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Abstract001

Recent works have suggested that In-Context002
Learning (ICL) operates in dual modes, i.e.003
task retrieval (remember learned patterns from004
pre-training) and task learning (inference-time005
“learning" from demonstrations). However, dis-006
entangling these the two modes remains a chal-007
lenging goal. We introduce ICL CIPHERS, a008
class of task reformulations based on substi-009
tution ciphers borrowed from classic cryptog-010
raphy. In this approach, a subset of tokens in011
the in-context inputs are substituted with other012
(irrelevant) tokens, rendering English sentences013
less comprehensible to human eye. However,014
by design, there is a latent, fixed pattern to015
this substitution, making it reversible. This bi-016
jective (reversible) cipher ensures that the task017
remains a well-defined task in some abstract018
sense, despite the transformations. It is a curi-019
ous question if LLMs can solve ICL CIPHERS020
with a BIJECTIVE mapping, which requires de-021
ciphering the latent cipher. We show that LLMs022
are better at solving ICL CIPHERS with BIJEC-023
TIVE mappings than the NON-BIJECTIVE (irre-024
versible) baseline, providing a novel approach025
to quantify “learning” in ICL. While this gap026
is small, it is consistent across the board on027
four datasets and six models. Finally, our inter-028
pretability analysis shows evidence that LLMs029
can internally decode ciphered inputs.1030

1 Introduction031

In-Context Learning (ICL) is an emergent behav-032

ior in Large Language Models (LLMs) that al-033

lows them to identify patterns in demonstrations034

given as prompts and apply these patterns to sim-035

ilar tasks (Brown et al., 2020). This intriguing036

inference-time ability has prompted many studies.037

Despite recent efforts (Min et al., 2022; Srivastava038

et al., 2023; Shen et al., 2024, inter alia), the liter-039

ature’s understanding of the functional aspects of040

ICL remains elusive and contentious.041

1Our code is available at this repository.
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Figure 1: An example of ICL CIPHERS, a cryptographic
task reformulation where a subset of tokens are ciphered
(replaced with other tokens in the lexicon) via a BI-
JECTIVE mapping (e.g., each instance of “school” is
replaced with “apple”.) Since this cipher is a bijection,
one can recover the original format of the ICL instance,
ensuring the well-defined task upon the transformations.

Most pertinent to our study, Pan et al. (2023); 042

Lin and Lee (2024); Wang et al. (2024) propose 043

ICL’s dual behavior: task retrieval (TR), which 044

involves recalling a previously encountered task 045

from pre-training data through its demonstrations, 046

and task learning (TL), which refers to the ability 047

to grasp new input-label mappings that were not 048

seen during pre-training. Although these two mech- 049

anisms are not necessarily separate in practice, ex- 050

amining them independently may help researchers 051

better understand their strengths and limitations. 052

Pan et al. (2023) measure TL by assessing task 053

performance when labels are substituted with ab- 054

stract symbols (such as numbers or letters) that 055
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have never co-occurred with the inputs during pre-056

training. However, TR may partially influence this057

strategy. LLMs could still use the intact human-058

readable inputs and prompt structure to deduce059

the task, thereby performing implicit task retrieval.060

This consideration motivates the exploration of al-061

ternative approaches for quantifying task learning.062

In this study, we introduce ICL CIPHERS, a063

class of prompt reformulations based on substitu-064

tion ciphers borrowed from cryptography, applied065

to task inputs. For example, in a sentiment clas-066

sification task, we apply BIJECTIVE shuffling to067

part of the LLM’s original vocabulary, ensuring a068

one-to-one correspondence between tokens in the069

shuffled and original vocabularies. We then replace070

tokens in the input text with their corresponding071

tokens based on this mapping (e.g., every instance072

of “love” is replaced with “today”; see Fig.1).073

The outcome of substitution ciphers is gener-074

ally not easily interpretable by humans (see Fig.1075

for examples), resembling a random shuffling of076

words. However, since ICL ciphers are reversible,077

the original tasks can be reconstructed from the en-078

coded version, ensuring that the task, still remains079

learnable. This lack of interpretability is a design080

feature (rather than a flaw) here as it greatly re-081

duces the likelihood that our prompts have been082

encountered in the pre-training data. As a result,083

our working hypothesis is that any gains above the084

NON-BIJECTIVE shuffles should be indicative of085

TL (as opposed to TR) within ICL. Unlike previ-086

ous works (Pan et al., 2023; Wang et al., 2024) that087

intervene in task outputs through label shuffling,088

our approach modifies task inputs. This creates089

instances less likely to have been encountered in090

pre-training data.091

In summary, we evaluate ICL CIPHERS us-092

ing six models of different sizes across four well-093

known benchmarks and different few-shot num-094

bers. Our empirical results demonstrate that ICL095

achieves better-than-random performance on ci-096

phered tasks (§4.1). For example, on the BIJEC-097

TIVE ciphered Amazon dataset, Llama3.1 (8B) av-098

erages 7.1% higher accuracy than NON-BIJECTIVE099

ciphers, across various demonstration counts (Ta-100

ble 2). This suggests that LLMs can learn and101

decode these random bijections, enabling them to102

solve ICL Ciphers. Furthermore, we provide ad-103

ditional results with the shuffling rate and model104

scale. Finally, we perform an interpretability anal-105

ysis (§4.6) which reveals promising, albeit weak,106

trends in their ability to decode the ciphered inputs.107

2 Defining ICL CIPHERS 108

2.1 Preliminaries: In-Context Learning 109

Let fθ denote a pre-trained language model pa- 110

rameterized by θ. This model performs ICL by 111

conditioning on an ordered set of n-many input- 112

output pairs Ddemo = (x1, y1, x2, y2, . . . , xn, yn). 113

To measure this model’s competence, we evalu- 114

ate it on a collection of input-output pairs Dtest = 115

{(xi, yi)}. Specifically, for instance (xtest, ytest) ∼ 116

Dtest, from an LM conditioned on the demon- 117

strations with an appropriate encoding: ypred ∼ 118

fθ(Ddemo, xtest) we extract a predicted label ypred 119

which is then compared against the gold label ytest. 120

2.2 ICL CIPHERS 121

A simple substitution cipher is a technique for en- 122

coding messages. Specifically, each letter in the 123

plain text is substituted with a different letter from 124

the alphabet, usually according to a predetermined 125

mapping or key. ICL CIPHERS are token-level sub- 126

stitution ciphers that are applied to demonstration 127

inputs in ICL. Formally, we define a ICL cipher 128

c : V → V that maps each token in the lexicon 129

V = {tj}|V |
j=1 to another token. Note that a token is 130

allowed to be mapped to itself. If all the tokens are 131

mapped to themselves (i.e., c(tj) = tj for all j), 132

then the ICL cipher is equal to an identity function, 133

and substitution with this mapping would lead to 134

no changes in the text. We define the tokens that 135

are mapped to different tokens as ciphered tokens 136

S := {tj |tj ∈ V, c(tj) ̸= tj}. The proportion of 137

shuffled tokens in the lexicon is called shuffle rate 138

r ∈ [0, 1]. The mapping of ciphered tokens de- 139

pends on the specific type of ICL CIPHERS, which 140

we discuss next. 141

2.3 BIJECTIVE ciphers 142

We create a BIJECTIVE mapping between two 143

permuted orders of S. For example, say the to- 144

ken “school” is mapped to “apple”, as illustrated 145

in Fig.1. Let the input xi be constituted of Ki 146

tokens, i.e., xi is the ordered sequence of to- 147

kens (t1, . . . , tKi). For all tj = school ∈ xi or 148

xtest, c(tj) = apple. This results in corresponding 149

ciphered inputs x′i or x′test. Moreover, as c is a bi- 150

jection, ∃ c−1 such that for all tj = apple ∈ x′i or 151

x′test, c
−1(tj) = school. Note that “apple” doesn’t 152

have to be mapped back to “school”. 153

Decipherability of BIJECTIVE cipher: Since 154

we ensure the mapping is BIJECTIVE (reversible), 155

2



theoretically the models can learn the mapping156

through enough demonstrations. Let the ac-157

tual function between all (xi, yi) pairs be h, i.e.158

h(xi) = yi,∀(xi, yi) ∈ Ddemo ∪Dtest. Using ICL,159

the model fθ employs both TR and TL to approx-160

imate h′ ≈ h such that h′(xi) ≈ yi. This original161

function h cannot be expected to work on ciphered162

(or shuffled) inputs x′i. However, there is a corre-163

sponding function g = h(c−1(x′i)) that is equiva-164

lent to h(xi). This shows that h is still recoverable165

from the ciphered inputs. In natural language, re-166

placing a word with another fixed but randomly167

decided word can completely change the meaning168

of its context. Any TR capabilities are expected to169

be severely hurt with ciphered inputs. To perform170

well on Dtest, the model must rely heavily on TL to171

learn and perform this composite function.172

2.4 NON-BIJECTIVE Ciphers173

For comparison with BIJECTIVE ciphers (§2.3),174

we also create a NON-BIJECTIVE cipher. In this175

cipher, whenever a token tj ∈ S appears in the176

demonstration inputs, it will be replaced by a177

uniformly randomly picked token t′ ∈ S, i.e.,178

c(tj) ∼ uniform(S). For example, if the token179

“school” appears twice in the demonstration inputs,180

then they will likely be replaced by two different181

tokens. In contrast, in BIJECTIVE cipher (§2.3) we182

ensure multiple occurences of a token are conis-183

tently replaced by the same token.184

Indecipherability of NON-BIJECTIVE cipher:185

In a NON-BIJECTIVE cipher, the mapping is no186

longer reversible, which means it’s impossible for187

models to learn the mapping nor recover the origi-188

nal inputs. This is because c is not surjective any-189

more, and hence c−1 does not exist. This implies190

that a composite function through which h can be191

recovered also does not exist.192

2.5 Measuring “Learning” via ICL CIPHERS193

Bijective ciphers offer a novel and challenging yet194

solvable task encoding, making it unlikely to be195

seen from pretraining. However, the performance196

of LLMs on this cipher might be influenced by un-197

ciphered tokens (t ∈ V \S), which may invoke task198

retrieval capability of LLMs. In contrast, we quan-199

tify ICL ‘learning” using the performance gap200

between BIJECTIVE (§2.2) and NON-BIJECTIVE201

(§2.4) ciphers. The comparison between these two202

ciphers is meaningful because the ciphers always203

share the same ciphered tokens for consistency.204

The only difference between the two is their token 205

mapping functions: BIJECTIVE cipher mapping 206

allows a reversible mapping of ciphered tokens. 207

In contrast, NON-BIJECTIVE cipher removes the 208

learnable patterns. Therefore, the gap between the 209

performance on BIJECTIVE and NON-BIJECTIVE 210

ciphered text can be a practical measure of TL. 211

3 Experimental Setup 212

We discuss our setup for evaluating ICL CIPHERS 213

when applied to various tasks. 214

3.1 Design Choices for ICL CIPHERS 215

Zipfian shuffling: Literature has shown a strong 216

correlation between token frequency in the pre- 217

training corpus and model performance (Razeghi 218

et al., 2022; Mallen et al., 2023)—LLMs tend to 219

perform better on frequent tokens. To diminish 220

the confounding influence of token frequency, we 221

constrain the shuffling between tokens of similar 222

frequency. Inspired by Zipfian shuffling (Pianta- 223

dosi, 2014), we divide all the tokens into k (k = 10 224

in our experiments) groups of similar frequency 225

and shuffle the tokens within each group. Specifi- 226

cally, we use the Wikipedia (Foundation) to calcu- 227

late token frequency instead, which approximates 228

the actual token frequency. 229

Priority sampling of ICL demos: To create an 230

ICL demo set, one way is to randomly sample the 231

required number of examples (say n) from the pool 232

of demos. We call this non-priority (random) sam- 233

pling. However, in practice we always perform pri- 234

ority sampling (unless otherwise specified) where 235

we prioritize examples that contain the substituted 236

tokens of the test case input. This is done to ex- 237

pose LLMs to the relevant substitutions from which 238

they can learn to decipher. Suppose the number of 239

ciphered tokens in the test input is m (which de- 240

pends on the shuffle rate r). The goal is to select 241

n demonstrations from the pool of demos, such 242

that each of them contains at least one of the m 243

uniquely ciphered (substituted) tokens. This is triv- 244

ial if m = n (i.e., n demos cover the whole set of 245

m substitutions). Otherwise: 246

• If m < n (i.e., the number of substitutions is less 247

than the required number of ICL demos to be 248

sampled from the pool), we choose m examples 249

according to priority sampling and the rest of 250

n−m examples are randomly picked from the 251

demo pool. 252
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• If m > n, we select a random subset of the253

ciphered tokens of size n.254

In §E, we compare priority sampling with non-255

priority (random) sampling.256

Shuffle Rate: The shuffle rate r determines the257

proportion of tokens that are substituted. When r is258

close to 0, the cipher’s effect is minimal, as few or259

no tokens are substituted, making it uninteresting.260

Conversely, when r approaches 1, nearly all tokens261

are shuffled and solving the task is almost impossi-262

ble (under both BIJECTIVE and NON-BIJECTIVE263

ciphers). Thus, our focus lies on a moderate shuffle264

rate between 0 and 1, striking a balance between265

these extremes. We analyze this in §4.2.266

Special tokens and filters: LLMs usually have267

a list of special tokens that help the model un-268

derstand the prompt and task (e.g. next token269

prediction). For example, Llama3.1 models use270

<|begin_of_text|> and <|end_of_text|> to de-271

note the start of input and end of generation. We272

preserve special and punctuation tokens from get-273

ting ciphered to avoid hurting models’ basic func-274

tionality. (Full list of preserved tokens is in Ap-275

pendix B.1). Similarly, we avoid disturbing spaces276

in the original text (details in Appendix B.2).277

3.2 Evaluated Models278

We mainly focus on pretrained LLMs in our ex-279

periments, including Llama 3.1 (Dubey et al.,280

2024, Llama-3.1-8B), QWen 2.5 (Team, 2024b,281

Qwen2.5-7B), OLMo (Groeneveld et al., 2024,282

OLMo-7B-0724-hf) and Gemma 2 (Team, 2024a,283

Gemma-2-9b). In §4.4 and §4.5, we also284

show results on Llama-3.1-8B-Instruct and285

Llama-3.1-70B to explore the effect of instruction286

tuning and model size. Unless otherwise specified,287

Llama 3.1 refers to Llama-3.1-8B.288

3.3 Datasets289

We conduct experiments on four datasets. SST-2290

(Socher et al., 2013) and Amazon (Hou et al., 2024,291

Amazon Reviews 2023) are binary sentiment clas-292

sification tasks. HellaSwag (Zellers et al., 2019)293

is a sentence completion task, formatted as four-294

choices QAs. WinoGrande (Sakaguchi et al., 2020)295

is a pronoun resolution task, formatted as binary-296

choice QAs. For each dataset, we curate a demo297

pool for sampling ICL demos, and a test set con-298

tains to-be-tested cases. We use accuracy as the299

metric for all our experiments if not specified. We300

averaged the metrics across three runs of experi- 301

ments for a more reliable evaluation. Further de- 302

tails on datasets (prompts and examples) are in §B 303

and §C. 304

4 Empirical Findings 305

We evaluate ICL CIPHERS on a range of LLMs and 306

datasets. We then use the accuracy gap between 307

the two types of ciphers to quantify a proxy for TL 308

capabilities of LLMs (§2.5). 309

4.1 Evidence of Task-Learning in ICL 310

Table 1 shows the performance of LLMs on four 311

datasets ciphered with our framework (§3), with 312

a fixed shuffle rate and number of demonstrations. 313

The statistically significant results are marked with 314
∗ using McNemar’s test (McNemar, 1947). The 315

null hypothesis is that two marginal probabilities 316

for each outcome are the same, meaning switching 317

from NON-BIJECTIVE to BIJECTIVE cipher has no 318

impact on the prediction results. We see a consis- 319

tent improvement in the performance of LLMs on 320

BIJECTIVE ciphered inputs over NON-BIJECTIVE 321

ciphered inputs (except for Olmo on WinoGrande 322

and Gemma 2 on Hellaswag). This consistent gap 323

demonstrates that LLMs solve decipherable BI- 324

JECTIVE ciphers better than the undecipherable 325

NON-BIJECTIVE ones. This provides evidence for 326

task learning capabilities of LLMs. 327

4.2 Analysis: Effect of Shuffle Rates 328

As discussed in §3.1, the shuffle rate r dictates the 329

percentage of tokens that are substituted. When r 330

is near 0, the cipher has little to no impact. When r 331

nears 1, almost all tokens are shuffled, making the 332

task nearly unsolvable. Therefore, we expect the 333

largest difference between BIJECTIVE and NON- 334

BIJECTIVE ciphers when r is somewhere between 335

the two extremes. We verify this intuition in Fig.2 336

which shows the performance of Llama 3.1 on 337

the Amazon dataset with priority sampling. We 338

can observe the largest gap between BIJECTIVE 339

and NON-BIJECTIVE ciphers across the interval 340

r ∈ (0.4, 0.6), which aligns with expectations. 341

4.3 Analysis: Effect of Number of Demos 342

Prior work (Srivastava et al., 2023) shows ICL per- 343

formance improves with more demonstrations. Ta- 344

ble 2 reports performance gaps between BIJEC- 345

TIVE and NON-BIJECTIVE ciphers as the number 346

of demos varies. BIJECTIVE consistently outper- 347

forms NON-BIJECTIVE, with the gap widening as 348
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Model → Cipher 20-shot

Dataset (shuffle rate) ↓ Llama3.1 Qwen2.5 Olmo Gemma2

SST-2 (r = 0.5) NON-BIJECTIVE 58.3 69.0 67.7 70.5
BIJECTIVE 63.1 (+4.8 ↑)∗ 73.5 (+4.5 ↑)∗ 72.7 (+5.0 ↑)∗ 74.2 (+3.7 ↑)∗

Amazon (r = 0.6) NON-BIJECTIVE 64.7 72.6 77.2 80.8
BIJECTIVE 72.3 (+7.6 ↑)∗ 77.9 (+5.3 ↑)∗ 80.2 (+3.0 ↑)∗ 85.0 (+4.2 ↑)∗

HellaSwag (r = 0.3) NON-BIJECTIVE 29.7 52.8 25.9 37.1
BIJECTIVE 31.9 (+2.2 ↑)∗ 62.3 (+9.5 ↑)∗ 26.1 (+0.2 ↑)∗ 36.6 (-0.5 ↓)

WinoGrande (r = 0.1) NON-BIJECTIVE 53.7 61.3 53.4 63.5
BIJECTIVE 55.5 (+1.8 ↑)∗ 62.5 (+1.2 ↑) 53.1 (-0.3 ↓) 63.5 (+0.0 ↑)

Table 1: LLM accuracies (reported in %) with 20-shot demonstrations, under BIJECTIVE and NON-BIJECTIVE
ciphers. For each dataset, we fix the shuffle rate to a reasonable value here to demonstrate the gap. We provide
an analysis on the effect of shuffle rate later (§4.2). The numbers inside the parenthesis shows the change from
NON-BIJECTIVE to BIJECTIVE ciphering (gains in green↑ and losses in red↓). In majority of cases, we observe
consistent performance gains under BIJECTIVE cipher. Statistically significant gains are indicated via ∗.
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Figure 2: Llama 3.1 8B performance on Amazon dataset. Left: Under the BIJECTIVE cipher, accuracy decreases
smoothly as the shuffle rate increases, highlighting the difficulty in interpreting the ciphered text. Accuracy also
increases with more demonstrations, suggesting the model’s ability to solve BIJECTIVE cipher. Right: y-axis shows
the accuracy gap between BIJECTIVE and NON-BIJECTIVE ciphers. For very high shuffle rates (e.g, > 0.7), the
task become very hard to understand and solve (for the model and even humans) as it becomes ill-defined.

demos increase—though this effect plateaus be-349

yond a point, particularly for Hellaswag and Wino-350

Grande. Fig.2 (on the right) also shows this visually351

for the Amazon dataset.352

4.4 Analysis: Effect of Alignment353

Thus far, we have shown results on pre-trained354

models (before alignment). Here we verify if355

the results hold up on aligned (e.g., instruction-356

tuned) models. Fig.3 compares Llama-3.1-8B (not357

aligned) and Llama-3.1-8B-Instruct (aligned),358

which quantifies the effect of alignment on the359

gaps between BIJECTIVE and NON-BIJECTIVE360

ciphers. As expected, the aligned model361

(Llama-3.1-8B-Instruct) outperforms the non-362

aligned model (Llama-3.1-8B), on both BIJEC-363

TIVE and NON-BIJECTIVE ciphers. But crucially,364

the gaps between the two ciphers remain similar365

in both settings. This indicates that the decipher- 366

ability for BIJECTIVE ciphers is maintained in 367

aligned models. §F shows more complete results 368

on Llama3.1-8B-Instruct. 369

4.5 Analysis: Effect of Model Size 370

Fig.4 compares Llama-3.1-8B and 371

Llama-3.1-70B, showing the effect of model 372

size on the gaps between BIJECTIVE and 373

NON-BIJECTIVE ciphers. As the model size 374

increases, performances for both BIJECTIVE 375

and NON-BIJECTIVE ciphers improve. The gaps 376

between the two ciphers remains similar in the 377

large model, indicating the decipherability of 378

BIJECTIVE ciphers across models of different 379

sizes. We do not observe any larger gaps in the 380

large model compared to the small model. §G 381

shows more complete results on Llama3.1-70B. 382
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Shots → Cipher Model: Llama 3.1 8B

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) NON-BIJECTIVE 56.9 59.5 58.6 58.3 62.6 58.4
BIJECTIVE 59.5 (+2.6 ↑)∗ 61.0 (+1.5 ↑) 60.8 (+2.2 ↑) 63.1 (+4.8 ↑)∗ 65.4 (+2.8 ↑)∗ 64.9 (+6.5 ↑)∗

Amazon (r = 0.6) NON-BIJECTIVE 63.1 61.8 68.1 64.7 64.8 72.5
BIJECTIVE 67.8 (+4.7 ↑)∗ 67.6 (+5.8 ↑)∗ 74.5 (+6.4 ↑)∗ 72.3 (+7.6 ↑)∗ 72.6 (+7.8 ↑)∗ 82.6 (+10.1 ↑)∗

HellaSwag (r = 0.3) NON-BIJECTIVE 31.7 29.7 30.7 29.7 30.9 33.1
BIJECTIVE 34.2 (+2.5 ↑)∗ 31.7 (+2.0 ↑) 34.1 (+3.4 ↑)∗ 31.9 (+2.2 ↑)∗ 31.6 (+0.7 ↑) 33.9 (+0.8 ↑)

WinoGrande (r = 0.1) NON-BIJECTIVE 54.9 53.2 53.7 53.7 53.3 54.3
BIJECTIVE 56.3 (+1.4 ↑) 53.8 (+0.6 ↑)∗ 54.2 (+0.5 ↑)∗ 55.5 (+1.8 ↑)∗ 54.6 (+1.3 ↑)∗ 55.5 (+1.2 ↑)∗

Table 2: Llama3.1 8B accuracies (reported in %) on different datasets with varying numbers of ICL examples
under BIJECTIVE vs. NON-BIJECTIVE ciphers. The numbers inside the parenthesis shows the change from
NON-BIJECTIVE to BIJECTIVE cipher. Statistically significant gains are indicated via ∗.
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Figure 3: Accuracy comparison of Llama-3.1-8B and Llama-3.1-8B-Instruct on four datasets under BIJECTIVE and
NON-BIJECTIVE ciphers with 20-shot (§4.4). Both aligned and non-aligned models achieve similar relative
improvements when solving tasks encoded with a BIJECTIVE cipher, compared to those encoded with NON-
BIJECTIVE ciphers.

4.6 Analysis: Probing Representations383

To examine how LLMs process ciphered inputs,384

we use Logit Lens (nostalgebraist, 2020) to probe385

their intermediate layer representations. Logit Lens386

takes token embeddings from intermediate layers387

and decodes them using the final LM head. We con-388

duct this probing on the Amazon sentiment dataset389

using Llama 3.1 8B.390

Selecting tokens for probing: We first pick 600391

most frequent tokens in the demo set after filtering392

out tokens other than verbs, nouns and adjectives,393

using NLTK (Bird et al., 2009). We randomly sam-394

ple 30 tokens from them as the “original tokens”.395

We then randomly sample another 30 tokens from396

the remaining 570 tokens as the “substituted to-397

kens”, each of which has a one-to-one correspon-398

dence with the original tokens. Token substitu-399

tion: For BIJECTIVE cipher, we create a bijection400

between the 30 original tokens and the selected 30401

substitution tokens, creating a mapping for the orig-402

inal tokens to be substituted. For NON-BIJECTIVE403

cipher, we substitute each occurrence of each origi-404

nal token, by a randomly sampled token from the 405

remaining 570 tokens. 406

Building ciphered inputs: For each original token 407

t′ (the token to be ciphered), we sample 15 ex- 408

amples from the demo pool that contain t′, and 409

apply our two substitution ciphers to build the 410

ciphered prompt. Given the positions of orig- 411

inal tokens P = (p1, p2, ..., pn), we apply the 412

Logit Lens and observe embeddings at positions 413

P ′ = (p1− 1, p2− 1, ..., pn− 1) (i.e., one position 414

prior) to find the ranks of original tokens and “sub- 415

stituted tokens”. This gives us an understanding 416

of how the model changes its preference between 417

original and substituted tokens. We quantify this 418

notion as the rank difference (original token rank - 419

substitution token rank): 420

rank-diff = rank(tj)− rank(c(tj)), (1) 421

where rank denotes the position of a given token in 422

the model’s softmax score over the vocabulary set. 423

LLM representations favor substituted tokens in 424

BIJECTIVE cipher: For BIJECTIVE cipher (Fig.5; 425

left) as the model observes more substitutions, the 426
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Figure 4: Accuracy comparison of Llama-3.1-8B and Llama-3.1-70B on four datasets under BIJECTIVE and
NON-BIJECTIVE ciphers with 20-shot (§4.5).

Figure 5: x-axis indicates the i-th occurrence of ciphered tokens in the Llama 3.1 context. y-axis indicates the
rank difference (Eq 1). Positive values (red) indicate the model’s preference for substituted tokens over original
ones. In the BIJECTIVE cipher (left), we see a preference that favors substituted tokens. However, there is no clear
preference in the NON-BIJECTIVE cipher (right).

rank difference changes from negative to positive427

(in deeper layers, where the model interpreting with428

LogitLens is more meaningful). Consistently, the429

model gives a higher rank to the substituted tokens430

than the original tokens, suggesting that the model431

starts to understand the cipher. In contrast, there is432

no trend for NON-BIJECTIVE cipher (Fig.5; right)433

as there is nothing to decipher.434

5 Related Work435

Dual operating modes of ICL: Min et al. (2022)436

showed the disconnect between “learning” and the437

content of in-context demonstrations (lack of task438

“learning”). This motivated following works to439

identify two primary modes of operation for In-440

Context Learning (ICL): task retrieval (TR), which441

involves recalling patterns previously encountered442

in pre-training data, and task learning (TL), which443

involves learning new patterns on-the-fly that were444

not seen during pre-training. Some studies em-445

phasize TR by exploring the factual recall capa-446

bilities of ICL (Sun et al., 2023; Golchin et al.,447

2024; Han et al., 2023; Zhao, 2023; Reddy, 2023; 448

Dankers and Titov, 2024), providing insights into 449

how LLMs memorize pre-training data, thus fa- 450

cilitating TR. Other studies (Lin and Lee, 2024; 451

Song et al., 2024; Nafar et al., 2024; Anand et al., 452

2024) focus on simplified datasets (e.g., linear re- 453

gression) or architectures (e.g., shallow transform- 454

ers), which differ from our focus. Other studies 455

focus on the TL capabilities of the model, but use 456

simplified datasets (e.g., linear regression) or archi- 457

tectures (e.g., shallow transformers) (Lin and Lee, 458

2024; Song et al., 2024; Nafar et al., 2024; Anand 459

et al., 2024). In contrast, our method is aimed at 460

real datasets and real LLMs. Additionally, Pan 461

et al. (2023); Wang et al. (2024) have attempted 462

to separate TR and TL through output interven- 463

tion by replacing labels with abstract symbols like 464

numbers or letters. However, it remains uncertain 465

whether using abstract labels effectively eliminates 466

the influence of TR in ICL. Many human-readable 467

tasks may have inherent priors embedded in the 468

pre-training datasets, suggesting that LLMs might 469

7



still use inputs and prompt structures to infer the470

task, thereby engaging in implicit task retrieval.471

Our approach proposes an alternative method for472

quantifying TL by intervening in the input space.473

Ciphers and their use in AI: Substitution ci-474

phers are studied in NLP for their potential475

to decipher lost languages without parallel cor-476

pora (Knight et al., 2006; Ravi and Knight, 2008,477

2011; Dou and Knight, 2012; Berg-Kirkpatrick478

et al., 2013; Pourdamghani and Knight, 2017; Nuhn479

et al., 2013; Berg-Kirkpatrick and Klein, 2011; Cor-480

lett and Penn, 2010; Aldarrab and May, 2020, inter481

alia). For example, Ravi and Knight (2011) pro-482

pose a Bayesian approach combining n-gram mod-483

els and dictionaries for efficient sampling-based484

decipherment. Deterministic methods also exist,485

using optimization or heuristics (Peleg and Rosen-486

feld, 1979; Ganesan and Sherman, 1993; Olson,487

2007). Yuan et al. (2023) is the only work we know488

applying ciphers to LLMs (GPT-4) in the context489

of safety.490

6 Discussion and Conclusion491

BIJECTIVE cipher is not a single task. The pro-492

posed ciphers are a broad reformulation mecha-493

nism of existing tasks. The underlying task can be494

any task chosen by the user. Our method offers495

a general-purpose framework for task reformula-496

tion that enables us to probe the boundary between497

memorization and generalization.498

Does BIJECTIVE cipher guarantee measuring499

only “learning”? Achieving a perfect distinc-500

tion between “learning” and “retrieval” may be501

unattainable, as any learning inherently involves502

non-zero level of retrieval (e.g., language under-503

standing). Our framework provides a method to504

quantify learning, by analyzing the difference be-505

tween how LLMs process a random but learnable506

bijection, vs non-bijective noise. Though under-507

standing the complementarity of these approaches508

and success at quantifying pure learning remains509

to be further understood in future work.510

Do the modest gains of BIJECTIVE cipher in-511

dicate that the weakness of “learning” in ICL?512

Not necessarily. The proposed re-encoding of ICL513

transforms tasks into more complex problems that514

are inherently more challenging to solve. This is515

a feature, not a bug, as it allows us to argue that516

such esoteric encoding tasks reduce the potential517

confounding effect of retrieval. However, the side518

effect is that this increased difficulty in task re- 519

encoding results in smaller gains. The key point 520

is that there are consistent positive gains between 521

the BIJECTIVE and NON-BIJECTIVE settings. The 522

magnitude of this gap is a secondary considera- 523

tion and is likely to change with future innovative 524

methods for re-encoding tasks. 525

Can your results be due to data contamination? 526

Our work is motivated by the same issue. Data 527

contamination makes it difficult to attribute the suc- 528

cess of ICL to “retrieval” (from pre-training) vs 529

“learning” (from in-context demonstrations, with- 530

out seeing them a priori). A reasonable approach 531

to measure the latter (and mitigate the former) is 532

through randomized tasks. The point of our study 533

is to substitute the given tasks with randomly gen- 534

erated bijection tokens, which makes it impossible 535

for any model to have memorized them. We report 536

the difference in performance with bijective vs non- 537

bijective ciphering and de-emphasize any absolute 538

performance numbers which could have resulted 539

from memorization of the original task. 540

To measure TL, why don’t we just evaluate 541

LLMs on “novel” tasks? There is currently no 542

straightforward way to define task “novelty”. Prior 543

work has shown that LLM performance correlates 544

strongly with the presence of tasks in the pretrain- 545

ing data (Razeghi et al., 2022; Mallen et al., 2023). 546

To quantify novelty, one would need to either (i) 547

perform large-scale fuzzy matching against pre- 548

training corpora, or (ii) recast tasks into an equiv- 549

alent representation that is unlikely to have been 550

encountered during pretraining. Few works have 551

tried (i) and have shown some success, but we also 552

know that it’s brittle and challenging. Hence, our 553

work focuses on (ii). 554

Conclusion: We introduced ICL CIPHERS, a 555

class of cryptography text transformations designed 556

to evaluate novel task learning capabilities of 557

LLMs. We show that LLMs exhibit the capacity to 558

decipher these novel tasks during inference. This 559

evidence indicates LLMs’ ability to learn novel 560

tasks outside of their pre-training corpus. The ex- 561

act mechanism of this “learning” remains an active 562

area of study. Understanding this mechanism holds 563

the potential to unleash novel problem-solving ca- 564

pabilities of LLMs. 565
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Limitations566

We discuss the potential limitations of our work:567

Deviation from natural language: Ciphered568

text generated diverges from natural language.569

While this is useful to assess LLMs’ TL capabil-570

ities, it may also make the task excessively chal-571

lenging for them. It is possible there might be572

alternative ways to measure learning in a way that573

maintains the naturalness of the tasks.574

More models and datasets: Although we eval-575

uated 24 settings (six models × four datasets),576

expanding our study to include more and larger577

models would strengthen our findings. The largest578

model we tested was Llama 3.1 70B, due to limited579

computing resources. Additionally, we did not eval-580

uate large, aligned models such as GPT-4-o1, or581

Gemini. Anecdotal evidence suggests that aligned582

models may lose their ability to follow in-context583

demonstrations (Fu et al., 2022), a crucial aspect of584

our task definition. However, we acknowledge that585

our task could potentially be adapted into a task de-586

scription or instruction format suitable for aligned587

models, which deviates from our current setting588

and could be explored in future work. It would also589

be interesting to evaluate ICL CIPHERS on various590

pre-training checkpoints to better understand how591

ICL “learning” emerges through pre-training.592

Deeper interpretability analysis: In terms of593

interpretability analysis, we experimented with sev-594

eral approaches (e.g., PatchScope (Ghandeharioun595

et al., 2024)) but found success only with the sim-596

plest method, the Logit Lens. More advanced inter-597

pretability analyses could provide deeper insights598

into the underlying mechanisms, offering a clearer599

understanding of the processes involved.600

We recognize these as areas for further explo-601

ration and encourage future research to address602

these limitations.603
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Supplemental Material 893

A Additional Related Work 894

Alternative explanations of ICL: Since the discovery of ICL (Brown et al., 2020), numerous studies 895

have explored it across various contexts (Zhao et al., 2021; Min et al., 2022; Mishra et al., 2022; Han 896

et al., 2023; Wang et al., 2023; Sia et al., 2024; Vacareanu et al., 2024; Mueller et al., 2024). For example, 897

Perez et al. (2021); Lu et al. (2022); Mishra et al. (2022) demonstrated ICL’s sensitivity to the selection 898

and sequence of demonstrations, while Shin et al. (2022); Razeghi et al. (2022) highlighted its sensitivity 899

to the frequency and size of the relevant pre-training corpus. Another research direction seeks to elucidate 900

the mechanisms behind ICL. Xie et al. (2021) described ICL as implicit Bayesian inference, where ICL 901

demonstrations are mapped to a latent concept (task) learned during pre-training. Other works have 902

attempted to explain ICL as a form of implicit optimization (gradient descent and its variants) (Garg 903

et al., 2022; Zhang et al., 2023; Dai et al., 2023; Von Oswald et al., 2023; Li et al., 2023), though the 904

applicability of these formalisms to real LLMs is debated (Shen et al., 2024). A few studies aim to 905

understand how ICL emerges in LLMs. Hahn and Goyal (2023) suggested that the compositional structure 906

of natural language leads to emergent in-context learning, while other works (Chan et al., 2022) propose 907

that certain distributional properties in the pre-training data may give rise to ICL. Although these studies 908

offer varying perspectives into the origin and functioning nature of ICL, we propose to disentangle TL and 909

TR components of ICL by observing LLMs’ behavior on randomly generated bijections vs. non-bijection 910

noise. 911

B Additional Experimental Details 912

B.1 Preserved Tokens 913

For Llama 3.1, we preserve the tokens whose ids range from 0 to 255, 128000 to 128256. For Qwen 2.5, 914

we preserve the tokens whose ids range from 0 to 255, 151643 to 151664. For OLMo, we preserve the 915

tokens whose ids range from 0 to 244, 50254 to 50279. For Gemma 2, we preserve the tokens whose ids 916

range from 0 to 472, 255968 to 255999. For all the models, we preserve the spaces and underlines to 917

ensure the framework of each task. For example, in the WinoGrande dataset, LLMs are asked to predict 918

the pronouns in a sentence, where the original pronouns are replaced by an underline. 919

B.2 Handling of White Space 920

LLMs encode the spaces between words differently depending on their tokenization. Gemma 2 uses a 921

special underline to represent a space, while Llama 3.1 , QWen 2.5 and OLMo uses ’Ġ’. There are usually 922

two versions of the same word – with or without a space before it, which corresponds to two different 923

tokens. Take Llama 3.1 for example, the encoded id of “is” is 285 while that of “Ġis” is 374. We name 924

tokens containing a space at the beginning as “space tokens” and the others as “non-space tokens”. To 925

avoid disturbing spaces in the original text, which may confuse the model, we constrain the shuffling to be 926

within their space/non-space sets. 927

B.3 Design choices for ICL CIPHERS 928

In Tab.3, we explain our design strategies for choosing priority sampling (in selecting demonstrations 929

from the demo pool) and zipfian shuffling (in choosing the mapping c). 930

Strategies for ... Variant 1 Variant 2

selecting (sampling)
demonstrations

Priority: select demonstrations that contain the
target substitution in the test example ✓

Non-priority: select demonstrations randomly ✗

choosing the token
mapping c

Zipfian: c maps tokens of similar frequency
(popularity) among each other ✓

Non-Zipfian: c maps tokens irrespective of their
frequency (popularity) ✗

Table 3: Design choices for experiments in ICL CIPHERS discussed in §3.1.
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B.4 Datasets931

For SST-2, HellaSwag and WinoGrande no label provided for the test set. Therefore, we use their932

validation set instead.933

SST-2: We use its validation set as our test set, which has size of 872. Its training set, which contains934

67.3k examples, is used as the demo pool.935

Amazon: To fit the Amazon dataset into binary sentiment classification framework, we filter ratings936

4-5 as positive and 1-2 as negative (discard rating 3). We focus on reviews under the the “All_Beauty”937

category in our experiments. We sample 144k positive and negative samples to build the demo pool; and938

500 other positive and negative examples as the test set.939

HellaSwag: We use its validation set as our test set, which contains 444 positive examples and 428940

negative examples (872 examples in total). Its training set, which contains 38K positive examples and 30k941

negative examples, is used as the demo pool.942

We randomly sample 1k examples from the validation set as our test set. We use its training set as the943

demo pool, which contains 40k examples.944

WinoGrande: We use its dev set as the test set, which contains 1267 examples. Its xl training set is945

used as demo pool, which has 40k examples.946

B.5 Prompt Template947

We don’t include any instructions in our prompt. For SST-2 and Amazon, we use the following prompt948

template:949

Input: {input_demo}950

Output: {label_demo}951

...952

Input: {input_test}953

where {input_demo} and {label_demo} are the input text and sentiment labels of demonstrations, and954

{input_test} is the input text of test case.955

For HellaSwag and WinoGrande, we use the following prompt template:956

Question: {question_demo}957

Options: {options_demo}958

Answer: {answer_demo}959

...960

Question: {question_test}961

Options: {options_test}962

where question_demo}, options_demo} and {answer_demo} are the questions, options and correct answers963

of demos, and question_test} and options_test} are the question and option of the test case.964

C Example Inputs/Outputs965

Here we display the example inputs/outputs on all the four datasets. Note that in our experiments the966
original inputs are not included in the prompts.967
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Dataset: SST-2; Model: QWen 2.5 ; Cipher: BIJECTIVE; Shuffle Rate: 0.6

Ciphered Input: been sc Mil Swift the Inch for pen Venezuela Moody
Original Input: been sent back to the tailor for some major alterations
Output: negative

Ciphered Input: is born Slovenia of an Platform San sitcom involved also Sr implementedecture
embarrassed Swift Malay you reach for the tissues Confederate
Original Input: is born out of an engaging storyline , which also is n’t embarrassed to make
you reach for the tissues .
Output: positive
...

Ciphered Test Input: allows us Swift hope Esc implementedolan Sr poised Swift cheating a
Venezuela career Mr a assembled Kann steak filmmaker Confederate
Original Test Input: allows us to hope that nolan is poised to embark a major career as a
commercial yet inventive filmmaker .

968

Dataset: Amazon ; Model: Gemma 2 ; Cipher: BIJECTIVE; Shuffle Rate: 0.6

Ciphered Input: didnSUwell really notice anything mob. I sink it householder substance Woodward
Bean Simple Woodward Senior Caldwell Snowyyn Ato was instance.
Original Input: didn’t really notice anything special. I bought it because of the reviews and
the price but honestly, I was disappointed.
Output:negative

Ciphered Input:Item arrived regions principle unrest neighbours’]modern /><modern urchatosyn
Woodward item was calcium steamer principle Counter cap rendering Woodward cover ent since it
periodsSUwell Fam Arch anymore Simple iconicBer bottom Simple consequently’]modern /><modern
urchofficial was wrapped dentist regions principle padded envelope.
Original Input:Item arrived in a quick manner.<br /><br />However, the item was received with a
damaged cap rendering the cover useless since it won’t snap on anymore and dented bottom and
top.<br /><br />It was wrapped tightly in a padded envelope.
Output:negative
...

Ciphered Test Input: tried it for cosmetic qualifications perimeter a day spa0̆0f2 didnPervers
Tehran workil
Original Test Input: tried it for cosmetic procedures in a day spa; didn’t really work.

969

Dataset: Hellaswag; Model: OLMo ; Cipher: BIJECTIVE; Shuffle Rate: 0.3

Ciphered Question: Ter Back sits million titled with his Board effective on the keys. the Back
Original Question: A man sits a piano with his hands placed on the keys. the man
Ciphered Options: (1) begins playing the titled.\n(2) Carlos the keys with million malorn.\n(3)
beats the titled in million benefitedmic thought.\n(4) increases the play for playing.\n
Original Options: (1) begins playing the piano.\n(2) hits the keys with a mallet.\n(3) beats
the piano in a rhythmic beat.\n(4) increases the volume for playing.\n
Answer: (1)
...
Ciphered Question: People are noted on the street. million Back
Original Question: People are running on the street. a man
Ciphered Options: (1) is wearing poetilts.\n(2) limited million drink out Wars million After
presidents.\n(3) negotiating into million encourages Wars fire.\n(4) limited million high jump
in million Chris competition.\n
Original Options: (1) is wearing stilts.\n(2) takes a drink out of a water bottle.\n(3) jumps
into a pile of fire.\n(4) takes a high jump in a bar competition.\n

970
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Dataset: WinoGrande ; Model: Llama 3.1 ; Cipher: BIJECTIVE; Shuffle Rate: 0.3

Ciphered Question: Estonia ferry that my parents story tied I permanent in Johnston permanent
Stadium partners bla than my house now because the _ permanent anchored.
Original Question: The home that my parents had when I was in school was a lot nicer than my
house now because the _ was sophisticated.
Ciphered Options: (1) ferry, (2) house
Original Options: (1) home, (2) house
Answer:(1)
...
Ciphered Question: Sarah permanent Stadium much better Chart than Maria so _ always got the
easier cases.
Original Question: Sarah was a much better surgeon than Maria so _ always got the easier cases.
Ciphered Options: (1) Sarah, (2) Maria
Original Options: (1) Sarah, (2) Maria

971

D Additional Related Work972

Empirical understanding of ICL: Ever since In-Context Learning was discovered (Brown et al., 2020),973

multiple works have studied it under diverse settings (Zhao et al., 2021; Min et al., 2022; Mishra et al.,974

2022; Han et al., 2023; Wang et al., 2023; Sia et al., 2024; Vacareanu et al., 2024; Mueller et al., 2024).975

For instance, Srivastava et al. (2023) benchmarked ICL under multiple tasks and models; Perez et al.976

(2021); Lu et al. (2022) showed the sensitivity of ICL to the choice of demonstrations and their orderings;977

Shin et al. (2022); Razeghi et al. (2022) showed the sensitivity of ICL performance to the frequency and978

size of the relevant pre-training corpus. These works have made useful observations that allow us to better979

use this elusive quality of LLMs.980

Functional nature of ICL: A more recent line of study aims to understand how ICL actually works in981

LLMs. Multiple works have compared ICL with implicit optimization (specifically gradient descent) (Garg982

et al., 2022; Zhang et al., 2023; Dai et al., 2023; Akyürek et al., 2022; Von Oswald et al., 2023; Li et al.,983

2023; Kim and Suzuki, 2024). This line of work claims that Transformers can meta-learn to perform984

optimization of internal models given a set of demonstrations. However, their study setup with toy985

transformers does not align with how LLMs are trained as shown by Shen et al. (2024). Moreover, this986

line of study does not explain the TR capabilities of LLMs.987

Forces that lead to ICL: Few works try to understand how ICL emerges in LLMs. Xie et al. (2021)988

explained ICL as implicit Bayesian inference, which maps a ICL demonstrations to a latent concept (task)989

learned via pre-training. Hahn and Goyal (2023) posited that compositional structure in natural language990

gives rise to emergent in-context learning. Other works (Chan et al., 2022) theorize more distributional991

properties in the pre-training data, that may give rise to ICL. Many of these works explain some properties992

of ICL but fail at others. The exact origin of ICL in LLMs still remains an active area of study.993

E Priority vs. Non-Priority Sampling994

Fig.2 shows peformance of LLaMa 3.1 8B on Amazon dataset with priority sampling. Fig.7 and995

Fig.8 shows peformance of LLaMa 3.1 8B on SST-2 and Amazon datasets with non-priority sampling.996

Comparing with Fig.6 and Fig.2, they demonstrate similar trends but the performances are more unstable997

due to the randomness of non-priority sampling. Therefore, we use priority sampling throughout our998

experiments for more steady results.999

F Pretrained-only vs. Aligned Models1000

Table 4 shows the performances of Llama3.1-8B-Instruct on different datasets. Comparing with its1001

pretrained-only version (Table 2), it demonstrates better performances. However, their gaps between1002

BIJECTIVE and NON-BIJECTIVE ciphers are on-par.1003
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Figure 6: Llama 3.1 8B performance on SST-2 dataset, which shows similar trends with Fig.2. Left: Under
the BIJECTIVE cipher, accuracy decreases smoothly as the shuffle rate increases, highlighting the difficulty in
interpreting the ciphered text. Accuracy also increases with more demonstrations, suggesting the model’s ability to
solve BIJECTIVE cipher. Right: y-axis shows the accuracy gap between BIJECTIVE and NON-BIJECTIVE ciphers.
For very high shuffle rates (e.g, > 0.7), the task become very hard to understand and solve (for the model and even
humans) as it becomes ill-defined.
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Figure 7: Peformance of Llama 3.1 8B on SST-2 dataset with non-priority sampling, comparing with Fig.6. Left:
The accuracies under BIJECTIVE cipher. Right: The y-axis displays the accuracy gap between BIJECTIVE and
NON-BIJECTIVE ciphers.

G Small vs. Large Model 1004

Table 5 shows the performances of Llama3.1-70B on different datasets. Comparing with Llama3.1-8B 1005

(Table 2), it demonstrates better performances. However, their differences in gaps between BIJECTIVE 1006

and NON-BIJECTIVE ciphers are mixed. 1007

H Significance of Results 1008

To determine if the gaps between BIJECTIVE and NON-BIJECTIVE ciphers are significant, we conduct 1009

McNemar’s test (McNemar, 1947). Table 6, Table 7, Table 8 and Table 9 show the computed p-values for 1010

Table 1, Table 2, Table 4 and Table 5 respectively. The gap is regard as significant if its corresponding 1011

p-value is no larger than 0.05. 1012

I Restricting the Space of Cipher 1013

We notice that the gaps on HellaSwag and WinoGrande are smaller than those in SST-2 and Amazon. The 1014

reason behind it could be the complexity of these two datasets, which could impact the model’s ability to 1015

solve the ciphers. To verify this, we constrain the vocabulary shuffling to only nouns on these two datasets. 1016
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Figure 8: Peformance of Llama 3.1 8B on Amazon dataset with non-priority sampling, comparing with Fig.2. Left:
The accuracies under BIJECTIVE cipher. Right: The y-axis displays the accuracy gap between BIJECTIVE and
NON-BIJECTIVE ciphers.

Shots → Cipher Model: Llama 3.1 8B Instruct

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) NON-BIJECTIVE 65.5 66.5 68.9 68.1 67.5 65.5
BIJECTIVE 69.8 (+4.3 ↑)∗ 70.8 (+4.3 ↑)∗ 72.4 (+3.5 ↑)∗ 70.8 (+2.7 ↑)∗ 70.0 (+2.5 ↑)∗ 71.8 (+6.3 ↑)∗

Amazon (r = 0.6) NON-BIJECTIVE 70.5 80.0 77.3 79.3 80.6 80.5
BIJECTIVE 75.8 (+5.3 ↑)∗ 82.7 (+2.7 ↑)∗ 82.4 (+5.1 ↑)∗ 82.4 (+3.1 ↑)∗ 84.6 (+4.0 ↑)∗ 86.1 (+5.6 ↑)∗

HellaSwag (r = 0.3) NON-BIJECTIVE 43.2 43.2 42.3 41.6 41.4 41.0
BIJECTIVE 44.8 (+1.6 ↑)∗ 47.5 (+4.3 ↑)∗ 44.4 (+2.1 ↑)∗ 44.8 (+3.2 ↑) 45.1 (+3.7 ↑)∗ 42.4 (+1.4 ↑)∗

WinoGrande (r = 0.1) NON-BIJECTIVE 57.4 58.1 55.7 57.3 56.4 57.1
BIJECTIVE 59.0 (+1.6 ↑) 58.7 (+0.6 ↑)∗ 57.4 (+1.7 ↑)∗ 59.3 (+2.0 ↑)∗ 58.2 (+1.8 ↑)∗ 57.4 (+0.3 ↑)∗

Table 4: Llama3.1 8B Instruct accuracies (reported in %) on different datasets with varying numbers of ICL examples
under BIJECTIVE vs. NON-BIJECTIVE ciphers, as comparing to Table 2. The numbers inside the parenthesis shows
the change from NON-BIJECTIVE to BIJECTIVE cipher. Statistically significant gains are indicated via ∗.

Table 10 shows that the changes of gaps between BIJECTIVE and NON-BIJECTIVE ciphers are mixed.1017

J Further Results on Probing Analysis1018

To get a clearer vision, we extract the rank difference from the last layer on SST-2, dividing them equally1019

into 5 chunks, as shown in Fig.10. For random substitution, there is not much change for rank difference.1020

For BIJECTIVE substitution, rank difference increase as the chunk number gets bigger. This suggests that1021

as LLM sees more occurence of the substitution token, it learns to use substitution token as the original1022

token, namely solving ICL CIPHERS.1023
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Shots → Cipher Model: Llama 3.1 70B

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) NON-BIJECTIVE 64.8 70.3 66.4 71.8 69.8 74.5
BIJECTIVE 68.9 (+4.1 ↑)∗ 71.0 (+0.7 ↑) 69.6 (+3.2 ↑)∗ 76.9 (+5.1 ↑)∗ 74.4 (+4.6 ↑)∗ 80.3 (+5.8 ↑)∗

Amazon (r = 0.6) NON-BIJECTIVE 73.1 73.7 80.6 77.7 79.3 82.0
BIJECTIVE 76.5 (+3.4 ↑)∗ 78.6 (+4.9 ↑)∗ 84.4 (+3.8 ↑)∗ 82.0 (+4.3 ↑)∗ 84.0 (+4.7 ↑)∗ 85.7 (+3.7 ↑)∗

HellaSwag (r = 0.3) NON-BIJECTIVE 42.2 39.1 40.4 39.6 40.6 38.5
BIJECTIVE 44.2 (+2.0 ↑)∗ 43.6 (+4.5 ↑)∗ 43.1 (+2.7 ↑)∗ 42.2 (+2.6 ↑)∗ 40.9 (+0.3 ↑)∗ 41.6 (+3.1 ↑)∗

WinoGrande (r = 0.1) NON-BIJECTIVE 65.1 69.5 69.9 70.1 71.0 67.4
BIJECTIVE 68.6 (+3.5 ↑)∗ 70.1 (+0.6 ↑) 71.2 (+1.3 ↑)∗ 71.4 (+1.3 ↑)∗ 72.2 (+1.2 ↑)∗ 70.8 (+3.4 ↑)∗

Table 5: Llama3.1 70B accuracies (reported in %) on different datasets with varying numbers of ICL examples
under BIJECTIVE vs. NON-BIJECTIVE ciphers. The numbers inside the parenthesis shows the change from
NON-BIJECTIVE to BIJECTIVE cipher. Statistically significant gains are indicated via ∗.

Model → 20-shot

Dataset (shuffle rate) ↓ Llama3.1 Qwen2.5 Olmo Gemma2

SST-2 (r = 0.5) 0.000 0.000 0.000 0.001

Amazon (r = 0.6) 0.000 0.000 0.000 0.000

HellaSwag (r = 0.3) 0.000 0.000 0.000 0.663

WinoGrande (r = 0.1) 0.000 0.084 0.786 0.943

Table 6: Significance results (p-values) of McNemar’s test for Table 1. The gap between BIJECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.

Shots → Model: Llama 3.1 8B

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) 0.018 0.205 0.084 0.000 0.020 0.000

Amazon (r = 0.6) 0.000 0.000 0.000 0.000 0.000 0.000

HellaSwag (r = 0.3) 0.015 0.627 0.000 0.000 0.278 0.357

WinoGrande (r = 0.1) 0.110 0.000 0.000 0.000 0.000 0.000

Table 7: Significance results (p-values) of McNemar’s test for Table 2. The gap between BIJECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.

Shots → Model: Llama 3.1 8B Instruct

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) 0.000 0.000 0.001 0.016 0.025 0.000

Amazon (r = 0.6) 0.003 0.002 0.000 0.000 0.000 0.000

HellaSwag (r = 0.3) 0.000 0.000 0.031 0.081 0.000 0.023

WinoGrande (r = 0.1) 0.067 0.000 0.000 0.013 0.015 0.000

Table 8: Significance results (p-values) of McNemar’s test for Table 4. The gap between BIJECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.
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Shots → Model: Llama 3.1 70B

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) 0.000 0.497 0.006 0.000 0.000 0.000

Amazon (r = 0.6) 0.000 0.000 0.000 0.000 0.000 0.000

HellaSwag (r = 0.3) 0.000 0.006 0.000 0.000 0.000 0.000

WinoGrande (r = 0.1) 0.000 0.446 0.000 0.000 0.000 0.000

Table 9: Significance results (p-values) of McNemar’s test for Table 5. The gap between BIJECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.

Cipher Llama3.1 8B 20-shot

Dataset (shuffle rate) All Noun

HellaSwag (r = 0.3) NON-BIJECTIVE 29.7 32.1
BIJECTIVE 31.9 (+2.2 ↑) 33.6 (+1.5 ↑)

WinoGrande (r = 0.1) NON-BIJECTIVE 53.7 54.3
BIJECTIVE 55.5 (+1.8 ↑) 56.7 (+2.4 ↑)

Table 10: Llama3.1 8B accuracies (reported in %) with 20-shot demonstrations, under BIJECTIVE and NON-
BIJECTIVE ciphers. “All” operates shuffling on all the tokens while “Noun” constrains shuffling to only nouns.

Figure 9: Complete heatmap of original token rank minus substitution token rank on Amazon for Fig.5. Left:
BIJECTIVE cipher Right: NON-BIJECTIVE cipher
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Figure 10: Average rank differences (original token rank - substitution token rank) in SST-2 (left) and Amazon
(right) datasets for BIJECTIVE (blue) and NON-BIJECTIVE (red) cipher over 15 occurrences, divided into 5 chunks
of size 3. Rank difference serves as a proxy for the model’s deciphering ability. Under BIJECTIVE cipher, this
ability improves with more exposure to substituted tokens, while NON-BIJECTIVE cipher shows no clear pattern.
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