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ABSTRACT

Recent advances in reinforcement learning with verifiable rewards (RLVF) have elicited
strong reasoning abilities in large language models (LLMs) on objective tasks such as math
and coding, yet social intelligence—the capacity to perceive social cues, infer others’ mental
states, and interact effectively—remains underexplored. We argue that progress has been
hindered by the simplicity and homogeneity of existing social datasets, which incentivize
shortcut solutions over genuine Theory-of-Mind (ToM) reasoning. To address this, we
introduce ToMBench-Hard, a challenging, multi-dimensional multiple-choice benchmark
that rigorously evaluates ToM (e.g., perspective-taking, belief revision, and deception),
exposes limitations of current LL.Ms, and provides verifiable outcomes for reinforcement
learning. Training with RLVF on ToMBench-Hard using only outcome-based rewards
already yields clear improvements. Motivated by the role of human-like mental processes in
social cognition, we further collect diverse reasoning trajectories and train a social thinking
reward model that scores trajectory quality—rewarding accurate perception of social cues
and ToM-consistent inference prior to answer generation. We combine these signals
in Social-R1, a reinforcement learning framework for social reasoning that integrates
outcome and trajectory-level rewards. Across SociallQA, SimpleToM, EmoBench, and
MotiveBench, Social-R1 consistently outperforms strong reasoning LLMs; notably, Social-
R1-4B surpasses LLaMA3-70B on all benchmarks despite the latter having more than ten
times as many parameters. These results show that outcome-based RLVF substantially
improves LLMSs’ social reasoning while process-level thinking rewards provide additional
gains, underscoring the importance of supervising the reasoning trajectory to foster human-
like social intelligence in language models.

1 INTRODUCTION

Social intelligence is a critical capability for large language models, underpinning their effectiveness in
domains such as emotional companions, personalized education, healthcare, and cross-cultural communi-
social intelligence is social reasoning-the ability to infer others’ mental states and interpret them within social
and contextual norms(Weis and Suif, 2005)). This ability plays a central role in decision making (Sabbagh
et al.,|2006), social cooperation (Warneken and Tomasello, 2006), and empathetic communication (Lamm
et al.,. 2007). Consequently, cultivating genuine social reasoning is essential if large language models are to
achieve higher levels of social intelligence. To this end, researchers have explored diverse approaches to
enhance models’ social intelligence, including prompt-based approaches (Jung et al.|[2024; Gu et al., 2024),
model-based approaches such as Bayesian inference (Zhi-Xuan et al.,|2022; |Jain and Krishnamurthyl [2024),
supervised fine-tuning (Wu et al.} 2024} Tang and Bellel 2024])), and post-training reinforcement learning (Hou
et al., 2025 Lu et al.| [2025a).
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Ability Belief: Location False Beliefs
Story Mary and Mike are wandering around the factory. They see a transparent box and some cabinets, and they
find a hammer on the box. Mike then leaves the factory, and Mary moves the hammer into the box.
Question When Mike returns, where does Mary think he believes the hammer is?
A. On the box B. In the box C. In the cabinet D. In the cupboard

Answer B. In the box

Thinking Initially, Mike and Mary both see the hammer Thinking Both Mary and Mike see the hammer
on the transparent box while they are together in the factory.  resting on the transparent box. Mike then leaves;
Mike then leaves the factory, and while he is gone, Mary while he is gone Mary puts the hammer inside the
moves the hammer from the top of the box into the box. By transparent box. The box is transparent, so its
the time Mike returns, he would not have seen Mary contents are visible from the outside. When Mike
moving the hammer into the box, as he was outside when returns, the first thing he can do is look at the

she did it. Therefore, Mary would likely think that Mike transparent box; he will immediately see the hammer
believes the hammer is still where he last saw it, which is inside it. Therefore, upon returning, Mike’s belief
on the box, because he did not witness the change of about the hammer’s location will be “ in the box.”
location. Mary thinks Mike believes the hammer is still On Hence option B is the correct answer.

the box. <Answer> A</Answer> <Answer> B</Answer>

Figure 1: A sample from ToMBench-Hard, where arriving at the correct answer requires genuine social
reasoning (Right) rather than relying on surface-level shortcuts (Left).

However, despite growing research in this direction, fundamental limitations remain. First, existing social
benchmarks are overly simplistic and fail to evaluate whether large language models truly engage in social
reasoning (Lu et al.,|2025a; Mousavi et al.| 2025). Many contain exploitable patterns, enabling models to
obtain high scores by relying on superficial shortcuts rather than authentic human-like reasoning (Vijjini et al.,
2024). Second, current approaches of social intelligence in LLMs often focus on the final outcome and neglect
the reasoning process (Hu et al.,[2025). While rule-based reinforcement learning with outcome rewards has
proven effective in eliciting strong objective reasoning in domains such as mathematics and coding (Guo
et al., 2025; Wang et al., [2024)), social domain receives little attention. Moreover, existing approaches remain
confined to outcome-level supervision, rewarding only the correctness of final answers. This narrow focus
incentivises models to adopt superficial heuristics rather than engaging in deeper, contextually grounded
social reasoning. In contrast, human social reasoning develops through better processing of social information
(Salancik and Pfeffer, [1978)) and recursive inference about others’ mental states (Frith and Frith, [2005),
processes that collectively underpin the emergence of higher levels of social intelligence(Jacobs et al.| [2020).

Motivated by the recent success of reinforcement-learning pipelines such as DeepSeek-R1(Guo et al., 2025)
and Kimi k1.5(Team et al.,|2025) in strengthening general reasoning, we explore whether a similar strategy
can unlock the social dimension of cognition. We start with ToMBench-Hard, a rigorously vetted Theory-of-
Mind benchmark composed of hard cases hand-crafted by human experts to foil shortcut solutions and reveal
genuine social reasoning. The benchmark quickly exposes current weaknesses: even state-of-the-art LLMs
such as O3 and GPT-5 score below 64%, whereas human annotators exceed 87 %. Fine-tuning models on
ToMBench-Hard with a standard outcome-based reward already lifts performance markedly, confirming that
reinforcement signals can guide LLMs toward more faithful social inference. Yet a sizable gap to human
competence persists, suggesting that answer-level feedback alone is insufficient. To bridge this gap, we
collect diverse expert reasoning traces, train a social-thinking reward model that judges each step for accurate
perception of social cues and Theory-of-Mind-consistent inference, and blend this trajectory-level feedback
with the outcome reward. The resulting framework, Social-R1, sets new records on ToMBench-Hard and
transfers robustly to EmoBench, ToMBench, SimpleToM, and MotiveBench; strikingly, an 4 B-parameter
Social-R1 model surpasses LLaMA3-70B on every evaluation. These findings highlight that aligning both
what a model concludes and how it reasons is critical for cultivating human-like social intelligence in language
models.
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In summary, our contributions are as follows:

* We propose ToMBench-Hard, a 900-sample Theory-of-Mind multiple-choice benchmark that provides a
more faithful evaluation of social reasoning abilities with hard samples. Moreover, directly conducting
Rule-based GRPO with ToMBench-Hard can already significantly boost LLMs’ social intelligence.

Based on the training set split from ToMBench-Hard, we further construct the SocialReward-3k dataset and
train a social thinking reward model that evaluates the quality of reasoning trajectories aligned with the
social information processing theory.

* We introduce Social-R1, a reinforcement learning framework that integrates both outcome-level rewards
with trajectory-level thinking rewards to explore how to enhance social reasoning in LLMs in a genuine,
robust, and systematic manner.

¢ We conduct comprehensive experiments with Social-R1, involving both in-domain and out-of-domain
social intelligence-related benchmarks. Results demonstrate that Social-R1 significantly and consistently
improves social intelligence across domains.

2 RELATED WORK

2.1 THEORY-OF-MIND IN LLMS AND LIMITATIONS

A growing body of work evaluates LLMs on ToM tasks, ranging from classical false-belief vignettes to
richer, dynamic story settings. [Kosinskil (2024) shows that recent models such as GPT-4 solve about 75% of
false-belief tasks, roughly matching the performance of six-year-old children, whereas earlier models lag far
behind. [Street et al.| (2024) reports that large-scale LLMs like GPT-4 and Flan-PaLLM reach (or nearly reach)
adult-level performance on a variety of ToM assessments. |Strachan et al.[(2024) finds that GPT-4 performs at,
and sometimes above, human level on false-belief, hinting, irony, and strange-stories tasks, concluding that
LLM behavior is often consistent with human mentalistic inference. However, a broader line of literature
reveals important weaknesses. |(Gandhi et al.| (2023)) notes inconsistent results across studies and therefore
proposes a generative evaluation framework based on causal templates to expose systematic failure modes.
Chen et al.| (2024) offers the most comprehensive ToM audit so far, covering eight tasks and 31 capabilities.
Xu et al.| (2024) improves test quality by using longer, unstructured narratives, explicit character traits, and
action-based evaluation; it shows that LLMs excel at modeling mental states tied to the physical world but
fall short in purely psychological contexts, a pattern also observed by |Gu et al.| (2024); [Zhou et al.| (2023).
Using dynamic scenarios instead of static QA items, Xiao et al.|(2025) demonstrates that LLMs lag far behind
humans when characters’ mental states evolve over time. |He et al.|(2023)) probes higher-order ToM and
reveals a sharp performance drop beyond first-order reasoning. Attempts to improve ToM remain limited.
Gu et al.|(2024) employ system prompts that instruct the model to perform explicit mental reasoning before
acting, but this is a task-specific intervention. ToM-RL [Lu et al.| (2025b) combines reinforcement learning
with data generated from Hi-ToM He et al.| (2023)), achieving encouraging gains; yet without a broader set
of challenging training samples, the model may overfit to high-order ToM patterns and fail to generalize to
wider facets of social intelligence.

From this literature we distill three limitations that motivate our work: (i) most benchmarks measure only
outcome correctness, not the underlying reasoning trajectory; (ii) models often rely on shallow statistical
cues instead of genuinely recursive mental-state inference; and (iii) out-of-distribution generalization—both
across other ToM benchmarks and to related social-intelligence tasks such as EmoBench |Sabour et al.| (2024))
and MotiveBench (Yong et al.l [2025)—remains weak. These limitations point to the need for (a) harder,
adversarial ToM evaluations; (b) supervisory signals that target the reasoning process itself (trajectory-level
supervision); and (c) training regimes explicitly designed to foster broad, transferable social intelligence.
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2.2 RL FOR LLM GENERAL REASONING

RL has become a central technique for refining the behavior and reasoning of large language models. RLHF
now serves as a standard alignment approach (Ouyang et al.,|2022). More recently, large-scale RL with
verifiable, outcome-based rewards—drawn directly from task performance—has been shown to markedly
strengthen general reasoning abilities. Industry efforts such as OpenAl O1 (Jaech et al.,[2024)), DeepSeek
R1 (Guo et al.}[2025)), Kimi K1.5 (Team et al., [2025), and Qwen 3 (Yang et al.,|2025)) confirm that pure RL
training can unlock new capabilities, especially on objective tasks requiring structured reasoning and code or
math generation. Outcome-based rewards, however, are often sparse and provide poor credit assignments
across long reasoning chains. To mitigate this, a complementary line of work explores process supervision,
which delivers dense, step-by-step feedback on the reasoning trajectory itself (Lightman et al.,[2023} Uesato
et al., 2022; [Zhang et al.| [2025). Process reward models (PRMs), trained on human- or model-generated
labels for each intermediate step, can penalize faulty logic even when the final answer is correct, nudging the
model toward more reliable reasoning paths.

Although RL methods have significantly improved LLM performance on complex logical tasks such as
mathematics and coding, they remain under-explored in the domain of social inference. Social scenarios are
typically unstructured and require the model to empathize with others and reason over multiple interacting
social factors. A first step in this direction is (Lu et al.l |2025b), which applies outcome-based RL using
synthetic ToM examples. While this pioneering study shows that RL can, in principle, train social intelligence,
it remains in an early stage. These gaps motivate our work: (i) refreshing and expanding training materials to
better support RL for social reasoning, and (ii) investigating trajectory-level rewards that guide LLMs toward
more human-like social inference.

3 METHODOLOGIES OF SOCIAL-R1

In this section, We introduce Social-R1, a reinforcement learning-based framework Incentivized over hard
ToM samples to enhance social reasoning in LLMs. It mainly contains three components: a challenging social
reasoning benchmark ToMBench-Hard (Section [3.1)), the social thinking reward design (Section 3.2)), and the
optimization with RL (Section [3.3).

3.1 TOMBENCH-HARD

Data Construction ToMBench-Hard is deliberately curated to address the limitations outlined in Section
[2.1] with the goals of ensuring broad coverage across Theory of Mind dimensions, and increasing task difficulty
by introducing nuanced distractors and context-dependent social reasoning. Guided by the well-defined
psychological framework “Abilities in the Theory-of-Mind Space (ATOMS) ” (Osterhaus and Bosacki} [2022),
we design multiple-choice questions that probe reasoning across six distinct ability dimensions: Emotion,
Desire, Intention, Knowledge, Belief, and Non-literal Communication. Inspired by prior work (Ullman, 2023}
Hu et al., |2025), we further increase task difficulty by introducing subtle but ToM-consistent adversarial
perturbations—such as manipulations of perceptual access or asymmetric information—that compel models
to engage in deeper and more robust reasoning. ToMBench-Hard is manually constructed and annotated by
the authors of this paper and other researchers with expertise in natural language processing and cognitive
psychology. Each item consists of a social scenario, a question, and multiple candidate options, with only
one correct answer. All samples are cross-checked independently by three annotators to ensure quality and
consistency. Detailed procedures for data construction and annotation are provided in Appendix [A.1.2]

Benchmarking LLMs with TomBench-hard ToMBench-Hard consists of 900 multiple-choice questions
spanning six major ToM dimensions. As shown in Table [T} we present both scores for human performance as
well as a range of LLMs. Human performance reaches around overall 87% accuracy, whereas both closed- and
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open-source LLMs lag considerably behind, scoring below 64% and 51%, respectively. As a comparison, we
also perform evaluations with the synthetic dataset from ToM-RL (Lu et al.,2025b), which in fact only covers
only the Belief dimension. We can observe that O3 and GPT-5 can exceed 8§7% overall accuracy, and an 8B
Qwen3 model can achieve 73% on ToM-RL dataset, compared to less than 48% on our ToMBench-Hard. This
performance gap highlights the difficulty posed by ToMBench-Hard and its potentials in deeply incentivizing
genuine, human-like social reasoning capabilities rather than capturing shortcuts commonly exist in pretrained
datasets. Detailed statistics are provided in Appendix [A.T.1]

Table 1: Benchmarking LLMs with ToMBench-Hard and ToM-RL. ToMBench contains a wide range of
hard samples, which is beneficial in inducing robust, intelligent, and human-like social reasoning capabilities.

ToMBench-Hard (All) ToM-RL
Emotion Desire Intention Knowledge Belief Coll\il(;tlzillriltiec;ilion Overall

Human 0.8400  0.8889 0.8128  0.9020 0.8485  0.9385 08718 -

03 0.7600  0.6792 05047  0.5882 0.6212  0.6792 0.6388  0.8789
GPT-5 07200 05741 04692  0.5098 0.6591 0.6923 0.6041  0.8744
GPT-S + COT 0.6857 05741 04194  0.6078 0.6591 0.6923 0.5462  0.8322
GPT-4o 0.6971  0.5000 0.4171 0.3922 0.6061  0.5846 0.5328  0.7222
GPT4o +COT  0.6971 04444 0.4431 0.3922 0.6288  0.6923 0.5497  0.6611
(Digt‘:’liﬁ'iﬁfmg) 0.6057 03704 0.6588 0.2941 0.5682  0.5385 0.5059  0.5733
Qwen3-4B 0.5600 03148 0.3981 0.1373 0.4545  0.4615 03877  0.6656
(Digfflzntf;iﬁzng) 0.6400 03704 04834 03137 0.5000 0.5538 04769  0.7378
Qwen3-8B 04743 03148 03436  0.1569 04318  0.3846 03510  0.7333
(Di?;gle;fﬁfflgng) 0.6457 04630 04455 03137 05303 07231 05022 0.6900
Qwen3-32B 06514 03889 05166 02745 0.5833  0.6154 0.5050  0.7089
LLaMa3.1-70B  0.5200 03519 03270  0.3137 0.4091 0.5385 04100  0.6578

3.2 SOCIAL THINKING REWARD MODEL

Thinking Reward Design One interesting observation from Table ]is that, conventional Chain-of-Thought
(CoT) or advanced thinking processes fail to either consistently nor significantly enhance social reasoning
performance. This is probably due to, unlike logical and symbolic reasoning tasks such as math and coding,
social tasks require grounding in social information, emphasizing with others, and reasoning embedded in
the interaction context. Inspired by the Social Information Processing (SIP) theory (Salancik and Pfeffer]
1978)), we design our reward around the stages of the human social reasoning process. According to SIP,
an individual in a social situation first perceives and encodes relevant social cues (perception and encoding
stage). Next, they interpret these cues and develop Theory-of-Mind reasoning toward the social partner
(interpretation stage), and finally decide which action to take. Based on this framework, we design the reward
model along three key dimensions: (1) accurately perceiving and interpreting social cues in scenarios, (2)
ensuring ToM reasoning is logically consistent and free of contradictions, and (3) keeping the reasoning
concise and without redundancy. Detailed criteria for each dimension are provided in Appendix[A.2]

Thinking Reward Data Collection To construct high-quality thinking data for reward model training, we
first prompt OpenAl 03 to generate raw reasoning trajectories for correct answers and then manually refine
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them to ensure accurate recognition of social cues and faithful Theory of Mind reasoning. These refined
trajectories serve as the golden reasoning processes. We then collect candidate reasoning processes from
GPT-40, Qwen3-8B, Qwen3-32B, and randomly sample an option to force the thinking processes toward the
direction to the option. Each candidate reasoning process is scored against the gold reasoning process by
GPT-5 on a 0-to-1 scale with increments of 0.1. In total, we obtain 6,300 annotated reasoning trajectories.
Next, we construct a set of pairwise data samples for reward model training, basically, each time we draw two
samples from the annotated reasoning trajectories, the one with the higher annotated score will serve as the
win case the other as the lose case. To ensure balanced quality, we apply rule-based filtering to remove noisy
samples and perform uniform sampling across reward intervals, resulting in the SocialReward-3k dataset.
A social thinking reward model, initialized from Qwen3-4B, is trained on this dataset using supervised
fine-tuning. The model is tasked with predicting a scalar reward given a scenario, a question, options, and the
corresponding reasoning process. Through this training, the model learns to detect reasoning errors and assign
appropriate scores, thereby providing critical feedback on reasoning quality during reinforcement learning.

3.3 OPTIMIZATION WITH RL

We adopt the GRPO (Guo et al.}[2025) as the optimization method under the RL framework. As illustrated in
Figure [2|(a), the process begins with the reasoning model generating a group of different responses {o; } ¥ ;
for each query ¢, where each response includes both reasoning steps and a final answer, enclosed within
<think></think> and <Answer></Answer> tags, respectively.

Mean Outcome Reward
—— Social-R1-4B —— Social-R1 w/ gpt-40 as TRM
—— Social-R1-4B w/o trained TRM

nA
N A A
AN\ o~
\/ W

0i I
<think> ... </think> R; A; 0.85
<Answer>A</Answer> Outcome R, A % w w ow %
Reward Mean Format Reward
R A LT MAAA A A A AN
<think> ... </think> 2 2 050/

B
2
Reasoning <Answer>B</Answer> Format R; A 8440
Reward R A g
4 4 2
Model <think> ... </think> =065 F9
<Answer>C</Answer> 0.60 “*T"" Mean Thinking Rewa/n\:i/,v'
Thinking Ry Ay ) LA
<think> ... </think> Reward 0.55
. Ry An
<Answer>D</Answer>
0 50 100 150 200 250 300
Step | |
(a) Overall RL Process (b) The Training Curves of Final Reward (c) Curves for Social-R1-4B

Figure 2: An illustration of (a) Social-R1 overall framework with GRPO; (b) The training curves of the final
merged rewards for three settings: Social-R1 4B, Social-R1 4B w/ gpt-4o0 as TRM, and Social-R1 4B w/o
trained TRM; and (c) the training curves of each individual reward from Social-R1 4B

Reward Each response is evaluated from three perspectives: (i) a format reward, which ensures the
structural correctness of outputs, including both the thinking and answer blocks; (ii) an outcome reward,
which measures whether the predicted answer matches the ground truth; and (iii) a thinking reward, which
assesses the quality of intermediate reasoning trajectories based on social cognition principles designed in
Section[3.2] The final reward is a linear combination, formulated as:

AR 4+ AR? + N o(RY)
B Af 4 Ao+ N

R; ; )]

where sz , Y, and R;? denote the format, outcome, and thinking rewards, respectively, o (-) is the sigmoid
function, and A¢, A,, and \; are weighting coefficients. Figure (b) and (c) offer the training curves with
those rewards.
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Advantage Estimation The advantage of each response is normalized within the group to stabilize training,
ie, A; = Ri%c”c, where (1 and o are the mean and standard deviation of group rewards.

Policy Optimization Following GRPO (Guo et al.,[2025)), we optimize the policy 7y by sampling responses
from the old policy 7, and maximizing the clipped surrogate objective:

N
1 . ( ma(0ilq)
Tsocial1(0) = Eqp(Q) {0} X, ~ras [N > (mm (WA“
=t )
- (moloilg) N ‘
chp(ﬂ(’ld(Oilq),l o1+ e) Al) 8Dk | m])],

where 7 is the reference policy and j is the KL regularization coefficient.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Benchmarks We evaluate our model on six multiple-choice social benchmarks, including two in-domain
benchmarks—the public ToMBench (Chen et al., [2024) and our ToMBench-Hard test set — and four out-of-
domain benchmarks: SociallQA (Sap et al.,[2019) for social commonsense reasoning, EmoBench (Sabour
et al.,2024) for emotion understanding and application evaluation, MotiveBench (Yong et al., 2025 for social
motivation reasoning, and SimpleToM (Gu et al.}2024) for examining whether models can consciously infer
others’” mental states (MS) and proactively applying such reasoning to behavior inference.

Implementation Details The social thinking reward model is trained as a pairwise reward model. We
initialize it from Qwen3-4B, use the SocialReward-3k preference dataset containing (chosen, rejected) answer
pairs, and finetune with LoRA. The reasoning model is initialized from Qwen3-4B and Qwen3-8B and trained
on our ToMBench-Hard dataset, which consists of 700 training samples and 200 test samples. Reinforcement
learning is conducted for 300 steps with verl(Sheng et al.| 2024) on 16 NVIDIA A100 40GB GPUs. The
group size is set to 3, the KL-divergence coefficient to 0.04, and the learning rate to 5 x 10~". More details
can be found in Appendix[A.3]

4.2 MAIN RESULTS

We appy the Social-R1 framework on two open-source models with different sizes: Qwen3-4b and Qwen3-8B.
The overall performance is report in Table[2] We can observe that Social-R1 achieves strong and consistent
improvements across six social reasoning benchmarks. While closed-source models such as GPT-5 and
GPT-4o0 exhibit strong average performance, Social-R1 shows that reinforcement learning with challenging
training data and social thinking reward signals can substantially enhance social reasoning, even when
applied to smaller open-source backbones like Qwen3-4B. Notably, Social-R1-4B surpasses LLaMa3-70B
on all benchmarks despite the latter having much more parameters; Social-R1-8B surpasses or approaches
Qwen-32B model on all the out-of-domain benchmarks.

Another promising observations is, through training, Social-R1 is able to actively leverage social reasoning
in practical applications, such as behavioral judgment and emotion understanding. In SimpleToM and
EmoBench, Social-R1 models demonstrate substantial improvements in the behavior & judgment and
emotion application dimensions, underscoring their ability to engage in social reasoning and proactively
apply it in social applications. Detailed performance of different models across various dimensions in six
benchmarks is provided in Appendix
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Table 2: Overall performance of different models across six social reasoning benchmarks. COT indicates
Chain-of-Thought. MS indicates Mental State, which is a task-specific prompt-based reminder from (Gu
et al.,|2024)), and it is only applicable for SimpleToM.

In-domain Out-of-domain
ToMBench ToMBench-Hard ¢ . 1j04 SimpleToM EmoBench MotiveBench
(Test set)
Closed-sourced LLMs
GPT-5 0.8168 0.5950 0.8269 0.7355 0.8030 0.9050
GPT-5+COT 0.8189 0.6000 0.8163 0.7111 0.7882 0.9100
GPT-5+MS - - - 0.9924 - -
GPT-40 0.7769 0.5650 0.7840 0.6661 0.5100 0.9383
GPT-40+COT 0.7899 0.5350 0.7953 0.6126 0.7762 0.9100
GPT-40+MS - - - 0.7358 - -
Open-sourced LLMs

Qwen3-4B
(Disable thinking) 0.6108 0.5150 0.7313 0.5109 0.5280 0.8550

Qwen3-8B
(Disable thinking) 0.5647 0.5000 0.7600 0.5109 0.6484 0.8756

Qwen3-32B
(Disable thinking) 0.7318 0.5150 0.7615 0.7239 0.6700 0.9067
Qwen3-32B 0.7433 0.6000 0.7774 0.7437 0.6356 0.9017
LLaMa3.1-70B 0.6573 0.4050 0.4621 0.7190 0.6632 0.5633
Qwen3-4B 0.6402 0.3950 0.7631 0.5411 0.5308 0.8667
Social-R1-4B 0.6827 (+6.6%)  0.6597(+67%) 0.7736 (+1.4%)  0.9365 (+73.1%) 0.6780 (+27.7%) 0.8709 (+0.5%)
Qwen3-8B 0.6685 0.5100 0.7871 0.6176 0.5613 0.8822
Social-R1-8B 0.6875 (+2.8%) 0.7000 (+37.2%)  0.7874 (+0.04%) 0.8963 (+45.1%) 0.7212 (+28.5%) 0.8931 (+1.2%)

5 ABLATION STUDY

Next, we conduct ablation studies to quantify the contribution of each component in Social-R1, particularly
on validating the effectiveness of ToMBench-Hard and the TRM. We evaluate four variants:

* Social-R1 w/o Hard& TRM: replace ToMBench-Hard with the training data from ToM-RL (Lu et al.,
2025b)) and use outcome-only reward, to assess whether our hard training cases are necessary to elicit
stronger social reasoning.

* Social-R1 w/o TRM: train with outcome-only reward on ToMBench-Hard, to isolate the effect of TRM.

¢ Social-R1 w/o trained TRM: substitute the trained TRM with an untrained Qwen3-4B, to examine the
effectiveness of social thinking reward model.

* Social-R1 w/ gpt-40 as TRM: replace the TRM with gpt-4o as an generative and general-purpose TRM, to
verify whether using a stronger TRM (gpt-40 vs. Qwen3-4B) can make a difference.

As shown in Table[3] Social-R1 overall achieves the best performance across most benchmarks, demonstrating
a certain degree of generalized and robust boosted social intelligence. While introducing an untrained reward
model still brings overall gains over the baseline, its improvement is not robust across different benchmarks
and it falls short of the improvements provided by the trained TRM.
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Effect of Hard Cases When ToMBench-Hard is replaced with synthetic ToM-RL data trained under
outcome-only rewards (Social-R1 w/o ToMBench-Hard&TRM), performance drops substantially across
multiple benchmarks. This indicates that the more challenging cases in ToMBench-Hard provide essential
supervision signals, guiding the model toward deeper social reasoning. In contrast, synthetic data with
relatively easier cases not only fails to elicit comparable reasoning capability but also weaken the model’s
original social reasoning ability.

Effect of Thinking Reward Model Replacing the trained TRM with an untrained Qwen3-4B (Social-
R1 w/o trained TRM) weakens performance on all the other benchmarks except SimpleToM, confirming
the necessity of training the reward model on social reasoning trajectories (i.e., SocialReward-3k). Using
GPT-40-as-TRM leads to unstable or weaker results, especially on SociallQA, EmoBench and MotiveBench,
underscoring that a general-purpose model is less reliable as a reward evaluator than a dedicated social
thinking reward model. These findings highlight the importance of tailoring the social thinking reward model
to capture social reasoning signals for stable and robust improvements.

Table 3: Ablation results. Results are splitted into two sections by the backbone models, i.e., Qwen3-4B and
Qwen3-8B, and the best results in each section are highlighted in green.

In-domain Out of domain

ToMBench ToMBench_Hard SociallQA SimpleToM EmoBench MotiveBench

Qwen3-4B 0.6402 0.3950 0.7631 0.5411 0.5308 0.8667
Social-R1 4B w/o Hard&TRM 0.6358 0.5100 0.7699 0.5388 0.5528 0.8583
Social-R1 4B w/o TRM 0.6455 0.6600 0.7666 0.9718 0.5528 0.8656
Social-R1 4B w/ gpt-40 as TRM 0.6309 0.6834 0.7462 0.9718 0.6582 0.8333
Social-R1 4B w/o trained TRM 0.6306 0.6350 0.7533 0.9794 0.6482 0.8644
Social-R1 4B 0.6658 0.6597 0.7736 0.9365 0.6780 0.8709
Qwen3-8B 0.6685 0.5100 0.7871 0.6176 0.5920 0.8822
Social-R1 8B w/o-TRM 0.6764 0.6850 0.7779 0.9741 0.7205 0.8633
Social-R1 8B w/ gpt-40 as TRM 0.6864 0.7052 0.7768 0.8917 0.7036 0.8789
Social-R1 8B w/o trained TRM 0.6863 0.6089 0.7815 0.9756 0.5713 0.8633
Social-R1 8B 0.6875 0.7000 0.7874 0.8963 0.7212 0.8931

6 CONCLUSION

In this work, we introduce ToMBench-Hard, a challenging benchmark that rigorously evaluates the Theory of
Mind capabilities in LLMs. Building on this, we propose Social-R1, a reinforcement learning framework that
integrates both outcome-level and thinking-level rewards to cultivate human-like social intelligence in LLMs.
Our results demonstrate that outcome-based reinforcement learning over ToMBench-Hard already enhances
social reasoning, while thinking-level supervision yields further improvements. Strikingly, Social-R1-4B
surpasses LLaMA3-70B across all evaluated benchmarks, despite the latter having more than an order of
magnitude more parameters, underscoring the efficiency of our approach. Together, these findings highlight
the importance of supervising not only what a model concludes but also how it reasons, paving the way
toward socially intelligent LLMs. Future work may extend this framework to broader domains of social tasks,
such as human-AlI collaboration, human value alignment and moral reasoning, and LLM-based simulations
for social science.
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7 ETHICS STATEMENT

Our work uses only publicly available benchmark (ToMBench, SociallQA, EmoBench, MotiveBench,
SimpleToM) to evaluation LLMs and newly created data that does not contain personally identifiable
information. All annotations were conducted by recruited graduate students with informed consent and fair
compensation. This research does not involve human subjects or sensitive personal data. This work complies
with the ICLR Ethics Guidelines.

& REPRODUCIBILITY STATEMENT

We provide all necessary resources to ensure the reproducibility of our results. Specifically, (i) detailed
experimental settings, including hyperparameters, training configurations, and all prompts used for evaluation,
are presented in the Appendix; (ii) an anonymized repository containing the complete codebase for model
training and evaluation will be made publicly available, ensuring full transparenc and (iii) a comprehensive
README file is included to guide users through environment setup, dataset preparation, and step-by-step
reproduction of all reported results. To reduce variance, all results reported in the paper are obtained by
averaging over three independent runs.
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A APPENDIX

A.1 TOMBENCH_HARD

ToMBench_Hard is deliberately curated to increase task difficulty by introducing nuanced distractors and
context-dependent reasoning. Inspired by the Abilities in the Theory-of-Mind Space (ATOMS) framework
(Osterhaus and Bosackil [2022])), each question is designed to probe a distinct aspect of ToM reasoning, detailed
definition of each subabilities and dimension can be found in (Osterhaus and Bosackil [2022) . To further
increase difficulty (Ullman, 2023} Hu et al., 2025)), adversarial variations such as asymmetric access to
information, discrepant intentions, and subtle social cues are included.

A.1.1 STATISTIC

ToMBench-Hard consists of 900 multiple-choice questions covering six major dimensions of Theory of Mind:
Belief, Desire, Intention, Knowledge, Emotion, and Non-literal Communication and 31 ToM subabilities.
The detailed distribution is shown in Table[d The dataset is divided into a training set of 700 samples and a
validation set of 200 samples. This split ensures that all six ToM dimensions are represented proportionally
across both subsets.
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A.1.2 DATA ANNOTATION DETAILS

ToMBench_Hard is developed jointly by the author and one psychology graduate student, who construct
the scenarios, questions, options and answers. Annotation is carried out by five computer science graduate
students (after receiving training) and five social psychology graduate students. Each sample is independently
answered by two annotators, and disagreements are discussed and resolved through group review and iterative
modification. This procedure ensures both linguistic clarity and psychological validity. The annotation
process emphasized consistency across dimensions and aimed to capture nuanced aspects of social reasoning.

Table 4: Statistics of ToMBench_Hard across six ToM dimensions and 31 ToM subabilities

Category Count Category Count
Belief 132 Intention 422
Beliefs based on perception 59 Intention recognition 215
Second-order belief 21 Intention prediction 181
Identity false belief 14 Complex intention 14
Location false belief 18 Discrepant intention 12
Sequence false belief 9
Content false belief 11 Knowledge 62
Knowledge inference 15
Desire 44 Informational knowledge 10
Desires in conflict 17 Knowledge perception 13
Desire-action discrepancy 14 Informational knowledge 4
Multiple desires
T Non-literal Communication 65
Desire discrepancy
Faux pas 17
Emotion 175 Involuntary lies 12
Typical emotion 85 Trony/Sarcasm 7
Mixed emotion 24 Egocentric lies 10
Atypical emotion 23 White lies
Hidden emotion 16 Humor 9
Emotion regulation 14
Total (ToMBench_Hard) 900

Moral emotion

Emotion discrepancy

A.1.3 CASES IN TOMBENCH_HARD

We provide illustrative examples of the six Theory of Mind dimensions covered in ToMBench_Hard (see
Figure3). These cases demonstrate how solving the questions requires models to go beyond surface-level
cues and engage in deeper social reasoning.
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 Ability
Story

Question

\Answer

Belief: Location False Beliefs N\
Mary and Mike are wandering around the factory. They see a transparent box and some cabinets, and they]
find a hammer on the box. Mike then leaves the factory, and Mary moves the hammer into the box.
When Mike returns, where does Mary think he believes the hammer is?

A. On the box B. Inthe box C. In the cabinet D. In the cupboard

B. In the box

J

/ Ability

Story

Question

Qnswer

Desire: Discrepant desires

James is a driven corporate lawyer who believes that constant career advancement is the true measure of
personal achievement. In contrast, Emily is a painter whose days move at an unhurried pace, convinced
that life’s value lies in expressing creativity and cherishing beauty rather than chasing professional status.
This weekend, James plans to invite Emily to an event.

What type of event does James most likely invite Emily to?

A. Networking dinner with business executives ~ B. Contemporary art gallery visit

C. Rare book auction  D. Corporate competition judging

7 Ability
Story

Question

B. Contemporary art gallery visit /
Intention: Intentions explanations \
In the library, Jack is preparing for the exam, and his friend Emily is listening to music. Jack says, The
melody of the song is good, and my headphones are also great. Do you want to use them?

What does Jack really want to say when he says this?

A. He emphasizes that the melody of the song is good. B. He emphasizes that his headphones are great.

C. He wants Emily to turn down the volume. D. He wants to join Emily in listening to the song.
KAnswer C. He wants Emily to turn down the volume. /
/ Ability Emotion: Atypical emotional reactions \
Story Ethan had been feeling unwell and couldn’t attend football practice for a week. On the day he returned, he
worried that his teammates might have forgotten him. But as soon as he walked onto the field, his friends
ran over, cheered, and hugged him tightly.

Question  What kind of emotion does Subject: Ethan possibly have?
A. Sadness B. Hopeless C.Anger D. Worried E. Gratitude F. Embarrassment.

KAnswer E. Gratitude /
Ability Knowledge: Knowledge-pretend play links \
Story In the mysterious underground world of Terra Valley lives a small, mischievous robot named Grimmo. In

this realm without sky or celestial bodies, Grimmo has never seen the heavens, nor encountered a human.
Yet Terra Valley is a wonder in itself—its walls adorned with bioluminescent fungi and glimmering
minerals that sparkle in the dark. One day, Grimmo begins an imitation routine: extending his arms, he
slowly spins on his own axis, his movements reminiscent of a spinning top or a graceful dancer twirling
in place.
Question  What is Grimmo possibly imitating?
A. A floating cloud B. The rotation of a planet
C. A dancer’s spiral turn D. A glowing mushroom spinning in the wind
\&lswer D. A glowing mushroom spinning in the wind j
Ability Non-Literal Communication: Humor
Story After the sports day, Mia and Zoe see their friend Jack coming off the running track. Jack is so sweaty
that his clothes are completely soaked. Mia nudges Zoe and says: “Jack isn’t running on the track—he’s
swimming in the ocean!”
Question Why does Mia say this?
A. Mia really misunderstands that Jack is swimming. B. Mia lies to make Zoe laugh.
C. Mia jokes to exaggerate Jack’s sweatiness. D. Mia jokes to make Zoe laugh.
Answer C. Mia jokes to exaggerate Jack’s sweatiness,
Figure 3: Representative cases from the six ToM dimensions in ToMBench_Hard.
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A.2 SOCIAL THINKING REWARD
A.2.1 SIP-INSPIRED SOCIAL REWARD RUBRIC

Our reward design is inspired by the Social Information Processing (SIP) theory (Salancik and Pfeffer;, |1978)).
According to SIP, social reasoning unfolds in three stages: (i) perception & encoding of relevant social cues,
(ii) interpretation through Theory-of-Mind inference, and (iii) response selection. We use the stage into three
evaluation dimensions for reasoning quality as shown in Figure 4]

You are an expert reasoning evaluator. I will give you an input consisting of five elements: [Story], [Question],
[Answer], [Gold Reasoning Process], and [Candidate Reasoning Process].
Your goal is to compare the Candidate Reasoning Process against the Gold Reasoning Process and judge the
quality of reasoning. You must ignore the correctness of the final answer and focus only on the reasoning process.
Evaluation Criteria:
1. Correct Reasoning — Does the Candidate Reasoning Process correctly follow the stages of social information
processing, consistent with the Gold Reasoning Process?

Perception: Are the relevant social cues accurately identified?

Interpretation: Are these cues correctly interpreted in relation to the social context?
2. Logical Soundness — Is the reasoning logically coherent, internally consistent, and aligned with the Gold
Reasoning Process?
3. Redundancy — Is the reasoning concise and relevant, avoiding unnecessary repetition or irrelevant details?
Scoring Rule: Provide a single score from {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} based on reasoning
quality, where:
0.0 — Completely flawed reasoning (no alignment with the Gold Reasoning Process).
1.0 — Perfectly sound reasoning (fully aligned and valid).
Intermediate values — Reflect partial correctness or minor errors (e.g., 0.3 for major flaws, 0.7 for minor issues).
Be strict: reward strong reasoning and penalize poor reasoning.

Figure 4: Social Reward Rubric

A.2.2 DATA COLLECTION

To train the social thinking reward model, we curate a dataset named SocialReward-3k. The pipeline is as
follows: (i) Gold trajectories. We prompt OpenAl o3 with the correct answer to generate initial reasoning
processes(see Figurdd), then manually refined them to ensure human-like social information processing and
faithful ToM reasoning. These serve as “gold” reasoning. (ii) Candidate trajectories. We collect reasoning
processes from GPT-40, Qwen3-8B, Qwen3-32B. For each question, models are required to autonomously
generate both the reasoning process and the final answer. In addition, to diversify trajectories, we randomly
select an alternative option (besides the correct answer) and prompt the model to produce a reasoning path
for this option as well. In this way, each instance yields multiple candidate trajectories. (iii) Scoring. Each
candidate trajectory is evaluated against the gold standard by GPT-5 on a 0—1 scale in increments of 0.1. The
judging process follows the predefined rubric (see Figure d).(iv) Filtering & balancing. Noisy or malformed
reasoning is removed via rules, and uniform sampling across reward intervals ensures balanced data. This
results in 3,000 high-quality trajectories from an initial pool of 6,300. (v) Pairwise construction. For each
sample, we generate pairs of trajectories, designating the higher-scored trajectory as the “win” case and the
lower-scored trajectory as the “lose” case. We divide the data into four levels according to the GPT-5 scoring
scale: scores of 1 and 0.9 correspond to level A, scores of 0.8, 0.7, and 0.6 to level B, scores of 0.5, 0.4,
and 0.3 to level C, and scores of 0.2, 0.1, and 0 to level D. Based on these levels, we construct pairwise
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comparisons of varying difficulty: Hard Pairwise consists of adjacent levels (A-B, B-C, C-D), Easy Pairwise
is constructed across the most distant levels (A-D), and Medium Pairwise is formed by pairs with one-level
separation (A-C, B-D).

To get golden reasoning trajectories, we first prompt 03 to generate raw reasoning trajectories for correct
answers and then manually refine them to ensure accurate recognition of social cues and faithful Theory of
Mind reasoning. To get candidate reasoning trajectories with scores, we first prompt GPT-40, Qwen3-8B,
Qwen3-32B generate raw reasoning trajectories for correct answers and further prompt and randomly sample
an option without the correct answer to force the thinking trajectories toward the direction to the option.
Each candidate trajectory is scored against the gold reasoning trajectory by GPT-5 on a 0-to-1 scale with
increments of 0.1. Across the 700 training samples, we collected a total of 6,300 reasoning trajectories
using four model sources: (1) 03 generates reasoning trajectories only for the correct answers. (2) GPT-40
provides both (i) natural reasoning and (ii) incorrect-answer reasoning. (3) Qwen3-8B provides (i) correct-
answer reasoning, (ii) natural reasoning, and (iii) incorrect-answer reasoning.(4) Qwen3-32B provides (i)
correct-answer reasoning, (ii) natural reasoning, and (iii) incorrect-answer reasoning.

A.3 EXPERIMENT IMPLEMENT DETAILS

A.3.1 TRAINING DETAILS

The social thinking reward model (TRM) is initialised from Qwen3-4B and trained using supervised fine-
tuning for two epochs on four NVIDIA A100 80GB GPUs. The model is trained with pairwise comparisons
and, during inference, predicts a scalar reward conditioned on (scenario, question, options, reasoning). We
set all three weight coefficients, A ¢, A,, and Ay, to 1.0.

We evaluate multiple LLM families, including Llama-3.1-70B-Instruct(Dubey et al} [2024)f] Qwen3-
4B/8B/32B(Yang et all, 2025f] GPT-5-2025-08-07(Ouyang et al., 2022), GPT-40-2024-08-06 (Achiam
[2023), and 03-2025-04-16. We prompt Qwen3-4B/8B/32B in both Thinking and No-Think setting.

Story :{}

Question: {}

Answer :{}

For the given question, the correct answer is “B. Contemporary art gallery visit”, explain why it answers the question
correctly and enclose it in <think></think>.

Figure 5: Gold reasoning prompt
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A.4 DETAILS PERFORMANCE ON TOMBENCH,EMOBENCH,MOTIVEBENCH,SIMPLETOM

Table 5: Performance of all models on SimpleToM

Model simpletom_behavior simpletom_judgment simpletom_mentalstate Overall
GPT-5 0.7350 0.4908 0.9808 0.7355
GPT-5_cot 0.6949 0.4551 0.9834 0.7111
GPT-5_MS 0.9913 0.9887 0.9974 0.9924
GPT-40_cot 0.5684 0.3339 0.9355 0.6126
GPT-40 0.5257 0.6957 0.7768 0.6661
GPT-40_MS 0.8326 0.4010 0.9738 0.7358
Qwen3-4B(Disable thinking) 0.4673 0.2415 0.8239 0.5109
Qwen3-4B 0.4987 0.2214 0.9032 0.5411
Qwen3-8B(Disable thinking) 0.4673 0.2415 0.8239 0.5109
Qwen3-8B 0.5711 0.3374 0.9442 0.6176
llama370B 0.6722 0.5196 0.9651 0.7190
Social-R1-4B w/o TRM 0.9808 0.9965 0.9381 0.9718
Social-R1-4B w/ gpt-40 as TRM 0.9381 0.9965 0.9808 0.9718
Social-R1-4B w/o trained-TRM 0.9608 0.9930 0.9843 0.9794
Social-R1-4B 0.9886 0.9484 0.8726 0.9365
Social-R1-8B w/o TRM 0.9320 0.9965 0.9939 0.9741
Social-R1-8B w/ gpt-40 as TRM 0.7247 0.9878 0.9625 0.8917
Social-R1-8B-w/o-trained-TRM 0.9442 0.9904 0.9922 0.9756
Social-R1-8B 0.8004 0.9138 0.9747 0.8963
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Table 6: Performance across ToM dimensions on ToMBench.

Non-literal

Model Belief Desire Emotion Intention Knowledge communication
GPT5 0.9274 0.6611  0.7952 0.8706 0.6332 0.8062
GPT5+cot 09151 0.6833  0.7929 0.8618 0.6401 0.8048
GPT4 0.8594 0.6278  0.7524 0.8235 0.5779 0.7861
GPT4+cot 0.8980 0.6278  0.7405 0.7971 0.5675 0.8128
Qwen3-4B(Disable thinking) 0.6168 0.5444  0.6262 0.6324 0.3322 0.7099
Qwen3-8B(Disable thinking) 0.6383 0.5000  0.6262 0.6441 0.2595 0.5414
Qwen3-32B (Disable thinking) 0.8073 0.6167  0.7167 0.8147 0.4394 0.7553
Qwen3-32B 0.8560 0.6111  0.7286 0.8324 0.4014 0.7553
lama3.1-70B 0.7868 0.5000  0.6286 0.6529 0.3875 0.6658
Qwen3-4B 0.7506 0.5722  0.6810 0.6882 0.7273 0.6402
Social-R1-4B w/o TRM 0.6939 0.5778  0.6667 0.6912 0.5190 0.7245
Social-R1-4B w/o trained-TRM  0.7109 0.5833  0.6643 0.6706 0.3806 0.7737
Social-R1-4B w/ gpt-40 as TRM  0.7177 0.5644  0.6333 0.6735 0.3979 0.7988
Social-R1-4B 0.7281 0.5989  0.6866 0.7189 0.4957 0.7666
Qwen3-8B 0.7982 0.5889  0.6667 0.7176 0.2664 0.6698
Social-R1-8B w/o TRM 0.6976  0.5556  0.6976 0.7912 0.5536 0.7626
Social-R1-8B w/o trained-TRM  0.7498 0.4778  0.7071 0.7794 0.6021 0.8020
Social-R1-8B w/ gpt-40 as TRM  0.7611 0.5509  0.7467 0.7467 0.5400 0.7721
Social-R1-8B 0.7167 0.6145  0.7167 0.7751 0.5211 0.7809

Zhttps://huggingface.co/collections/meta-llama-3-1
3https://huggingface.co/collections/Qwen/qwen3
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Table 7: Performance of all models on MotiveBench tasks.

Model Amazon Persona Blog

GPT-5 0.9533 0.9000  0.8667
GPT-5 COT 0.9467 0.9067  0.8800
GPT-40 0.9667 0.9367 09133
GPT-40 COT 0.9400 0.9200  0.8600
Qwen3-4B (Disable thinking) 0.8867 0.8533  0.8267
Qwen3-4B 0.8933 0.8633  0.8433
Qwen3-8B (Disable thinking) 0.9000 0.8733  0.8533
Qwen3-8B 0.9200 0.8667  0.8600
Qwen3-32B (Disable thinking) 0.9467 0.9067 0.8667
Qwen3-32B 0.9267 0.9200  0.8400
LLaMA3-79B 0.7333 0.5433  0.4333
Social-R1-4B w/o TRM 0.8933 0.8767  0.8267

Social-R1-4B w/ gpt-40 as TRM  0.8667 0.8467  0.7867
Social-R1-4B w/o trained TRM 0.8933 0.8733  0.8267
Social-R1-4B 0.9128 0.8733  0.8267
Social-R1-8B w/o TRM 0.9133 0.8767  0.8000
Social-R1-8B w/ gpt-40 as TRM  0.9133 0.8833  0.8400
Social-R1-8B w/o trained TRM 0.8867 0.8767  0.8267
Social-R1-8B 0.9400 0.8792  0.8600
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Table 8: Performance of all models on EmoBench

Complex Emotional Personal Beliefs Perspective

Model Emotions Cues and Experiences Taking Interpersonal Self  Overall
GPT5 0.8673 0.8571 0.7946 0.7687 0.7800 0.7500  0.8030
GPT5+cot 0.8571 0.7679 0.7679 0.7761 0.7800 0.7800  0.7882
GPT4 0.4286 0.4464 0.4196 0.3955 0.7100  0.6600  0.5100
GPT4+cot 0.8163 0.8214 0.7411 0.7687 0.7800  0.7300  0.7762
Qwen3-4B(Disable thinking) 0.5306 0.5179 0.4643 0.4254 0.5800 0.6500  0.5280
Qwen3-8B(Disable thinking) 0.7041 0.7500 0.5893 0.5373 0.5700 0.7400  0.6484
Qwen3-32B(Disable thinking) 0.6939 0.7321 0.5893 0.5448 0.6800 0.7800  0.6700
Qwen3-32B 0.6531 0.6429 0.5982 0.5597 0.6600 0.7000  0.6356
LLama3.1-70B 0.7143 0.8214 0.7143 0.6194 0.5000 0.6100  0.6632
Qwen3-4B 0.5612 0.5714 0.4821 0.4403 0.5500 0.5800  0.5308
Social-R1-4B w/o TRM 0.6531 0.6607 0.6429 NaN 0.6500 0.7100  0.5528
Social-R1-4B w/o trained TRM 0.7143 0.7143 0.6161 0.6045 0.6200 0.6800  0.6582
Social-R1-4B w/ gpt-40 as TRM 0.6633 0.6786 0.6429 0.5448 0.6100 0.7500  0.6482
Social-R1-4B 0.6771 0.6964 0.6396 0.6260 0.7189 0.7100  0.6780
Qwen3-8B 0.5714 0.6607 0.4821 0.4179 0.7600  0.6600  0.5920
Social-R1-8B w/o TRM 0.7551 0.7857 0.7054 0.6567 0.6800 0.7400  0.7205
Social-R1-8B w/o trained TRM 0.7551 0.7321 0.7054 0.6791 0.6200 0.7300  0.7036
Social-R1-8B w/ gpt-40 as TRM 0.7879 0.7353 0.7188 0.6509 0.5600 0.7100  0.6938
Social-R1-8B 0.7917 0.7651 0.7128 0.6615 0.6263  0.7700  0.7212

A.5 DISCLOSURE OF LLM USAGE

We use Large Language Models (LLMs) to assist with writing. Specifically, LLMs is employed to aid in
polishing the language and checking grammar and style. All technical content, experimental design, and
analysis are conducted by the authors.

A.6 QUALITATIVE STUDY

Figure [6] gives the qualitative examples showing shortcut suppression and improved social reasoning in
Social-R1-4B compared to Qwen3-4B, with GPT-5 still failing under perceptual-access decoupling. Figure
provides examples illustrating how shortcut-like behaviours can be reinstated by introducing perceptual-access
and asymmetric-information manipulations.
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|I Mary and Mike are wandering around the factory. They see a transparent box and some transparent cabinets, and they
| find a hammer in the cabinet. Mike then leaves the factory, and Mary moves the hammer into the box.

| Question

| When Mike returns, where does Mary think he believes the hammer is?

: A.Onthebox B.Inthebox C.In the cabinet D. In the cupboard

\  Answer B. In the box

- T~ -7 ~q P . ) ~
//Thinking Mary and Mike see the hammer | //Thinking Mike exits the factory before %,/ Thinking Mary and Mike are in a factor)\l\\
in the cabinet. Both Mary and Mike know \ where both a transparent box and \‘
the hammer is in the cabinet. Mike leaves transparent cabinets are present. They I
the factory. Mary then moves the hammer find a hammer in the cabinet. Mike leaves, |
into the transparent box. Mary knows the and Mary moves the hammer into the box. |
hammer is now in the box. But Mike did The key detail is that both the box and
cabinets are transparent, meaning their
contents are visible. When Mike returns,

i
the location of the hammer changes. }
I
I
I
I
I
I
I
I
I
} he would see the hammer inside the box
I
I
I
I
I
I
1
\

\
X
} } Mike is unaware of any subsequent
| } changes in the hammer's location. Mary
|| Moves the Hammer: While Mike is
not see this action. Mike’s belief: Since he } } away, Mary moves the hammer from
left before the hammer was moved, he still } }
believes the hammer is in the cabinet. } }
Mary’s belief about Mike’s belief: Mary I }
knows Mike didn’t see her move the } |
hammer, so she thinks Mike believes the J ;
\hammer is still in the cabinet. /

the cabinet into the box. Only Mary

sees this change. Therefore, Mike because the box is transparent. Mike
would believe the hammer is in the box.
Mary, having moved the hammer, knows

this and would assume that Mike, upon

remains unaware that the hammer has

|
I
|
I
|
I
I
|
I
|
I
been moved. }
|

<Answer> C. In the cabinet </Answer> / |

I / . ..
“<Answer> C. In the cabinet </Answer> // N 7N Le;l;r:\iqne%;wBoullr?t?leceblf);r;;}:n:\(r)v);> 7 /
GPT-5+COT Qwen3-4B Social-R1 4B

Figure 6: Qualitative examples showing shortcut suppression and improved social reasoning in Social-R1-4B
compared to Qwen3-4B, with GPT-5 still failing under perceptual-access decoupling. The highlighted colours
indicate different stages of social cognition: pink marks perceiving and encoding relevant social cues, green
marks interpreting social cues, and blue marks developing social reasoning.

/ [Story] Mary and Mike are wandering \
around the factory. They see a transparent

box and some transparent cabinets, and they
find a hammer in the cabinet. Mike then

leaves the factory, and Mary moves the

hammer into the box.

[Story] Mary and Mike are wandering around b
the factory. They see a box and some cabinets,
and they find a hammer in the cabinet. Mike
then leaves the factory, and Mary moves the
hammer into the box.

L

[Question] [Question]
Now Mike returns and look around. Where Now Mike returns and look around. Where
does Mary think he believes the hammer is? does Mary think he believes the hammer is?
A. On the box B. In the box A. On the box B. In the box
C. In the cabinet D. in the cupboard C. In the cabinet D. in the cupboard
‘_ Answer: C Answer: B

Figure 7: The example show how shortcut-like behaviours can be reinstated by introducing perceptual-access
and asymmetric-information manipulations.
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