
Adversarial Perturbations Are Formed by Iteratively Learning Linear
Combinations of the Right Singular Vectors of the Adversarial Jacobian

Thomas Paniagua 1 Chinmay Savadikar 1 Tianfu Wu 1

Code: https://github.com/ivmcl/ordered-topk-attack

Abstract
White-box targeted adversarial attacks reveal core
vulnerabilities in Deep Neural Networks (DNNs),
yet two key challenges persist: (i) How many
target classes can be attacked simultaneously in
a specified order, known as the ordered top-K
attack problem (K ≥ 1)? (ii) How to com-
pute the corresponding adversarial perturbations
for a given benign image directly in the image
space? We address both by showing that ordered
top-K perturbations can be learned via itera-
tively optimizing linear combinations of the right
singular vectors of the adversarial Jacobian (i.e.,
the logit-to-image Jacobian constrained by target
ranking). These vectors span an orthogonal, infor-
mative subspace in the image domain. We intro-
duce RisingAttacK, a novel Sequential Quadratic
Programming (SQP)-based method that exploits
this structure. We propose a holistic figure-of-
merits (FoM) metric combining attack success
rates (ASRs) and ℓp-norms (p = 1, 2,∞). Exten-
sive experiments on ImageNet-1k across six or-
dered top-K levels (K = 1, 5, 10, 15, 20, 25, 30)
and four models (ResNet-50, DenseNet-121, ViT-
B, DEiT-B) show RisingAttacK consistently sur-
passes the state-of-the-art QuadAttacK.

1. Introduction
Deep Neural Networks (DNNs) have witnessed tremendous
progress across numerous applications, enabling the recent
development of large foundation models (such as Deep-
Mind’s AlphaZero and AlphaFold and OpenAI’s ChatGPT)
that are widely recognized to pave a promising way to-

1Department of Electrical and Computer Engineering,
North Carolina State University, Raleigh, USA. Correspon-
dence to: Thomas Paniagua <tapaniag@ncsu.edu>, Tianfu Wu
<twu19@ncsu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

wards Artificial General Intelligence (AGI). Despite of the
remarkable achievement, adversarial vulnerability (Szegedy
et al., 2013; Goodfellow et al., 2014) remains the Achilles
heel of all DNNs, particularly in computer vision, as re-
vealed by white-box adversarial attacks, especially targeted
white-box attacks (Carlini & Wagner, 2017) that can fool
trained DNNs towards arbitrarily specified targets. With
the access to network architectures and pretrained weights,
white-box attacks can expose their deep vulnerabilities and
test their robustness. In practice, white-box attacks are also
used as surrogate models in learning transferrable black-
box (Inkawhich et al., 2019; Li et al., 2020a; Naseer et al.,
2021; Zhao et al., 2023; Fang et al., 2024) and no-box (Li
et al., 2020b) attacks. So, seeking more powerful white-
box attacks will provide a foundation both for learning po-
tentially stronger black-box and no-box attacks. In this
paper, we focus on learning white-box targeted attacks in
ImageNet-1k (Russakovsky et al., 2015) classification tasks.

We consider the generalized setting of targeted attacks, or-
dered top-K attacks (Zhang & Wu, 2020; Paniagua et al.,
2023), that relax the traditional top-1 targets (e.g., to fool a
DNN to classify a dog image as a cat) to K targets (K ≥ 1)
in any given orders (e.g., to fool a DNN to classify a dog
image with [car, tree, table] as the ordered top-3 predic-
tion, see the middle in Fig. 1). Ordered top-K targeted
attacks expose deeper vulnerabilities of DNNs, since they
show the manipulability of the decision boundary of DNNs
at the logits subspace levels, especially when K is large
(e.g., K > 20). These attacks are particularly impactful
in applications where the order of predictions significantly
influences outcomes, such as recommendation systems or
multi-class decision-making, and adversaries can exploit
decision hierarchies to disrupt critical processes. Partic-
ularly, safety-critical systems (e.g., face unlock, medical
triage, content moderation) reason over entire ranked lists.
An attacker dictating all top predictions (similar in spirit to
[cat, car, fish] vs only “cat”) obtains finer control and evades
simple “Top-1 changed” detectors.

In the meanwhile, security evaluations now recommend
K > 1. For example, in the new differential-privacy eval-
uation guideline, NIST SP 800-226 (March 2025) (Near

1

https://github.com/ivmcl/ordered-topk-attack

RisingAttacK

e.g., a cat image

e.g., randomly sampled top-3
targets in the order of
[car, tree, table]

Th
e

Pr
io

r A
rt

Figure 1. Workflow comparisons between our proposed image space based RisingAttacK (top) and the prior art (bottom), CWK and
AdvDistill (Zhang & Wu, 2020) and QuadAttacK (Paniagua et al., 2023) for learning ordered top-K targeted adversarial attacks (Zhang &
Wu, 2020) for a benign image xbenign ∈ [0, 1]D (e.g., D = 3× 224× 224). See text for details.

et al., 2025) devotes an entire discussion to “Practical
differentially-private Top-K selection” and cites (Durfee &
Rogers, 2019) as its canonical example which repeatedly
frames robustness/utility checks around whether the entire
ordered set of the highest-scoring items is preserved under
noise—not just the single best—underscoring regulators’
need for Top-K mis-ranking tests. Ordered top-K attacks
thus supply the stress-test regulators and practitioners
request but that Top-1-only methods cannot deliver.

Ordered top-K attacks can be straightforwardly formulated
as an optimization problem with highly non-linear con-
straints, which is intractable in the vanilla form (see Eqn. 4).
Thus, learning ordered top-K attacks poses a unique chal-
lenge as they require the perturbations to precisely influence
the model’s ranking mechanism across multiple outputs
(K > 1), not just a single decision (K = 1). Addressing
ordered top-K attacks offers valuable insight into how mod-
els distribute their confidence across multiple classes and
the vulnerabilities associated with this ranking structure. To
address this challenge, there are two main approaches in the
prior art (see the bottom of Fig. 1):

• Designing surrogate loss functions, such as the CWK

(extended from the CW method (Carlini & Wagner,
2017)) and the Adversarial Distillation method proposed
in (Zhang & Wu, 2020), that transform the constrained
optimization problem to an unconstrained one.

• Reformulating the non-linear constraints to linear
ones, such as the recently proposed QuadAttacK (Pa-
niagua et al., 2023), by first solving the optimization prob-
lem in the feature space of the DNN backbone (i.e., the
input space to the linear head classifier), and then back-

propagating the optimized features through the backbone
to compute adversarial perturbations.

QuadAttacK has shown significant improvement in compar-
ison with methods based on surrogate loss functions. While
QuadAttacK is effective, its effectiveness diminishes signifi-
cantly when K > 20 and the computing budget is restricted
(e.g., 30 steps). It relies on backpropagation to map the
optimized feature space perturbation back to the original
input image space. This introduces an indirect connection
between the optimization problem and the resulting image
space perturbation, leading to limitations as-follows:

• Feature vs. Image Space Misalignment: Minimizing
the perturbation in the feature space does not always cor-
respond to minimizing it in the image space due to the
nonlinear mapping between the two spaces.

• Suboptimal Visual Perturbations: The resulting adver-
sarial examples may not fully align with the visual charac-
teristics of the image, as perturbations that minimize the
distance in feature space may not correspond to minimal
or visually coherent changes in the image space, due to
the nonlinear relationship between the two spaces.

To the best of our knowledge, no existing approaches have
been proposed for learning ordered top-K attacks (K ≥ 1)
directly in the image space due to the complexities of high-
dimensional, non-linear optimization. Potentially due to
this, it remains unresolved to seek an explicit formula for
“seeing” what adversarial perturbations are formed, if pos-
sible. In this paper, we propose a Sequential Quadratic
Programming (SQP) formulation to address the non-
linear optimization challenge of learning ordered top-K

2

RisingAttacK

Figure 2. Examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012 val 00002633
with the ground-truth label, redshank) by our RisingAttacK using a list of randomly sampled 30 targets in the order of: mask,
analog-clock, slide-rule, Siberian-husky, harmonica, African-chameleon, dowitcher, hyena,
wing, pillow, garter-snake, Great-Pyrenees, puffer, banana, West-Highland-white-terrier,
whippet, brown-bear, snowplow, tarantula, space-heater, sports-car, jean, sandbar,
perfume, papillon, triceratops, barrow, peacock, digital-watch, carton. The adversarial pertur-
bations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the
commonly used threshold 8/255 = 0.0314 for ℓ∞ (‘linf’) norms. For the benign image, the top-30 predictions by the four models
respectively are:
• ResNet50: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, grey whale, red-breasted merganser, crane, sea lion, chainlink fence, lakeside, wreck, quail, partridge, screwdriver,

plastic bag, pelican, parachute, killer whale, sulphur-crested cockatoo, African crocodile, white stork, pole, bucket, caldron, hummingbird, sandbar, king penguin, nail, syringe.

• DenseNet121: redshank, ruddy turnstone, red-backed sandpiper, oystercatcher, breakwater, dowitcher, sea lion, academic gown, abaya, mortarboard, red-breasted merganser, lifeboat, cloak, espresso,

lipstick, theater curtain, wood rabbit, umbrella, refrigerator, ruffed grouse, king penguin, partridge, sandbar, diamondback, hen-of-the-woods, wine bottle, mailbox, stone wall, volcano, redbone.

• ViT-B: redshank, red-backed sandpiper, ruddy turnstone, dowitcher, oystercatcher, water ouzel, Madagascar cat, chain saw, apiary, red-breasted merganser, Tibetan mastiff, cicada, seat belt, American egret,

wall clock, mask, snow leopard, schipperke, potter’s wheel, lycaenid, mud turtle, curly-coated retriever, dumbbell, television, strainer, feather boa, buckle, junco, boa constrictor, volcano.

• DEiT-B: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, red-breasted merganser, warthog, worm fence, Indian elephant, African crocodile, maze, badger, snowplow, American

black bear, stone wall, king penguin, car wheel, rock python, water ouzel, guillotine, wild boar, centipede, diamondback, apiary, barrow, horned viper, sundial, guenon, bustard, skunk.

3

RisingAttacK

attacks directly in the image space, as illustrated in Fig. 1
(top), which can address the drawbacks of QuadAttacK (Pa-
niagua et al., 2023). Our approach efficiently solves the
SQP problem by iteratively computing the singular value
decomposition (SVD) of the adversarial Jacobian (i.e., the
attack-targets-ranking constrained logit-to-image Jacobian
matrix), obtained from linearizing the DNN during opti-
mization. This direct optimization in image space provides
deeper insights into the learned adversarial perturbations:
ordered top-K adversarial perturbations can be learned
by iteratively optimizing linear combinations of the right
singular vectors (corresponding to non-zero singular val-
ues) of the adversarial Jacobian. The proposed method is
thus dubbed as RisingAttacK (see examples in Fig. 2).
Our proposed RisingAttacK achieves significant better per-
formance than the prior state-of-the-art method, QuadAt-
tacK (Paniagua et al., 2023) in experiments.

2. Related Work and Our Contributions
Adversarial Attacks. Adversarial attacks aim to expose
the vulnerabilities of DNNs by introducing small, often vi-
sually imperceptible perturbations to input data that cause
the model to produce incorrect or adversary-specified out-
puts. Foundational work in adversarial machine learning
introduced methods for generating adversarial examples
under various norms and constraints, including the Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014),
Projected Gradient Descent (PGD) (Madry et al., 2017), and
the Carlini-Wagner (CW) attack (Carlini & Wagner, 2017).
These early approaches primarily targeted top-1 classifica-
tion outputs, seeking to force the model to misclassify an
input into a specific target class.

Beyond top-1 attacks, researchers have investigated adver-
sarial perturbations that manipulate the top-K predictions
of a model. (Zhang & Wu, 2020) introduced one of the
earliest methods for addressing ordered top-K adversarial
attacks, focusing on creating an optimal target class distri-
bution aided by word embedding vectors, and minimizes
KL divergence to this optimal distribution that satisfies the
ordered top-K objective. (Tursynbek et al., 2022) explored
the geometry of unordered top-K adversarial attacks, high-
lighting the complexities of crafting perturbations that ad-
here to top-K constraints. (Reza et al., 2025) proposed
GSBAK , a geometric score-based unordered top-K black-
box attack method built on (Reza et al., 2023). (Paniagua
et al., 2023) advanced this area by formulating the ordered
top-K adversarial attack problem as a quadratic program-
ming (QP) optimization in the feature space. This approach
efficiently enforced the desired ordering of logits but re-
quired back-propagation to map feature space solutions to
the image space. Our proposed JacAttacK builds upon these
foundations by extending the idea in QuadAttacK (Pani-

agua et al., 2023) to directly address the ordered top-K
adversarial attack problem in the image space.

Sequential Quadratic Programming (SQP). SQP is a
widely used framework for solving nonlinear constrained
optimization problems (Nocedal & Wright, 1999). By iter-
atively solving QP subproblems that linearize constraints
and use a quadratic approximation of the objective, SQP
effectively handles problems involving nonlinearities and
complex constraint sets (Boggs & Tolle, 2000). This ap-
proach is particularly relevant in high-dimensional settings,
such as adversarial attacks, where the constraints often in-
volve intricate relationships between model outputs. How-
ever, applying SQP to large-scale problems, such as those in
image space, can be computationally expensive due to the
need to repeatedly compute gradients and solve large QPs
(Gill et al., 2005). Our method adapts SQP for adversarial
optimization by leveraging subspace splitting to reduce the
dimensionality of the optimization problem, thereby over-
coming scalability challenges while preserving accuracy.

Our Contributions. The main contributions of this paper
are as-follows: (i) Novel Theoretical Insights: It introduces
explicit derivations connecting adversarial perturbations to
singular vectors of the adversarial Jacobian, providing new
theoretical clarity. (ii) Methodological Innovation: It is
the first method to directly optimize ordered top-K adversar-
ial attacks in image space via SQP, significantly improving
alignment between optimized solutions and visually coher-
ent perturbations. (iii) Empirical Advances: It provides
comprehensive evaluation across multiple architectures and
attack levels, consistently outperforming the previous state-
of-the-art, QuadAttacK using a proposed holistic metric,
Figure of Merits (FoM) covering both success rates and
perturbation magnitudes.

3. Approach
In this section, we first define the problem of learning or-
dered top-K attacks (Zhang & Wu, 2020), and then present
details of our proposed RisingAttacK.

3.1. Problem Definition
Model Under Attack. Let (xbenign, y) ∈ [0, 1]3×H×W ×Y
be a pair of a benign RGB image xbenign with spatial height
and width, H and W respectively, and its ground-truth label
y with the C-class label space Y = {1, · · · , C}. Let D =
3×H ×W be the dimension of the input image space. In
ImageNet-1k (Russakovsky et al., 2015) classification, we
have C = 1000 and D = 3× 224× 224 ≈ 1.5e5.

A DNN trained for image classification is a highly-nonlinear
mapping from the image space to the logit space:

ℓ(·; Θ) : [0, 1]D → RC , (1)
where Θ collects all learned parameters of the DNN. We

4

RisingAttacK

will omit Θ in notations and use ℓ(·) for simplicity.

We consider validation or testing images that can be cor-
rectly classified by a trained DNN such as ResNet-50 (He
et al., 2016) in learning attacks, i.e., y = argmax ℓ(xbenign).
The DNN is frozen in learning attacks.

The Adversarial Region of Ordered Top-K Targeted
Attacks for (xbenign, y). Let T ∈ Y \ {y} be a randomly
sampled sequence of ordered top-K targets for attacking
xbenign, K = |T |. The adversarial region is defined by,

R(xbenign,T) =
{
xadv ∈ [0, 1]D; satisfying

ℓ(xadv)ti > ℓ(xadv)ti+1
, ti ∈ T , i ∈ [1,K − 1], (2)

ℓ(xadv)tK > ℓ(xadv)j , tK ∈ T ,∀j ∈ Y \ T
}
, (3)

where the subscript represent the entry index of the logit
vector. We often expect the perturbation energy, defined
by lp-norm, ||xadv − xbenign||p, is as small as possible to
be visually imperceptible for p = 1, 2,∞. An adversarial
perturbation δ = xadv − xbenign is treated as being “visu-
ally imperceptible” based on the commonly used threshold
ℓ∞ < 8/255 = 0.0314.

Encoding Ordered Top-K Targeted Attack Constraints
in the Logit Space. Denote by K ∈ {+1, 0,−1}(C−1)×C

the matrix that encodes ordered top-K constraints subject
to T , with which the adversarial region can be rewritten by,
R(xbenign, T) = {xadv ∈ [0, 1]D; satisfying K·ℓ(xadv) > 0}.

Learning ordered top-K attacks for a benign image xbenign

can be posed as a constrained minimization problem,
minimize

δ∈RD
||δ||p, (4)

subject to K · ℓ(xperturb) > 0,

xperturb = Clamp(xbenign + δ),

where δ is the adversarial perturbation variables, || · ||p rep-
resents the lp-norm (typically, l2-norm is used). Clamp(·)
ensures the perturbed example xperturb is in the input im-
age space (i.e., xperturb ∈ [0, 1]D) via element-wise pixel
value clipping. The challenge of solving Eqn. 4 lies in the
nonlinear constraints caused by the highly non-linear
DNN (Eqn. 1). In practice, we also expect the learning of
xadv(= xbenign + δ∗) ∈ R(xbenign, T) is efficient subject to
a predefined and limited budget such as 30 or 60 iterations.

3.2. Our Proposed RisingAttacK

Inspired by the QP approach in QuadAttacK (Paniagua et al.,
2023) (see a brief overview in Appendix A), but different
from its feature space QP formulation, we aim to solve
Eqn. 4 directly in the image space under the SQP frame-
work (Boggs & Tolle, 2000). The core idea is to iteratively
linearize the nonlinear constraints in Eqn. 4. Due to the
large number of constraints, C − 1 and the high dimension-

ality of the image space, D, which make the optimization
with constraints linearized still infeasible in practice, we
streamline yet retain the solutions of Eqn. 4.

Eqn. 4 can be re-expressed as,
minimize
x∈[0,1]D

||x− xbenign||p, (5)

subject to K · ℓ(x) > 0,

Similar in spirit to QuadAttacK (Paniagua et al., 2023) and
all other attack methods, our proposed RisingAttacK is an
iterative optimization algorithm starting from the initial per-
turbed image xperturb = Clamp(xbenign + δ(0)) (e.g., δ(0) =
0). At the i-th iteration, let xperturb = Clamp(xbenign + δ(i))
be the current perturbed image. We omit the iteration index
in xperturb for simplicity. To solve Eqn. 5, our RisingAttacK
is streamlined as follows:

• We linearize the DNN ℓ(·) around the current perturbed
image xperturb, so the nonlinear constraints K · ℓ(x) > 0
become linear. We use the first-order Taylor expansion,

ℓ(x) ≈ ℓ(xperturb) + J(xperturb) · (x− xperturb), (6)
where J(xperturb) ∈ RC×D is the logit-to-image Jacobian
matrix of the DNN, which represents the sensitivity
of the DNN logits with respect to changes in xperturb.
Each row of J(xperturb) corresponds to the gradient of
a particular logit with respect to the input pixels.

• After the linearization, there is a gap between the objec-
tive function (i.e., x should be as close as possible to
the benign image), and the linearized constraints which
entails x to be sufficiently close to the perturbed image
xperturb to ensure the linearization is sufficiently approx-
imately accurate to retain the ordered top-K constraints.
We re-express the objective function ||x − xbenign|| to
be ||x − xanchor||, where xanchor represents the anchor in
optimization, xanchor = xbenign or xanchor = xperturb (the
current perturbed image). We propose an anchor selection
strategy: we start with xanchor = xperturb so the algorithm
can quickly reach the adversarial region, that is to find
x ∈ R(xbenign, T). We then seek better adversarial im-
ages with smaller perturbation energies by letting the
anchor xanchor = xbenign. The two steps may iterate based
on monitoring the improvement with respect to a thresh-
old (see Sec. 3.2.4). Consider l2-norm for the objective,
Eqn. 5 is re-expressed as,
minimize
x∈[0,1]D

||x− xanchor||22, (7)

s.t. K ·
(
ℓ(xanchor) + J(xanchor) · (x− xanchor)

)
> 0.

• Eqn. 7 is theoretically solvable, but not practically feasible
since the number of constraints, C − 1 is large (e.g., C =
1000) and the dimension of variables, D is extremely
high (e.g., D = 3 × 224 × 224), especially given the
limited budgets in learning attacks. We propose methods
to address these challenges.

5

RisingAttacK

3.2.1. COMPACT ORDERED TOP-K CONSTRAINTS

We introduce a mapping that condenses the logit space with-
out compromising the ordered top-K constraints, but allows
the number of rows of the Jacobian matrix to only depend
on the nubmer of targets, K.

To that end, we first notice that Eqn. 3 can be simplified to
reduce the number of constraints from C −K to 1 without
breaking the overall ordered top-K constraints,

ℓ(x)tK > max
(
{ℓ(x)j}j∈Y\T

)
, (8)

where max(·) introduces nonlinearity in the constraints with
a gradient switching effect in learning that is not desirable,
however. We tackle this by introducing a mapping,

G : ℓ(·) ∈ RC → l(·) ∈ Rd=K+M+1, (9)
where M is a multiplicative of K such as M = 5 ·K. The
mapping G reorders the logits and augments them with a
differentiable nonlinear term (see Appendix B for details
due to space limit).

Denote by K ∈ {+1, 0,−1}(d−1)×d the compact encoding
matrix using the mapping G, which has a nice form with
rows rotating from

[
1 −1 0 · · · 0

]
(i.e., the logits

in l(·) are expected to decreasingly ordered). K remains
unchanged in the optimization.

With the mapping G reordered and condensed logits l(·),
Eqn. 6 is redefined by,

l(x) ≈ l(xanchor) + J(xanchor) · (x− xanchor), (10)
where the Jacobian matrix J(xanchor) ∈ Rd×D with d =
K +M +1 only dependent on the number of attack targets,
K, and often d ≪ C (e.g., d = 101 for K = 20 with
C = 1000 in ImageNet-1k).

3.2.2. JACOBIAN SUBSPACE QP

With the compact encoding matrix K and the updated Tay-
lor expansion (Eqn. 10), the constraints in Eqn. 7 are then
simplified and we have,

minimize
x∈[0,1]D

||x− xanchor||22, (11)

subject to A · x ≤ b,

where A = −K · J(xanchor) incorporates the ordered top-K
ranking constraints into the logit-to-image sensitivity analy-
sis (i.e., the adversarial Jacobian), b = K ·

(
l(xanchor)−

J(xanchor)·xanchor
)
+m defines the constraint boundaries and

the feasibility of the optimization, with m being margins
introduced to control the target separability and to change
from strict ‘<’ to ‘≤’ in optimization constraints. Here,
A ∈ R(d−1)×D, b ∈ Rd−1. {x ∈ RD;A · x ≤ b} defines
a high-dimensional polyhedron in the image space.

Directly solving Eqn. 11 is still computationally challenging
and does not meet the low budget in learning attacks. We
exploit the structure of the polyhedron via projection.

Exploiting the Subspace Structure of A. We utilize the

structure of A revealed by its SVD,
A = U · Σ · V ⊤ = U · Σr · V ⊤

r , (12)
where U ∈ R(d−1)×(d−1), Σ ∈ R(d−1)×D, and V ∈
RD×D. Σ =

[
Σr 0
0 0

]
is a diagonal matrix with singular

values, diag(σ1, · · · , σd−1). U (and V) provide orthogo-
nal bases for the column (and the row) spaces of A. And,
U ·U⊤ = I and V ⊤ ·V = I (where I represents the identity
matrix). The rows of U corresponding to large singular
values identify the most sensitive ranking constraints. The
row space of A corresponds to the input image space, and
each column of V represents a principle direction in the
image space. Since we have d ≪ D, we can drop the
last D − (d− 1) columns of V to form the reduced SVD,
i.e., Vr ∈ RD×(d−1), the first d − 1 columns of V , which
consists of the d− 1 orthogonal bases in the image space,
and spans the entire solution space of the polyhedron de-
fined by A · x ≤ b. The columns of Vr span a subspace
in which adversarial perturbations are most effective
towards satisfying ordered top-K constraints. Learn-
ing ordered top-K attacks can be achieved in the subspace
accordingly, as we solve it in the following.

Let δ = x− xanchor, Eqn. 11 is rewritten as,
minimize

δ∈RD
||δ||22, (13)

subject to A · δ ≤ b−A · xanchor,

With the change of variables δ = V · ϵ, we have,
||δ||2 = ||V · ϵ||2 = ||ϵ||2, (since V is orthogonal) (14)
A · δ = U · Σ · V ⊤ · V · ϵ = U · Σ · ϵ, (15)

So, Eqn. 13 is rewritten as,
minimize

ϵ∈RD
||ϵ||22, (16)

subject to Σ · ϵ ≤ U⊤ ·
(
b−A · xanchor),

where due to the block diagonal structure of Σ, we can split

ϵ =

[
ϵr
ϵo

]
, ϵr ∈ Rd−1 and ϵo lies in the null space of A and

thus can be ignored and set ϵo = 0 since we are minimizing
||ϵ||22. We further have,

minimize
ϵr∈Rd−1

||ϵr||22, (17)

subject to Σr · ϵr ≤ U⊤ ·
(
b−A · xanchor),

which is now a low-dimensional optimization problem
with linear constraints, and can be solved by many QP
solvers efficiently, such as the cvxpy package (Diamond &
Boyd, 2016; Agrawal et al., 2018). Let b̃ = U⊤ ·

(
b −

A · xanchor
)

which represents the projection of the constraint
boundary onto the orthogonal basis formed by the left sin-
gular vectors. Then, the constraint Σr · ϵr ≤ b̃ also shows
the feasibility and constraint satisfaction: the smaller the
ratio b̃i

σi
for a singular value σi (i = 1, · · · , d − 1) is, the

easier it is to satisfy the corresponding constraint.

6

RisingAttacK

Denote by ϵ∗r the optimized solution of Eqn. 17. The optimal

solution of ϵ is ϵ∗ =

[
ϵ∗r
0

]
by definition. Thus, δ∗ = V · ϵ∗.

We can directly recover the optimal solution x∗ in the
image space by,

x∗ = xanchor + δ∗,

= xanchor + V ·
[
ϵ∗r
0

]
= xanchor + Vr · ϵ∗r , (18)

which can be understood from the QP perspective in the
Appendix C, and is used in updating the perturbation and
the perturbed image for the next, (i+ 1)-th iteration of our
RisingAttacK,

δ(i+1) = Clamp(x∗)− xbenign, (19)

xperturb = xbenign + δ(i+1). (20)

3.2.3. ℓ∞ PERCENTILE PROJECTION

For the solution δ∗ = Vr · ϵ∗r based on Eqn. 17, we observe
that it often exhibits disproportionately high ℓ∞ norms. We
observe this large ℓ∞ is driven by very few components
(pixel values) of our solution and the overall quality of our
solution is not contaminated by these extreme values (or
outliers). We hypothesize that the outliers might be caused
by the first-order Taylor linearization that is not sufficiently
accurate at those pixels. To alleviate this issue, we resort
to a ℓ∞ Percentile Projection as the post-processing step.
Specifically, we compute

τ = Percentile(|δ∗|, 0.995) (21)
where τ indicates 99.5th percentile of magnitudes in our so-
lution. We then element-wisely project δ∗ to this percentile,

δ∗i ← Sign(δ∗i)×min(|δ∗i |, τ), (22)
where i is the entry index.

3.2.4. ANCHOR POINT SELECTION

When the number of iterations is infinite (or very high),
choosing xanchor = xbenign in Eqn. 11 yields the lowest en-
ergy solution upon convergence. This is because each step
of the optimization directly minimizes the distance from x
to xbenign, aligning the solution trajectory with the global
objective. However, in practice, the number of iterations
is limited, and xbenign does not lie within the adversarial re-
gion during intermediate iterations. As a result, only using
xbenign as the anchor point can significantly delay reaching
the adversarial region, especially when the constraint set is
complex (when K is large).

On the other hand, choosing xperturb (the current perturbed
image), as the anchor point ensures rapid progress toward
the adversarial region. Since the optimization minimizes
the distance from x to xperturb at each step, the solution
quickly adjusts to satisfy the constraints. However, this may
lead to suboptimal solutions in terms of perturbation energy,

as the optimization prioritizes feasibility over minimizing
perturbation energy.

Alternating Anchor Point Strategy. To balance the trade-
offs between rapid feasibility and minimal energy, we im-
plement an alternating anchor point strategy. This approach
dynamically switches between xbenign and xperturb as the an-
chor point based on the current optimization state.

• If the number of iterations since the last feasible solu-
tion exceeds β (a predefined threshold), we set xanchor =
xperturb to prioritize reaching the adversarial region.

• Otherwise, we set xanchor = xbenign to continue minimiz-
ing the perturbation energy while staying within the ad-
versarial region.

3.2.5. INTERPRETATION OF RISINGATTACK

Eqn. 18 provides an intuitive interpretation for the optimized
perturbation δ∗ = Vr ·ϵ∗r at each iteration of the optimization.
The perturbation is the learned linear combination with
coefficients in ϵ∗r ∈ Rd−1 of d−1 image bases, i.e., columns
in Vr ∈ RD×(d−1). Recall that each column in Vr represents
a principle direction in the image space that can affect logit
ranking the most subject to how large the corresponding
singular value is. The learned weighted sum of the columns
of Vr can provide most efficient perturbation, as shown by
the consistently smaller perturbation energy obtained in our
experiments.

Potential Defensive Insights. By analyzing which singular
vectors in Vr correspond to large singular values, defensive
strategies can be developed by reinforcing robustness in
those vulnerable directions against ordered top-K attacks.
Meanwhile, adversarial training can be guided to target
these critical subspaces. We leave those for future work.

4. Experiments
In this section, we evaluate our RisingAttacK in the
ImageNet-1k benchmark (Russakovsky et al., 2015), and
compare with QuadAttacK (Paniagua et al., 2023).

Models Under AttacK. Following QuadAttacK, we use two
representative ConvNets (ResNet-50 (He et al., 2016) and
DenseNet-121 (Huang et al., 2017)) and two Vision Trans-
formers (ViT-B (Dosovitskiy et al., 2020) and DEiT-B (Tou-
vron et al., 2021)). Their ImageNet-1k pretrained check-
points are from the timm package (Wightman, 2019).

Data and Attack Targets. We use ImageNet-1k val im-
ages from which we select and sample a subset consist-
ing of class-balanced 1000 images (i.e., one image per
class). The 1000 benign images can be correctly clas-
sified by all the four models. For each image, five or-
dered target sets are randomly sampled for each value of K
(K = 1, 5, 10, 15, 20, 25, 30), see Appendix D for details.

7

RisingAttacK

Table 1. Ordered top-K attack results averaged across 5 different seeds. Overall, our RisingAttacK shows a big leap forward in
advancing ordered top-K attacks, outperforming the prior state-of-the-art method, QuadAttacK (Paniagua et al., 2023) by a large margin
in most cases (higher ASRs with lower ℓp norms). ℓ∞-norms in red is to show they are treated as being “visually imperceptible” based on
the commonly used threshold 8/255 = 0.0314. The subscripts of methods (30 and 60) represent the computing budgets.

(a) ResNet-50 (He et al., 2016)

Top-K Method Mean Time (s/img) ↓ FoM↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.2076 11.8070 3654.9139 0.1349 3.3947 6.4793RisingAttacK60 0.6642 7.0271 2081.8960 0.0511 17.0013
QuadAttacK30 Failed 1.6539 infRisingAttacK30 0.0022 6.2378 1844.3013 0.0470 8.5619

Top-25

QuadAttacK60 0.6018 11.6214 3599.8101 0.1301 3.4167 3.6439RisingAttacK60 0.8420 5.2960 1561.6462 0.0393 14.0839
QuadAttacK30 0.0018 10.4263 3259.2773 0.0991 1.7058 48.9628RisingAttacK30 0.0392 5.1218 1511.3347 0.0388 7.0999

Top-20

QuadAttacK60 0.8344 10.0891 3133.6199 0.1079 3.4039 3.1100RisingAttacK60 0.8306 3.7474 1101.1521 0.0281 6.7267
QuadAttacK30 0.0978 9.0948 2850.0433 0.0858 1.7264 1.9481RisingAttacK30 0.0666 3.4854 1022.5585 0.0269 3.7216

Top-15

QuadAttacK60 0.9440 8.3368 2600.7510 0.0822 3.4839 3.2229RisingAttacK60 0.9868 3.0150 878.9222 0.0233 5.1634
QuadAttacK30 0.4922 7.8296 2451.8036 0.0717 1.7382 3.3674RisingAttacK30 0.5856 2.9944 873.3877 0.0234 2.8794

Top-10

QuadAttacK60 0.9866 6.5228 2044.5753 0.0576 3.7396 3.3482RisingAttacK60 0.9936 2.0825 602.1784 0.0167 3.3991
QuadAttacK30 0.8460 6.3547 1994.8023 0.0544 1.7593 2.9244RisingAttacK30 0.8064 2.1748 630.0922 0.0175 1.7965

Top-5

QuadAttacK60 0.9968 4.0029 1261.2314 0.0309 4.5257 3.3373RisingAttacK60 0.9558 1.1534 330.1495 0.0098 1.8225
QuadAttacK30 0.9590 3.9539 1246.4929 0.0300 2.1458 2.6681RisingAttacK30 0.9504 1.4693 420.0254 0.0124 0.9517

Top-1

QuadAttacK60 0.9996 1.4443 467.1178 0.0083 5.3373 2.1564RisingAttacK60 0.9992 0.6144 165.8517 0.0064 0.6114
QuadAttacK30 0.9772 1.4244 461.1199 0.0080 2.6411 1.4638RisingAttacK30 0.9986 0.9155 251.6174 0.0088 0.3201

(b) DenseNet-121 (Huang et al., 2017)

Top-K Method Mean Time (s/img) ↓ FoM↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 Failed 4.5409 infRisingAttacK60 0.4074 14.7263 4393.8482 0.1051 20.3156
QuadAttacK30 Failed 2.3266 0RisingAttacK30 Failed 10.2335

Top-25

QuadAttacK60 0.1734 13.1825 4053.5759 0.1531 4.1657 8.5496RisingAttacK60 0.9370 9.9898 2945.3574 0.0747 16.8643
QuadAttacK30 Failed 2.2016 infRisingAttacK30 0.1094 9.9203 2921.6770 0.0756 8.5279

Top-20

QuadAttacK60 0.8340 11.6266 3583.3589 0.1268 4.0066 2.6290RisingAttacK60 0.9812 5.9921 1744.8239 0.0468 8.2901
QuadAttacK30 0.0330 9.8564 3072.6790 0.0923 2.0206 23.7723RisingAttacK30 0.4500 6.1377 1786.5613 0.0485 4.6070

Top-15

QuadAttacK60 0.9866 9.2713 2884.2755 0.0887 3.8963 2.3310RisingAttacK60 1.0000 4.3657 1252.9889 0.0359 6.2878
QuadAttacK30 0.5088 8.6281 2697.9823 0.0771 1.8919 3.5524RisingAttacK30 0.9362 4.7380 1362.7350 0.0387 3.5501

Top-10

QuadAttacK60 0.9986 6.7558 2123.4894 0.0545 3.8256 2.5458RisingAttacK60 1.0000 2.6903 759.1986 0.0235 4.2223
QuadAttacK30 0.9392 6.6701 2098.0095 0.0531 1.8918 2.4272RisingAttacK30 0.9880 2.9210 827.1606 0.0253 2.2937

Top-5

QuadAttacK60 0.9998 3.9671 1258.1706 0.0264 3.8644 3.0870RisingAttacK60 0.9994 1.2169 331.6714 0.0119 2.2643
QuadAttacK30 0.9924 3.9526 1253.5745 0.0262 1.8502 2.2794RisingAttacK30 0.9982 1.6603 457.9204 0.0156 1.2082

Top-1

QuadAttacK60 1.0000 1.5191 503.0047 0.0070 3.0413 1.9466RisingAttacK60 1.0000 0.7001 177.1356 0.0085 0.8046
QuadAttacK30 0.9960 1.5144 501.4779 0.0070 1.5519 1.2739RisingAttacK30 1.0000 1.0708 280.0300 0.0116 0.4255

(c) ViT-B (Dosovitskiy et al., 2020)

Top-K Method Mean Time (s/img) ↓ FoM↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.3272 9.6708 2938.2587 0.1032 5.2135 3.1589RisingAttacK60 0.9534 9.7262 2721.2876 0.0876 43.3954
QuadAttacK30 Failed 2.7870 infRisingAttacK30 0.5568 11.4132 3206.4565 0.1029 21.7179

Top-25

QuadAttacK60 0.6872 9.4331 2860.6667 0.1002 5.2723 2.6425RisingAttacK60 0.9944 5.5706 1520.5703 0.0526 36.0486
QuadAttacK30 Failed 2.7354 infRisingAttacK30 0.7536 7.7050 2126.3211 0.0721 18.0775

Top-20

QuadAttacK60 0.7828 7.9108 2393.0875 0.0815 5.0069 2.8308RisingAttacK60 0.9864 3.7609 1007.6887 0.0360 15.8230
QuadAttacK30 0.0004 6.3770 1992.7502 0.0533 2.6210 1610.8632RisingAttacK30 0.4956 4.9482 1343.2135 0.0473 7.9615

Top-15

QuadAttacK60 0.8404 6.2661 1893.5173 0.0620 4.7622 2.7231RisingAttacK60 0.9988 2.8751 753.1852 0.0284 11.9841
QuadAttacK30 0.0056 4.7982 1495.8188 0.0385 2.4245 164.8583RisingAttacK30 0.7510 3.8944 1038.7394 0.0379 6.0305

Top-10

QuadAttacK60 0.9130 4.5246 1374.2282 0.0410 4.6368 2.5247RisingAttacK60 0.9936 1.9915 508.8791 0.0206 8.2583
QuadAttacK30 0.0252 3.4999 1094.6987 0.0261 2.3034 36.7947RisingAttacK30 0.7112 2.6247 684.1576 0.0267 4.1602

Top-5

QuadAttacK60 0.9980 3.6439 1128.3054 0.0288 4.3981 1.7630RisingAttacK60 0.5712 1.1650 292.6494 0.0128 4.4038
QuadAttacK30 0.5024 3.2930 1029.8490 0.0242 2.1108 2.3688RisingAttacK30 0.5980 1.6101 406.4644 0.0174 2.2197

Top-1

QuadAttacK60 0.9998 1.5736 509.7575 0.0081 2.6007 3.2121RisingAttacK60 0.9388 0.4365 96.0745 0.0060 1.2715
QuadAttacK30 0.9958 1.5681 508.0591 0.0081 1.3040 2.1102RisingAttacK30 0.9362 0.6578 149.1661 0.0086 0.6417

(d) DEiT-B (Touvron et al., 2021)

Top-K Method Mean Time (s/img) ↓ FoM↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.0640 9.3734 2860.9240 0.0997 4.1792 8.8333RisingAttacK60 0.5150 9.4432 2697.9176 0.0804 43.3521
QuadAttacK30 Failed 2.3032 infRisingAttacK30 0.0600 11.0771 3165.6910 0.0957 21.6930

Top-25

QuadAttacK60 0.8644 9.3780 2849.8222 0.0960 4.0966 2.1975RisingAttacK60 0.9854 5.1921 1434.6160 0.0482 36.1084
QuadAttacK30 Failed 2.2173 infRisingAttacK30 0.6748 6.3220 1763.4334 0.0581 18.1108

Top-20

QuadAttacK60 0.9612 7.6974 2343.5441 0.0735 4.1868 2.8466RisingAttacK60 0.9956 2.9174 781.2607 0.0282 15.8331
QuadAttacK30 0.0032 6.2491 1950.0525 0.0524 2.1503 325.7059RisingAttacK30 0.6348 3.8373 1045.3953 0.0366 7.9624

Top-15

QuadAttacK60 0.9750 6.0671 1852.4958 0.0544 3.9525 2.8819RisingAttacK60 1.0000 2.2015 573.3811 0.0223 11.9810
QuadAttacK30 0.0338 4.9874 1558.1460 0.0386 2.0234 42.8983RisingAttacK30 0.9278 3.1490 838.2295 0.0310 6.0263

Top-10

QuadAttacK60 0.9762 4.3693 1346.6326 0.0353 3.8755 2.9455RisingAttacK60 0.9996 1.5076 379.6582 0.0162 8.2610
QuadAttacK30 0.1298 3.5782 1123.3760 0.0256 1.9552 11.4300RisingAttacK30 0.9200 2.1465 556.2741 0.0222 4.1613

Top-5

QuadAttacK60 0.9984 3.3975 1064.7252 0.0243 3.4381 3.1378RisingAttacK60 0.9992 1.0575 254.5953 0.0121 4.4027
QuadAttacK30 0.7794 3.2526 1024.0607 0.0225 1.7718 2.6286RisingAttacK30 0.8800 1.3450 334.9398 0.0149 2.2165

Top-1

QuadAttacK60 1.0000 1.3910 459.6084 0.0063 2.9955 3.9437RisingAttacK60 0.9794 0.3340 68.5738 0.0052 1.2708
QuadAttacK30 0.9994 1.3899 459.3060 0.0063 1.4404 2.4502RisingAttacK30 0.9772 0.5249 114.2980 0.0073 0.6426

Metrics. The metrics used to evaluate the attack methods
include the Attack Success Rate (ASR), as well as the ℓ1,
ℓ2, and ℓ∞ norms of the perturbations. ASR quantifies the
fraction of adversarial examples satisfying the ordered top-
K constraints (larger is better). ℓp norms are computed
based on successful adversarial examples (lower is better,
indicating less visually-perceptible). We note that ℓp norms
are compatible between different methods only when their
ASRs are similar. For example, a method may show very
low ℓp norms when the ASR is also very low (i.e., it can only

attack a few images). To compare the relative improvement
of one method (with ASR1 and ℓ1p norms) against another
one (with ASR2 and ℓ2p norms), we propose to use a holistic
figure of merits (FoM),

FoM =
ASR1

ASR2 ·
1

3
·

∑
p∈{1,2,∞}

ℓ2p
ℓ1p
, (23)

where when the opponent method fails, i.e., ASR2 = 0,
we set FoM= +∞. Similarly, we set FoM= −∞ if the
primary method fails while the opponent method succeeds,

8

RisingAttacK

and FoM= 0 if both methods fail. When the FoM> 1,
we say the primary method is holistically better than the
opponent method. We report the Mean metrics across the
five sampled targets for each K. We also adopt the com-
monly used ℓ∞ = 8/255 as the threshold to characterize
the “visual imperceptibility” of learned adversarial pertur-
bations (Croce et al., 2020). See Appendix E for details of
metrics including Best, Mean and Worst comparisons.

Baselines. We mainly compare with QuadAttacK (Paniagua
et al., 2023) since it is the prior state-of-the-art method,
significantly outperforming the CWK and AD (Adversarial
Distillation) (Zhang & Wu, 2020). For a fair comparison,
both methods are tested under identical experimental con-
ditions. For all experiments, each attack is evaluated at 30
and 60 optimization iterations to analyze its performance
under varying computational budgets. The initial perturba-
tion for all attacks is set to zero, ensuring consistent starting
conditions across methods.

Results and Analyses. Our proposed RisingAttacK shows
a big leap forward in advancing ordered top-K attacks,
which in turn verifies the significant advantages of learn-
ing attacks directly in the image space by our proposed
SQP formulation. Results of ordered top-K attacks for the
four models are shown in Table 1(a), 1(b), 1(c) and 1(d).

• Based on the FoM evaluation (Eqn. 23), our RisingAt-
tacK consistently outperforms the previous state-of-the-
art method, QuadAttacK across all K (=1,5,10,20, 25,30)
and all four models. It achieves FoMs greater than 2 in
most cases (i.e., holistically 2x better than QuadAttacK).

• Our RisingAttacK facilitates learning visually-
imperceptible perturbations up to K = 20 for
ResNet50 and DEiT-B, K = 15 for ViT-B, and K = 10
for DenseNet121, based on the ℓ∞ threshold, significantly
outperforming QuadAttacK.

Fig. 2 show examples of learned adversarial examples and
perturbations using RisingAttacK60. More examples are
provided in the Appendix F.

More Results. We also show results of using the lowest-
K predictions of each benign image by each model as the
ordered top-K attack targets (Table 6 in the Appendix E).
Ordered top-K targets by this image- and model-specific
selection method are intuitively deemed as more difficult to
attack, as empirically shown in (Zhang & Wu, 2020). Coun-
terintuitively, our results show they are not more difficult
than randomly sampled targets using both QuadAttacK and
our RisingAttacK.

The Average Speed (second/image). We note that for K = 1
our RisingAttacK is consistently faster than QuadAttacK.
For K > 1, QuadAttacK is mostly faster than our RisingAt-
tacK. The main reason is due to the current implementation
of computing the logit-to-image Jacobian matrix in PyTorch,

for which we used PyTorch 2.6 and the jacrev and vmap
(with chunk size 100) functions in the torch.func li-
brary. When K is larger than 1, based on Eqn. 9, we main-
tain K + M + 1 logits with M = 5 ·K. We did not test
other factors for M (e.g., 2 ·K or a predefined constant such
as 5). We will address this speed limitation in future work.

5. Conclusion
This paper presents RisingAttack, a novel method for learn-
ing ordered top-K targeted white-box adversarial attacks
by directly solving the non-linearly constrained optimiza-
tion problem in image space under the sequential quadratic
programming framework. Our RisingAttacK provides a
simple yet elegant solution: ordered top-K adversarial per-
turbations can be learned via iteratively optimizing linear
combinations of the right singular vectors (corresponding
to non-zero singular values) of the attack-targets-ranking
constrained logit-to-image Jacobian matrix. Through ex-
periments on four ImageNet-1k trained DNNs, our Risin-
gAttacK shows a big leap forward in advancing ordered
top-K attacks in terms of a proposed figure-of-merits met-
ric, significantly outperforming the previous state-of-the-art
method, QuadAttacK.

Impact Statement
This work advances the field of adversarial machine learning
by introducing RisingAttacK. By improving the efficiency
and scalability of ordered top-K adversarial attacks, partic-
ularly for large K values, this research highlights critical
vulnerabilities in modern DNNs. However, adversarial at-
tack methods also pose risks, as they may be misused to
compromise real-world systems. For example, attacks on
ranking-based systems could be exploited to manipulate
search engine results or recommendation algorithms. To
mitigate these risks, this work should be viewed as a tool for
potentially strengthening defenses (e.g., as critics for them)
rather than enabling malicious use. In addition, this work
contributes to the broader exploration of optimization in
machine learning by integrating techniques from traditional
nonlinear programming into neural network-based problems.
This direction holds promise for both adversarial research
and other optimization tasks in machine learning, offering a
foundation for solving increasingly complex challenges.

Acknowledgments
This research is partly supported by NSF IIS-1909644, ARO
Grant W911NF1810295, ARO Grant W911NF2210010,
NSF CMMI-2024688 and NSF IUSE-2013451. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of ARO, NSF or the U.S. Government.

9

RisingAttacK

References
Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S.

A rewriting system for convex optimization problems.
Journal of Control and Decision, 5(1):42–60, 2018.

Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-
mization as a layer in neural networks. In International
Conference on Machine Learning, pp. 136–145. PMLR,
2017.

Boggs, P. T. and Tolle, J. W. Sequential quadratic program-
ming for large-scale nonlinear optimization. Journal of
computational and applied mathematics, 124(1-2):123–
137, 2000.

Carlini, N. and Wagner, D. Towards evaluating the robust-
ness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pp. 39–57. Ieee, 2017.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti,
E., Flammarion, N., Chiang, M., Mittal, P., and Hein,
M. Robustbench: a standardized adversarial robustness
benchmark. arXiv preprint arXiv:2010.09670, 2020.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of
Machine Learning Research, 17(83):1–5, 2016.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Durfee, D. and Rogers, R. M. Practical differen-
tially private top-k selection with pay-what-you-get
composition. In Wallach, H. M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 3527–
3537, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/
b139e104214a08ae3f2ebcce149cdf6e-Abstract.
html.

Fang, H., Kong, J., Chen, B., Dai, T., Wu, H., and Xia, S.-T.
Clip-guided networks for transferable targeted attacks.
arXiv preprint arXiv:2407.10179, 2024.

Gill, P. E., Murray, W., and Saunders, M. A. Snopt: An sqp
algorithm for large-scale constrained optimization. SIAM
review, 47(1):99–131, 2005.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

Inkawhich, N., Wen, W., Li, H. H., and Chen, Y. Feature
space perturbations yield more transferable adversarial
examples. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7066–
7074, 2019.

Li, M., Deng, C., Li, T., Yan, J., Gao, X., and Huang, H.
Towards transferable targeted attack. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 641–649, 2020a.

Li, Q., Guo, Y., and Chen, H. Practical no-box adversarial
attacks against dnns. Advances in Neural Information
Processing Systems, 33:12849–12860, 2020b.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Naseer, M., Khan, S., Hayat, M., Khan, F. S., and Porikli,
F. On generating transferable targeted perturbations. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7708–7717, 2021.

Near, J., Darais, D., Lefkovitz, N., and Howarth, G. Guide-
lines for evaluating differential privacy guarantees. NIST
Special Publication SP 800-226, National Institute of
Standards and Technology, Gaithersburg, MD, March
2025. URL https://doi.org/10.6028/NIST.
SP.800-226.

Nocedal, J. and Wright, S. J. Numerical optimization.
Springer, 1999.

Paniagua, T., Grainger, R., and Wu, T. Quadattac k: A
quadratic programming approach to learning ordered top-
k adversarial attacks. Advances in Neural Information
Processing Systems, 36:48962–48993, 2023.

Reza, M. F., Rahmati, A., Wu, T., and Dai, H. Cgba:
Curvature-aware geometric black-box attack. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 124–133, 2023.

Reza, M. F., Jin, R., Wu, T., and Dai, H. GSBA$ˆk$: top-
k geometric score-based black-box attack. In The Thir-
teenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/
forum?id=htX7AoHyln.

10

https://proceedings.neurips.cc/paper/2019/hash/b139e104214a08ae3f2ebcce149cdf6e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b139e104214a08ae3f2ebcce149cdf6e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b139e104214a08ae3f2ebcce149cdf6e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b139e104214a08ae3f2ebcce149cdf6e-Abstract.html
https://doi.org/10.6028/NIST.SP.800-226
https://doi.org/10.6028/NIST.SP.800-226
https://openreview.net/forum?id=htX7AoHyln
https://openreview.net/forum?id=htX7AoHyln

RisingAttacK

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International con-
ference on machine learning, pp. 10347–10357. PMLR,
2021.

Tursynbek, N., Petiushko, A., and Oseledets, I. Geometry-
inspired top-k adversarial perturbations. In Proceedings
of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 3398–3407, 2022.

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019.

Zhang, Z. and Wu, T. Learning ordered top-k adversarial
attacks via adversarial distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 776–777, 2020.

Zhao, A., Chu, T., Liu, Y., Li, W., Li, J., and Duan, L.
Minimizing maximum model discrepancy for transfer-
able black-box targeted attacks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8153–8162, 2023.

11

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

RisingAttacK

A. Background on QuadAttacK
QuadAttacK (Paniagua et al., 2023) addresses the challenge of optimizing Eqn. 4 by first “lifting” it into the feature space,
i.e., the output space of f(·), see the left-bottom of Fig 1. At a given iteration i, let δ(i) be the current perturbation, and
xperturb = xbenign + δ(i) the current perturbed image with zperturb = f(xperturb) its DNN features. QuadAttacK aims to
iteratively find the optimal perturbed features z around zperturb to satisfy the constraints by,

minimize
z

||z − zperturb||22, (24)

subject to K · (W · z + b) > 0,

where the nonlinear backbone f(·) is eliminated from the constraints. Eqn. 24 can be solved by a QP package (Amos &
Kolter, 2017). With the optimized z∗, the adversarial perturbation is updated by back-propagating the feature distance to the
image space through the highly non-linear DNN backbone f(·),

δ(i+1) = δ(i) − γ · ∂
∂δ

(
λ · ||z∗ − zperturb||22 + ||δ||p

)
|δ=δ(i) , (25)

where γ is the learning rate, and λ the trade-off parameter between feature distance and image perturbation. The perturbed
image is updated by,

xperturb = Clamp(xbenign + δ(i+1)). (26)

QuadAttacK is executed iteratively with respect to a predefined computing budget (e.g., 30 or 60 iterations). As aforemen-
tioned, there is a gap between the optimized z∗ (Eqn. 24) in the feature space and the computed δ(i+1) (Eqn. 25) in the
image space in terms of satisfying the ordered top-K constraints, which leads to suboptimal adversarial examples (Eqn. 26).

B. Details on Compact Ordered Top-K Constraints
In Sec. 3.2.1, we introduce the mapping G (Eqn. 9) that reorders the logits and augments them with a differentiable nonlinear
term, reproduced here,

G : ℓ(·) ∈ RC → l(·) ∈ Rd=K+M+1,

where K = |T | is the number of attack targets, M is the number of highest non-target logits to include explicitly (e.g.,
M = 5 ·K), and the final term is the soft-maximum of the remaining logits. We have,

• The ordered top-K targets: l(x)i = ℓ(x)ti , for i ∈ {1, . . . ,K}, where ti ∈ T is the i-th target class. These targets remain
the same during the optimization.

• The ordered top-M non-targets: l(x)K+j = ℓ(x)mj
, where j ∈ [1, · · · ,M], and mj = arg sortj{ℓ(x)i; i ∈ Y \ T }, i.e.,

ℓ(x)mj
is the j-th largest non-target logit. For example, M = 5×K. Denote byM the ordered top-M non-target classes,

which are dynamic during the optimization.
• The Soft-Maximum of logits of the Remaining Classes: l(x)d = SmoothMax

(
{ℓ(x)j ; j ∈ Y \ (T ∪ M)}

)
, where

d = K +M +1, and SmoothMax(·) is differentiable and enables gradient distribution (rather than switching) in learning,
which is defined by,

SmoothMax(v) = Sum(Softmax(v)⊙ v), (27)
where ⊙ represents element-wise (Hadamard) product. It is straightforward to show that mean(v) ≤ SmoothMax(v) ≤
max(v) for any real vectors v.

We note that the inclusion of the top-M non-target logits is to ensure that the compact constraints remain robust, even in
cases where the SmoothMax(·) function introduces significant nonlinearity.

C. QP for Recovering Perturbation in the Image Space
We show the solution (Eqn. 18) can be understood from the QP perspective. Based on δ = V · ϵ and δ = x− xanchor, we
have,

ϵ = V ⊤ · (x− xanchor), (28)

ϵr = V ⊤
r · x− V ⊤

r · xanchor ≜ xr − xanchor
r , (29)

where xr is the projection of x, and xanchor
r the projection of the anchor image.

Minimizing ||ϵr||22 is to find the optimal x∗
r that is closest to xanchor

r . We have, x∗
r = xanchor

r + ϵ∗r , with which the QP for

12

RisingAttacK

recovering the optimal perturbation in the original image space is to,
minimize
x∈[0,1]D

||x− xanchor||22, (30)

subject to V ⊤
r · x = x∗

r ,

which only involves equality constraints, making it computationally efficient to solve, even though x is in the high-
dimensional image space. We show that Eqn. 30 has a closed-form solution, reproducing the result in Eqn. 18.

Recall ϵ∗r is the solution from solving Eqn. 17, xanchor
r = V ⊤

r · xanchor and x∗
r = xanchor

r + ϵ∗r . Eqn. 30 is reproduced here,
minimize
x∈[0,1]D

||x− xanchor||22,

subject to V ⊤
r · x = x∗

r ,

which can be re-expressed by expanding the objective function and removing the constant term as,

minimize
x∈[0,1]D

x⊤ · x− 2 · xanchor⊤ · x, (31)

subject to V ⊤
r · x = x∗

r ,

And the Lagrangian is,

L(x, λ) = x⊤ · x− 2 · xanchor⊤ · x+ λ⊤ · (V ⊤
r · x− x∗

r). (32)

We obtain estimating equations from the derivatives as follows,
∂

∂x
L(x, λ) = 2 · x− 2 · xanchor + Vr · λ = 0, (33)

⇒ x = xanchor − 1

2
Vr · λ, (34)

∂

∂λ
L(x, λ) = V ⊤

r · x− x∗
r = 0, (35)

⇒ V ⊤
r · x = x∗

r , (36)

We have,

V ⊤
r · (xanchor − 1

2
Vr · λ) = x∗

r (37)

⇒ λ = 2 · (V ⊤
r · xanchor − x∗

r) = 2 ·
(
xanchor
r − (xanchor

r + ϵ∗r)
)
= −2 · ϵ∗r , (38)

So, we have,

x = xanchor − 1

2
Vr · (−2 · ϵ∗r) = xanchor + Vr · ϵ∗r , (39)

which reproduces Eqn. 18.

D. Details of Attack Targets
We use 5 random seeds (42, 52, 62, 72 and 82) and sample 5 lists of ordered top-30 targets as follows:

• seed=42: (643): mask, (409): analog-clock, (798): slide-rule, (250): Siberian-husky, (593): harmonica, (47): African-
chameleon, (142): dowitcher, (276): hyena, (908): wing, (721): pillow, (57): garter-snake, (257): Great-Pyrenees,
(397): puffer, (954): banana, (203): West-Highland-white-terrier, (172): whippet, (294): brown-bear, (803): snowplow,
(76): tarantula, (811): space-heater, (817): sports-car, (608): jean, (977): sandbar, (711): perfume, (157): papillon, (51):
triceratops, (428): barrow, (84): peacock, (531): digital-watch, (478): carton

• seed=52: (523): crutch, (330): wood-rabbit, (743): prison, (611): jigsaw-puzzle, (613): joystick, (810): space-bar,
(634): lumbermill, (203): West-Highland-white-terrier, (217): English-springer, (816): spindle, (926): hot-pot, (275):
African-hunting-dog, (337): beaver, (33): loggerhead, (264): Cardigan, (862): torch, (755): radio-telescope, (949):
strawberry, (162): beagle, (488): chain, (251): dalmatian, (292): tiger, (440): beer-bottle, (638): maillot, (722):
ping-pong-ball, (349): bighorn, (592): hard-disc, (409): analog-clock, (584): hair-slide, (701): parachute

• seed=62: (45): Gila-monster, (224): groenendael, (274): dhole, (54): hognose-snake, (759): reflex-camera, (931):

13

RisingAttacK

bagel, (1): goldfish, (478): carton, (51): triceratops, (649): megalith, (117): chambered-nautilus, (652): military-
uniform, (601): hoopskirt, (571): gas-pump, (520): crib, (221): Irish-water-spaniel, (869): trench-coat, (102):
echidna, (14): indigo-bunting, (670): motor-scooter, (975): lakeside, (511): convertible, (8): hen, (840): swab, (156):
Blenheim-spaniel, (928): ice-cream, (24): great-grey-owl, (567): frying-pan, (668): mosque, (866): tractor

• seed=72: (678): neck-brace, (329): sea-cucumber, (731): plunger, (829): streetcar, (565): freight-car, (628): liner,
(331): hare, (376): proboscis-monkey, (787): shield, (622): lens-cap, (402): acoustic-guitar, (225): malinois, (487):
cellular-telephone, (858): tile-roof, (94): hummingbird, (991): coral-fungus, (808): sombrero, (95): jacamar, (649):
megalith, (35): mud-turtle, (215): Brittany-spaniel, (246): Great-Dane, (222): kuvasz, (88): macaw, (586): half-track,
(424): barbershop, (553): file, (302): ground-beetle, (363): armadillo, (793): shower-cap

• seed=82: (280): grey-fox, (942): butternut-squash, (457): bow-tie, (810): space-bar, (811): space-heater, (388):
giant-panda, (121): king-crab, (974): geyser, (432): bassoon, (969): eggnog, (633): loupe, (399): abaya, (438): beaker,
(329): sea-cucumber, (563): fountain-pen, (661): Model-T, (552): feather-boa, (256): Newfoundland, (859): toaster,
(539): doormat, (949): strawberry, (157): papillon, (410): apiary, (569): garbage-truck, (496): Christmas-stocking,
(207): golden-retriever, (591): handkerchief, (806): sock, (372): baboon, (219): cocker-spaniel

We use those targets sequentially for K = 1, 5, 10, 15, 20, 25, 30 for the four models. The targets are shared by the 1000
testing images. For each testing image, if its ground-truth label is in any ordered top-K targets, we replace it with a different
randomly sampled targets.

In addition to the randomly sampled targets, we also test a special case in which the lowest-K predictions by a model for a
benign image are used as the ordered top-K attack targets (i.e., the first target is the class of the lowest logit for the benign
image, and so far so on). The results are shown in Table 6 in the Appendix E.

E. Details of Metrics and Full Results
We report the Mean metrics (ASRs and ℓp norms) in the paper. Here, we also report results in terms of Best and Worst
metrics in Tables 2, 3, 4, 5, where FoMs are computed using Mean.

For a model and a given K, there are five different lists of ordered top-K targets. For each image, its Best (Worst) ASR
is 1 if any (all) of the five lists of targets can be successfully attacked, and the Mean ASR is the fraction of successful
attacks over the total five runs. The overall Best, Mean, Worst ASRs are then averaged over the 1000 testing images.
Corresponding to the three types of ASRs, their ℓp norms are computed using successfully attacked images only.

F. More Qualitative Results
We show examples learned by both our RisingAttacK and QuadAttacK for each of the five random seeds. Fig. 3 shows the
examples by QuadAttacK, corresponding to those by our RisingAttacK in Fig. 2 and the seed is 42

More examples are in Figs. 4 and 5 (for seed=52).

Due to the file size limit (20M), we will show examples using other seeds in our released code repository.

14

RisingAttacK

Table 2. Full results including the three metrics (Best, Mean, Worst) for ResNet50 in Table 1(a). FoM is based on the Mean
performance.

Top-K Method Best Mean Worst Time (s/img) ↓ FoM ↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.4590 11.6907 3620.6876 0.1307 0.2076 11.8070 3654.9139 0.1349 0.0330 11.9156 3686.5432 0.1394 3.3947 6.4793RisingAttacK60 0.8770 6.5011 1922.6780 0.0475 0.6642 7.0271 2081.8960 0.0511 0.3900 7.5992 2255.0249 0.0550 17.0013
QuadAttacK30 Failed Failed Failed 1.6539 infRisingAttacK30 0.0110 6.2378 1844.3013 0.0470 0.0022 6.2378 1844.3013 0.0470 Failed 8.5619

Top-25

QuadAttacK60 0.8460 11.3686 3526.3618 0.1219 0.6018 11.6214 3599.8101 0.1301 0.3060 11.8774 3674.2965 0.1388 3.4167 3.6439RisingAttacK60 0.9580 4.8257 1419.8702 0.0361 0.8420 5.2960 1561.6462 0.0393 0.6700 5.8040 1715.5532 0.0427 14.0839
QuadAttacK30 0.0090 10.4263 3259.2773 0.0991 0.0018 10.4263 3259.2773 0.0991 Failed 1.7058 48.9628RisingAttacK30 0.1270 5.0430 1487.4868 0.0382 0.0392 5.1218 1511.3347 0.0388 0.0010 5.2031 1535.9489 0.0394 7.0999

Top-20

QuadAttacK60 0.9560 9.7368 3030.3407 0.0984 0.8344 10.0891 3133.6199 0.1079 0.6500 10.4514 3239.8729 0.1183 3.4039 3.1100RisingAttacK60 0.9500 3.3880 992.4068 0.0257 0.8306 3.7474 1101.1521 0.0281 0.6520 4.1005 1207.9307 0.0305 6.7267
QuadAttacK30 0.2620 9.0111 2824.4299 0.0839 0.0978 9.0948 2850.0433 0.0858 0.0080 9.1756 2874.5937 0.0876 1.7264 1.9481RisingAttacK30 0.2040 3.4129 1000.3753 0.0264 0.0666 3.4854 1022.5585 0.0269 0.0010 3.5609 1045.7229 0.0274 3.7216

Top-15

QuadAttacK60 0.9870 7.9013 2470.1343 0.0729 0.9440 8.3368 2600.7510 0.0822 0.8460 8.8010 2739.1058 0.0932 3.4839 3.2229RisingAttacK60 0.9990 2.6335 763.6941 0.0208 0.9868 3.0150 878.9222 0.0233 0.9610 3.4246 1003.1229 0.0260 5.1634
QuadAttacK30 0.7540 7.5962 2380.3027 0.0674 0.4922 7.8296 2451.8036 0.0717 0.2090 8.0427 2517.2334 0.0759 1.7382 3.3674RisingAttacK30 0.8310 2.7910 812.1335 0.0219 0.5856 2.9944 873.3877 0.0234 0.2970 3.2057 936.9361 0.0249 2.8794

Top-10

QuadAttacK60 0.9970 6.1074 1917.6238 0.0504 0.9866 6.5228 2044.5753 0.0576 0.9660 6.9893 2186.1273 0.0666 3.7396 3.3482RisingAttacK60 0.9980 1.8077 519.1006 0.0149 0.9936 2.0825 602.1784 0.0167 0.9800 2.3735 690.1587 0.0187 3.3991
QuadAttacK30 0.9520 6.0248 1893.2294 0.0491 0.8460 6.3547 1994.8023 0.0544 0.6600 6.6744 2093.2491 0.0598 1.7593 2.9244RisingAttacK30 0.9410 1.9697 568.1198 0.0160 0.8064 2.1748 630.0922 0.0175 0.5990 2.3743 690.3320 0.0188 1.7965

Top-5

QuadAttacK60 1.0000 3.6813 1161.6413 0.0264 0.9968 4.0029 1261.2314 0.0309 0.9900 4.3529 1369.4046 0.0362 4.5257 3.3373RisingAttacK60 0.9890 0.9567 270.4779 0.0085 0.9558 1.1534 330.1495 0.0098 0.8980 1.3547 391.1246 0.0112 1.8225
QuadAttacK30 0.9880 3.6540 1153.1996 0.0261 0.9590 3.9539 1246.4929 0.0300 0.8950 4.2646 1343.3064 0.0344 2.1458 2.6681RisingAttacK30 0.9860 1.2737 361.3176 0.0110 0.9504 1.4693 420.0254 0.0124 0.8910 1.6607 477.3890 0.0138 0.9517

Top-1

QuadAttacK60 1.0000 1.1548 381.4498 0.0057 0.9996 1.4443 467.1178 0.0083 0.9980 1.7222 550.7556 0.0110 5.3373 2.1564RisingAttacK60 1.0000 0.4136 104.7782 0.0049 0.9992 0.6144 165.8517 0.0064 0.9990 0.8364 233.5616 0.0079 0.6114
QuadAttacK30 0.9980 1.1521 380.6522 0.0057 0.9772 1.4244 461.1199 0.0080 0.9340 1.6861 540.0446 0.0105 2.6411 1.4638RisingAttacK30 1.0000 0.6218 163.8710 0.0066 0.9986 0.9155 251.6174 0.0088 0.9950 1.2054 338.3424 0.0110 0.3201

Table 3. Full results including the three metrics (Best, Mean, Worst) for DenseNet121 in Table 1(b). FoM is based on the Mean
performance.

Top-K Method Best Mean Worst Time (s/img) ↓ FoM ↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 Failed Failed Failed 4.5409 infRisingAttacK60 0.7490 13.8191 4117.4537 0.0991 0.4074 14.7263 4393.8482 0.1051 0.0730 15.6581 4677.7359 0.1114 20.3156
QuadAttacK30 Failed Failed Failed 2.3266 infRisingAttacK30 Failed Failed Failed 10.2335

Top-25

QuadAttacK60 0.4600 13.0098 4002.5555 0.1489 0.1734 13.1825 4053.5759 0.1531 0.0050 13.3529 4103.6056 0.1573 4.1657 8.5496RisingAttacK60 0.9860 8.8114 2589.4709 0.0666 0.9370 9.9898 2945.3574 0.0747 0.8340 11.2310 3320.9942 0.0830 16.8643
QuadAttacK30 Failed Failed Failed 2.2016 infRisingAttacK30 0.3150 9.6484 2840.4239 0.0736 0.1094 9.9203 2921.6770 0.0756 0.0010 10.1868 3001.6276 0.0775 8.5279

Top-20

QuadAttacK60 0.9730 11.0446 3412.9160 0.1140 0.8340 11.6266 3583.3589 0.1268 0.5840 12.1967 3749.9306 0.1403 4.0066 2.6290RisingAttacK60 0.9970 5.1080 1480.5618 0.0406 0.9812 5.9921 1744.8239 0.0468 0.9450 6.9129 2020.8591 0.0532 8.2901
QuadAttacK30 0.1240 9.7962 3054.7057 0.0914 0.0330 9.8564 3072.6790 0.0923 Failed 2.0206 23.7723RisingAttacK30 0.7320 5.7318 1664.7979 0.0456 0.4500 6.1377 1786.5613 0.0485 0.1460 6.5680 1915.5893 0.0516 4.6070

Top-15

QuadAttacK60 0.9970 8.6591 2701.7797 0.0774 0.9866 9.2713 2884.2755 0.0887 0.9610 9.8890 3067.5058 0.1011 3.8963 2.3310RisingAttacK60 1.0000 3.8050 1086.1460 0.0318 1.0000 4.3657 1252.9889 0.0359 1.0000 4.9640 1431.3256 0.0402 6.2878
QuadAttacK30 0.7780 8.3044 2599.4287 0.0720 0.5088 8.6281 2697.9823 0.0771 0.2380 8.9352 2791.7948 0.0821 1.8919 3.5524RisingAttacK30 0.9900 4.2188 1207.4247 0.0350 0.9362 4.7380 1362.7350 0.0387 0.8350 5.2677 1521.6817 0.0425 3.5501

Top-10

QuadAttacK60 1.0000 6.2172 1957.3529 0.0469 0.9986 6.7558 2123.4894 0.0545 0.9970 7.3050 2291.5986 0.0629 3.8256 2.5458RisingAttacK60 1.0000 2.3212 649.6995 0.0208 1.0000 2.6903 759.1986 0.0235 1.0000 3.0749 874.1637 0.0263 4.2223
QuadAttacK30 0.9900 6.1801 1946.4525 0.0464 0.9392 6.6701 2098.0095 0.0531 0.8380 7.1563 2248.2525 0.0602 1.8918 2.4272RisingAttacK30 0.9980 2.4880 698.6799 0.0221 0.9880 2.9210 827.1606 0.0253 0.9690 3.3607 958.0512 0.0285 2.2937

Top-5

QuadAttacK60 1.0000 3.6045 1143.1525 0.0226 0.9998 3.9671 1258.1706 0.0264 0.9990 4.3422 1377.3171 0.0305 3.8644 3.0870RisingAttacK60 1.0000 1.0122 270.9332 0.0103 0.9994 1.2169 331.6714 0.0119 0.9980 1.4422 398.9840 0.0136 2.2643
QuadAttacK30 0.9980 3.6019 1142.1894 0.0226 0.9924 3.9526 1253.5745 0.0262 0.9820 4.3229 1371.6348 0.0303 1.8502 2.2794RisingAttacK30 1.0000 1.3896 378.3550 0.0135 0.9982 1.6603 457.9204 0.0156 0.9940 1.9524 544.3561 0.0178 1.2082

Top-1

QuadAttacK60 1.0000 1.1724 397.8131 0.0049 1.0000 1.5191 503.0047 0.0070 1.0000 1.8544 606.7211 0.0093 3.0413 1.9466RisingAttacK60 1.0000 0.4732 112.4793 0.0063 1.0000 0.7001 177.1356 0.0085 1.0000 0.9566 251.8730 0.0108 0.8046
QuadAttacK30 1.0000 1.1728 397.9329 0.0049 0.9960 1.5144 501.4779 0.0070 0.9880 1.8426 603.0238 0.0092 1.5519 1.2739RisingAttacK30 1.0000 0.7032 175.2027 0.0084 1.0000 1.0708 280.0300 0.0116 1.0000 1.4523 390.3135 0.0149 0.4255

15

RisingAttacK

Table 4. Full results including the three metrics (Best, Mean, Worst) for ViT-B in Table 1(c). FoM is based on the Mean perfor-
mance.

Top-K Method Best Mean Worst Time (s/img) ↓ FoM ↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.6720 9.4223 2864.1279 0.0996 0.3272 9.6708 2938.2587 0.1032 0.0590 9.9254 3014.5189 0.1067 5.2135 3.1589RisingAttacK60 1.0000 6.7803 1881.7456 0.0613 0.9534 9.7262 2721.2876 0.0876 0.8260 14.2641 4001.9670 0.1299 43.3954
QuadAttacK30 Failed Failed Failed 2.7870 infRisingAttacK30 0.8080 10.3031 2880.8575 0.0934 0.5568 11.4132 3206.4565 0.1029 0.2430 12.6194 3558.5805 0.1134 21.7179

Top-25

QuadAttacK60 0.9350 9.0105 2737.0924 0.0935 0.6872 9.4331 2860.6667 0.1002 0.3490 9.8582 2985.2203 0.1070 5.2723 2.6425RisingAttacK60 1.0000 4.0101 1084.9150 0.0382 0.9944 5.5706 1520.5703 0.0526 0.9740 8.1685 2232.4551 0.0782 36.0486
QuadAttacK30 Failed Failed Failed 2.7354 infRisingAttacK30 0.9330 6.8418 1877.8280 0.0643 0.7536 7.7050 2126.3211 0.0721 0.5000 8.8041 2438.7838 0.0825 18.0775

Top-20

QuadAttacK60 0.9710 7.4811 2268.2729 0.0748 0.7828 7.9108 2393.0875 0.0815 0.4910 8.3426 2519.7231 0.0884 5.0069 2.8308RisingAttacK60 0.9980 3.0033 792.6934 0.0294 0.9864 3.7609 1007.6887 0.0360 0.9560 4.5804 1241.9193 0.0432 15.8230
QuadAttacK30 0.0020 6.3770 1992.7502 0.0533 0.0004 6.3770 1992.7502 0.0533 Failed 2.6210 1610.8632RisingAttacK30 0.7380 4.5276 1221.1645 0.0436 0.4956 4.9482 1343.2135 0.0473 0.2490 5.3892 1471.1873 0.0511 7.9615

Top-15

QuadAttacK60 0.9730 5.8803 1780.9271 0.0558 0.8404 6.2661 1893.5173 0.0620 0.5980 6.6687 2011.4965 0.0684 4.7622 2.7231RisingAttacK60 1.0000 2.3069 593.4747 0.0235 0.9988 2.8751 753.1852 0.0284 0.9940 3.5373 939.6227 0.0343 11.9841
QuadAttacK30 0.0240 4.7795 1490.0706 0.0382 0.0056 4.7982 1495.8188 0.0385 Failed 2.4245 164.8583RisingAttacK30 0.9270 3.4401 908.2324 0.0339 0.7510 3.8944 1038.7394 0.0379 0.5310 4.4471 1197.6996 0.0427 6.0305

Top-10

QuadAttacK60 0.9900 4.1855 1274.5181 0.0363 0.9130 4.5246 1374.2282 0.0410 0.7510 4.8729 1476.9954 0.0459 4.6368 2.5247RisingAttacK60 1.0000 1.5872 397.2939 0.0169 0.9936 1.9915 508.8791 0.0206 0.9750 2.4423 634.1043 0.0247 8.2583
QuadAttacK30 0.0810 3.4468 1078.1791 0.0256 0.0252 3.4999 1094.6987 0.0261 Failed 2.3034 36.7947RisingAttacK30 0.9010 2.3233 599.0848 0.0240 0.7112 2.6247 684.1576 0.0267 0.4810 2.9492 775.8982 0.0297 4.1602

Top-5

QuadAttacK60 1.0000 3.2461 1010.5003 0.0241 0.9980 3.6439 1128.3054 0.0288 0.9930 4.0423 1246.0157 0.0338 4.3981 1.7630RisingAttacK60 0.8280 0.9934 245.3329 0.0111 0.5712 1.1650 292.6494 0.0128 0.2910 1.3395 340.9352 0.0144 4.4038
QuadAttacK30 0.8120 3.0924 968.7317 0.0221 0.5024 3.2930 1029.8490 0.0242 0.1780 3.4820 1087.7387 0.0261 2.1108 2.3688RisingAttacK30 0.8420 1.3886 345.5126 0.0153 0.5980 1.6101 406.4644 0.0174 0.3310 1.8357 468.6344 0.0195 2.2197

Top-1

QuadAttacK60 1.0000 1.2537 410.8221 0.0059 0.9998 1.5736 509.7575 0.0081 0.9990 1.9042 612.7661 0.0106 2.6007 3.2121RisingAttacK60 0.9940 0.2978 60.3734 0.0045 0.9388 0.4365 96.0745 0.0060 0.8260 0.6048 139.9744 0.0078 1.2715
QuadAttacK30 1.0000 1.2541 410.9606 0.0059 0.9958 1.5681 508.0591 0.0081 0.9900 1.8935 609.5179 0.0105 1.3040 2.1102RisingAttacK30 0.9950 0.4270 90.9070 0.0060 0.9362 0.6578 149.1661 0.0086 0.8180 0.9318 219.6820 0.0115 0.6417

Table 5. Full results including the three metrics (Best, Mean, Worst) for DEiT-B in Table 1(d). FoM is based on the Mean
performance.

Top-K Method Best Mean Worst Time (s/img) ↓ FoM ↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.2350 9.3006 2840.2109 0.0985 0.0640 9.3734 2860.9240 0.0997 0.0010 9.4465 2881.7991 0.1009 4.1792 8.8333RisingAttacK60 0.9860 7.9531 2263.3389 0.0678 0.5150 9.4432 2697.9176 0.0804 0.0340 11.7557 3365.5665 0.1007 43.3521
QuadAttacK30 Failed Failed Failed 2.3032 infRisingAttacK30 0.2160 10.8323 3092.9352 0.0937 0.0600 11.0771 3165.6910 0.0957 Failed 21.6930

Top-25

QuadAttacK60 0.9900 8.8805 2703.0149 0.0886 0.8644 9.3780 2849.8222 0.0960 0.5880 9.9093 3006.5687 0.1039 4.0966 2.1975RisingAttacK60 1.0000 3.6473 1002.9836 0.0337 0.9854 5.1921 1434.6160 0.0482 0.9360 7.9650 2187.8969 0.0768 36.1084
QuadAttacK30 Failed Failed Failed 2.2173 infRisingAttacK30 0.9100 5.6674 1575.9766 0.0520 0.6748 6.3220 1763.4334 0.0581 0.3620 7.1691 2002.6759 0.0662 18.1108

Top-20

QuadAttacK60 0.9990 7.2048 2199.2260 0.0665 0.9612 7.6974 2343.5441 0.0735 0.8540 8.2263 2499.1404 0.0811 4.1868 2.8466RisingAttacK60 1.0000 2.3202 611.1048 0.0230 0.9956 2.9174 781.2607 0.0282 0.9850 3.5733 968.9946 0.0339 15.8331
QuadAttacK30 0.0160 6.2491 1950.0525 0.0524 0.0032 6.2491 1950.0525 0.0524 Failed 2.1503 325.7059RisingAttacK30 0.8560 3.5031 946.6329 0.0338 0.6348 3.8373 1045.3953 0.0366 0.3810 4.1863 1148.5782 0.0395 7.9624

Top-15

QuadAttacK60 1.0000 5.5928 1713.0918 0.0481 0.9750 6.0671 1852.4958 0.0544 0.9100 6.5599 1997.5902 0.0611 3.9525 2.8819RisingAttacK60 1.0000 1.7594 448.6124 0.0184 1.0000 2.2015 573.3811 0.0223 1.0000 2.7017 715.2705 0.0266 11.9810
QuadAttacK30 0.1350 4.9541 1548.1232 0.0383 0.0338 4.9874 1558.1460 0.0386 Failed 2.0234 42.8983RisingAttacK30 0.9870 2.7227 714.8364 0.0273 0.9278 3.1490 838.2295 0.0310 0.8140 3.5773 963.3399 0.0346 6.0263

Top-10

QuadAttacK60 0.9980 3.9545 1222.8665 0.0305 0.9762 4.3693 1346.6326 0.0353 0.9150 4.7999 1475.4252 0.0406 3.8755 2.9455RisingAttacK60 1.0000 1.1885 291.5197 0.0132 0.9996 1.5076 379.6582 0.0162 0.9980 1.8825 484.4438 0.0195 8.2610
QuadAttacK30 0.3540 3.4965 1097.7370 0.0249 0.1298 3.5782 1123.3760 0.0256 0.0100 3.6597 1148.9145 0.0263 1.9552 11.4300RisingAttacK30 0.9800 1.7993 458.0865 0.0191 0.9200 2.1465 556.2741 0.0222 0.8000 2.5030 658.8665 0.0253 4.1613

Top-5

QuadAttacK60 1.0000 2.9872 940.1374 0.0201 0.9984 3.3975 1064.7252 0.0243 0.9950 3.8203 1192.7754 0.0288 3.4381 3.1378RisingAttacK60 1.0000 0.8108 189.0044 0.0096 0.9992 1.0575 254.5953 0.0121 0.9970 1.3365 329.6166 0.0148 4.4027
QuadAttacK30 0.9700 2.9571 932.7132 0.0197 0.7794 3.2526 1024.0607 0.0225 0.4770 3.5452 1114.4266 0.0252 1.7718 2.6286RisingAttacK30 0.9760 1.0890 264.4306 0.0125 0.8800 1.3450 334.9398 0.0149 0.7110 1.6168 410.8617 0.0174 2.2165

Top-1

QuadAttacK60 1.0000 1.1376 381.0736 0.0047 1.0000 1.3910 459.6084 0.0063 1.0000 1.6659 545.2655 0.0080 2.9955 3.9437RisingAttacK60 0.9990 0.2450 46.1936 0.0041 0.9794 0.3340 68.5738 0.0052 0.9420 0.4472 97.7384 0.0065 1.2708
QuadAttacK30 1.0000 1.1372 380.9527 0.0047 0.9994 1.3899 459.3060 0.0063 0.9970 1.6631 544.4684 0.0080 1.4404 2.4502RisingAttacK30 1.0000 0.3367 67.5065 0.0052 0.9772 0.5249 114.2980 0.0073 0.9240 0.7524 171.9542 0.0099 0.6426

16

RisingAttacK

Table 6. Ordered top-K attack results using the lowest-K predictions of benign images as attack targets. Overall, our RisingAttacK
shows a big leap forward in advancing ordered top-K attacks, outperforming the prior state-of-the-art method, QuadAttacK (Paniagua
et al., 2023) by a large margin in most cases (higher ASRs with lower ℓp norms). ℓ∞-norms in red is to show they are treated as being
“visually imperceptible” based on the commonly used threshold 8/255 = 0.0314. The subscripts of methods (30 and 60) represent the
computing budgets. The FoM (figure of merits) of our RisingAttacK against QuadAttacK is computed by Eqn. 23 to show its holistic
improvement in terms of how many times it is better.

(a) ResNet-50 (He et al., 2016)

Top-K Method Single-Run Time (s/img) ↓ FoM↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.3250 11.7308 3640.1040 0.1292 4.7020 3.8464RisingAttacK60 0.5340 5.9437 1762.7836 0.0433 38.9733
QuadAttacK30 0.0010 10.6442 3329.8271 0.1111 2.2976 7.6272RisingAttacK30 0.0040 6.3581 1870.2285 0.0490 19.6176

Top-25

QuadAttacK60 0.6240 11.5386 3585.0978 0.1250 4.5973 3.1978RisingAttacK60 0.7070 4.7898 1415.3054 0.0355 32.0203
QuadAttacK30 0.0320 10.3092 3233.3005 0.0954 2.2886 2.2899RisingAttacK30 0.0280 4.2926 1263.4319 0.0330 16.1438

Top-20

QuadAttacK60 0.8090 10.0532 3129.2405 0.1050 4.5393 2.8243RisingAttacK60 0.7300 3.6953 1088.5812 0.0277 14.1311
QuadAttacK30 0.1270 9.1247 2863.4929 0.0830 2.2579 1.2784RisingAttacK30 0.0560 3.3960 993.0273 0.0265 7.4246

Top-15

QuadAttacK60 0.9370 8.4982 2653.1828 0.0840 4.5458 3.1157RisingAttacK60 0.9620 3.1353 917.7340 0.0240 10.7638
QuadAttacK30 0.3980 7.8166 2453.6085 0.0696 2.2794 2.6514RisingAttacK30 0.3880 3.0805 900.1031 0.0240 5.6529

Top-10

QuadAttacK60 0.9840 6.7946 2130.0686 0.0610 4.6965 3.1959RisingAttacK60 0.9840 2.2788 661.9469 0.0180 7.6067
QuadAttacK30 0.7670 6.4958 2040.6640 0.0554 2.3425 2.5281RisingAttacK30 0.6590 2.3197 674.2584 0.0185 3.9934

Top-5

QuadAttacK60 0.9910 4.2898 1351.5930 0.0339 5.1849 2.9681RisingAttacK60 0.9290 1.3772 397.4290 0.0114 4.3419
QuadAttacK30 0.9210 4.1759 1316.8696 0.0323 2.5234 2.4573RisingAttacK30 0.9070 1.6905 486.2660 0.0140 2.2706

Top-1

QuadAttacK60 0.9990 1.6902 542.3103 0.0103 6.1673 2.1155RisingAttacK60 1.0000 0.7436 203.6175 0.0074 1.6483
QuadAttacK30 0.9620 1.6317 523.8288 0.0097 3.0124 1.4446RisingAttacK30 1.0000 1.0940 303.8991 0.0102 0.8588

(b) DenseNet-121 (Huang et al., 2017)

Top-K Method Single-Run Time (s/img) ↓ FoM↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.1370 13.3362 4119.1202 0.1466 5.3182 9.4906RisingAttacK60 0.8520 10.2572 3029.0433 0.0764 40.2688
QuadAttacK30 Failed 2.8216 infRisingAttacK30 0.0850 8.7632 2561.6755 0.0683 20.1358

Top-25

QuadAttacK60 0.6760 13.1121 4052.3545 0.1417 5.0749 3.0375RisingAttacK60 0.9840 7.2225 2110.8964 0.0561 32.7520
QuadAttacK30 0.0080 11.1429 3480.9835 0.1047 2.6689 94.7409RisingAttacK30 0.4730 7.5557 2203.2915 0.0597 16.4573

Top-20

QuadAttacK60 0.9360 11.3239 3513.0089 0.1142 4.8813 2.6289RisingAttacK60 0.9900 5.0476 1460.8408 0.0407 14.5282
QuadAttacK30 0.1710 9.9557 3118.5042 0.0886 2.5958 7.5775RisingAttacK30 0.6840 5.5711 1612.6615 0.0451 7.4920

Top-15

QuadAttacK60 0.9910 9.2727 2898.0552 0.0840 4.8481 2.3800RisingAttacK60 1.0000 4.1631 1190.6402 0.0348 11.1324
QuadAttacK30 0.6320 8.6222 2707.6770 0.0731 2.4824 2.9579RisingAttacK30 0.9540 4.5707 1310.9248 0.0380 5.7205

Top-10

QuadAttacK60 0.9980 7.0847 2232.9939 0.0559 4.7497 2.4674RisingAttacK60 1.0000 2.8950 817.3569 0.0253 7.9408
QuadAttacK30 0.9230 6.8696 2167.0029 0.0531 2.4163 2.3308RisingAttacK30 0.9830 3.1446 890.9174 0.0272 4.0917

Top-5

QuadAttacK60 0.9990 4.3886 1396.2655 0.0290 4.4818 2.8989RisingAttacK60 0.9980 1.4362 394.3187 0.0138 4.6659
QuadAttacK30 0.9810 4.3306 1377.5596 0.0284 2.2109 2.0768RisingAttacK30 0.9930 2.0112 558.1958 0.0185 2.3818

Top-1

QuadAttacK60 1.0000 1.7865 587.0397 0.0086 3.6998 2.0325RisingAttacK60 1.0000 0.7916 201.4099 0.0093 2.0500
QuadAttacK30 0.9910 1.7586 577.6225 0.0084 1.8592 1.3071RisingAttacK30 1.0000 1.2213 321.1319 0.0130 1.0587

(c) ViT-B (Dosovitskiy et al., 2020)

Top-K Method Single-Run Time (s/img) ↓ FoM↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.2400 9.2933 2828.3158 0.0997 6.5384 6.0806RisingAttacK60 0.9980 6.9512 1923.6753 0.0631 107.4773
QuadAttacK30 Failed 3.6705 infRisingAttacK30 0.5200 9.2443 2576.2629 0.0842 54.5843

Top-25

QuadAttacK60 0.5220 9.2439 2813.6584 0.0980 6.3901 3.9297RisingAttacK60 0.9960 4.8564 1318.3544 0.0458 90.1623
QuadAttacK30 Failed 3.5624 infRisingAttacK30 0.5860 6.8079 1869.8754 0.0640 46.2905

Top-20

QuadAttacK60 0.6870 7.7073 2337.6029 0.0803 6.1960 3.2785RisingAttacK60 0.9680 3.5511 945.7173 0.0343 43.4669
QuadAttacK30 0.0010 5.6397 1745.0922 0.0501 3.4596 450.2016RisingAttacK30 0.3810 4.8757 1316.7148 0.0472 24.6167

Top-15

QuadAttacK60 0.7880 6.0980 1849.0582 0.0606 6.0093 2.8951RisingAttacK60 1.0000 2.8185 734.7598 0.0280 32.9165
QuadAttacK30 0.0130 4.5583 1422.9767 0.0378 3.2740 62.7339RisingAttacK30 0.6740 3.7918 1009.0854 0.0372 18.6537

Top-10

QuadAttacK60 0.8900 4.4073 1342.7171 0.0401 5.7166 2.5217RisingAttacK60 0.9940 1.9987 508.1560 0.0208 22.5797
QuadAttacK30 0.0310 3.2038 1007.5255 0.0245 3.0683 24.9115RisingAttacK30 0.6540 2.6736 696.4219 0.0273 12.7669

Top-5

QuadAttacK60 0.9970 3.6834 1140.4541 0.0296 5.3490 1.6908RisingAttacK60 0.5460 1.1798 295.8843 0.0129 12.1849
QuadAttacK30 0.4230 3.1510 987.3517 0.0235 2.8011 2.3368RisingAttacK30 0.5450 1.6973 429.3175 0.0183 6.8619

Top-1

QuadAttacK60 1.0000 1.7206 555.2969 0.0091 3.4851 3.0815RisingAttacK60 0.9260 0.4883 109.9290 0.0065 3.7639
QuadAttacK30 0.9970 1.7137 553.1291 0.0091 1.7672 2.0013RisingAttacK30 0.9250 0.7459 172.3669 0.0094 2.0927

(d) DEiT-B (Touvron et al., 2021)

Top-K Method Single-Run Time (s/img) ↓ FoM↑ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.3660 9.6171 2927.7147 0.0983 5.3128 4.2723RisingAttacK60 0.9850 6.5547 1846.3443 0.0575 107.3817
QuadAttacK30 Failed 3.0631 infRisingAttacK30 0.2920 7.8282 2213.4546 0.0694 54.7059

Top-25

QuadAttacK60 0.8810 9.3748 2858.4162 0.0933 5.2609 2.9615RisingAttacK60 0.9980 3.7927 1035.3009 0.0357 90.7822
QuadAttacK30 Failed 2.9321 infRisingAttacK30 0.7090 5.4817 1521.3469 0.0508 46.5786

Top-20

QuadAttacK60 0.9480 7.7045 2353.1867 0.0729 5.2085 3.1254RisingAttacK60 0.9910 2.6716 707.9259 0.0264 43.5567
QuadAttacK30 0.0040 6.1241 1920.0202 0.0490 2.8225 246.9753RisingAttacK30 0.5990 3.6926 1001.5668 0.0357 24.6677

Top-15

QuadAttacK60 0.9710 6.0495 1855.0592 0.0536 4.9720 3.0621RisingAttacK60 1.0000 2.0686 532.7703 0.0213 32.9756
QuadAttacK30 0.0240 4.7361 1492.8217 0.0364 2.7253 60.2646RisingAttacK30 0.9050 2.9258 774.8312 0.0291 18.6605

Top-10

QuadAttacK60 0.9830 4.3244 1340.7801 0.0344 4.7669 3.0775RisingAttacK60 0.9990 1.4164 351.9301 0.0155 22.6131
QuadAttacK30 0.0940 3.3065 1037.0081 0.0246 2.6114 15.6515RisingAttacK30 0.9220 2.0227 520.4555 0.0212 12.7832

Top-5

QuadAttacK60 0.9980 3.4488 1085.9038 0.0240 4.5690 3.3363RisingAttacK60 0.9990 1.0086 240.3898 0.0117 12.1753
QuadAttacK30 0.7800 3.2362 1023.7461 0.0219 2.3610 2.6224RisingAttacK30 0.8700 1.3222 328.4794 0.0147 6.8720

Top-1

QuadAttacK60 1.0000 1.5513 509.9606 0.0071 3.8654 4.0412RisingAttacK60 0.9860 0.3632 76.0298 0.0054 3.7549
QuadAttacK30 0.9970 1.5428 507.5080 0.0070 1.9139 2.4961RisingAttacK30 0.9800 0.5707 126.7541 0.0077 2.0951

17

RisingAttacK

Figure 3. QuadAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012 val 00002633 with the ground-truth label, redshank) using a list of

randomly sampled 30 targets (see the list for seed=42 in the Appendix D) in the order of: mask, analog-clock, slide-rule, Siberian-husky, harmonica, African-chameleon,

dowitcher, hyena, wing, pillow, garter-snake, Great-Pyrenees, puffer, banana, West-Highland-white-terrier, whippet, brown-bear,

snowplow, tarantula, space-heater, sports-car, jean, sandbar, perfume, papillon, triceratops, barrow, peacock, digital-watch, carton.

The adversarial perturbations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used threshold 8/255 = 0.0314

for ℓ∞ (‘linf’) norms. If QuadAttacK fails using a model for a K (e.g. topK=25 for DenseNet121), we leave it blank. For the benign image, the top-30 predictions by the four models respectively are:

• ResNet50: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, grey whale, red-breasted merganser, crane, sea lion, chainlink fence, lakeside, wreck, quail, partridge, screwdriver,

plastic bag, pelican, parachute, killer whale, sulphur-crested cockatoo, African crocodile, white stork, pole, bucket, caldron, hummingbird, sandbar, king penguin, nail, syringe.

• DenseNet121: redshank, ruddy turnstone, red-backed sandpiper, oystercatcher, breakwater, dowitcher, sea lion, academic gown, abaya, mortarboard, red-breasted merganser, lifeboat, cloak, espresso,

lipstick, theater curtain, wood rabbit, umbrella, refrigerator, ruffed grouse, king penguin, partridge, sandbar, diamondback, hen-of-the-woods, wine bottle, mailbox, stone wall, volcano, redbone.

• ViT-B: redshank, red-backed sandpiper, ruddy turnstone, dowitcher, oystercatcher, water ouzel, Madagascar cat, chain saw, apiary, red-breasted merganser, Tibetan mastiff, cicada, seat belt, American egret,

wall clock, mask, snow leopard, schipperke, potter’s wheel, lycaenid, mud turtle, curly-coated retriever, dumbbell, television, strainer, feather boa, buckle, junco, boa constrictor, volcano.

• DEiT-B: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, red-breasted merganser, warthog, worm fence, Indian elephant, African crocodile, maze, badger, snowplow, American

black bear, stone wall, king penguin, car wheel, rock python, water ouzel, guillotine, wild boar, centipede, diamondback, apiary, barrow, horned viper, sundial, guenon, bustard, skunk.

18

RisingAttacK

Figure 4. RisingAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012 val 00002266 with the ground-truth label, dogsled) using

a list of randomly sampled 30 targets (see the list for seed=52 in the Appendix D) in the order of: crutch, wood-rabbit, prison, jigsaw-puzzle, joystick, space-bar,

lumbermill, West-Highland-white-terrier, English-springer, spindle, hot-pot, African-hunting-dog, beaver, loggerhead, Cardigan, torch,

radio-telescope, strawberry, beagle, chain, dalmatian, tiger, beer-bottle, maillot, ping-pong-ball, bighorn, hard-disc, analog-clock,

hair-slide, parachute. The adversarial perturbations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used

threshold 8/255 = 0.0314 for ℓ∞ (‘linf’) norms. For the benign image, the top-30 predictions by the four models respectively are:

• ResNet50: dogsled, Eskimo dog, bobsled, Ibizan hound, Labrador retriever, EntleBucher, beagle, Weimaraner, Greater Swiss Mountain dog, bloodhound, stretcher, Cardigan, Walker hound, redbone,

Leonberg, Siberian husky, English foxhound, Chihuahua, shovel, Bernese mountain dog, malinois, ski mask, groenendael, Chesapeake Bay retriever, curly-coated retriever, drum, cocker spaniel, Gordon

setter, Saluki, cowboy hat.

• DenseNet121: dogsled, Ibizan hound, Chesapeake Bay retriever, American Staffordshire terrier, whippet, Weimaraner, bobsled, vizsla, snowmobile, drum, malinois, Rhodesian ridgeback, Saluki, Eskimo

dog, ski, Labrador retriever, mountain tent, Irish terrier, toyshop, shovel, muzzle, ski mask, dingo, alp, Irish wolfhound, Greater Swiss Mountain dog, Brittany spaniel, hog, Staffordshire bullterrier, Siberian

husky.

• ViT-B: dogsled, Ibizan hound, Eskimo dog, American Staffordshire terrier, whippet, Greater Swiss Mountain dog, snowmobile, EntleBucher, boxer, Saluki, bobsled, Siberian husky, Norfolk terrier,

Staffordshire bullterrier, basenji, Great Dane, Rhodesian ridgeback, Irish terrier, Brittany spaniel, Tibetan terrier, Chihuahua, muzzle, vizsla, beagle, rugby ball, Walker hound, Norwich terrier, Italian

greyhound, Cardigan, Weimaraner.

• DEiT-B: dogsled, Eskimo dog, EntleBucher, Ibizan hound, whippet, Chihuahua, Weimaraner, Siberian husky, bearskin, Greater Swiss Mountain dog, Italian greyhound, bobsled, manhole cover, beagle,

snowmobile, coffeepot, scabbard, bald eagle, langur, wing, espresso, stethoscope, mortarboard, dingo, suit, cowboy hat, piggy bank, carpenter’s kit, basenji, zucchini.

19

RisingAttacK

Figure 5. QuadAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012 val 00002266 with the ground-truth label, dogsled) using

a list of randomly sampled 30 targets (see the list for seed=52 in the Appendix D) in the order of: crutch, wood-rabbit, prison, jigsaw-puzzle, joystick, space-bar,

lumbermill, West-Highland-white-terrier, English-springer, spindle, hot-pot, African-hunting-dog, beaver, loggerhead, Cardigan, torch,

radio-telescope, strawberry, beagle, chain, dalmatian, tiger, beer-bottle, maillot, ping-pong-ball, bighorn, hard-disc, analog-clock,

hair-slide, parachute. The adversarial perturbations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used

threshold 8/255 = 0.0314 for ℓ∞ (‘linf’) norms. If QuadAttacK fails using a model for a K (e.g. topK=25 for DenseNet121), we leave it blank. For the benign image, the top-30 predictions by the four

models respectively are:

• ResNet50: dogsled, Eskimo dog, bobsled, Ibizan hound, Labrador retriever, EntleBucher, beagle, Weimaraner, Greater Swiss Mountain dog, bloodhound, stretcher, Cardigan, Walker hound, redbone,

Leonberg, Siberian husky, English foxhound, Chihuahua, shovel, Bernese mountain dog, malinois, ski mask, groenendael, Chesapeake Bay retriever, curly-coated retriever, drum, cocker spaniel, Gordon

setter, Saluki, cowboy hat.

• DenseNet121: dogsled, Ibizan hound, Chesapeake Bay retriever, American Staffordshire terrier, whippet, Weimaraner, bobsled, vizsla, snowmobile, drum, malinois, Rhodesian ridgeback, Saluki, Eskimo

dog, ski, Labrador retriever, mountain tent, Irish terrier, toyshop, shovel, muzzle, ski mask, dingo, alp, Irish wolfhound, Greater Swiss Mountain dog, Brittany spaniel, hog, Staffordshire bullterrier, Siberian

husky.

• ViT-B: dogsled, Ibizan hound, Eskimo dog, American Staffordshire terrier, whippet, Greater Swiss Mountain dog, snowmobile, EntleBucher, boxer, Saluki, bobsled, Siberian husky, Norfolk terrier,

Staffordshire bullterrier, basenji, Great Dane, Rhodesian ridgeback, Irish terrier, Brittany spaniel, Tibetan terrier, Chihuahua, muzzle, vizsla, beagle, rugby ball, Walker hound, Norwich terrier, Italian

greyhound, Cardigan, Weimaraner.

• DEiT-B: dogsled, Eskimo dog, EntleBucher, Ibizan hound, whippet, Chihuahua, Weimaraner, Siberian husky, bearskin, Greater Swiss Mountain dog, Italian greyhound, bobsled, manhole cover, beagle,

snowmobile, coffeepot, scabbard, bald eagle, langur, wing, espresso, stethoscope, mortarboard, dingo, suit, cowboy hat, piggy bank, carpenter’s kit, basenji, zucchini.

20

