] == "Robinson R-22"]
["Max Gross Weight"].iloc[@]
return max_gross_weight_r22

table = [...]

utterance: How many players were with the school or club team La Salle?

def solver(table):
import pandas as pd
la_salle_count = table[table["School/Club Team"”] == "La Salle"].shape[@]
return la_salle_count

table = [...]
utterance: is the number on skoda fabia for 1999 more or less than 10007?
def solver(table):
import pandas as pd
fabia_row = table[table['Model'] == 'Skoda Fabia']
fabia_1999_sales = fabia_row['1999'].values[0]
if fabia_1999_sales == '-' or int(fabia_1999_sales.replace(”,”, "")) < 1000:
return 'less'
else:
return 'more'

table = [...]
utterance: which country had the most riders that placed in the top 20 of the 1971
trans-ama final standings?
def solver(table):
import pandas as pd
most_riders_country = table['Country'].value_counts().idxmax()
return most_riders_country

Based on the above demonstrations, answer the following utterance with the following table using Python code.
table = <table>

utterance: <utterance>

def solver(table):

# Your code here

Table 10: The prompt with the Pandas format used in the main experiments for WikiTQ. Due to the limited length
of the paper, we do not list the contents of all the tables in the demonstrations, which are the same tables in Table 7.
We will release the full prompt upon the acceptance.
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The prompt with the Database format for WikiTQ.

Please complete the sql below to solve the question with the given database.
Here are some instances you may refer to:

database:

CREATE TABLE information (
year int ,

division int ,

);

/*

Columns and instances in each column :
year: 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, ... ;

*/

utterance:

when was the first time the kansas city brass qualified for the playoffs?
sql:

SELECT year FROM information WHERE playoffs != 'Did not qualify' ORDER

BY year ASC LIMIT 1;

database:

CREATE TABLE information (...);

VAV

utterance:

what was the next episode after \"do-si-do?\”

sql:

SELECT episode FROM information WHERE num = (SELECT num FROM information
WHERE episode = 'Do-Si-Do') + 1;

database:

CREATE TABLE information (...);

VAV

utterance:

which dino album yielded the most songs on the billboard hot 100?

sql:

SELECT album FROM information WHERE chart = 'Billboard Hot 10@' GROUP BY album
ORDER BY COUNT(*) DESC LIMIT 1;

database:

CREATE TABLE information (...);

VA Y

utterance:

when was the last year team penske finished first?

sql:

SELECT MAX(year) FROM information WHERE team = 'Team Penske' AND finish = 1;

Based on the above demonstrations, answer the following utterance with the following database using SQL.
database:

<table>

utterance:

<utterance>

sql:

SELECT

Table 11: The prompt with the Database format used in the main experiments for WikiTQ. Due to the limited length
of the paper, we do not list the contents of all the tables in the demonstrations. We will release the full prompt upon
the acceptance.
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The prompt with the Markdown format on TabFact.

Verify the consistency between the table and the utterance.
Please present the final result in the format "..., so the answer is: (answer)" and the "(answer)" is "True" or "False".
Please note that utilize the format, do not include periods.
Here are some demonstrations you may refer to:
table:
| tournament | wins | top — 5 | top — 10 | top — 25 | events | cutsmade |
i e e et
| masterstournament |0 1|2 |4 | 4 | 4|
| usopen |02]3]4|6]5|
| theopenchampionship |1|2]2]2|3 ]3]
| pgachampionship |0 0] 1]2|5]4 |
| totals |1|5]8|12]18] 16 |
utterance:
tony lema be in the top 5 for the master tournament , the us open , and the open championship
answer:
To verify whether tony lema be in the top 5 for the master tournament , the us open , and the open championship,
we need to look at the "top - 5" column of the table provided. According to the table, the "top - 5" column of the
"masters tournament", "us open", and "the open championship" are all more than zero, so the answer is: True
table:
| year | competition | venue | posztzon | event |
S A
2006 | worldcrosscountrychampzonsths | fukuoka, japan | 10th | individual juniorrace |
2006 | worldcrosscountrychampionships | fukuoka, japan | 3rd | teamjuniorrace |
2006 | africanchampionshipsinathletics | bambous, mauritius | 5th | 10000m |
2006 | worldroadrunningchampionships | debrecen, hungary | Tth | individual20km |
2006 | worldroadrunningchampionships | debrecen, hungary | 3rd | team20km |
2007 | worldcrosscountrychampionships | mombasa, kenya | Tth | individual |
2007 | all — africagames | algiers, algeria | 2nd | 10000m |
2007 | worldchampionshipsinathletics | osaka, japan | 13th | 10000m |
2009 | worldcrosscountrychampionships | amman, jordan | 17th | individual |
2013 | worldchampionships | moscow, russia | 3rd | marathon |
utterance:
japan and hungary host the competition 3 time each
answer:
To verify whether japan and hungary both host the competition 3 time, we need to look at the "venue" column of the
table provided. According to the table, "japan" hosts the competition 3 times, but "hungary" hosts the competition 2
times, so the answer is: False

Based on the above demonstrations, Verify the consistency between the following table and utterance.
table:

<table>

utterance:

<utterance>

answer:

Table 12: The prompt with the Markdown format used in the main experiments for TabFact.
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The prompt with the Dict format for TabFact.

Verify the consistency between the table and the utterance with "True" or "False" using python code.
You should generate a function with the following signature without any other parameters:
Here are some demonstrations you may refer to:

table = [

{
"tournament”: "masters tournament”,
"wins": "Q@",
"top - 5": "1",
"top - 10": "2",
"top - 25": "4",
"events": "4",
"cuts made”: "4"

}?

{
"tournament”: "us open”,
"Wins": II@II’
"top - 5": "2",
Ntop - ‘]0”: II3IV’
"top - 25": "4",
"events": "6",
"cuts made": "5"

}Y

]

utterance: tony lema be in the top 5 for the master tournament , the us open ,
and the open championship
def solver(table):
top_5_tournament = [row["”tournament”] for row in table if int(row["top - 5"1) > 0]
if "masters tournament” not in top_5_tournament:
return False
if "us open” not in top_5_tournament:
return False
if "the open championship” not in top_5_tournament:
return False
return True

table = [
{
"year": "2006",
"competition”: "world cross country championships”,
"venue": "fukuoka , japan",
"position”: "10th",
"event”: "individual junior race”
})
]

utterance: japan and hungary host the competition 3 time each
def solver(table):
japan_host_time = @
hungary_host_time =
for row in table:
if "japan” in row["venue"]:
japan_host_time += 1
elif "hungary” in row["venue"]:
hungary_host_time += 1
return (japan_host_time == 3 and hungary_host_time == 3)

0

Based on the above demonstrations, Verify the consistency between the following table and utterance.
table = <table>

utterance: <utterance>
def solver(table):
# Your code here

Table 13: The prompt with the Dict format used in the main experiments for TabFact.
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The prompt with the List format for TabFact.

Verify the consistency between the table and the utterance with "True" or "False" using python code.
You should generate a function with the following signature without any other parameters:
Here are some demonstrations you may refer to:

table = [

L
"tournament”,
"wins",
"top - 5",
"top - 10",
"top - 25",
"events”,
"cuts made”

:lr

[
"masters tournament”,
non
o
NZ" ,
ngn
VI4II ,
ngn

:ly
]

utterance: tony lema be in the top 5 for the master tournament , the us open ,
and the open championship
def solver(table):
top_5_tournament = [row[@] for row in table[1:] if int(row[2]) > @]
if "masters tournament” not in top_5_tournament:
return False
if "us open” not in top_5_tournament:
return False
if "the open championship” not in top_5_tournament:
return False
return True

table = [
L
"year",
"competition”,
"venue",
"position”,
"event”
])
]

utterance: japan and hungary host the competition 3 time each
def solver(table):
japan_host_time = @
hungary_host_time = 0
for row in table[1:]:
if "japan” in row[2]:
japan_host_time += 1
elif "hungary” in row[2]:
hungary_host_time += 1
return (japan_host_time == 3 and hungary_host_time == 3)

Based on the above demonstrations, answer the following utterance with the following table using Python code.
table = <table>

utterance: <utterance>
def solver(table):
# Your code here

Table 14: The prompt with the List format used in the main experiments for TabFact.

24



The prompt with the Pandas format for TabFact.

Verify the consistency between the table and the utterance with "True" or "False" using python code.
You should generate a function with the following signature without any other parameters:
Here are some demonstrations you may refer to, and you don’t need to answer the demonstrations:

table = pd.DataFrame([

L
"masters tournament”,
lloll’
"
II2II’
g
II4II’
n g

])

1, columns = [
"tournament”,
"wins",
"top - 5",
"top - 10",
"top - 25",
"events",
"cuts made”
]
)
utterance: tony lema be in the top 5 for the master tournament , the us open ,
and the open championship
def solver(table):

tournaments = ["masters tournament”, "us open”, "the open championship”]
for tournament in tournaments:
row = table[table['tournament'] == tournament]

if row.empty or int(row['top - 5'J].values[0]) == 0:
return False
return True

Based on the above demonstrations, answer the following utterance with the following table using Python code.

table = <table>
utterance: <utterance>
def solver(table):
# Your code here

Table 15: The prompt with the Pandas format used in the main experiments for TabFact.
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The prompt with the Database format for TabFact.

Please complete the sql below to solve the question with the given database.
Here are some instances you may refer to:

CREATE TABLE information (

tournament text ,

wins int ,

top_5 int ,

top_10 int ,

top_25 int ,

events int ,

cuts_made int

)5

/*

Columns and instances in each column :
tournament: masters tournament, us open, the open championship, pga championship, totals ;
wins: @, 0, 1, 0, 1 ;

top_5: 1, 2, 2, 0, 5 ;

top_10: 2, 3, 2, 1, 8 ;
top_25: 4, 4, 2, 2, 12 ;
events: 4, 6, 3, 5, 18 ;
cuts_made: 4, 5, 3, 4, 16 ;
*/

utterance:

tony lema be in the top 5 for the master tournament , the us open ,
and the open championship

SQL:
SELECT CASE WHEN (SELECT COUNT(*) FROM information WHERE tournament IN
('masters tournament', 'us open', 'the open championship') AND top_5 > @) = 3

THEN 'True' ELSE 'False' END AS result;

CREATE TABLE information (

year int ,

competition text ,

venue text ,

position text ,

event text

);

/*

Columns and instances in each column :

year: 2006, 2006, 2006, 2006, 2006, 2007, 2007, 2007, 2009, 2013 ;

competition: world cross country championships, world cross country championships, ... ;
venue: fukuoka , japan, fukuoka , japan, bambous , mauritius, debrecen , hungary, ... ;
position: 1@0th, 3rd, 5th, 7th, 3rd, 7th, 2nd, 13th, 17th, 3rd ;

event: individual junior race, team junior race, 10000 m, ... ;

*/

utterance:
japan and hungary host the competition 3 time each

SQL:

SELECT CASE WHEN (SELECT COUNT(x) FROM information WHERE venue LIKE '%japan%') = 3 AND
(SELECT COUNT(*) FROM information WHERE venue LIKE '%hungary%') = 3 THEN 'True'

ELSE 'False' END AS result;

Based on the above demonstrations, answer the following utterance with the following database using SQL.
database:

<table>

utterance:

<utterance>

sql:

SELECT

Table 16: The prompt with the Database format used in the main experiments for TabFact.
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The prompt with the Database format using unified demonstrations.

Please complete the sql below to solve the question with the given database.
Here are some instances you may refer to:

database:
CREATE TABLE information (
aircraft text ,

);

/*

Columns and instances in each column :

aircraft: Robinson R-22, Bell 206B3 JetRanger, CH-47D Chinook,
*/

utterance:

What is the max gross weight of the Robinson R-22?

sql:

SELECT max_gross_weight FROM information WHERE aircraft = 'Robinson R-22';

database:
CREATE TABLE information (
player text ,

)5

VAV

utterance:

How many players were with the school or club team La Salle?

sql:

SELECT COUNT(*) FROM information WHERE school_club_team = 'La Salle';

database:
CREATE TABLE information (
model text ,

);

VA Y

utterance:

is the number on skoda fabia for 1999 more or less than 10007?

sql:

SELECT CASE WHEN CAST(column_1999 AS INTEGER) < 1000 THEN 'less' ELSE 'more’
END AS result FROM information WHERE model = 'Skoda Fabia';

CREATE TABLE information (

);

VAV

utterance:

which country had the most riders that placed in the top 207?

sql:

SELECT country, COUNT(rider) as rider_count FROM information WHERE place <= 20
GROUP BY country ORDER BY rider_count DESC LIMIT 1;

Based on the above demonstrations, answer the following utterance with the following database using SQL.
database:

<table>

utterance:

<utterance>

sql:

SELECT

Table 17: The prompt with the Database format with the unified demonstrations. Due to the limited length of the
paper, we do not list the contents of all the tables in the demonstrations, which are the same tables in Table 7.
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| WikiTQ TabFact

batch size 128 128

epoch 200 400

learning rate le—5 5e — 6

max tokens 512 512

training device | 2x NVIDIA A100 40G GPU 2x NVIDIA A100 40G GPU
training time 16h 36h

Table 18: Classification training details in FLEXTAF-Single on WikiTQ and TabFact.

WikiTQ TabFact
Llama3 DeepSeek-Coder Llama3 DeepSeek-Coder
88 | 70B | 67B | 33B 8B | 70B 67B | 33B

Data Size | 7,247 | 5,649 | 7,848 | 5,944 | 48,073 | 26,050 | 45,194 | 29,619

Table 19: The training data size employed for training the classifier in FLEXTAF-Single.

WikiTQ TabFact
Tabular Format Llama3 DeepSeek-Coder Llama3 DeepSeek-Coder
8B 70B ‘ 6.7B 33B 8B 70B | 6.7B 33B
FLEXTAF-Single | 50.5 69.1 | 46.3 54.5 77.0 87.1 | 70.9 78.3
FLEXTAF-Vote 55.7 69.9 | 51.4 60.9 80.3 88.5 | 77.9 84.4
Oracle 71.8 835 | 67.7 74.6 96.9 98.1 | 954 97.1

Table 20: The performance of FLEXTAF-Single, FLEXTAF-Vote, and Oracle, which denotes the result that each
instance uses the tabular format that can get the correct answer.
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