Uncertainty-Guided Exploration for Efficient
AlphaZero Training

Scott Cheng' Meng-Yu Tsai’> Ding-Yong Hong®? Mahmut Taylan Kandemir!

IThe Pennsylvania State University, USA 2Independent
3Tnstitute of Information Science, Academia Sinica, Taiwan

1{ypc5394,mtk2}Cpsu.edu 2adamatuno@gmail.com >dyhong@iis.sinica.edu.tw

Abstract

AlphaZero has achieved remarkable success in complex decision-making problems
through self-play and neural network training. However, its self-play process
remains inefficient due to limited exploration of high-uncertainty positions, the
overlooked runner-up decisions in Monte Carlo Tree Search (MCTS), and high
variance in value labels. To address these challenges, we propose and evaluate
uncertainty-guided exploration by branching from high-uncertainty positions using
our proposed Label Change Rate (LCR) metric, which is further refined by a
Bayesian inference framework. Our proposed approach leverages runner-up MCTS
decisions to create multiple variations, and ensembles value labels across these
variations to reduce variance. We investigate three key design parameters for our
branching strategy: where to branch, how many variations to branch, and which
move to play in the new branch. Our empirical findings indicate that branching with
10 variations per game provides the best performance-exploration balance. Overall,
our end-to-end results show an improved sample efficiency over the baseline by
58.5% on 9x9 Go in the early stage of training and by 47.3% on 19x19 Go in the
late stage of training.

1 Introduction

@ main sequence
© branched sequence

Which move to play?
O high-uncertainty position pray @-

How many to branch? @ = & >0

o .

3 unplayed position

£ Where to branch? @ X

[}

el 4O—>0 - - >Q— - —>Q@

‘® /

2] /

] /

o /

I @o— -- —mP@—>O0—> 0@ >@ >Q@
time step

Figure 1: Our proposed method enhances exploration in self-play by branching at high-uncertainty
positions to explore additional runner-up MCTS decisions, and reduces the variance of the value label
by ensembling multiple game results, thus improving training efficiency.

AlphaZero [1] has demonstrated remarkable capabilities by combining Monte Carlo Tree Search
(MCTS) [2, 3] and deep neural networks, achieving superhuman performance in games such as Go,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Chess, and Shogi. It learns through self-play, where a neural network guides MCTS to generate
games, and the game results are used to train the network. This process is repeated in an alternating
fashion, gradually improving the playing strength. As the size and capability of the neural network
increase, the cost of evaluating it during MCTS increases substantially, making self-play the dominant
component of overall training time.

Despite its success, AlphaZero’s self-play process remains inefficient for several reasons. First, only
40% of the positions change decisions after the tree search [4, 5], so only a few positions benefit
from the search for improvement. Those high-uncertainty positions are unfortunately not reused
for exploration. Second, only one MCTS decision is used per move during self-play, while other
non-best decisions, especially the runner-up decisions, are discarded without exploration. Those
runner-up moves can potentially be stronger than the best decision, but due to an insufficient number
of simulations, they fail to overtake the current best one, even if a better move was found during
the latter phase of tree search. Third, the value label in self-play training is provided by a single
game result and thus exhibits high variance, especially during the opening phase of a game. Previous
works [6, 7] on reusing positions to improve AlphaZero training efficiency focus mainly on early
game exploration, thus failing to capture high-uncertainty positions, particularly in the mid-to-late
game. Furthermore, most of the work [8—11] on efficient training of AlphaZero and its variants
focuses on improving the learning target for neural network training. In contrast, this work focuses on
exploring high-uncertainty positions during self-play, and thus complements these prior approaches.

To this end, we propose uncertainty-guided self-play, which revisits high-uncertainty but under-
explored positions, as illustrated in Figure 1. This branching process is analogous to how humans
learn after game plays, where people identify the last major mistake, typically not in the opening,
and revisit that position to explore highly considered but initially overlooked decisions to change the
game result. In particular, we aim to address the following questions in the context of branching: i)
Where to branch?, ii) How many variations' to branch?, and iii) Which move to play in each new
variation? For the first question, we branch from high-uncertainty positions by our proposed Label
Change Rate, which quantifies uncertainty by estimating how likely the game result would differ
when repeatedly replaying from a given position. We further refine this estimate using a Bayesian
inference framework to robustly integrate both prior knowledge from search values and empirical
game results. For the second question, we control the number of branches via a variation budget,
balancing the degree of exploration within a single game and across multiple games. Finally, for
the third question, we reuse the runner-up decisions from the original search result to play the new
variation without performing additional simulations or relying on other larger models, since we
observe that, when a deeper search changes the best move, the new best decision has a high chance
coming from the runner-up decisions in the initial search. Moreover, since obtaining an MCTS
planning result typically requires hundreds of neural network inferences, we can reuse the runner-up
decisions during self-play, unlike the original method, which discards all decisions but the best result.

In summary, this paper makes the following main contributions:

* We introduce an uncertainty-guided exploration for AlphaZero, which enhances exploration by
revisiting high-uncertainty positions and reduces the variance of the value label by ensembling
multiple game results. Furthermore, we conduct a detailed analysis of the three design dimensions
for uncertainty branching and experimentally show their contributions to training efficiency.

* We propose the Label Change Rate (LCR) metric based on our analysis on the Bernoulli distri-
bution, along with a Bayesian refinement scheme, to robustly identify high-uncertainty positions.
We experimentally show that the proposed uncertainty estimator closely matches the empirical
results, with an average RMSE (root mean square error) of 0.02. This metric enables us to discover
high-uncertainty positions at a later game stage via an analytical form.

* Our evaluation indicates that using 10 variations per game achieves the best balance for exploration
within and between games. Moreover, branching at positions selected uniformly at random leads
to a significant decrease in strength, with only a 25.5% win rate against our proposed method,
highlighting the critical role of branch point selection and the insufficiency of relying solely on the
value ensemble. Finally, our end-to-end results show that our method improves sample efficiency
over the baseline in both the early and late stages of training, achieving an improvement of up to
58.5% in 9x9 Go and 47.3% in 19x19 Go.

'We use “branches” and “variations™ interchangeably; “variation” follows the terminology used in GTP [12].

2 Background

self-play
acting
MCTS poli N licy label
policy . policy labe
MCTS value / POICY 120l NG e tabel
value label
planning learning
\/
NN policy
NN value

Figure 2: Interaction of policy and value
among the stages of acting, planning, and
learning in AlphaZero. Our method further
employs policy and value labels early during
acting, as indicated by the red arrow.

100%

80% A

60% 1

40% 1

Probability

20% A —e— Doubled simulations
—eo— Stronger network

0% T T T T r
3 4 5 6 7 8
TopK of initial search result

)

Figure 3: Probability that when doubling sim-
ulations or using a stronger network, the new
best move appears within the initial top k
search results, conditioned on cases where
the original top-1 move changes.

2.1 AlphaZero

AlphaZero combines MCTS with a deep neural network (NN) to address complex decision-making
problems. As shown in Figure 2, its training process alternates between two phases: (1) self-play and
(2) neural network training. In the self-play phase, AlphaZero generates games by acting, with each
move determined through MCTS planning. In the training phase, the neural network is updated by
learning from the collected self-play games. Specifically, the neural network learning target contains
(1) a policy label, corresponding to the root visit count distribution of MCTS, and (ii) a value label,
representing the final game result. Moreover, during planning, the MCTS search tree is guided by the
neural network policy and value to obtain the search result, typically requiring hundreds to thousands
of neural network predictions to obtain a search result. Once a decision is made by MCTS planning,
the resulting MCTS policy and value are used to select the next action or decide to resign. Through
the cycle of acting, planning, and learning, AlphaZero continuously refines its decision-making
capabilities. Furthermore, unlike the original approach, our method augments the self-play process
by incorporating not only the MCTS planning results but also the neural network learning targets (the
red arrow in Figure 2) to guide acting. This additional label information enables us to explore more
high-uncertainty positions during acting, as we will discuss later in Section 4.2.

2.2 Motivation

In this section, we study the relationship between stronger decisions and their rank in the search
result. Previous studies [4, 5] have shown that, for more than 60% of positions, the best move remains
unchanged after MCTS. Thus, we focus on the remaining 40% of important positions where the best
search result changes. Specifically, we examine whether the new best decision emerges from novel,
out-of-distribution (OOD) decisions or from a runner-up decision already present in the initial search.

To analyze this, we generate improved decisions by increasing simulation counts or using a stronger
network, and then compare the new best move to the ranking in the initial search results. Figure 3
shows that when search results change due to an increase in simulation count or a stronger network,
the improved decision falls within the top 4 of the initial search results in more than 80% of the cases.
In contrast, OOD decisions account for only 10%. These observations motivate us to reuse the initial
search results when exploring potentially stronger decisions. Since most improved decisions come
from runners-up of the initial search, this approach avoids the cost of additional simulations or larger
networks, while still providing a high chance of improving the decision.

3 Related Work

Most prior works on improving AlphaZero’s training efficiency and its variant, MuZero [13], focus
on refining the training objective, such as introducing path consistency [9, 14], using contrastive

learning [15], and modifying the value target [16, 17]. Additional improvements involve enhancing
prioritized experience replay [11, 18] and adopting an alternative training optimizer [8]. In contrast,
our proposed method focuses on enhancing exploration during self-play, thus complementing these
existing approaches toward efficient AlphaZero training. Furthermore, previous studies [19, 20] on
uncertainty in deep reinforcement learning typically rely on neural networks, such as predicting
uncertainty using neural networks [5, 21-24], planning to explore with world models [25-27], or
representing uncertainty as the discrepancy or variance between neural networks [28-30]. In contrast,
we propose an analytical uncertainty metric that can be directly estimated from the results of the
MCTS search. We also discuss the distribution assumptions for our work compared to the previous
works in Section 6.

On the other hand, previous work has also explored the option of solving hard exploration problems
by revisiting unfamiliar states [31], or replaying trajectories starting from states of interest [6, 32] by
sampling from an archive of positions. Similarly, KataGo [7] includes an option to fork from a random
position to play, especially in the opening phase of a game. However, these approaches primarily
focus on early game exploration, as opening positions are often, naturally, of high uncertainty. As we
show later in Section 5.2, these works fail to effectively target high-uncertainty positions in the mid
and late stages of a game. In contrast, our proposed uncertainty metric can identify such challenging
positions across the entire game.

4 Methodology

We first establish the foundations of uncertainty estimation in Section 4.1. Then, we introduce
uncertainty-guided branching for self-play to enhance training efficiency in Section 4.2.

4.1 Uncertainty Estimation

In this subsection, we quantify the reduction in training variance, introduce our uncertainty metric
to guide exploration, and present a Bayesian framework for refining uncertainty estimation with
empirical observations. Detailed proofs and derivations can be found in the appendix A.2.

Variance Reduction. First, to reduce variance in the training target, we ensemble multiple game
results. To formalize this, let w be the win rate at a given position in a game, and let Z ~ Bernoulli(w)
be the random variable representing the result of a single game (winning or not). Consider n
independent and identically distributed (i.i.d.) samples Z1, ..., Z,, ~ Z. Then, the variance of the
sample mean Z =) " | Z;/n is given by:

Var[Z] = w(l — w)/n. (D
In AlphaZero, the average game result Z over n games played from a given position serves as the

value label during training. Hence, by increasing the degree of exploration from a given position, we
can reduce the variance of the value label with more game results.

Uncertainty Estimator. Next, to quantify the uncertainty of the game results from a given position s,
we introduce the Label Change Rate (LCR), denoted by 6 = LCR(s), defined as the probability
that two independently sampled game results, Z; and Z; for i # j, are different as follows:

LCR(s) :=Pr(Z; # Z;) = 2w(l —w). 2)

This metric also matches our intuition, since the uncertainty is highest when the win rate is 50% and
approaches zero when the result is nearly determined; that is, when the win rate is close to 0 or 1. In
practice, this metric enables an online uncertainty estimation during self-play by using the search
value v to estimate #.> Moreover, we will show later in Section 5.2 that this analytical approach to
uncertainty estimation aligns closely with the empirical results. In general, collecting more states
with greater epistemic uncertainty can increase the degree of exploration and lead to more efficient
training [19, 30, 33].

Bayesian Inference. When multiple game results are available for a given position, Bayesian
inference can provide a more robust estimate of the LCR since simply employing the search value

2If the search value v € [0, 1], we obtain an estimate § = 2v(1 — v); otherwise, we rescale v to interpret it

as a win rate before computing 6.

v to estimate w in Equation 2 ignores the uncertainty about v itself. To address this, we model the
LCR by treating the underlying label change probability 6 as a random variable. Thus, each observed
label change is represented as X; ~ Bernoulli(6), where X; = 1 indicates that two independently
sampled outcomes from the same position differ, and X; = 0 otherwise. Given a sequence of
iid. observations D = {Xi, Xs,..., X, }, we perform Bayesian inference over 6, and define
the LCR as the posterior expectation E[¢ | D]. In practice, we can construct the observations as
X; = 1z,,2,, , using paired game outcomes for 7 € [1,m] and m = |n/2]. Alternative empirical
choices are discussed in the appendix A.2.4. Let s = >/ | X; denote the number of observed label
changes. Since the conjugate prior for the Bernoulli likelihood is the Beta distribution, we assume
the prior 6 ~ Beta(c, /3), and thus the posterior distribution becomes 6 ~ Beta(a + s, 5+ m — s).
Consequently, the corresponding Bayesian estimate of the posterior LCR is as follows:

a+s
Ef| D] = ———, 3
10 =)
where the prior LCR = E[f] = ;5.
As an illustrative example, suppose that the MCTS search value for a position is v = 0.6 € [0, 1].
Then, the prior LCR is 2 - 0.6 - (1 — 0.6) = 0.48, according to Equation 2. If we perform four
empirical trials (m = 4) and observe one label change (s = 1), the posterior estimate becomes

LCR = afgjm = ‘i'gjj ~ 0.414, where (a, 8) = (4.8,5.2) and ;$5 = 0.48. As expected, the

posterior LCR decreases slightly, as the observed change rate (1 in 4) is lower than the prior estimate.
The scale of «, 8 can be adjusted to reflect the confidence in the prior probability. In the next section,
we will discuss how to integrate this estimation and its update into self-play to guide exploration.

4.2 Uncertainty-Guided Branching

(2) - | Algorithm 1: Uncertainty-Guided Branching
Sont é» 29 Input: G number of states to collect

Output: G ={(state, policy label, value label)}

2
7"(*"5&1)

) W 22 a0 s 1G 0
3 ‘ vSi1 2 ¥sp sS4 ©L i
- @ ————@ T . >@mp 2 2 Whlle‘g| < Gdo
NN ”(il)) £ | 3 (s, a_) < initial state and action

o s — viewn 4| Tord y L tO,V do /

el e o2, 5 {(s',7(s),.zi) | s € S} +

: : : 6 play episode from (s, a)

() 7 Compute LCR and sampling weights
u (defined in Equation 4)

Figure 4: An example of an uncertainty-guided g s ~ Y (u) (defined in Equation 5)
self-play game, where S; is the set of positions o a~m(-]s)
in variation ¢, with S; as the main sequence. 19 while (s, a) has been played do
s\ is the position at time ¢, 7(s\") is the pol- 11 s + preceding state of s
icy label obtained from MCTS, and z; is the 12 a~7(-|s)
game result. The value label at each position is 13 S = UY—1 S;
computed as the average of all subsequent game [, N Sises, Fin |
results from that position, as indicated by the 14 G+—gu {(5 ;m(s), m) | s € ‘S}

blue arrows. 15 return G

To improve training efficiency, this subsection integrates the previously discussed strategies for
reducing variance in value labels and increasing exploration at high-uncertainty positions into our

method. Figure 4 illustrates an example game obtained by Algorithm 1, which contains a main branch

&1 and two variations, Sy and S3, where branching occurs at positions 5511) and s,(fl), respectively. In

particular, for the first branching points, two different moves are sampled from 77(553)), resulting

in two variations starting from positions sﬁ,,lll and s§,2 J)rl, which in turn lead to game results z; and

29, respectively. With more variations branched, we obtain more game results, allowing the value
label of s%l) to be computed as the average of z; and zo, rather than only relying on a single result.

This reduces label variance and likewise reduces variance for all earlier positions that lead to these
variations.

Algorithm 1 shows uncertainty-guided branching during self-play to produce policy and value labels
for the training target. It begins by playing the main sequence from an initial state and obtains the
training target for the first game variations S;. We use “play episode from(s, a)” to denote playing
a complete game from the state s starting with the action a, and the game playing process remains
the same as in the original AlphaZero algorithm. After each completed episode, we calculate the
posterior LCR for each position based on Equation 2 and 3. Then, we select a high-uncertainty
position based on sampling, and the weight assigned to each position is defined as follows:

u(647) = {t, ifLCR () = LCRy @
0, otherwise.

where LCR represents the uncertainty threshold. This hyperparameter is typically determined based
on the initial win rate wy so that we can discard positions whose win rates fluctuate around or remain
close to the initial win rate. In addition, positions are weighted by their time step because we want to
capture the win rate turning point in the later game phase. We then sample the position to branch
using a categorical distribution over the set of all positions S:

u(s)
Loesuls)

After selecting a position s ~ Y to branch from, we sample an action from the current position and
play from there. If the sampled action has already been explored, especially in cases where only one
legal move is available, we backtrack to an earlier position and repeat the sampling process. Once an
unexplored action is found, we proceed with the play. If no such action can be found, we terminate
the loop and return all collected variations early, which is unlikely, and hence we omit this case from
Algorithm 1 for simplicity.

Y ~ Categorical(p), where p(s) = (3)

Moreover, as discussed in Section 2.2, the runner-up decisions often have a high likelihood of
being the best moves. Thus, we select the branching move by resampling from the same policy
distribution 7, which also aligns with the i.i.d. assumption introduced in the previous section. Overall,
we employ the value label in the Bayesian inference and the policy label for action selection, as
illustrated earlier in Figure 2. This branching process continues until a predefined variation limit V' is
reached. In particular, when V' = 1, our method reduces to the original AlphaZero algorithm without
branching. Finally, the self-play process finishes when G states are collected, where G is the same
hyperparameter as in the original algorithm.

5 Evaluation

We first provide our experimental setting in Section 5.1. Then, we evaluate and compare empirical
and analytical label change rates in Section 5.2. Following that, we evaluate the design space of
our proposed approach in Section 5.3. Finally, we conclude by evaluating the end-to-end training
efficiency in Section 5.4.

5.1 Experimental Setting

We evaluated our proposed method on 9x9 and 19x19 Go. To demonstrate that our approach improves
efficiency for both early and late stages of training, we train the 9x9 Go model from scratch, while for
19x19 Go, we use a model pretrained with 100M samples. Our evaluations employ Elo rating [34]
against the state-of-the-art KataGo program [7], and the Elo rating is converted to the win rate to
reflect relative playing strength. Detailed hyperparameters for self-play and training are provided in
the appendix A.3.

Our experiments are mainly conducted on 2 NVIDIA A100 GPUs with 768 GB system memory.
For the empirical analysis in Section 5.2, we collected 20,000 self-play game positions, requiring
10 A100-hours. In Section 5.3, each evaluation on 19x19 Go requires 100 A100-hours, whereas
the evaluations on 9x9 Go require 16 A100-hours each. Our end-to-end training experiments in
Section 5.4 are conducted on a cluster of 5 nodes, each consisting of 8 NVIDIA V100 GPUs and
768GB system memory. Each training run requires 800 V100-hours with an additional 135 V100-
hours for each evaluation. Both our method and the original one require about 23 GB of runtime
memory, primarily due to the size of the replay buffer.

5.2 Label Change Rate

In this section, we show that our proposed uncertainty estimator, defined by Equation 2, closely
aligns with the uncertainty observed in the empirical label changes. To compute the empirical LCR
for a given position, we perform two independent game plays from the same position and compare
whether their results differ. Then, the empirical LCR X for a position is the ratio of games with
changed results, averaged over 20,000 positions. As shown in Figure 5, the empirical mean is
closely in agreement with the mean of the analytical estimators, with an RMSE (root mean square
error) of 0.023. This suggests that our uncertainty metric provides a reliable analytical estimate of
uncertainty without requiring repeated empirical experiments at each position. Moreover, unlike
empirical sampling, which yields only binary results per trial, we can now estimate the uncertainty for
each position, denoted 6. Therefore, we adopt our analytical LCR estimator as a practical substitute
for empirical uncertainty measurements in the following evaluations. In addition, we perform similar
evaluations across different simulations in the appendix A.1.5.

In addition, Figure 5 shows that the LCR re-
mains as high as 50% during the early stages

of a game, especially before move 60, leaving — Empirical Mean X — Est. Mean E[6] Est. 0
limited opportunities to capture additional high- 50%

uncertainty positions at this stage. In particular,

the original method is equivalent to branching & 40%]

at the first positions of a game. In contrast, we &, 30% |

emphasize that uncertain positions continue to Es

appear in a game’s mid-to-late stages. The fig- 2 20% A

ure shows the distribution of uncertain positions .8

in the self-play games, represented by orange 3 10%

scatter points. Although the average LCR de- 0% , , ; , ;
creases as it gets closer to the end-game, we still 0 50 100 150 200 250 300
observe that several games have an LCR above Move

40% in the mid-to-late game, even if most po-

sitions have nearly determined results and thus Figure 5: Label change rate (LCR) across moves
have a low LCR due to less uncertainty. Hence, in 19x19 Go. The empirical mean X (blue line)
our method focuses on capturing those high- 1is the average of observed label changes across
uncertainty positions, which are often buried by ~positions, with a 95% confidence interval shown as
a massive amount of low-uncertainty positions. the shaded blue region. Analytical estimates [0
As a result, we use LCR not only as an uncer- (orange line) are averaged from individual LCR
tainty indicator but also as a metric to evaluate estimators é, shown as orange scatter points.

how effectively different strategies explore high-

uncertainty positions in a game.

5.3 Design Space Exploration

80% 50%

60% 1 ‘§
o 5 40%
8 g
= 40% g
= = 30%

20% 1 § Variations (V)

1 5 0 — 15
o 20%
1 5 10 15 0 20 40 60 80
Variations (V) Move
(a) (b)

Figure 6: Win rate and label change rate under different variation limits V' when training on the same
number of samples in 9x9 Go. The V' = 1 setting serves as the win rate comparison baseline, without
uncertainty-guided branching. Reported results have a standard deviation of 1%.

50% 1

80%

40% A

[}
60% 1 =
(5]

Q :éu 30% A
5 g

= 40% 1 S 0%
(]
= ES)
S

20% 1 10% 1

i — Baseline Random — Ours
0% T T T T T
0% 4 L | 0 50 100 150 200 250 300
Baseline Random Ours Move
(@) (b)

Figure 7: Win rate and label change rate under different branching methods when training under the
same number of samples in 19x19 Go. Baseline denotes the original algorithm without branching and
serves as the win rate comparison baseline; Random applies branching at positions selected uniformly
at random; Qurs refers to the proposed uncertainty-guided branching method. Reported results have
a standard deviation of 1%.

To determine the degree of exploration, we evaluate the efficiency of training across different variation
limits V' after training in 12M positions. Figure 6a shows that V' = 10 produces the highest strength
and outperforms the V' = 1 baseline by a 69% win rate under the same number of training samples,
thus achieving the best training efficiency among different variations. Comparing V' = 5 with the
baseline, we find that the average LCR increases slightly and the strengths are close because there
is only a limited amount of additional exploration. Furthermore, Figure 6b reveals that, with more
variations explored, self-play, in general, contains more high-uncertainty positions. However, as
V increases further, the degree of exploration begins to saturate. In particular, we observe that the
LCRs for V' =10 and V' = 15 are close. Since we collect a fixed number of positions per self-play
iteration, increasing the number of variations per game can reduce the diversity of opening variations
across games. As a result, while V' = 10 and V' = 15 both saturate the LCR within a game, V' = 10
can achieve a higher win rate since it can explore more diverse opening positions. Based on these
observations, we adopt V' = 10 in the following evaluations.

On the other hand, to demonstrate that the label change rate is an effective metric for branching, we
compared three methods: the baseline (no branching), uniformly random branching, and our proposed
uncertainty-guided method, as shown in Figure 7. For uniform branching, branching positions are
selected uniformly at random with total variations V' = 10, and the new variation is played by
resampling from the MCTS policy, similarly to our method.

Figure 7a shows that our method achieves a 62% win rate against the baseline after training on 12M
positions in 19x19 Go. In contrast, random branching results in a 35% win rate against the baseline
and a 25.5% win rate against our method, along with the lowest average LCR among all approaches.
As shown in Figure 7b, compared to the baseline, the LCR of random branching is lower during the
mid-game, while significantly higher in the end-game. This trend reflects the inherent complexity
and uncertainty of mid-game positions, where uniformly branching is unable to distinguish between
low and high uncertainty positions. Conversely, typically there are fewer choices of moves during the
end-game, so high-uncertainty positions can have a chance to be sampled with uniformly random
exploration. Overall, uniform random branching explores more lower-uncertainty positions due to
the lack of a metric to identify high-uncertainty positions, thus resulting in lower performance. This
highlights the limitations of naive branching strategies and the insufficiency of relying solely on the
value ensemble over multiple game results. In contrast, our uncertainty-guided branching consistently
explores higher uncertainty positions throughout the game, as shown in Figure 7b, leading to more
effective exploration and, eventually, to greater training efficiency.

5.4 End-to-End Training Efficiency

In this section, we evaluate the sample efficiency of our method compared to the baseline without
branching in the 9x9 and 19x19 Go games with the same amount of compute resources. As shown
in Figure 8, our method consistently outperforms the baseline in both settings, indicating improved

300

1400
1200 2501
g) 1000 1 %[) 200 1
g 8007 g 150
2 2 100
= 400 1 5
Ours 501 urs
2001 —— Baseline —— Baseline
0 T r T 0 T T T T T
0 20 40 60 80 0 5 10 15 20 25
Training samples (Million) Training samples (Million)
(a) 9x9 Go. (b) 19x19 Go.

Figure 8: End-to-end evaluation of sample efficiency. In 9x9 Go, models are trained from scratch,
while in 19x19 Go, the performance is relative to the pretrained model. Our method consistently
achieves higher strength than the baseline with fewer samples.

training efficiency under the same training samples, and the standard deviation is about 2.1%. In 9x9
Go, our method reaches the same performance as the baseline in 40M and 80M samples using only
29.6M and 50.5M training samples, corresponding to 34.9% and 58.5% improved sample efficiency,
respectively. On average, our method requires only 59.6% of training samples to reach the same
strength as in the baseline. In particular, the gap between our method and the baseline becomes
evident early and persists throughout, with our approach leading by an average of 99.3 Elo rating
under the same number of samples. In addition, we visualize the LCR distribution for self-play games
in the appendix A.1.1.

Similarly, in 19x19 Go, our method matches the baseline’s performance at 5SM and 10M samples
with only 3.9M and 6.8M samples, yielding 29.0% and 47.3% improvements in sample efficiency.
This shows that, even in the later phases of training, our proposed method maintains a high sample
efficiency. On average, our method achieves the same strength using only 66.4% of the samples
required by the baseline, and our approach maintains a consistent lead to the baseline by 75 Elo
rating under the same number of samples. Overall, our end-to-end evaluations highlight better sample
efficiency when adopting our proposed uncertainty-guided exploration during self-play.

6 Discussion

Our LCR analysis requires the game result to be binary or discrete since we assume the Bernoulli
distribution for the result. This sets our approach apart from many prior works [20, 23, 28] on
uncertainty in deep reinforcement learning, which typically assume more general or continuous
distributions such as Gaussian. Our Bernoulli setting allows us to derive a closed-form LCR metric
and significantly simplifies uncertainty analysis. Interestingly, in this case, there is a coincidence for
the Bernoulli distribution that the value variance in Equation 1 and the LCR in Equation 2, share
a similar form, and this relationship does not hold for general distributions. Moreover, to extend
the Bernoulli setting to continuous outcomes, one can define a Bernoulli random variable X based
on whether the outcome exceeds a threshold: Y := 1(x), where s is a threshold score. This
formulation may also be useful in hard-exploration tasks since completing a sub-goal can be modeled
as a Bernoulli event. Alternatively, the LCR can be generalized by defining it as Pr(|X; — X;| > t),
where ¢ > 0 is the threshold of measuring significant differences between outcomes.

7 Concluding Remarks

In this work, we proposed an uncertainty-guided exploration framework that addresses key inefficien-
cies in AlphaZero training. By branching out from high-uncertainty positions and exploring multiple
variations, our method achieves two complementary goals: (1) reducing the variance of the value
label by ensembling multiple game results in a tree-structured self-play setting, and (2) exploring
previously overlooked yet promising decisions that may contain potential improvements. In general,
our method is applicable to episodic reinforcement learning environments that allow the algorithm to
return to a specific state during acting. In our work, AlphaZero inherently assumes access to a perfect

simulator. However, such a simulator is not strictly required, as previous work [31] has already
shown that returning to earlier states can also be accomplished by restoring memory states. Our
future work includes extending the LCR analysis to continuous outcomes or a generalized form, as
discussed in the previous section, or applying LCR to multiple value heads [35] to guide exploration
and improve interpretability for uncertainty. We believe that our analytical formulation for LCR opens
up a promising direction for future research on uncertainty exploration in reinforcement learning.

Acknowledgments and Disclosure of Funding

This research is supported in part by DOE grant DE-SC0023186, NSF grants 2453653 and 2211018,
and National Science and Technology Council of Taiwan project number NSTC114-2221-E-001-019-
MY3. The opinions expressed in this paper are those of the authors and not necessarily the views of
the NSF or the DOE. We thank the Taiwan National Center for High-performance Computing (NCHC)
for providing computational and storage resources. The authors would also like to thank Cyan Subhra
Mishra for helpful discussions and the anonymous reviewers for their valuable comments.

10

References

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al., “A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140-1144, 2018.

[2] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,” in Computers
and Games: 5th International Conference, CG 2006, Turin, Italy, May 29-31, 2006. Revised
Papers 5, pp. 72-83, Springer, 2007.

[3] L. Kocsis and C. Szepesvari, “Bandit based monte-carlo planning,” in Machine Learning:
ECML 2006: 17th European Conference on Machine Learning Berlin, Germany, September
18-22, 2006 Proceedings 17, pp. 282-293, Springer, 2006.

[4] S. Cheng, M. T. Kandemir, and D.-Y. Hong, “Speculative monte-carlo tree search,” Advances in
Neural Information Processing Systems, vol. 37, pp. 88664—-88683, 2024.

[5] L.-C. Lan, T.-R. Wu, L.-C. Wu, and C.-J. Hsieh, “Learning to stop: Dynamic simulation monte-
carlo tree search,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
pp- 259-267, 2021.

[6] A. Trudeau and M. Bowling, “Targeted search control in alphazero for effective policy improve-
ment,” in Adaptive Agents and Multi-Agent Systems, 2023.

[7] D.J. Wu, “Accelerating self-play learning in go,” arXiv preprint arXiv:1902.10565, 2019.

[8] Y. Mei, J. Gao, W. Ye, S. Liu, Y. Gao, and Y. Wu, “Speedyzero: Mastering atari with limited
data and time,” in The Eleventh International Conference on Learning Representations, 2023.

[9] D. Zhao, S. Tu, and L. Xu, “Efficient learning for alphazero via path consistency,” in Interna-
tional Conference on Machine Learning, pp. 26971-26981, PMLR, 2022.

[10] D. Willemsen, H. Baier, and M. Kaisers, “Value targets in off-policy alphazero: a new greedy
backup,” Neural Computing and Applications, vol. 34, pp. 1801 — 1814, 2021.

[11] D.J. Soemers, E. Piette, M. Stephenson, and C. Browne, “Manipulating the distributions of
experience used for self-play learning in expert iteration,” in 2020 IEEE Conference on Games
(CoG), pp. 245-252, IEEE, 2020.

[12] G. Farnebick, “GTP - Go Text Protocol.” "https://www.lysator.liu.se/ gunnar/gtp/",
2002.

[13] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, et al., “Mastering atari, go, chess and shogi by planning with a
learned model,” Nature, vol. 588, no. 7839, pp. 604-609, 2020.

[14] D. Zhao, S. Tu, and L. Xu, “Generalized weighted path consistency for mastering atari games,”
Advances in Neural Information Processing Systems, vol. 36, pp. 50346-50357, 2023.

[15] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao, “Mastering atari games with limited data,”
Advances in neural information processing systems, vol. 34, pp. 2547625488, 2021.

[16] S. Wang, S. Liu, W. Ye, J. You, and Y. Gao, “Efficientzero v2: Mastering discrete and continuous
control with limited data,” in International Conference on Machine Learning, 2024.

[17] A.Borges and A. Oliveira, “Combining off and on-policy training in model-based reinforcement
learning,” arXiv preprint arXiv:2102.12194, 2021.

[18] Y. Oh, J. Shin, E. Yang, and S. J. Hwang, “Model-augmented prioritized experience replay,” in
International Conference on Learning Representations, 2022.

[19] Y. Jiang, J. Z. Kolter, and R. Raileanu, “Uncertainty-driven exploration for generalization in
reinforcement learning,” in Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

11

https://www.lysator.liu.se/~gunnar/gtp/

[20] S. Lahlou, M. Jain, H. Nekoei, V. I. Butoi, P. Bertin, J. Rector-Brooks, M. Korablyov, and
Y. Bengio, “DEUP: Direct epistemic uncertainty prediction,” Transactions on Machine Learning
Research, 2023.

[21] V. Mai, K. Mani, and L. Paull, “Sample efficient deep reinforcement learning via uncertainty
estimation,” in International Conference on Learning Representations, 2022.

[22] S. Aravindan and W. S. Lee, “State-aware variational thompson sampling for deep g-networks,”
in Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’21, p. 124-132, International Foundation for Autonomous Agents and
Multiagent Systems, 2021.

[23] W.R. Clements, B. Van Delft, B.-M. Robaglia, R. B. Slaoui, and S. Toth, “Estimating risk and
uncertainty in deep reinforcement learning,” arXiv preprint arXiv:1905.09638, 2019.

[24] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband, A. Graves, V. Mnih,
R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg, “Noisy networks for exploration,”
in International Conference on Learning Representations, 2018.

[25] Y. Sun, F. Gomez, and J. Schmidhuber, “Planning to be surprised: Optimal bayesian exploration
in dynamic environments,” in International conference on artificial general intelligence, pp. 41—
51, Springer, 2011.

[26] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak, “Planning to explore via
self-supervised world models,” in International conference on machine learning, pp. 8583-8592,
PMLR, 2020.

[27] P. Shyam, W. Jaskowski, and F. Gomez, “Model-based active exploration,” in International
conference on machine learning, pp. 5779-5788, PMLR, 2019.

[28] I. Osband, J. Aslanides, and A. Cassirer, “Randomized prior functions for deep reinforcement
learning,” Advances in neural information processing systems, vol. 31, 2018.

[29] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via bootstrapped dqn,”
Advances in neural information processing systems, vol. 29, 2016.

[30] R. Y. Chen, S. Sidor, P. Abbeel, and J. Schulman, “Ucb exploration via g-ensembles,” arXiv
preprint arXiv:1706.01502, 2017.

[31] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First return, then explore,”
Nature, vol. 590, no. 7847, pp. 580-586, 2021.

[32] A. Tavakoli, V. Levdik, R. Islam, C. M. Smith, and P. Kormusheyv, “Exploring restart distribu-
tions,” arXiv preprint arXiv:1811.11298, 2018.

[33] C.E. Luis, A. G. Bottero, J. Vinogradska, F. Berkenkamp, and J. Peters, “Model-based uncer-
tainty in value functions,” in International Conference on Artificial Intelligence and Statistics,
pp- 8029-8052, PMLR, 2023.

[34] R. Coulom, “Computing “elo ratings” of move patterns in the game of go,” ICGA journal,
vol. 30, no. 4, pp. 198-208, 2007.

[35] T.-R. Wu, 1.-C. Wu, G.-W. Chen, T.-H. Wei, H.-C. Wu, T.-Y. Lai, and L.-C. Lan, “Multilabeled
value networks for computer go,” IEEE Transactions on Games, vol. 10, no. 4, pp. 378-389,
2018.

[36] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning
research, vol. 9, no. Nov, pp. 2579-2605, 2008.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778,
2016.

[38] I. Danihelka, A. Guez, J. Schrittwieser, and D. Silver, ‘“Policy improvement by planning with
gumbel,” in International Conference on Learning Representations, 2022.

[39] D.J. Wu, “Networks for katal.” "https://katagotraining.org/networks/", 2020.

12

https://katagotraining.org/networks/

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are aligned with the paper’s method
and evaluation results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation and the scope of the work in Section 6 and 7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13

Justification: Theory proofs and analysis are provided in Section 4.1 and appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed experimental settings are provided in Section 5.1 and appendix, and
all experiments are results of multiple evaluations.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [Yes]

Justification: The model checkpoints are provided in https://huggingface.co/
chengscott/ugb_zero.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Detailed experimental settings are provided in Section 5.1 and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiment statistical significance are provided in Section 5.1 and in each
evaluation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

15

https://huggingface.co/chengscott/ugb_zero
https://huggingface.co/chengscott/ugb_zero
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experiment compute resources are provided in Section 5.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All authors conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The paper focuses on improving training efficiency.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper focuses on improving training efficiency.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets are properly credited and cited in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

18

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Appendix / Supplemental Material

A.1 Additional Evaluation

A.1.1 Visualization

(a) Baseline. (b) Ours.

Figure 9: Visualization of the LCR distribution among self-play games. The heatmap color indicates
the LCR, with red representing higher values. Each line connects adjacent moves within the same
game variation.

Figure 9 shows the visualization of the LCR distribution for both the baseline (without branching) and
our proposed method with V' = 10 on 9x9 Go after training on 60M samples. We project self-play
game positions into two dimensions using t-SNE [36], connect successive positions from the same
game variation with lines, and color them according to their LCR values.

Figure 9a shows the LCR distribution of the baseline method, which consists of unbranched lines,
each representing a game. Note that some lines may overlap due to the projection from a high-
dimensional space. This visualization matches the earlier result shown in Figure 5, where for most
of the games, the LCR is high during the game’s early stage and gradually decreases toward the
end-game; i.e., one end of the line is red and the other end is blue. Interestingly, some lines remain
entirely blue, indicating persistently low uncertainty throughout those games. These positions likely
correspond to early losses in games, resulting from exploring obviously losing positions. On the
other hand, Figure 9b presents the LCR distribution of our proposed method, where most games form
a spike-shaped cluster due to branching. Overall, we observe that our self-play games contain more
red lines than the baseline, indicating a higher number of high-uncertainty positions. In particular, we
do not branch from positions that are entirely blue (i.e., low uncertainty).

A.1.2 LCR Threshold Sensitivity

100%

LCR(=0.180 (v=0.90

80% - LCR(=0.320 (v=0.80
— LCRy = 0.420 (v = 0.70

60% — LCR(= 0.480 (v=0.60
— LCR(=0.487 (v=10.58

— LCR(=0.493 (v=0.56
LCR(=0.497 (v=0.54
LCR(=0.499 (v=0.52

40% 1

Distribution

()
()
()
()
()
()
()
()

20% 1

0% T T T r r
0 50 100 150 200 250 300
Move

Figure 10: Percentage of positions whose LCR exceeds a LCR threshold (LCR) for each move. Each
curve corresponds to a different threshold with its corresponding value in parentheses. In particular,
v = 0.6 is the initial value for an empty position.

To demonstrate the robustness of various LCR thresholds, Figure 10 shows the distribution of
positions whose LCR exceeds a given threshold. As the threshold decreases, the percentage of

20

selected positions gradually increases at each move, which aligns with our intuition: highly uncertain
positions often occur near other uncertain positions, whether preceding or following. Additionally,
since v = 0.58 is close to the initial win rate (0.6), the LCR of early-game positions often lie near the
LCR threshold, leading to a greater variability in the distribution. These results suggest that the LCR
threshold is a robust hyperparameter, as slight changes in the threshold often result in only a small
number of neighboring uncertain positions and do not cause abrupt changes in the selection volume.

A.1.3 High-Uncertainty Position Distribution

1.00%

Data distribution
0.80% 1 & Sample distribution
0.60% A

0.40% 7

Distribution

0.20% 1

150
Move

Figure 11: Distribution over move numbers for positions where the LCR exceeds the threshold (0.48).
The red bars represent the data distribution (original distribution over all positions), while the blue
bars show the sampling distribution, obtained by drawing from the data distribution with weights
proportional to the move number.

To gain additional insights into our proposed branching strategy, Figure 11 shows the distribution of
high-uncertainty positions across different move numbers. The red bars represent the data distribution,
corresponding to positions exceeding the LCR threshold, while the blue bars show the sampling
distribution obtained by weighting the data distribution according to move number, as defined
in Algorithm 1. We observe that the data distribution decreases steadily as the game progresses,
reflecting the sparser orange scatter points above the LCR threshold in Figure 5 during later stages.
In contrast, the sampling distribution is concave, starting low in the early moves, rising to a peak
around move 110, and then gradually declining.

Based on these observations, without branching, exploration of high-uncertainty moves during self-
play would implicitly follow the red distribution. With our LCR-guided branching, we explicitly
identify high-uncertainty positions and increase the probability of exploring them, especially in the
mid-to-late game, as evidenced by the region enclosed by the data and sample distribution. In general,
this analysis can be applied to various uncertainty metrics.

A.1.4 Alternative Uncertainty Metrics

4.00% 4.00%
o 3.00%1 o 3.00%1
e 2
= =
= 2.00% A 2 2.00%
= =
z 7
A 1.00% (A 1.00%
0.00% ‘ 'HH'H\' s, . | 0.00% ol gasss ol |
' 0 50 100 150 200 250 300 : 0 50 100 150 200 250 300
Move Move

(a) MinV: positions in the lowest 10% of v(s) —0.5, (b) MinMaxP: positions in the lowest 10% of
where v(s) is the MCTS value. max(7(- | s)), where 7 (- | s) is the MCTS policy.

Figure 12: Distribution over move numbers for positions identified as high-uncertainty by the
alternative uncertainty metrics, MinV and MinMaxP.

21

type 1 type 2 type 3 type 4 type 1 type 2 type 3 type 4

100% 100%

80% 1 80% 1
g g
S 60% S 60%
3 3
2]
B 40%1 F 40%1
A A

20% 1 20% 1

0% . , " y " 0% y ' " ' .
0 50 100 150 200 250 0 50 100 150 200 250
Move Move
(a) (LCR, MinMaxP) (b) (MinV, MinMaxP)

Figure 13: Distribution of positions across four uncertainty categories, defined by combinations of
value and policy uncertainty shown in each subfigure. The four types are defined as follows: type 1
has high value uncertainty and high policy uncertainty; type 2 has high value uncertainty and low
policy uncertainty; type 3 has low value uncertainty and high policy uncertainty; and type 4 has low
value uncertainty and low policy uncertainty.

1400
12001 , v__/"/\\//‘ 300
2 1000 7 // ki
£ s0{ /4 5 2001
S 6007 2
= 400 A Ours 1004
—— Baseline Ours
200 MinV —— Baseline
0 T T : 0 T T T : r
0 20 40 60 80 0 10 20 30 40 50
Training samples (Million) Training samples (Million)
(a) 9x9 Go with MinV. (b) 19x19 Go with additional training samples.

Figure 14: End-to-end evaluation of sample efficiency.

In addition to our proposed LCR metric, we define two alternative uncertainty metrics, MinV and
MinMaxP, based on MCTS value and policy, respectively. Figure 12 presents the distribution of
high-uncertainty positions under each metric, similar to Figure 11. The MinV distribution shows
a similar distribution to LCR, as both are value-based metrics. In contrast, MinMaxP exhibits an
opposite trend: its mass concentrates in the endgame, where game results are nearly determined. This
is because multiple moves in the endgame often lead to the same game result, corresponding to high
policy uncertainty. As expected, MinMaxP also identifies some early-game positions with high policy
uncertainty, but these are much fewer compared to the endgame.

Moreover, Figure 13 shows the distribution over each move of uncertainty categorized into four types.
Similar to our earlier observations, value-based metrics identify high-uncertainty positions primarily
in the early game, whereas policy-based metrics detect them mainly in the endgame. As a result,
when only using the MinMaxP metric, the end-to-end training fails. Figure 14a shows the end-to-end
training sample efficiency with MinV metric. We observe that the MinV shows a similar efficiency
to ours during the early stage of training, but later slows down and approaches the baseline. This is
because simply using a fixed percentage of the lowest value alone can only capture a certain amount
of high-uncertainty positions, which lacks the flexibility to identify uncertainty per position, as in
our proposed LCR metric. On the other hand, we provide more training samples to Figure 8b in
Figure 14b. Our method still outperforms the baseline at a later phase of training.

A.1.5 Scaling of the Label Change Rate

In addition to Figure 5, Figure 15 shows the evaluations of empirical and analytical LCR estimation
for simulations ranging from 5 to 800. Among all simulations, all curves show a similar trend, and the

22

—Empirical Mean X — Est. Mean E[d] Est. 0 —Empirical Mean X — Est. Mean E[d] Est. 0 —Empirical Mean X — Est. Mean E[d] Est. 0

50% 50% T 50%
2 40% 2 40% 2 40%
g g g
%30 % 300 % 300
=} =} =}
E E E
S 20% | S 20% S 20% |
3 3 3
= 10% = 10% < 10% |
— — —
0% T T ¥ T T 0% T T T ¥ T 0% T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Move Move Move
(a) 5 simulations. (b) 10 simulations. (c) 25 simulations.
— Empirical Mean X — Est. Mean E[] Est. 0 — Empirical Mean X —Est. Mean E[f] Est. 0 — Empirical Mean X — Est. Mean E[{] Est. 0
50% 50% 50%
2 40%+ 2 40%+ 2 40%
g g g
% 300 % 300 % 300
= = =
2 2 2
S 20%1 S 20% S 20%1
5 5 5
= 10% = 10% = 10%
- ° - ° - °
0% . ; ; . . 0% . ; ; . . 0% . : ; . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Move Move Move
(d) 50 simulations. (e) 100 simulations. (f) 200 simulations.
— Empirical Mean X —Est. Mean E[f] Est.d — Empirical Mean X — Est. Mean E[f] Est.d
.
50% 50% 0%
o o 2 409
£ 0% £ 0% : 40%
5 o o
030% 0 30% 5’ 30%71 Simulations
E| E| = 100 N\
S 20% S 20% S 20% 200
E 2 £)
= 10% = 10% 5 10% 400
50 — 800
0% + : . . - - 0% + : . : . . 0% T | | | T
0 50 100 150 200 250 300 0 50 100 150 200 250 300 50 100 150 200 250
Move Move Move
(g) 400 simulations. (h) 800 simulations. (i) Comparison of E[0] curves from

panels (a-h).

Figure 15: Label change rate (LCR) with different simulation counts. The empirical mean X (blue
line) is the average of observed label changes across positions, with a 95% confidence interval shown

as the shaded blue region. Analytical estimates E[f] (orange line) are averaged from individual LCR
estimators ¢, shown as orange scatter points.

empirical and estimated means are closely aligned. On the other hand, in Section 5.2, we computed
the RMSE by comparing the empirical mean (blue line) with the estimated mean LCR (orange line)
in Figure 5. Another way to compute the RMSE is based on per-position comparisons. Specifically,
we simulate 10 game results from the same position to obtain an empirical change rate, and then
compare this to the estimated LCR. The RMSE computed by comparing the mean for 5, 10, 25,
50, 100, 200, 400, 800 simulations is 0.07, 0.08, 0.05, 0.04, 0.03, 0.02, 0.02, 0.02, respectively;
the RMSE computed by per-position comparison is 0.14, 0.13, 0.12, 0.11, 0.12, 0.11, 0.18, 0.14,
respectively. The RMSE for the per-position comparison is higher, as each position requires more
simulations for accurate estimation.

Furthermore, Figure 15i shows the comparison of the estimated mean among different simulations.
When the simulation count is smaller, the LCR is lower, meaning the game is likely to lose earlier
and faster. In contrast, when doubling the simulations, the LCR at the same move is increased almost
linearly, and thus the game result is less determined compared to a smaller simulation. This evaluation
not only demonstrates that our proposed LCR scales well across simulations but also suggests that it
is a potential metric for detecting the strength of a position.

23

A.2 Proofs

In this section, we provide the proofs and derivations for Section 4.1, corresponding to appen-
dices A.2.1, A.2.2 and A.2.3. In addition to the Bayesian inference presented earlier, we also present
an alternative formulation of Bayesian inference in appendix A.2.4.

A.2.1 Variance Reduction

Suppose Z ~ Bernoulli(w), meaning that Z is a random variable that takes the value 1 with
probability w and O with probability 1 — w. Let Z1, ..., Z, -z , and define the sample mean as
Z =3%""_,Z;/n. Then,

n

1
w2

i=1

w(l —w)

. 1 & 1«
Var[Z] = Var = ;Var[Zi] =3 i:le(l —w) = — (©)

This result follows from the fact that the variance of a Bernoulli(w) random variable is w(1 — w),
and that Z; are independent and identically distributed.

A.2.2 Uncertainty Estimator

According to the definition of the label change rate (LCR) in Section 4.1, we compute the LCR for
two independently-sampled variables Z; and Z;, where ¢ # j, as follows:

= (I —w)w +w(l - w) ®)
= 2w(l — w). ©)

Similarly, we can compute label unchanged rate as:

PI‘(ZI = ZJ) = PI‘(Zi = O, Zj = O) + PI‘(ZZ' = 1, Zj = 1) (10)
= (1 —w)* 4w (11)

Thus, we can define a random variable X = 17,7, for some i # j. This is an indicator variable
that equals 1 if Z; # Z;, and 0 otherwise:

(1 itz # 7,
X‘{o if 7, = 7Z;. (12)

Moreover, we can write the probability mass function of X as:

B 2wl —w), ifx=1
p(X_w|w)_{w2+(1—w)2, if =0 (13)
and the expectation of X is
E[X] =Pr(Z; # Z;) = 2w(l — w). (14)

It is important to note that these results hold for any ¢ # j. In the following, we explore how different
choices of 7 and j lead to different Bayesian formulations.

A.2.3 Bayesian Inference

Suppose that we observe a sequence of label change rates, denoted as a dataset D =

{X1,Xs,..., X}, where X PNy Bernoulli(f) and 6 represents the random variable for a la-
bel change. In particular, we choose X; = 1z,,7,, , using paired game outcomes for i € [1,m],

24

where m = |n/2]. Since the X are i.i.d., the joint likelihood of the data is:

p(Xi | 0) (16)

L

@
Il
A

_ H gxi(l _ 9)(17X1-) a7

i=1
= Xz Xi(1 — g) iz (1-X0) (18)
(1 — gy, (19)
(20)

where s =)" | X; is the number of observed label changes.

On the other hand, according to Bayes’ theorem, the posterior distribution is given by:
p(0)p(D | 6)
[pOwn6)as

p(0| D)= 1)

where p(0) is the conjugate prior for the Bernoulli likelihood, which is the Beta distribution. Thus,
we express the prior probability distribution as 8 ~ Beta(c,). Namely,

1

) = 011 —0)P 1 x g1 (1 —9)P! (22)
b0) = g™ (1=0) (1-0)
where B(«,) is the Beta function. We also have
o

E[0] = 23
=5 @3
= PI‘(ZQi 35 ZQi_l) = 2’(0(1 — w), (24)

where Equation 23 is the expectation of Beta(a, 3) and Equation 24 is derived from Equation 14 by
definition. By applying Bayes’ theorem, the posterior distribution is proportional to the product of
the prior and the likelihood:

p(0 | D) xxp(D|6)-p(f) x 65(1—0)" %0211 —9)P~1 =gots—1(1 —g)Ptm=s—1 (25)

Thus, the posterior distribution is:

0| D ~ Beta(aw+ 5,8+ m —s) (26)

The posterior mean, which serves as the Bayesian estimate of 6, namely the posterior label change
rate (LCR), is given by:
a+s

A.2.4 Alternative Bayesian Inference

Previously, we only used m = n/2 of the n observed label changes for the Bayesian update.
In this section, we study the option of using m = n — 1 observed label changes for Bayesian
update, which breaks the independent assumption. In particular, we choose X; = 17,7, , using
the previous outcome to calculate the label change rate for ¢ € [2,n]. In this case, X;s are still
identically distributed to Bernoulli(#) but not independent. Before we dive into the calculation of
p(D |), we first define @ as the xor operation, namely, the addition under mod 2. Hence, we have
Xi = Zi 7& Zi—l = Zl S5 Zi—l and thUS,

Zy=Zi1®X; (28)
=710 (Xo® - B X,). (29)

25

Then, we have the following probability:
Pr(Zy = z) = 07 (1 —) =, (30)
Pr(Zy =2y | X1 =21) =Pr(Z = 21 ® s | X1 = a1) = 0255+ (1—) 7= %5 (31)
where s;, = 29 @D --- D x;,and z; = 21 D s;.

Then, the joint probability of the dataset is

1
Pr(Xo =a9,..., X, = 2,) = Z Pr(Zy =2)Pr(Xo =x2,..., X =20 | Z1 = 21) (32)
21:O
1
= ZPF(Zl =2)Pr(Xo =21 ®s0,..., Xp =01 D5, | 21 = 21)

21:0
(33)
1 n
= Z Pr(Z; = 1) H Pr(Xp=21® sk | Z1 =) (34
z1=0 k=2
1 n
=y 01— [0 - 0) e (35)
21=0 k=2
== J[oa-o' = +o]] o' 10", (36)
k=2 k=2
since we have z1 @ s = s, when z; = 0,and z; ® s, = 1 — s, when z; = 1.
Letmy = Y _,_, sk be the number of ones in {s2, ..., s, }, and mo = n — m;. Then, we can rewrite
the joint probability as:
PX=z)=0™1-0)"4+0m(1—-6)™ (37)

Suppose that we still assume a Beta prior, that is, 6 ~ Beta(a, §). By applying Bayes’ theorem, the
posterior distribution can be expressed as:

p(0| D) o< p(D | 0) - p(8) o< (67 (1 =)™ + 6™ (1 —6)™) -6 (1—) " (38)
x 9m1+a—1(1 _ 9)m0+,8—1 + 9m0+a—1(1 _ 9)m1+[3—1. (39)

Thus, the posterior distribution becomes

0| D ~ Beta(my + a, mg +) + Beta(mg + a, m1 +). (40)

And the corresponding posterior LCR is:

(a+m1)B(my + a+mg + B) + (o +mg)B(mo + o, mq +)

E[9|D]: (a+5+n)(B(m1—|—a7m0+ﬁ)+B(mO+a7m1+ﬁ))

(41)

26

A.3 Hyperparameters

Table 1 shows the hyperparameters for self-play and training. In 9x9 Go, the model consists of 6
ResNet residual blocks [37] with 96 channels each, while in 19x19 Go, the model consists of 5
Nested Bottleneck blocks [38] with 192 channels each, following the model architecture in the latest
KataGo models [39]. Our pretrained model follows previous work [7] to train on the first 100M
samples from the public repository [39] and set a baseline of an Elo rating of 9958. Moreover, the
LCR threshold for Equation 4 is LCRy = 0.48 for both games.

Table 1: Hyperparameters for self-play and training.

9x9 Go 19x19 Go 19x19 Go
Training Training Pre-training

MCTS simulation 400
MCTS cpyet 1.25

Self-play Dirichlet noise ratio ¢ 0.25 -
Dirichlet parameter « 0.12 0.03
G states per iteration 0.3M 1.2M
Optimizer SGD
Batch size 512

Training Optimizer: momentum 0.9
Optimizer: weight decay le-4
Optimizer: learning rate 0.01
Sample factor 2 1 2

27

	Introduction
	Background
	AlphaZero
	Motivation

	Related Work
	Methodology
	Uncertainty Estimation
	Uncertainty-Guided Branching

	Evaluation
	Experimental Setting
	Label Change Rate
	Design Space Exploration
	End-to-End Training Efficiency

	Discussion
	Concluding Remarks
	Appendix / Supplemental Material
	Additional Evaluation
	Visualization
	LCR Threshold Sensitivity
	High-Uncertainty Position Distribution
	Alternative Uncertainty Metrics
	Scaling of the Label Change Rate

	Proofs
	Variance Reduction
	Uncertainty Estimator
	Bayesian Inference
	Alternative Bayesian Inference

	Hyperparameters

