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ABSTRACT

High-quality 3D world models are pivotal for embodied intelligence and Artificial
General Intelligence (AGI), underpinning applications such as AR/VR content
creation and robotic navigation. Despite the established strong imaginative pri-
ors, current video foundation models lack explicit 3D grounding capabilities, thus
being limited in both spatial consistency and their utility for downstream 3D rea-
soning tasks. In this work, we present FANTASYWORLD, a geometry-enhanced
framework that augments frozen video foundation models with a trainable geo-
metric branch, enabling joint modeling of video latents and an implicit 3D field in
a single forward pass. Our approach introduces cross-branch supervision, where
geometry cues guide video generation and video priors regularize 3D prediction,
thus yielding consistent and generalizable 3D-aware video representations. No-
tably, the resulting latents from the geometric branch can potentially serve as ver-
satile representations for downstream 3D tasks such as novel view synthesis and
navigation, without requiring per-scene optimization or fine-tuning. Extensive ex-
periments show that FANTASYWORLD effectively bridges video imagination and
3D perception, outperforming recent geometry-consistent baselines in multi-view
coherence and style consistency. Ablation studies further confirm that these gains
stem from the unified backbone and cross-branch information exchange.

Figure 1: FANTASYWORLD overview. Given multimodal inputs (image, text, and camera trajec-
tory), the model generates photorealistic videos along the specified views while constructing an
implicit 3D representation for consistent geometry.

1 INTRODUCTION

Building world models has long been viewed as a key step toward Artificial General Intelligence
(AGI). By modeling environments, objects, causal relations, and temporal dynamics, world models
enable agents to predict, plan, and generate, endowing them with human-like understanding and
creative abilities. At the core of this vision lies the construction of high-quality, diverse 3D envi-
ronments, which support a wide spectrum of applications spanning AR/VR content creation, robotic
navigation, and embodied AI at large. Plenty of approaches have been explored towards the goal of
generating coherent 3D scenes, involving leveraging 2D generative priors to enable 3D generation
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(Chen et al., 2023; Bahmani et al., 2024) via SDS (Poole et al., 2022), building entire 3D scenes by
multi-view images with NeRF (Mildenhall et al., 2021) and 3DGS (Kerbl et al., 2023).

Recently, camera-guided video diffusion models have gained popularity, where image frames im-
plicitly encode the scene’s 3D structure with multiple images from different viewpoints, as videos
are natural 2D projections of dynamic 3D worlds. Such methods harness the spatiotemporal capac-
ity of video diffusion to improve 3D consistency and multi-view modeling, such as ReconX (Liu
et al., 2024a), Gen3C (Ren et al., 2025), DimensionX (Sun et al., 2024), and ViewCrafter (Yu et al.,
2024b), to name a few. These models excel at producing geometrically plausible local shapes and
mitigating view inconsistency through temporal priors.

However, despite being trained on vast Internet video corpora and exhibiting strong imaginative pri-
ors, generative video models lack explicit 3D supervision, making it difficult to preserve real-world
structure and spatial consistency. This reveals a central challenge in world model construction: how
to inject reliable geometric grounding into video generation without sacrificing creative capacity.

Lately, the emergence of 3D foundation models, such as DUSt3R (Wang et al., 2024a), MASt3R
(Duisterhof et al., 2025), Fast3R (Yang et al., 2025a), and VGGT (Wang et al., 2025a), demon-
strates that robust geometry can be predicted in a single forward pass without additional 3D recon-
struction, providing a scalable solution to geometry-consistent generation. Consequently, several
works attempt to couple 2D video generation with 3D reasoning. Voyager (Huang et al., 2025a)
trains an end-to-end model that jointly predicts RGB and depth while maintaining world consis-
tency through a cache and geometry-injected frames, and then reconstructs explorable 3D scenes.
Geometry Forcing (Wu et al., 2025) further marries video diffusion with an explicit 3D representa-
tion to strengthen geometric consistency during training. Matrix-3D (Yang et al., 2025c) shows two
practical routes from omni-directional video to a navigable world, including an optimization path
and a large panorama reconstruction model that directly infers 3D Gaussians from video latents.
WonderWorld (Yu et al., 2025a) focuses on interactive single-image scene authoring with layered
Gaussian surfels and guided depth diffusion for fast, connected scene creation. Vidu4D (Wang et al.,
2024c) shows that even a single generated video can support high-quality 4D reconstruction when
paired with dynamic Gaussian surface elements. Complementary to these trends in content cre-
ation, GaussianWorld (Zuo et al., 2025) frames perception as streaming 4D occupancy forecasting,
underscoring the value of a 3D world representation that can generalize across embodied tasks.

Despite significant progress in video-to-3D modeling, several limitations remain. First, most video
generative models operate purely within the video domain, yielding features that cannot directly
support 3D reasoning. When explicit 3D reconstruction is desired, they often resort to additional
scene-specific optimization with NeRF (Mildenhall et al., 2021) or 3DGS (Kerbl et al., 2023), which
introduces computation overhead. Second, video imagination and 3D perception remain weakly
coupled at inference, preventing mutual reinforcement, which effectiveness is evidenced by recent
works in 3D scene understanding (Huang et al., 2025b). For instance, although Voyager (Huang
et al., 2025a) predicts RGB and depth jointly to maintain world consistency, and WorldExplorer
(Schneider et al., 2025) leverages video-based imagination for scene exploration, in both cases the
two processes operate largely independently, highlighting the persistent limitation of weak coupling
between video generation and 3D perception. Third, many approaches, such as Geometry Forcing
(Wu et al., 2025), integrate 3D priors by fine-tuning video foundation models (VFMs) while keeping
a 3D model like VGGT frozen, which incurs substantial computational cost and risks compromising
the VFM’s general generative capacity.

To address these limitations, we introduce FANTASYWORLD, a geometry-enhanced framework that
efficiently produces reusable 3D-consistent features by augmenting frozen VFMs with an additional
trainable branch for geometric inference, tightly coupling video imagination and 3D perception
without expensive per-scene optimization or fine-tuning. Instead of predicting depth or point clouds
from RGB images, we directly infer camera parameters and 3D signals from video latents. This
is inspired by VGGT but achieves tighter integration between generative and geometric modeling.
Concretely, we split the backbone of video foundation models (i.e., Wan2.1 in our case) into Precon-
ditioning Blocks (PCB) that inject video priors and stabilize latents, and Integrated Reconstruction
and Generation Blocks (IRG) that fuse spatiotemporal tokens with a geometry co-encoder to predict
a geometry-aware implicit 3D field. As a result, our model generates camera-conditioned video fea-
tures alongside an explicit 3D representation in a single forward pass, without relying on additional
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3D reconstruction (e.g., NeRF or 3DGS) or iterative memory refinement as in Voyager (Huang et al.
(2025a)).

To this end, our contributions are as follows: (i) Unified video-3D modeling: We propose FAN-
TASYWORLD, a geometry-enhanced framework that jointly predicts video latents and an implicit
3D field through a single backbone, preserving imaginative priors while exposing explicit geom-
etry. (ii) 2D/3D cross-branch supervision: We introduce constraints that let geometry supervise
video features and video priors regularize 3D prediction, ensuring 3D-consistent frames inference.
(iii) Potential for generalizable 3D features: We expect that the resulting video-3D representations
serve as versatile features for downstream tasks, such as novel view synthesis and navigation, with-
out per-task adaptation, which has been evidenced by recent works, such as AnySplat (Jiang et al.,
2025).

2 RELATED WORK

2.1 FEED-FORWARD RECONSTRUCTION

Feed-forward reconstruction methods have achieved promising results in recovering 3D properties
of a scene from a set of images in a single pass (Wang et al., 2024b; 2025b; Wang & Agapito, 2024;
Duisterhof et al., 2025; Tang et al., 2025; Yang et al., 2025b; Zhang et al., 2024; 2025b; Wang et al.,
2025a;c). DUSt3R (Wang et al., 2024b) and MASt3R (Duisterhof et al., 2025) directly estimate
point clouds from images, which is suitable for challenging scenarios such as low-texture regions,
but can only input two images at a time. Fast3R (Yang et al., 2025b) can process thousands of frames
at once, surpassing the aforementioned restrictions. VGGT (Wang et al., 2025a) introduces a more
generalized framework capable of supporting input from one frame to multiple frames and produc-
ingg multiple 3D attributes. Furthermore, its feature backbone serves as a versatile feature extractor
for various downstream tasks. Recently, many methods have integrated diffusion knowledge into
reconstruction techniques, thereby enriching the 3D modeling process with the ability to imagine
occluded or unobserved areas (Fu et al., 2024; Hu et al., 2025; Ke et al., 2024; Lu et al., 2025; Yang
et al., 2024; Zhu et al., 2024; 2023; Liang et al., 2025). In this work, we adopt an architecture simi-
lar to VGGT as our 3D implicit feature extractor. Specifically, we extract implicit 3D features from
WanDiT block and integrate them within a multi-task learning paradigm.

2.2 GEOMETRY-AWARE VIDEO GENERATION

The consistency of generated videos with the real physical world is a crucial challenge in simula-
tion. Many previous works have attempted to incorporate geometric constraints during the video
generation process, primarily categorized into explicit guidance and implicit guidance. For explicit
guidance, many prior works explicitly incorporate 3D signals (such as point clouds, mesh, etc.)
obtained from the first frame into the model, thereby demonstrably improving generation consis-
tency (Yu et al., 2024a; Huang et al., 2025a; Yang et al., 2025d; Cao et al., 2025). These methods
often suffer from insufficient point cloud accuracy and limited scope when subjected to significant
viewpoint changes. For implicit guidance, many prior works investigate methods to enable models
to perceive 3D structural information within the diffusion process (Zhang et al., 2025a; Team et al.,
2025; Wu et al., 2025). Geometry-Forcing (Wu et al., 2025) aligns the model’s intermediate repre-
sentations with the features of a pre-trained geometric foundational model, risks undermining the
creativity of large-scale video generation models trained on massive video data.

2.3 JOINT 3D AND VIDEO GENERATION

Integrating both video and 3D structural information enables the generation of comprehensive 3D
scenes for applications in embodied AI and simultaneously facilitates a better representation of
the underlying physical world. AETHER (Team et al., 2025) unifies RGB–depth modeling and
couples reconstruction with video generation. DeepVerse (Chen et al., 2025a) achieves interactive
joint generation via an autoregressive paradigm and control via text-specified control signals. Voy-
ager (Huang et al., 2025a) incorporates point cloud projection within its joint generation framework
to achieve camera control.
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Figure 2: Overview of FANTASYWORLD. Inputs (image, text, camera) are processed by PCBs
and stacked IRG blocks, where an asymmetric dual-branch design couples video synthesis with 3D
reasoning. The model outputs geometry-consistent video frames and task-agnostic 3D features.

In this paper, we introduce an implicit 3D feature encoding branch designed to decode various 3D
attributes. Through mutual enhancement achieved during the diffusion process, it simultaneously
yields video features and 3D structural features.

3 METHODOLOGY

3.1 OVERVIEW

FANTASYWORLD is a unified feed-forward model for joint video and 3D scene generation. Given a
reference image, an optional text prompt, and a target camera trajectory, the model produces a video
aligned with the specified views while simultaneously constructing an implicit 3D representation.
Inputs are encoded by pretrained backbones: CLIP (Radford et al., 2021) for images, umT5 (Chung
et al., 2023) for text, and a learned camera encoder, following Wan’s Plücker-ray design (Wan et al.,
2025), for camera poses. These signals jointly condition both the video and geometry branches
during training and inference.

As shown in Fig. 2 (a), the front end employs Preconditioning Blocks (PCBs) that reuse the frozen
WanDiT denoiser to supply partially denoised latents, ensuring the geometry pathway operates on
meaningful features rather than pure noise. The backbone then consists of stacked Integrated Re-
construction and Generation (IRG) Blocks, which iteratively refine video latents and geometry fea-
tures under multimodal conditioning. Each IRG block contains an asymmetric dual-branch struc-
ture (Fig. 2 (b)): an Imagination Prior Branch for appearance synthesis and a Geometry-Consistent
Branch for explicit 3D reasoning, coupled through lightweight adapters and cross attention.

The outputs are twofold. The imagination branch generates geometry-consistent video frames along
the trajectory, while the geometry branch produces task-agnostic 3D features decoded by DPT heads
into depth maps, point maps, and camera poses. This unified design supports downstream tasks such
as novel view synthesis, pose estimation, and depth prediction, all without per-scene optimization.

In summary, FANTASYWORLD bridges generative video priors with structured geometric reasoning
in a single forward pass, producing outputs that are both photorealistic and geometrically consistent.

3.2 PRECONDITIONING BLOCKS

Denoising diffusion models progressively remove noise across timesteps, revealing structure and
details in the signal. Recent theory (Han et al., 2025) shows that the denoising objective balances
learning signal and noise, enabling structural information to emerge gradually—consistent with the
empirical observation that features become more informative as denoising unfolds. We further ob-
serve a similar effect along network depth: even at a fixed timestep, deeper WanDiT layers produce
clearer spatial structure (Fig. 3), suggesting that denoising progresses across both time and depth.

Motivated by this, we introduce Preconditioning Blocks (PCBs) at the front end of our framework.
We reuse the first 16 frozen layers of Wan2.1, following its camera conditioning design, to partially
denoise video latents. This ensures that inputs to the geometry branch contain geometry-relevant
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Figure 3: PCA over timestep–block pairs: rows vary timesteps top → bottom, columns vary blocks
left → right; the red rectangle marks the IRG input latents.

cues rather than pure noise, reducing gradient variance and avoiding early training dominated by
high-noise latents. PCBs thus bridge noisy initialization and geometry-aware processing, providing
stable supervision from the start and allowing the geometry branch to focus on refining structure.

3.3 INTEGRATED RECONSTRUCTION AND GENERATION BLOCKS

At the core of FANTASYWORLD are the Integrated Reconstruction and Generation (IRG) Blocks,
stacked as the fundamental units of the model. Each IRG block adopts an asymmetric dual-branch
design (Fig. 2 (b)): the Imagination Prior Branch reuses the pretrained Wan2.1 backbone to propa-
gate appearance-rich spatiotemporal features, while the Geometry-Consistent Branch projects them
into a geometry-aligned latent space. Unlike VGGT, which relied on DINO features, we bridge
the geometry pathway to Wan latents, ensuring geometry is inferred in the same domain as video
synthesis and avoiding feature mismatch.

IRG blocks unify the two branches through bidirectional cross-attention (MM-BiCrossAttn (Liu
et al., 2024b; 2025)). Here, geometric cues regularize video features for multi-view coherence,
while video priors provide imaginative signals that complete occluded regions and refine geometry.
As cooperative units, stacked IRG blocks progressively enhance both video latents and geometry
features, forming the core mechanism where imagination and structure converge.

The geometry branch outputs an implicit representation decoded by a custom 3D DPT head. This
head performs temporal decoding aligned with the WanVAE video frames. Motivated by the depth-
wise emergence of structure observed in Sec. 3.2, the head inverts the conventional reassemble strat-
egy: instead of drawing fine features from early encoder layers dominated by noise, it sources them
from late diffusion blocks where semantics are stronger and denoising is mature. Anchoring predic-
tions in these stable features improves depth accuracy, stabilizes pose estimation, and enhances the
consistency of the implicit 3D field.

3.4 BRIDGE TO UNIFY TRAINING

Two-stage framework. Training in FANTASYWORLD follows two stages: first bridging the ge-
ometry branch to the Wan feature space, then unifying geometry and video through bidirectional
cross-attention. Stage 1 freezes the Wan2.1 backbone and adapts the geometry branch to consume
hidden features; Stage 2 introduces cross-branch adapters for joint optimization, while keeping the
backbone frozen. Please refer to A.2, A.3 A.4 for more implementation and training details.

Stage 1: Latent Bridging. We select hidden features from block 16 of Wan2.1 and feed them to the
geometry branch through a lightweight transformer adapter that maps to a geometry-aligned latent
space. This latent is encoded and decoded into camera, depth, and point map predictions, while only
the geometry branch is trained. Supervision is applied via:

Lgeo = αLdepth + β Lpmap + γ Lcamera

5
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where Ldepth follows Video Depth Anything (Chen et al., 2025b), Lpmap follows VGGT (Wang
et al., 2025a), and Lcamera is a Huber penalty. This stage ensures the geometry branch operates
stably on Wan latents instead of raw noise.

Stage 2: Unified Co-Optimization. From block 16 onward, we insert one bidirectional cross-
attention adapter after each of 24 transformer blocks, aligned with the geometry branch. For video
tokens Xv and geometry tokens Xg , with projections (Qv,Kv, Vv) and (Qg,Kg, Vg), attention is:

A = softmax

(
QvK

⊤
g√

dk

)
and updates are:

X+
v = Xv + γvAVg, X+

g = Xg + γgA
⊤Vv

with learnable gates γv, γg . Geometry-to-video updates enforce 3D consistency, while video-to-
geometry updates inject generative priors. Camera parameters are embedded with a pose en-
coder (Wan et al., 2025); we modify the pose adapter to predict only the shift βi, injected additively:

fi = fi−1 + βi,

applied to the first 24 of 40 blocks.

Training objective. The final objective is:

Ltotal = Ez0,ϵ,t,c

[
∥ϵθ(zt, t, c)− ϵ∥22

]
+ λLgeo

combining the standard diffusion loss with geometry supervision which aggregates depth, point map,
and camera supervision. The weight λ balances video generation and geometry learning, enforcing
multi-view coherence and enabling cross-branch co-adaptation.

4 EXPERIMENT

We conduct comprehensive experiments to evaluate FANTASYWORLD across large-scale bench-
marks and diverse scenarios. Sec. 4.1 outlines datasets, training protocols, and evaluation settings.
Sec. 4.2 assesses world generation, including comparisons with state-of-the-art baselines, analysis
under varying camera motions, and ablations on the geometry branch. Sec. 4.3 examines geometric
fidelity through quantitative reconstruction metrics and qualitative visualizations, further validating
the role of explicit geometry modeling.

4.1 IMPLEMENTATION DETAILS

Datasets. Our training corpus consists of about 180k video clips collected from a diverse mix of
real-world and simulated sources, with geometric supervision obtained through multiple strategies.
For the RealEstate10K (Zhou et al., 2018) and ACID datasets (Liu et al., 2021), we generate multi-
view consistent depth maps using a reconstruction-based pipeline. For additional datasets, which
include the real-world DL3DV (Ling et al., 2024), WildRGB (Xia et al., 2024), and ScanNet (Dai
et al., 2017) together with the simulated TartanAir (Wang et al., 2020), we apply the Cut3R (Wang
et al., 2025b) to extract geometric labels.

Training Details. We train our model with the AdamW optimizer using a learning rate of 10−5.
The process consists of two stages. In Stage 1 (latent bridging), the geometry branch is trained for
20,000 steps with a global batch size of 64. During this stage, only the geometry branch parameters
are updated, adapting it to the feature space of the frozen video backbone. In Stage 2 (unified co-
optimization), training is performed with 81-frame clips at resolutions of 592× 336 and 336× 592.
In this stage, the lightweight interaction modules (bidirectional cross-attention and camera control
adapter) are fine-tuned for 10,000 steps with a global batch size of 112, while the core backbones
remain frozen. We train Stage 1 with 64 H20 GPUs for 36 hours and Stage 2 with 112 H20 GPUs
for 144 hours.

Evaluation. We conduct evaluation on 1,000 samples drawn from the photorealistic subset of the
WorldScore static benchmark (Duan et al., 2025). The static split of WorldScore is divided into pho-
torealistic and stylized subsets. Since our objective is to model real-world environments for embod-
ied intelligence, we focus on photorealistic video synthesis. In contrast, evaluating 3D consistency
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in stylized videos is ill-defined and less representative of performance in realistic scenarios, and is
therefore excluded from our study. We assess our model along two complementary dimensions:

• World Generation: For a holistic evaluation of controllable world generation, we report perfor-
mance on the WorldScore benchmark, which measures performance across multiple axes, includ-
ing camera and object control, content alignment, 3D consistency, and perceptual quality.

• Geometric Fidelity: To quantify geometric fidelity, we reconstruct each scene with 3DGS, and
report PSNR, SSIM, and LPIPS.

Together, these metrics capture both the controllability of video-based world generation and the
structural accuracy of 3D geometry. For more evaluation details, please refer to A.5.

4.2 WORLD GENERATION

We evaluate the video generation capabilities of FANTASYWORLD by comparing it against Won-
derWorld (Yu et al., 2025a), Uni3C Cao et al. (2025), Voyager (Huang et al., 2025a), and
AETHER (Team et al., 2025), which represent the most relevant state-of-the-art baselines for 3D
world generation.

Quantitative Comparison. We evaluate under two camera-motion settings. The Small configura-
tion follows the WorldScore static benchmark, using 1,000 photorealistic samples to ensure consis-
tency with prior work. We additionally introduce a Large setting with 100 curated cases featuring
wide orbital or panning trajectories (up to 90°), to test robustness under challenging viewpoints. As
shown in Table 1, FANTASYWORLD achieves the highest scores on all consistency-related metrics
(3D Consist., Photo Consist., and Style Consist.). Moreover, it yields the lowest standard deviation
across samples, suggesting that our method is not only more accurate on average but also more
stable across diverse scenes. In the Large setting, the gains are particularly pronounced, demonstrat-
ing strong geometric stability even under substantial viewpoint shifts. Compared to baselines that
prioritize instruction following and camera manipulation (Yu et al., 2025a), our framework focuses
instead on embedding geometric awareness into video features. Although this design does not opti-
mize for camera or content alignment benchmarks, it enables stable and reusable 3D representations
(our main focus), which the results demonstrate to be both effective and robust.

Qualitative Analysis. Under large camera motion, distinct failures emerge: WonderWorld shows
tearing and holes indicative of missing geometry; in Uni3C and Voyager, first-frame point-cloud
priors quickly fall out of view, causing style drift in Uni3C and multi-view misalignment in Voyager;
AETHER, despite generating RGB-D point clouds, often produces incoherent, low-detail content
(see Fig. 4). In contrast, FANTASYWORLD predicts an implicit 3D representation that evolves with
the video, ensuring stable geometry and appearance across time and yielding coherent, 3D-consistent
results without the failures of static priors.

Ablation on the Geometry Branch. To assess the role of explicit geometry modeling, we compare
our full model with a variant where the geometry branch and bidirectional cross-attention are re-
moved. As shown in Table 1, removing the geometry branch leads to declines in Photo Consist. and
Style Consist., and an especially severe drop in 3D Consist., underscoring its critical role in ensuring
multi-view coherence and high-fidelity generation.

4.3 GEOMETRIC FIDELITY

Quantitative Comparison. We evaluate video–geometry consistency using 3DGS (Kerbl et al.,
2023) on 100 RealEstate10K samples, comparing three settings (Tab. 2): removing the geometry
branch with VGGT initialization, our full model with VGGT initialization, and our full model with
feed-forward point-cloud initialization. Results show that, under the same VGGT initialization,
adding the geometry branch consistently improves PSNR/SSIM and reduces LPIPS, confirming
its role in enforcing 3D consistency. Direct initialization from our predicted point clouds yields
slightly lower scores than VGGT initialization, but still provides competitive results, indicating that
our geometry branch produces meaningful 3D structure without relying on external supervision.

Qualitative Analysis. We compare reconstructed 3D scenes from Voyager, AETHER, Uni3C, and
our method on indoor and outdoor cases (Fig. 5). All methods use the same pipeline: VGGT predicts

7
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Table 1: WorldScore with Small vs. Large camera motion.

Method Motion 3D
Consist.

Photo
Consist.

Style
Consist.

Camera
Ctrl.

Object
Ctrl.

Content
Align.

Subjective
Qual.

WonderWorld Small 82.85±19.69 67.86±23.56 55.79±34.89 92.32 47.63 79.09 69.03
AETHER Small 79.84±14.68 58.68±38.59 72.09±32.62 57.44 52.26 28.06 41.11
Uni3C Small 78.59±21.08 85.48±20.98 88.32±18.47 62.94 45.83 47.40 57.00
Voyager Small 56.00±26.32 80.68±16.32 72.89±29.78 45.92 57.69 48.36 44.74
Ours w/o 3D Small 79.77±16.06 83.86±8.73 92.54±12.90 57.94 37.33 43.31 55.85
Ours w/ 3D Small 83.31±14.24 86.11±7.97 94.22±9.11 57.05 34.46 38.45 57.40

WonderWorld Large 63.70±24.37 3.22±8.47 35.95±33.47 96.28 38.61 97.10 72.46
AETHER Large 63.97±17.39 33.11±23.99 61.99±32.24 4.43 34.78 33.69 35.09
Uni3C Large 73.95±17.55 46.78±32.64 71.43±29.38 8.69 34.28 77.88 51.12
Voyager Large 13.82±19.96 9.52±17.17 61.34±35.29 0.00 49.23 64.10 39.21
Ours w/o 3D Large 72.06±20.14 56.98±23.60 81.59±22.23 9.32 34.44 75.85 46.96
Ours w/ 3D Large 74.83±16.31 60.61±21.39 82.02±19.56 11.24 31.96 77.20 50.46
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Figure 4: Qualitative comparison of world generation. WonderWorld shows missing regions, Voy-
ager suffers from temporal incoherence and degraded first-frame fidelity, AETHER produces low-
detail outputs, and Uni3C exhibits abrupt stylistic shifts. In contrast, FANTASYWORLD maintains
stronger 3D consistency and coherent style across views.

Table 2: 3DGS reconstruction on RealEstate10K. Post-reconstruction (Post Rec) indicates the 3DGS
initialization source: either from the VGGT point cloud or our own feed-forward point cloud.

Method Post Rec. PSNR ↑ SSIM ↑ LPIPS ↓
Ours w/o 3D VGGT 26.89 0.84 0.17
Ours w/ 3D VGGT 28.24 0.86 0.14
Ours w/ 3D - 26.54 0.85 0.19

point maps from generated frames, then reconstructs point clouds. Baselines show structural artifacts
and duplication (e.g., blurred signage, layered walls, distorted layouts), while our method yields
cleaner, more complete geometry. Indoors, walls and corners stay rectilinear and closed; outdoors,
text and facades are sharper, indicating stronger 3D consistency.

Ablation on the Geometry Branch. As shown in Table 2, the same geometry-ablated variant de-
scribed in Sec. 4.2 produces weaker reconstruction quality, while the full FANTASYWORLD achieves
clearer geometry and thus confirms the geometry branch is crucial for robust 3D representation.
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Figure 5: Qualitative Comparison of Geometry Fidelity.

5 CONCLUSION AND LIMITATIONS

In this work, we presented FANTASYWORLD, a unified feed-forward model designed to generate
3D-consistent, explorable virtual worlds in a single pass. Our core contribution is a novel architec-
ture that bridges the imaginative power of a pre-trained video diffusion backbone with the geometric
rigor of a VGGT-style 3D geometry branch. To achieve this, we separate the prediction of 3D ge-
ometry from video appearance, introducing a dedicated geometry branch that operates on the video
model’s internal features while preserving its powerful generative capabilities. This is facilitated by
a bidirectional cross-attention mechanism that allows video and geometry to mutually reinforce one
another during generation. Our experiments show that the generated videos not only maintain strong
visual realism but also achieve higher multi-view coherence and improved geometric fidelity com-
pared to existing methods, offering a practical and efficient path toward creating structured, reusable
world models for embodied AI.

Our model is currently designed for fixed-length clip generation, and extending it to continuous,
long-range synthesis remains an important next step. Achieving this will require developing ef-
fective caching or streaming mechanisms for our implicit 3D representation to maintain state over
time. Recent work such as Context-as-Memory (Yu et al., 2025b) has already begun to address this
challenge in the domain of long video generation by introducing memory retrieval strategies that
preserve scene consistency across extended trajectories. In contrast, our primary focus has been on
validating the potential of large video diffusion backbones to serve as world models when paired
with geometric supervision. This design choice allowed us to clearly demonstrate our central hy-
pothesis: that an implicit 3D representation, learned directly from a video model’s hidden features,
is a powerful and effective tool for enforcing 3D consistency.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by detailing FANTASYWORLD’s architecture (PCB, IRG, bidirectional
cross-attention) in Sec. 3, dataset composition and preprocessing in Sec. 4.1 and A.5, training proto-
cols in Sec. 4.1 and A.4, and evaluation metrics, splits, results, and ablation studies in Sec. 4.1, 4.2,
and 4.3. Baseline code and pretrained weights are documented in A.5, and an anonymous link to
our implementation and datasets is provided in A.6.
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A APPENDIX

A.1 DECLARATION ON LLM USAGE

We used a large language model (LLM) to aid in the preparation of this manuscript. Specifically,
the LLM was employed to polish the writing, improve readability, and refine grammar and style.
All technical content, including the model design, experimental methodology, and results, was con-
ceived, implemented, and validated by the authors. The LLM did not contribute to the development
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of algorithms, the execution of experiments, or the analysis of data. Its role was limited to assisting
with language clarity and presentation.

A.2 CAMERA MOTION CONTROL

For camera motion control, we largely follow the methodology of Wan et al. (2025), which consists
of a camera pose encoder and a pose adapter. Our camera pose encoder mirrors their design, trans-
forming camera parameters into multi-level feature embeddings via Plücker coordinates and a series
of convolutional operations.

Our primary modification lies in the camera pose adapter. While the original work utilizes a full
Adaptive Layer Normalization (AdaLN) to predict both scaling (γi) and shifting (βi) parameters,
we propose a streamlined variant that exclusively generates the shifting parameters. The features
are integrated into the video latent fi−1 at each layer i through a simple additive projection:

fi = fi−1 + βi,

where βi is derived from the camera embeddings. Also the camera control module is adapt only the
first 24 block among the 40 transformer blocks.

A.3 3D DPT HEAD ARCHITECTURE

Our model employs a custom 3D DPT head, which extends the 2D version from VGGT (Wang et al.,
2025a) to process video sequences via two key innovations, as shown in Fig 6.

First, we invert the spatial reassembly logic to align with the nature of diffusion backbones. Con-
ventional DPTs, designed for standard encoders, assume that shallow layers contain high-frequency
spatial details and therefore upsample them most aggressively. Diffusion models operate differently:
they progressively denoise the input at each block. This means deeper blocks produce features that
are not only semantically richer but also less noisy and more structurally reliable. Consequently, we
invert the DPT logic. Our Geometry-Consistent Branch uses features from blocks {8,12,18,24} and
upsamples features from the deepest layers the most, while downsampling those from the shallower
ones. This anchors the fusion process in the highest-quality information the backbone provides.

Second, we temporally upsample each feature stream using two sequential Temporal Blocks after the
reassemble block. The design of the upsample block is inspired by the WanVAE decoder (Wan et al.,
2025). Each block first doubles the temporal resolution and then applies a causal 3D convolution.
This process results in a total 4x temporal upsampling factor, transforming an input of t frames into
a smooth output sequence of T = 4(t− 1) + 1 frames.

Fusion 

Temporal Block

Reassemble 

Layer  24

Layer  18

Layer  12

Layer  8

Legend

Figure 6: Our 3D DPT head with temporal blocks for temporal upsampling.
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A.4 TRAINING DETAILS FOR THE GEOMETRY BRANCH

Camera Pose Prediction. Following VGGT (Wang et al., 2025a), we concatenate one learned
camera token and four register tokens to the video token sequence. Because camera trajectories are
temporally smooth in videos, we apply a lightweight 1D convolution to the camera token stream to
perform temporal upsampling. For each frame fi, the geometry head predicts a 9D camera parameter
vector gi ∈ R9 (rotation, translation, and field-of-view).

Depth and Point Map prediction We use hidden features from the Geometry-Consistent Branch’s
layers {8, 12, 18, 24} with shapes Rt×(h×w)×c. The features are fed a Depth 3D DPT head and a
Point-Map 3D DPT head. The depth head produces D ∈ RT×H×W , and the point head produces
a 3D point map P ∈ RT×H×W×3 together with a confidence (uncertainty) map ΣP ∈ RT×H×W ,
where h = H

16 , w = W
16 , and T = (t− 1)× 4 + 1.

Camera loss. We supervise camera parameters with a robust Huber loss, where ĝi is the ground
truth:

Lcamera =

N∑
i=1

∥∥ĝi − gi

∥∥
ϵ
.

Depth loss. We adapt Video Depth Anything (Chen et al., 2025b) and combine a temporal gradient
matching term with a per-frame scale-sensitive spatial loss term:

Ldepth = αLTGM + β Lframe,

where LTGM enforces temporal consistency of depth gradients, and Lframe measures per-frame depth
error without scale/shift normalization.

Point-map loss. Following VGGT (Wang et al. (2025a)), we penalize both point positions and local
gradients, weighted by the predicted uncertainty:

Lpmap =

N∑
i=1

∥∥∥ΣP
i ⊙

(
P̂i − Pi

)∥∥∥ +
∥∥∥ΣP

i ⊙
(
∇P̂i −∇Pi

)∥∥∥ − γ log ΣP
i .

Total objective. The geometry branch is trained with

Lgeo = Ldepth + Lpmap + 3Lcamera.

A.5 EVALUATION DETAILS

To ensure the reproducibility of our evaluation, we provide the implementation details of all base-
lines considered in our benchmark. For each method, we list the official GitHub repository, the
specific commit used in our experiments, and the resolution and number of frames generated per
sample.

Repositories and Commits.

• Voyager: https://github.com/Tencent-Hunyuan/HunyuanWorld-Voyager
(commit 54a658b)

• Uni3C: https://github.com/alibaba-damo-academy/Uni3C (commit 75ed6e2)
• AETHER: https://github.com/InternRobotics/Aether (commit f2221b8)
• WonderWorld: https://github.com/KovenYu/WonderWorld (commit 5cf1146)

Resolution and Frame Settings. We followed the official default inference settings of each base-
line:

• FantasyWorld (ours): 336× 592, 81 frames
• Voyager: 512× 768, 49 frames
• Uni3C: 480× 768, 81 frames
• AETHER: 480× 720, 41 frames
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• WonderWorld: 512× 512, 50 frames

All baselines were run with the official inference scripts and default hyperparameters from the re-
spective repositories.

A.6 CODE AVAILABILITY.

All our code, model design, training scripts, are available and fully reproducible at: https://
anonymous.4open.science/r/submit-F3040042/
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