
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LABELED TRUSTSET GUIDED: COMBINING BATCH
ACTIVE LEARNING WITH REINFORCEMENT LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Batch active learning (BAL) is a crucial technique for reducing labeling costs and
improving data efficiency in training large-scale deep learning models. Traditional
BAL methods often rely on metrics like Mahalanobis Distance to balance uncer-
tainty and diversity when selecting data for annotation. However, these methods
predominantly focus on the distribution of unlabeled data and fail to leverage feed-
back from labeled data or the model’s performance. To address these limitations,
we introduce TrustSet, a novel approach that selects the most informative data
from the labeled dataset, ensuring a balanced class distribution to mitigate the
long-tail problem. Unlike CoreSet, which focuses on maintaining the overall data
distribution, TrustSet optimizes the model’s performance by pruning redundant
data and using label information to refine the selection process. To extend the
benefits of TrustSet to the unlabeled pool, we propose a reinforcement learning
(RL)-based sampling policy that approximates the selection of high-quality Trust-
Set candidates from the unlabeled data. Combining TrustSet and RL, we introduce
the Batch Reinforcement Active Learning with TrustSet (BRAL-T) framework.
BRAL-T achieves state-of-the-art results across 10 image classification bench-
marks and 2 active fine-tuning tasks, demonstrating its effectiveness and efficiency
in various domains.

1 INTRODUCTION

In the era of deep learning, large-scale labeled datasets are indispensable for training models on
complex tasks. Active learning (AL) provides an efficient approach to reduce the labeling costs
by intelligently selecting critical subsets from unlabeled data for annotation (Zhan et al., 2022).
Batch active learning (BAL) (Citovsky et al., 2021), a variant of AL, further improves this process
by selecting data points in groups (batches), thereby reducing the overhead associated with model
retraining and oracle interactions.

In most modern BAL methods, the selection strategy is typically based on two factors: uncertainty
and diversity. Uncertainty-based methods focus on choosing the most ambiguous or difficult data,
which is likely to improve the model, but this often results in selecting redundant data that doesn’t
sufficiently cover the data distribution (Shen et al., 2017). On the other hand, diversity-based meth-
ods aim to ensure a representative subset by covering as many different types of data as possi-
ble, but they may neglect critical uncertain samples near the decision boundaries. For instance,
CoreSet (Phillips, 2017) selects subsets that reflect the overall data distribution, ensuring diversity
by minimizing the distance between the selected subset and the full dataset. While methods like
Cluster-Margin(Citovsky et al., 2021) combine diversity and uncertainty to improve data selection,
they still have limitations, such as overlooking feedback from the labeled dataset, ignoring class
distribution, and potentially inheriting the long-tail distribution problem.

To address these challenges, we propose TrustSet, a novel data selection approach that distinguishes
itself from CoreSet by emphasizing the utilization of label information. TrustSet focuses not only
on ensuring diversity but also on selecting data that is most beneficial for improving the model’s
performance, especially in cases where class imbalance is a concern. TrustSet differs from CoreSet
in two significant ways:
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Objective: TrustSet is designed to optimize the model’s performance, with an explicit focus on
improving accuracy and tackling the long-tail distribution problem by selecting crucial data that has
a high potential to be forgotten by the model (Toneva et al., 2018). In contrast, CoreSet focuses
on representing the full data distribution without directly considering the impact on the model’s
learning process, which can lead to inheriting undesirable distributional imbalances.

Data Source: TrustSet leverages labeled data, utilizing ground truth labels to prune redundant and
noisy data and ensure that the selected subset is balanced across classes. This approach contrasts
with CoreSet, which selects data purely from the unlabeled pool, without considering feedback
from the trained model. As a result, CoreSet-based methods can miss the opportunity to incorporate
critical information about the model’s current performance, potentially leading to suboptimal data
selections.

TrustSet’s balanced class distribution ensures better handling of the long-tail distribution problem,
where underrepresented classes are more likely to be included in the training process. To construct
TrustSet, we use the GradNd method (Paul et al., 2021), which ranks data based on the gradient
norms of model updates, prioritizing data points that contribute most to model learning. Further-
more, to improve the data quality, we incorporate SuperLoss (Castells et al., 2020), which follows a
curriculum learning strategy to assign higher importance to easier data in early training stages, while
still considering difficult samples later.
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Figure 1: Overview of the BRAL-T
framework.

However, extending the TrustSet concept to the unlabeled
data pool presents a challenge, as the selection process
requires label information. To overcome this, we intro-
duce an RL-based policy for approximating the selection
of high-potential TrustSet candidates from the unlabeled
data pool. Unlike previous RL-based active learning ap-
proaches, which often require frequent retraining of the
model and rely heavily on complex reward structures (Fang
et al., 2017; Zhang et al., 2023), our method minimizes re-
training costs by leveraging TrustSet to guide the reinforce-
ment learning process.

To this end, we propose a novel batch active learning frame-
work called BRAL-T (Batch Reinforcement Active Learning with TrustSet extraction), which in-
tegrates TrustSet and RL-based policies for efficient data selection. The framework consists of two
primary components: (1) TrustSet extraction, which ensures that the labeled dataset contributes op-
timally to model performance and maintains a balanced class distribution, and (2) RL-based subset
selection, where a learned policy selects from the unlabeled data pool to approximate TrustSet. This
significantly reduces the need for repeated oracle queries and model retraining. As shown in Fig-
ure 1, BRAL-T is implemented with two processes: reinforcement learning (RL) for policy training
and active learning (AL) for model training.

Our contributions are summarized as follows:

• We introduce TrustSet, a novel method for data selection that leverages label information
to balance uncertainty, diversity, and class distribution, thus addressing the long-tail distri-
bution problem.

• We develop an RL-based data selection policy that bridges the gap between TrustSet’s
label dependency and the unlabeled setting of active learning, allowing for more efficient
and targeted data selection.

• We propose BRAL-T, a new batch active learning framework that integrates TrustSet and
RL to reduce the computational burden of active learning while improving model perfor-
mance. We demonstrate that BRAL-T achieves state-of-the-art performance across multi-
ple image classification and active fine-tuning tasks.

2 RELATED WORK

Active Learning: Active learning, vital for reducing labeling costs, focuses on extracting insights
from unlabeled dataset features and using models trained on labeled data for data selection. This
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field hinges on uncertainty and diversity. (Shen et al., 2017) investigated uncertainty-based methods
in active learning for Named Entity Recognition (NER), later integrating diversity for enhanced out-
comes. Galaxy ((Zhang et al., 2022)) emphasized uncertainty by constructing a model confidence
graph, with the median node indicating high uncertainty. Conversely, (Yuan et al., 2020) prioritized
diversity by using self-supervised models to represent datasets in an embedded feature space, select-
ing central points from clusters for broad dataset coverage, thus illustrating diversity’s role in active
learning. Recent studies ((Liu et al., 2019; Ash et al., 2019; Sinha et al., 2019; Margatina et al., 2021;
Ash et al., 2021; Citovsky et al., 2021; Kim et al., 2021; Gentile et al., 2022)) highlight a trade-off in
active learning between uncertainty and diversity, with uncertainty-based subsets often being redun-
dant and not fully representative, while diversity-focused subsets may miss critical uncertain data.
Current research seeks to balance these aspects. However, traditional batch sampling methods in
active learning tend to ignore the distribution of selected data, leading to further redundancy.

Batch Active Learning: Active learning methods, aiming to minimize oracle queries, prefer batch
data processing over individual sample handling. Batch active learning approaches ((Zhang et al.,
2023; Ash et al., 2021; Kirsch et al., 2019; Citovsky et al., 2021; Sener & Savarese, 2017)) concen-
trate on batch sampling to reduce costs and preserve subset distribution. BatchBald ((Kirsch et al.,
2019)) highlighted that batch applications of single-data methods often lack diversity and joint in-
formativeness, and proposed an iterative entropy-based batch sampling for enhanced information
gain. Cluster-Margin ((Citovsky et al., 2021)) employed Hierarchical Agglomerative Clustering
(HAC) for one-time clustering of the unlabeled data pool, focusing on the most uncertain data, and
supported scaling up to batches of 1M. Despite their effectiveness in computer vision tasks, these
methods overlook feedback from the selected subset, such as accuracy changes, which could be
crucial for refining data sampling strategies.

Active Learning with RL: Rather than designing sample strategies based on expert knowledge,
several active learning methods apply RL to learn sample policies based on the performance of the
selected subset ((Zhang et al., 2023; Fang et al., 2017; Liu et al., 2019; Gong et al., 2022; Smit
et al., 2021; Casanova et al., 2020)). Some methods ((Fang et al., 2017; Gong et al., 2022; Smit
et al., 2021; Casanova et al., 2020)) defined rewards as evaluation results of the trained target model,
such as accuracy, AUROC or prediction change. However, frequent retraining of the target model
is required to collect enough reward data for RL training and the credit assignment problem exists.
Instead, (Liu et al., 2019) defined the reward as the Mahalanobis distance between selected data and
existing labeled data. TAILOR ((Zhang et al., 2023)) maintained the class distribution of candidate
active learning methods and formulated class balance as the reward for a contextual bandit problem.
Both methods reduce the difficulty of RL training, but the method of (Liu et al., 2019) was designed
specifically for the Re-ID task, and the reward defined by TAILOR ((Zhang et al., 2023)) did not
directly correlate with the accuracy of the target model. As a result, we propose an RL-based active
learning method without requirement of target model retraining and has a high correlation with
target task (e.g., classification accuracy).

3 PROBLEM DEFINITION

In this section, we formally define active learning problem in batch setting following (Sener &
Savarese, 2017) and TrustSet selection problem. We are interested in a C-class classification task
over a compact space X and a label space Y = {1, . . . , C}. We aim to train a target model Mθ with
parameter θ to optimize a loss function l(·, ·;Mθ) : X × Y → R. In practice, we consider a large
collection of data points sampled i.i.d over the space Z = X × Y as {xk, yk}k∈[n] ∼ pZ .

For active learning problem, we further define labeled dataset with |L| data points as L =
{xk, yk}k∈|L| and unlabeled data pool with |U | data points as U = {xk}k∈|U |. In general,
|L| ≪ |U | and L

⋂
U = ∅. We aim to select a data subset S ∼ U which will be labeled by an

oracle and applied to enhance labeled dataset L. The model Mθ trained on the enhance labeled
dataset is expected to have better performance. Thus, active learning problem can be formulated as
follow:

Si = argmin
S⊆Ui:|S|≤b

Ex,y∼pZ [l(MθLi+1
(x), y)] (1)

where Si refers to the selected subset and Li+1 = Li

⋃
S indicates the enhance labeled dataset in

the ith active learning iteration. MθLi+1
refers to model Mθ trained on labeled dataset Li+1 and b
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Figure 2: Details of BRAL-T. (a) In the active learning process, policy πϕi selects the subset Si

from Ui for the oracle to annotate, and the model Mθi is trained on Si ∪ Li. (b) In the RL process,
we sample L′ and U ′ from Li+1 to train policy πϕi+1 . The reward function is defined to encourage
similarity between S′ and T ′.

refers to the size of data subset selected in each iteration. As a result, Eq. 1 indicates that we aim
to select a data subset Si from Ui to enhance Li such that trained model MθLi+1

achieves minimal
loss value.

Directly solving above optimization problem is challenge due to the lack of label information from
Ui. So we propose to analyze the labeled dataset Li instead to discover most important data that
contribute to performance improvement of trained model. We formally define TrustSet TLi

as fol-
low:

TLi = argmin
S⊆Li:|S|≤b′

Ex,y∼pZ [l(MθS (x), y)] s.t. balance(S) (2)

which indicates that TLi refers to a data subset S from labeled dataset Li that could optimize the
performance of trained model MθS . And we require S to be balanced to alleviate long-tail problem.
The optimization problem of Eq. 2 is similar to that of Eq. 1, but the accessible of label information
from Li brings possible solution of Eq. 2. TrustSet TUi

also exists in Ui and we redefine active
learning problem based on TrustSet as:

Si = argmin
S⊆Ui,|S|≤b

d(S, TUi
) (3)

where d refers to statistical distance between two datasets. However, it is impossible to train model
MθS without label on Ui and optimize the loss function in Eq. 2 to extract TUi

.

To solve this problem, we train a data selection policy πϕi
with RL method in labeled dataset Li

learning to select Si and approximate TUi
. We create a similar environment as active learning setting

by randomly sampling a data subset L′ with labels and another subset U ′ without label information
from the existed labeled dataset Li. We ensure L′ ⋂U ′ = ∅ and |L′| ≪ |U ′|. Although we omit the
labeled information of U ′ for πϕi

input, we still can leverage label of U ′ to extract T ′, TrustSet of
U ′, based on Eq. 2. Thus, suppose πϕi

takes L′ and U ′ as input to select data subset S′ from U ′, we
define the reward function for training policy πϕi

as:

R = −d(S′, T ′) (4)

where S′ = πϕi
(L′, U ′) and we optimize parameters ϕi to minimize the statistical distance between

T ′ and S′. In this way, πϕi
learns to select data from unlabeled dataset with high potential to be

included in TrustSet based on feature space. After training, πϕi
will be applied to the real unlabeled

data pool Ui to select Si = πϕi(Li, Ui).

In general, for each active learning iteration, we solve Eq. 1 in two processes as shown in Figure 2.
In the active learning process, data subset Si is selected by πϕ(Li, Ui) and passed for oracle to
annotate. Mθ is then trained on the enhanced labeled dataset Li+1 = Li

⋃
Si. Moreover, new

unlabeled data pool Ui+1 is achieved by eliminate Si from Ui and TrustSet Ti is extracted from

4
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Li+1 by solving Eq. 2 for the convenience of next RL process. In the RL process, we create the
environment based on Li+1 and train πϕi+1

with reward function as Eq. 4.

4 METHOD

In this section, we introduce BRAL-T framework in detail. In Section 4.1, we introduce a TrustSet
construction method based on GradNd score ((Paul et al., 2021)). In Section 4.2, we illustrate the
details of the RL module and describe how we use the learned policy to select subsets from the
unlabeled pool.

4.1 TRUSTSET

In general, the TrustSet should retain important data and tend to be class-balanced. However, it is
almost impossible to solve Eq. 2 due to the large size of labeled dataset and time-consuming of MθS
training. As a result, we introduce a TrustSet extraction method based on the GradNd score ((Paul
et al., 2021)) by analyzing the performance of model trained on entire trainset L rather than selected
subset S. This score is defined as the expected value of the gradient norm term with respect to a
differentiable model and a data sample x:

GradNd = E∥
K∑

k=1

∇
M

(k)
θ

ℓ(Mθ(x), y)
T∇θM

(k)
θ (x)∥ (5)

In this equation, ℓ refers to the loss function, and y is the label of the corresponding data sample x;
K denotes the number of logits, and M

(k)
θ (x) represents the result of the k-th logit. For instance,

in an image classification task, ℓ represents the cross-entropy loss, K is the number of categories,
and M

(k)
θ (x) is the logit output for the k-th category. Data samples that result in a large gradient

value tend to contain information that the model has not yet learned, as the model would update
significantly based on such data. As demonstrated by the experimental analysis from (Paul et al.,
2021), data with a higher GradNd score tend to be forgotten samples for the target model during
training and are more important for further training. However, the GradNd score might lead to a class
imbalance problem when the data subset primarily contains difficult images for certain categories.
To mitigate the long-tail distribution problem, we sort data by class using the GradNd score and
select the top-N data for each category. For the image classification task, we follow (Paul et al.,
2021) in omitting the term ∇θM

(k)
θ (x) from Eq 5 and calculate the approximated EL2N score.

Curriculum Learning: Data with high GradNd scores tend to be difficult and uncertain samples. As
suggested by previous works ((Ash et al., 2021; Citovsky et al., 2021; Gentile et al., 2022)), a training
set focusing on uncertainty could result in high redundancy and fail to train a model that captures
general features. We reconsider this issue from another important perspective. Difficult samples
contain noise that can interfere with model predictions and increase the difficulty for the model to
learn the boundaries between categories. With a limited amount of data, easy examples could help
the model capture features and cluster data within the same category. Following the principles of
curriculum learning ((Tang & Huang, 2019; Castells et al., 2020)), we assign larger weights to easier
data samples in the early active learning iterations and leverage Super Loss ((Castells et al., 2020))
on top of the task loss ℓt. For each data sample (x, y), the super loss ℓs is defined as:

ℓs(Mθ(x), y) = (ℓt(Mθ(x), y)− τ)σ + λ(log σ)2 (6)

where τ is the threshold for separating easy and hard samples, and λ is the weight of the regulariza-
tion term. Both τ and λ are hyperparameters, while σ is learnable and indicates the weight assigned
to the task loss. To minimize ℓs, data with task loss ℓt < τ will be assigned a larger weight σ,
and data with ℓt > τ will be assigned a smaller weight σ. Since model training on uncertain data
typically results in larger losses compared to easier data, super loss adaptively adjusts the weight
for data samples. Meanwhile, the scale of σ is determined by λ. As λ increases, the value of σ
tends to be 1 and has less effect on the task loss. Specifically, when λ → ∞, σ will always be 1 to
minimize the regularization term, making ℓs equal to ℓt − τ . As shown in Section 5.4, with Super
Loss, proposed method achieves better performance.

For convenience, in the following sections, TrustSet T refers to the TrustSet with Super Loss unless
explicitly stated.

5
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Figure 3: Reinforcement learning process. We cluster L′ and U ′ into {L′
m}Mm=1 and {U ′

c}Cc=1 as
state space, and further cluster each U ′

c into {U ′a
c }Ac

a=1 as action space. Given state, action pair as
input, we train a Q function to predict distance between U ′a

c and related TrustSet. We use U ′
0 as an

example in the figure.

4.2 REINFORCEMENT LEARNING

TrustSet is collected with label information to ensure class balance and better reliability. However,
during the active learning process, the policy needs to be applied to select a subset from the unlabeled
data pool Ui. As a result, we create an environment with similar conditions and apply reinforcement
learning to train a policy for subset selection, where the TrustSet is the target subset. In the remainder
of this section, we first define the state, action, and reward for the reinforcement learning task in
general, and then illustrate the overall process.

State: We randomly sample L′ as a labeled dataset and U ′ as an unlabeled data pool from Li+1

to train policy πθi+1
. We also extract T ′ from U ′ as the target TrustSet for each (L′, U ′) sample.

However, taking all data in L′ and U ′ as input is time-consuming and challenging for learning a
good policy, it is beneficial to have alternative representations. Since in classification task, data tend
to be clustered based on predicted category in feature space and T ′ will spread around all clusters,
it is more reasonable to predict T ′ by using clusters as states. Thus, we define the state space as
(Lc

min, Uc), where Uc refers to the cth cluster from the unlabeled data pool U , and Lc
min is a cluster

from the labeled dataset L defined as:

Lc
min = argmin

m
d(Lm, Uc) (7)

In this equation, Lm refers to the mth cluster from L, and Lc
min is the closest labeled cluster to

Uc based on the distance function d(·, ·). We use the Wasserstein Distance ((Flamary et al., 2021))
in our reinforcement learning process. For each (L′, U ′) sample, there are C states, where C is the
number of clusters in U ′. For further efficiency, we extract stochastic features of clusters as input for
the policy, specifically using mean and variance as [E[Lc

min], V ar[Lc
min], E[Uc], V ar[Uc]]. Noted

that Lc
min seems not to be necessarily considered in state space as T ′ is extracted from U ′. But

Lc
min can provide additional category information for U ′ and we found adding Lc

min improves the
performance of active learning by experiment.

Action: As data in the TrustSet tend to group together by cluster, we further cluster Uc into Ac data
groups as {Ua

c }
Ac
a=1. Given (Lc

min, Uc) as input, the policy selects the top clusters inside Uc with
high potential to be included in the TrustSet. As a result, {Ua

c }
Ac
a=1 represents the candidate action

space for each state, and the union of selected actions will be the final selected data subset S.

Reward: Since different Ua
c contains a different number of data, for a fixed size of S, we need to

select a varying number of Ua
c . It is more general to define the reward based on Ua

c rather than S.
We set the reward function as the negative Wasserstein distance between Ua

c and the sub-TrustSet
Tc as:

R(Ua
c , Tc) = −d(Ua

c , Tc) (8)

6
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where Tc = T ′ ∩ Uc, and Ua
c closer in distribution to Tc receives a better reward.

We follow the DQN method ((Mnih et al., 2013)) and show the overall RL process in Figure 3. For
the dataset L′ and U ′, we pass them through the target model Mθi to obtain the feature space. To
create the input for the policy, we cluster the features of L′ into M clusters as {L′

m}Mm=1 and the
features of U ′ into C clusters as {U ′

c}Cc=1. To obtain candidate actions, we further cluster U ′
c into Ac

clusters as {U ′a
c }Ac

a=1. Meanwhile, we extract the TrustSet for each cluster as T ′
c = T ′ ∩ U ′

c. Unlike
traditional RL tasks, we consider the future effect in curriculum learning and TrustSet selection and
focus only on the next timestep for policy training. As a result, training the Q function is the same
as training the reward function Rϕ as:

r = Rϕ(U
′
c, L

′c
min, U

′a
c ) (9)

where ϕ refers to the parameter of the reward function, and it is updated by the Mean Square Error
(MSE) loss as:

L = E(U ′
c,U

′a
c )∥(Rϕ(U

′
c, L

′c
min, U

′a
c )−R(U ′a

c , T ′
c))

2∥ (10)
During training, we calculate the reward for all candidate actions and states to optimize the reward
function Rϕ. During the active learning process, for each unlabeled cluster Uc, we predict the reward
for all candidate actions Ua

c and pick them from high to low based on the reward score until the fixed
size of subset selection is satisfied.

It is worthwhile to note that based on Section 4.1, for each (L′, U ′) sampled from L, Mθ needs
to be retrained on L′ to extract TrustSet T ′ from U ′ since the important data for a model can vary
with different labeled training sets. To avoid the time-consuming process of frequent retraining, we
approximate the T ′ extraction by reusing Mθ trained on Li in the ith active learning iteration for
the reason that our general purpose is to enhance Li based on the performance of MθLi

in the ith
active learning iteration. the only requirement is to retrain the policy from scratch for each active
learning iteration. In practice, we extract Ti from the entire labeled set and extract T ′ by calculating
the intersection between U ′ and Ti as T ′ = U ′ ⋂Ti for efficiency. Please refer to Appendix for
more details of reinforcement learning training.

5 EXPERIMENT

In this section, we evaluate our proposed BRAL-T method on the image classification task and
compare our results with previous active learning baselines, following the experimental settings of
(Zhan et al., 2022). Additionally, we also evaluate BRAL-T on the active fine-tuning task ((Xie et al.,
2023)) and compare it with the current state-of-the-art method, ActiveFT, in Section 5.3. Finally,
we demonstrate the effectiveness of our proposed modules through an ablation study in Section 5.4.
More experimental results will be presented in Appendix C.

5.1 IMAGE CLASSIFICATION RESULTS

Datasets: We evaluated BRAL-T on the image classification task across 8 benchmarks, including
Cifar10, Cifar100 ((Krizhevsky et al., 2009)), Cifar10-imb, EMNIST ((Cohen et al., 2017)), Fash-
ionMNIST ((Xiao et al., 2017)), BreakHis ((Spanhol et al., 2015)), Pneumonia-MNIST ((Kermany
et al., 2018)) and Waterbird ((Sagawa et al., 2019), (Koh et al., 2021)). To create the Cifar10-imb
dataset, we followed the settings of (Zhan et al., 2022) and subsampled the training set of Cifar10
with ratios of 1:2:...:10 for classes 0 through 9.

Baselines: We compared BRAL-T with three baselines, LossPrediction ((Yoo & Kweon, 2019)),
WAAL ((Shui et al., 2020)) and RandomSample. LossPrediction employs an additional module that
takes the feature map from the target model as input and predicts the loss for each data point. WAAL
adopts min-max loss to better distinguish labeled and unlabeled samples while searching unlabeled
batch with higher diversity than labeled samples. According to the experiments in (Zhan et al.,
2022), among all the methods, LossPrediction and WAAL achieve best results in 6 benchmarks and
competitive results in other 2 benchmarks, therefore we select them as our baselines. For Random-
Sample, we randomly selected a subset from the unlabeled dataset in each active learning iteration.
Besides, for better evaluation, we visualized accuracy-budget curve on Cifar10, Cifar10-imb, Ci-
far100 and FashionMNIST benchmarks and compared with LossPrediction, WAAL, VAAL ((Sinha
et al., 2019)), BADGE ((Ash et al., 2019)), CoreSet ((Zhan et al., 2022)), Cluster-Margin ((Citovsky
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Table 1: Experiment results of image classification task on 8 benchmarks.

Methods FashionMNIST EMNIST CIFAR10 CIFAR100
AUBC F-acc AUBC F-acc AUBC F-acc AUBC F-acc

LossPrediction 0.859 0.888 0.762 0.793 0.837 0.911 0.481 0.655
WAAL 0.861 0.891 0.808 0.831 0.842 0.883 0.460 0.594
RandomSample 0.844 0.874 0.804 0.828 0.832 0.902 0.517 0.650
BRAL-T 0.863 0.894 0.813 0.833 0.847 0.916 0.525 0.662

Benchmarks Cifar10-imb BreakHis Pneum.MNIST Waterbird
AUBC F-acc AUBC F-acc AUBC F-acc AUBC F-acc

LossPrediction 0.748 0.848 0.834 0.844 0.732 0.870 0.588 0.586
WAAL 0.752 0.799 0.836 0.855 0.640 0.870 0.525 0.506
RandomSample 0.710 0.810 0.834 0.832 0.706 0.652 0.586 0.502
BRAL-T 0.762 0.851 0.849 0.868 0.738 0.883 0.606 0.618

Cifar10 Cifar10-imb Cifar100 FashionMNIST

Number of Label DataNumber of Label DataNumber of Label DataNumber of Label Data
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Figure 4: Visualization of experiment results on Cifar10, Cifar10-imb, Cifar100 and FashionMNIST.

et al., 2021)), BALD ((Gal et al., 2017)) and KMeans ((Ash et al., 2019)). To ensure a fair compar-
ison, we used ResNet18 ((He et al., 2016)) as the target model. For more experimental details and
hyperparameter settings, please refer to Appendix B.

Evaluation Metrics: For all benchmarks, we report evaluation results using two metrics: area
under the budget curve (AUBC) ((Zhan et al., 2021a), (Zhan et al., 2021b)) and final accuracy (F-
acc). AUBC refers to the area under the accuracy-budget curve. Methods with a higher AUBC score
achieve better overall performance across different sizes of the training set. F-acc refers to the final
accuracy achieved after the budget Q is exhausted. The experiments for BRAL-T and the baselines
were repeated for 3 trials under different random seeds, and the average of the evaluation results are
reported.

Experiment Results: The experimental results on 8 benchmarks are presented in Table 1. BRAL-
T significantly outperforms RandomSample under all benchmarks. Compared with WAAL and
LossPrediction, BRAL-T achieves better AUBC as well as F-acc on all benchmarks. In Figure 4,
we visualize the accuracy-budget curves of BRAL-T and baselines on 4 benchmarks. BRAL-T
consistently achieves higher accuracy throughout the entire active learning process for Cifar100
and FashionMNIST. In early active learning iterations of Cifar10 and Cifar10-imb, BRAL-T has
a bit worse accuracy compared with WAAL, the reasons of which could be attributed to WAAL’s
emphasis on diversity. However, without adequate consideration for uncertainty cause performance
diminishing of WAAL when the size of labeled dataset increases. As comparison, LossPrediction
focuses solely on uncertain data with high predicted loss, neglecting the diversity of the selected
subset, which results in bad performance in early stage.

5.2 ACTIVE LEARNING ON MORE LONG-TAIL DATASETS

Dataset. Besides the aforementioned benchmarks, in this section, we focus on long-tail datasets,
including CIFAR10-LT and CIFAR100-LT. Both datasets are subsampled from CIFAR datasets and
the number of samples within each classes decreases exponentially with factor within 10 and 100.
Specifically, we consider 10, 20 and 50 in our experiments. The test images of CIFAR10-LT and
CIFAR100-LT are the same as those in CIFAR10 and CIFAR100 datasets respectively. Both the
two benchmarks are open-source and can be accessed through huggingface tomas-gajarsky/cifar10-
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Table 2: Experiment results on Cifar10-LT and Cifar100-LT datasets.

Methods Cifar10-LT-r10 Cifar10-LT-r20 Cifar10-LT-r50
AUBC F-acc AUBC F-acc AUBC F-acc

SIMILAR 0.472 0.665 0.402 0.577 0.318 0.449
LossPrediction 0.478 0.679 0.413 0.585 0.322 0.494
WAAL 0.510 0.623 0.435 0.589 0.340 0.497
RandomSample 0.476 0.686 0.397 0.587 0.303 0.484
BRAL-T 0.512 0.686 0.440 0.614 0.322 0.490

Methods Cifar100-LT-r10 Cifar100-LT-r20 Cifar100-LT-r50
AUBC F-acc AUBC F-acc AUBC F-acc

SIMILAR 0.330 0.496 0.270 0.455 0.213 0.385
LossPrediction 0.319 0.495 0.272 0.452 0.211 0.384
WAAL 0.297 0.454 0.249 0.397 0.198 0.340
RandomSample 0.321 0.501 0.265 0.444 0.208 0.369
BRAL-T 0.332 0.512 0.280 0.457 0.234 0.396

Table 3: Experiment results of Active
Finetuning task.

Methods Cifar10-imb TinyImageNet
2% 3% 2% 3%

RandomSample 0.841 0.856 0.213 0.348
ActiveFT 0.838 0.851 0.289 0.359
BRAL-T 0.852 0.865 0.300 0.392

Table 4: Ablation study result on Cifar10 and Ci-
far100.

Baseline Cifar10 Cifar100
AUBC F-acc AUBC F-acc

PseudoScore 0.842 0.908 0.486 0.661
BRAL-DiffSet 0.843 0.909 0.521 0.652
BRAL-T w/o CL 0.845 0.906 0.522 0.662
RandomSample 0.832 0.902 0.517 0.650
BRAL-T 0.847 0.916 0.525 0.662

lt and tomas-gajarsky/cifar10-lt. For all datasets we set the size of initial labeled dataset as 2,000
and the maximum budget to be 20,000. For each active learning iteration, we select 500 samples
for oracle to annotate. The training epochs of target model for CIFAR10-LT is set to be 50 and for
CIFAR100-LT is 60.

Experiment Results. Besides LossPrediction, WAAL and RandomSample, we also compare
BRAL-T with SIMILAR ((Kothawade et al., 2021)) which is designed for imbalanced dataset that
leverages pseudo label to compute gradient and similar matrix for submodular function. As shown
in Table 2, except for CIFAR10-LT-r50 benchmark, BRAL-T achieves the best AUBC as well as
F-acc results. As pseudo label is not reliable especially when target model might be overconfident
in long-tail dataset, BRAL-T selects informative data with ground-truth label to construct TrustSet
which is more reliable to reflect whether target model has sufficiently learnt from related samples.
As a result, BRAL-T always performs better than SIMILAR. Moreover, compared with LossPredic-
tion and WAAL, we encourage TrustSet to be balanced which releases the category bias problem in
long-tail distribution and contributes to the success of BRAL-T.

5.3 ACTIVE LEARNING FOR FINETUNING RESULTS

Experiment Setting: (Xie et al., 2023) define the active fine-tuning task as selecting a data subset
to fine-tune a pretrained model. For instance, selecting a subset from the Cifar10 dataset to train a
classifier pretrained on ImageNet-1k ((Russakovsky et al., 2015)). We adhere to the settings of (Xie
et al., 2023) and use Deit-Small ((Touvron et al., 2021)), pretrained with the DINO ((Caron et al.,
2021)) framework on ImageNet-1k, as the target model. We chose two datasets for fine-tuning:
Cifar10-imb and TinyImageNet ((Le & Yang, 2015)), resizing all images to 224 × 224. For more
implementation details, we utilize ActiveFT ((Xie et al., 2023)) to select an 1% subset as the initial
labeled dataset and select an additional 1% of data for each active learning iteration. The pretrained
model is fine-tuned using the SGD optimizer for 1000 epochs with a batch size of 512. Cosine
learning rate decay is applied during the fine-tuning phase of each active learning iteration.
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Experiment Results: Experiments for all methods were repeated across 3 trials, and the average
results are reported in Table 3. BRAL-T significantly outperforms the other baselines. ActiveFT
aims to select a data subset with a distribution similar to that of the unlabeled data pool. However,
if the unlabeled data pool suffers from problems like long-tail distribution or contains a large num-
ber of noisy data samples, the selected subset will likely encounter the same issues. For instance,
Cifar10-imb is a class-imbalanced dataset, and TinyImageNet includes images that are difficult to
classify. Especially for smaller data subsets, only a few data samples from minority categories are
included. In contrast, TrustSets are defined to be class-balanced, and curriculum learning encourages
the selection of easy or less-noisy data samples in TrustSets. Being trained with the distribution of
TrustSets, the policy with the reward function Rϕ learns to select data samples that provide greater
benefits for model training.

5.4 ABLATION STUDY

Experiment Setting: To further evaluate BRAL-T, we conducted ablation studies to demonstrate
the benefits of the proposed modules as follows:

• PseudoScore: Instead of training an RL policy, we assign pseudo-labels to the unlabeled
data pool based on the category with the highest logit score. We then directly apply cur-
riculum learning and calculate EL2N score based on pseudo-labels. Data subset with top
EL2N score will be selected during active learning.

• BRAL-DiffSet: To show the effectiveness of TrustSet, we sort labeled dataset based on the
EL2N score and cluster data points into |L|/|S| groups based on the sorted order. Then we
select the second-best data group instead of the best one. Other modules remain the same
as in BRAL-T.

• BRAL-T w/o CL: For comparison, we remove curriculum learning and directly use the
cross-entropy loss function to calculate the EL2N score rather than Super Loss.

Experiment Results: For a fair comparison, we use ResNet18 as the target model for all baselines
and maintain the same hyperparameters. Table 4 displays the AUBC and F-acc results for the Cifar10
and Cifar100 datasets. BRAL-T surpasses PseudoScore in both AUBC and F-acc. This is because
pseudo-labels are often inaccurate, especially in the early stages of active learning where the training
set lacks sufficient data to train a high-performance classifier, which can lead to overconfident target
model trained on class-imbalanced data. In contrast, selecting the TrustSet based on the labeled
dataset is more reliable. Compared to BRAL-DiffSet, BRAL-T also achieves better AUBC and
F-acc scores. Since selecting a data group with a lower EL2N score hinders performance, we can
empirically prove the correlation between EL2N score and model accuracy. Moreover, the results
demonstrate that the RL policy successfully learns to select potentially important data. Curriculum
learning also plays a crucial role in the success of BRAL-T, as its removal leads to worse AUBC and
F-acc in BRAL-T w/o CL. As mentioned in Section 4.1, curriculum learning aids in selecting easy
examples and enhances the performance of the target model in the initial stages.

6 CONCLUSION

In summary, our Reinforcement Learning-based Active Learning framework, BRAL-T, marks a
departure from conventional active learning techniques. It leverages TrustSet to more accurately
evaluate feature distributions from labeled datasets and employs an RL policy to learn from the
selected TrustSet. Unlike methods focusing only on uncertain data, we utilize Super Loss to pri-
oritize easy data samples in early active learning stages. Our reward definition, based on feature
distances rather than target model evaluations, simplifies RL training and lowers its complexity. We
demonstrate TrustSet extraction using the GradNd score, showing a strong correlation with model
accuracy. BRAL-T, benchmarked against LossPrediction, WAAL, and RandomSample across eight
image classification tasks, shows superior AUBC and F-acc performance in all cases. Accuracy-
budget curves against 8 baselines show benefits of performance of BRAL-T. Moreover, in CIFAR-
LT benchmarks, BRAL-T achieves superior preformance compared against baselines, showing its
ability to handle long-tail distribution dataset. Additionally, its application in active fine-tuning tasks
reveals that BRAL-T surpasses current state-of-the-art results.
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A METHOD DETAILS

BRAL-T comprise two iterative processes: active learning process and reinforcement learning pro-
cess. Algorithm 1 shows the pseudocode of overall framework. We randomly sampled initial la-
beled dataset and initialize parameters of target model and reward network in lines 3-5. During
the ith active learning process (lines 7-9), we trained target model Mθi with ith labeled dataset Li

from scratch and extract TrustSet Ti from Li, details of which is depicted in Section 4.1. During
the reinforcement learning (RL) process (lines 11-17), we followed DQN ((Mnih et al., 2013)) and
initialized replay buffer B to be empty. For each RL iteration, we sample labeled set and unlabeled
set from Li and store state set {L′c

min, U
′
c, U

′a
c , Tc} into replay buffer (detailed in algorithm 2). To

train reward function Rϕi , a data batch is sampled from B and parameters of Rϕi is updated based
on Eq 10 (detailed in algorithm 3). After the two processes, we sampled a new dataset for oracle to
annotate and updated Li and Ui.

Algorithm 1 BRAL-T

1: Input: Dataset D
2: Output: Target Model Mθ

3: Random sample L0 from D and annotated by oracle;
4: Set U0 := D \ L0;
5: Initialize Mθ0 , Rϕ0 ;
6: for i = 0 to N − 1 do
7: // Active Learning Process
8: Train Mθi with Li from scratch;
9: Extract TrustSet Ti := f(Li,Mθi(Li));

10:
11: // Reinforcement Learning Process
12: Initialize Replay Buffer B;
13: for j = 0 to K do
14: Sample L′ and U ′ from Li;
15: Extract set {L′c

min, U
′
c, U

′
c
a, Tc} = E(L′, U ′, Ti) and store into B; (Algorithm 2)

16: Sample data from B and train Rϕi as Eq 10. (Algorithm 3)
17: end for
18:
19: // Sample New DataSet
20: Sample Si := π(Rϕi

, Li, Ui);
21: Update Li+1 := Li ∪ Si and Ui+1 := Ui \ Si;
22: end for

In algorithm 2, we show the pseudocode of data extraction for RL (line 15 of algorithm 1). As
illustrated in Section 4.2, we clustered labeled set into {Lm}Mm=1 and unlabeled set into {Uc}Cc=1

to formulate state space of RL. For each unlabeled subset, we further cluster Uc into {Ua
c }

Ac
a=1 to

formulate action space of RL and extract Trustset Tc for each Uc. All pairs of {Lc
min, Uc, U

a
c , Tc}

are stored and return as extraction results.

Algorithm 2 Data Extraction For Reinforcement Learning

1: Input: LabeledSet L, UnlabeledSet U , TrustSet T
2: Output: Data list Out
3: Initialize output list Out := [];
4: Cluster L into {Lm}Mm=1;
5: Cluster U into {Uc}Cc=1
6: for each Uc do
7: Extract Tc := Ti ∩ Uc

8: Cluster Uc into {Ua
c }

Ac
a=1;

9: Calculate Lc
min := argminm d(Lm, Uc);

10: Store each {Lc
min, Uc, U

a
c , Tc} into Out;

11: end for
12: Return Out;
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In algorithm 3, we show the pseudocode of reinforcement learning to train data selection policy (line
16 of algorithm 1). For each gradient step, we sample state and action data from replay buffer B and
extract vector input S and A (line 4-6). Then based on Eq. 8, we calculate the reward for each (state,
action) pair as negative distance between data subset and TrustSet (line 7). And based on Eq. 9, we
predict reward with current reward function Rϕ (line 8). Finally, we calculate mean square error
(MSE) loss between predicted reward r and ground truth reward R and update reward function with
gradient descent (line 9).

Algorithm 3 Training of Reinforcement Learning

1: Input: Replay Buffer B, Reward Function Rϕ.
2: Output: Update Reward Function Rϕ

3: for Each Gradient Step do
4: Sample data batch from B as {Lc

min, Uc, U
a
c , Tc}B .

5: Extract state vector input as: S = [E[Lc
min], V ar[Lc

min], E[Uc], V ar[Uc]].
6: Extract action input as: A = [E[Ua

c ], V ar[Ua
c ]].

7: Calculate reward for each state action pair as Eq. 8: R = −d(A, Tc).
8: Predicate reward with Rϕ as Eq. 9: r = Rϕ(S,A).
9: Calculate Loss L = MSE(R, r) and update Rϕ with gradient descent.

10: end for
11: Return Rϕ;

B EXPERIMENT DETAILS

In this section, we introduce more experiment details of Section 5, including architecture of target
model we used for image classification and hyperparameter settings of experiments.

Benchmarks |L0| |U0| Q b #e C
FashionMNIST 500 59,500 10,000 250 40 10
EMNIST 1,000 696,932 50,000 500 40 62
CIFAR10 1,000 49,000 40,000 500 50 10
CIFAR100 1,000 49,000 40,000 500 60 100
CIFAR10-imb 1,000 27,239 20,000 500 50 10
CIFAR10-LT 2,000 - 20,000 500 50 10
CIFAR100-LT 2,000 - 20,000 500 60 100
BreakHis 100 5,436 5,000 100 30 2
PneumoniaMNIST 100 5,132 5,000 100 30 2
Waterbird 100 4,695 4,000 100 30 2

Table 5: Setting of benchmarks. Where |L0| refers to size of initial labeled set, |U0| refers to size
of initial unlabeled data pool, Q refers to budget, b refers to batch size for target model training,
#e refers to number of epoch for target model training and C refers to number of clusters from
unlabeled data pool. For all the benchmarks, the number of clusters M from labeled dataset is set to
be the same as C and number of candidate action for Uc is set to be 5.

DataSets. We evaluated BRAL-T on the image classification task across 5 benchmarks, including
Cifar10, Cifar100 ((Krizhevsky et al., 2009)), Cifar10-imb, EMNIST ((Cohen et al., 2017)), and
FashionMNIST ((Xiao et al., 2017)). To create the Cifar10-imb dataset, we followed the settings of
(Zhan et al., 2022) and subsampled the training set with ratios of 1:2:...:10 for classes 0 through 9.
We also evaluated our framework on medical imaging analysis tasks across 2 benchmarks, including
Breast cancer Histopathological Image Classification (BreakHis) ((Spanhol et al., 2015)) and Chest
X-Ray Pneumonia classification (Pneumonia-MNIST) ((Kermany et al., 2018)). Additionally, we
assessed our framework on an object recognition dataset with correlated backgrounds (Waterbird)
((Sagawa et al., 2019), (Koh et al., 2021)), which contains waterbird and landbird classes manually
mixed with water and land backgrounds. To further evaluate BRAL-T on long-tail datasets, we
also consider CIFAR10-LT and CIFAR100-LT where the number of samples within each classes
decreases exponentially with factor to be 10, 20 or 50.
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The detail setting for each benchmark are shown in Table 5, including initial data size of labeled
dataset |L0| and unlabeled dataset |U0|, final budget Q of labeled dataset, batch size b for data
subset selection in each active learning iteration, training epoch #e for target model training, and
category number C for dataset.

Model Details. Following the setting of (Zhan et al., 2022), we use Resnet18 ((He et al., 2016))
as the target model for image classification tasks. For Cifar10, Cifar10-imb, Cifar100 and Pneumo-
niaMNIST, we replaced the kernal size of first convolutional layer to be 3 × 3 and stride to be 1
in order to handle image with smaller size. For grayscale images such as FashionMNIST and EM-
NIST datasets, we add an additional convolutional layer before the first layer of Resnet with 1 × 1
kernal to increase the channel number of images to be 3. Furthermore, we trained the target models
of all baselines for the same number of epochs, as shown in Table 5. For LossPrediction, the target
model is trained with both classification loss and loss prediction loss for the first 20 epochs. After 20
epochs, only the gradient from the classification loss is back-propagated through the target model.

Model and Hyperparameters Setting: We constructed the reward function Rϕ using a fully con-
nected network comprising 2 hidden layers, each with 512 units, and use the ReLU activation func-
tion. SGD was employed as the optimizer for Rϕ, with the learning rate set at 0.01. For hyperpa-
rameters of curriculum learning, we follow the setting of SuperLoss ((Castells et al., 2020)) and set
τ = log |K| where |K| is the category number. Additionally, we set the value of λ to be 0.25 for
EMNIST, CIFAR100 and TinyImageNet datasets and 1.0 for the others. During active learning, We
train target model with SGD optimizer for PneumoniaMNIST and Waterbird benchmarks and Adam
optimizer for other datasets.

After each active learning iteration, we sampled 30 pairs of L′ and U ′ from the existing labeled set
L to train the policy, setting the batch size to 100 pairs of state, action, and reward. Following each
sampling, we trained Rϕ for 20 iterations, resulting in a total of 600 iterations for the entire RL
training process. As shown in Table 5, the number of clusters C for unlabeled set and M for labeled
set are set to be the same as category number for related benchmark. And the number of candidate
action Ac for each unlabeled cluster Uc is set to be 5 during the experiment.

C MORE EXPERIMENT RESULTS

In this section, we introduce more experiments and results. First of all, we show the confidence
interval results for Table 1 over 8 benchmarks in C.1. Then we evaluate BRAL-T by calculating
penalty matrix in C.2. Moreover, to show the efficiency of BRAL-T, we compare time overhead
between BRAL-T and baselines in C.3. Finally, in C.4, we show more ablation studies of BRAL-T.

C.1 CONFIDENCE INTERVALS OF RESULTS IN IMAGE CLASSIFICATION TASKS.

Besides representing average value of AUBC and F-acc of BRAL-T and baselines on image classif-
cation benchmarks, Table 6 shows the confidence interval of experiment results. In general, BRAL-T
results are stable and robust over different experiment trials.

Methods FashionMNIST EMNIST CIFAR10 CIFAR100
AUBC F-acc AUBC F-acc AUBC F-acc AUBC F-acc

LossPrediction ±0.002 ±0.038 ± 0.016± 0.022 ±0.006 ± 0.012±0.019±0.012
WAAL ±0.002 ±0.015 ± 0.012 ±0.015 ± 0.006 ±0.009 ±0.006±0.011
RandomSample±0.001 ±0.009 ± 0.004 ±0.007 ±0.003 ± 0.011±0.003±0.008
BRAL-T ±0.001 ±0.008 ±0.005 ±0.014 ±0.003 ±0.006 ±0.004±0.009

Benchmarks Cifar10-imb BreakHis Pneum.MNIST Waterbird
AUBC F-acc AUBC F-acc AUBC F-acc AUBC F-acc

LossPrediction ±0.011 ±0.017 ±0.026±0.037±0.023 ±0.038 ±0.014±0.097
WAAL ±0.008 ±0.013 ±0.016±0.042±0.018 ±0.021 ±0.011±0.078
RandomSample± 0.013± 0.019±0.015±0.050±0.001 ±0.009 ±0.005±0.059
BRAL-T ± 0.012± 0.008±0.017±0.037±0.012 ±0.013 ±0.007±0.024

Table 6: Confidence Interval of Experiment results of image classification task.
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C.2 PAIRWISE COMPARISON

We further compare BRAL-T with VAAL ((Sinha et al., 2019)), SAAL ((Kim et al., 2023)) and
BAIT ((Ash et al., 2021)) on Cifar10, Cifar10-imb and FashionMNIST datasets by pairwise penalty
matrix following (Ash et al., 2021). For each benchmark, we collect accuracy results achieved by
all baselines. For pairwise comparison between the method for ith row (ri) and the method in jth
column (cj), we add a score to element eij whenever ri achieves better accuracy result in one budget
of data subset for a benchmark, which means the better ri performs compared with cj , the higher
score eij will be.

BRAL-T VAAL SAAL BAIT

BR
AL

-T
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AL
SA

AL
BA

IT
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0.045 0 0 1

0.025 0.025 2 0

0.0

0.5

1.0

1.5

2.0

2.5

Figure 5: Pairwise Comparison of BRAL-T, VAAL, SAAL and BAIT.

Figure 5 represents the pairwise comparison results. Compared with all baselines, BRAL-T achieves
highest value in eBRAL-T,· and lowest value in e·,BRAL-T.

C.3 TIME OVERHEAD COMPARISON

To evaluate the efficiency of BRAL-T, we compare the time overhead with LossPrediction, WAAL,
VAAL and SIMILAR on Cifar10 and Cifar100 datasets. All experiments were conducted using a
single Quadro RTS 6000 GPU core with CUDA Version 11.4, and the hardware setup included a
64-core Intel Xeon Gold 5218 CPU. Figure 6 shows the time cost results along with active learning
iteration.
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Figure 6: Time Cost.

The time cost associated with BRAL-T increases with each active learning iteration as the labeled set
expands and more data samples are clustered during the reinforcement learning process. However,
compared to other baselines, BRAL-T consistently demonstrates efficiency, maintaining a competi-
tive edge in terms of computational resource utilization.

Agent Reuse. A potential way to further improve the efficiency of BRAL-T is reusing RL agent
for all active learning iterations. However, considering the distribution shift of labeled dataset,
distribution of TrustSet will also shift during active learning. For this reason, we apply two RL
agents during active learning, one of which is trained in the first active learning step and remains
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unchanged for early active learning iterations; the other one of which is maintained for the rest
iterations. Specifically for CIFAR10-imb dataset, we use the first agent for the first 20 iterations and
the second agent for the rest 20 iterations. The result is shown in Table 7 below: where BRAL-T

Method AUBC F-Acc
LossPrediction 0.748 0.848
WAAL 0.752 0.799
RandomSample 0.710 0.810
BRAL-T 0.762 0.851
BRAL-T (two agents) 0.755 0.837

Table 7: BRAL-T reusing two RL agents.

with agent reusing surprisingly achieves better AUBC results compares with other baselines. With a
more careful separation of active learning stages and RL agents, we believe the performance could
be further improved.

C.4 MORE ABLATION STUDY

To evaluate the robustness of BRAL-T, we run BRAL-T on Cifar10-imb dataset under different
qualifies of initial labeled dataset. Moreover, we show the performance of BRAL-T with different
candidate action numbers. To evaluate the quality of RL approximation, we apply ground truth
labels for TrustSet selection and compare the accuracy results with BRAL-T.

Quality Effect of Initial Labeled Set. We explored the impact of the initial labeled set’s quality by
applying three different sampling methods to construct the initial labeled set from the Cifar10-imb
dataset:

• Random Sample: We randomly sample data from the unlabeled pool to form the initial
labeled set which maintains a similar category distribution with unlabeled pool.

• Twisted Main: We sort the 10 categories by the number of data samples first and then
select 50 samples from 5 rare classes and 950 samples randomly from the other 5 main
classes.

• Twisted Rare: Similar to Twisted Main, we randomly select 50 samples from 5 main
classes and 950 samples from the other 5 rare classes.

Cifar10 Cifar10-imb Cifar100 FashionMNIST
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Figure 7: Accuracy-budget curve of
Different Initial Labeled Set Quality.

Initial Method AUBC F-Acc
Random 0.762 0.851

Twisted Main 0.750 0.855
Twisted Rare 0.756 0.855

Table 8: Experiment Result of Different Initial Labeled
Set Quality.

The results, depicted in the Figure 7, indicate that BRAL-T’s performance varies with the quality of
the initial labeled set, particularly when labeled data is scarce. However, as the size of the labeled
dataset increases, the accuracy differences become negligible, demonstrating BRAL-T’s robustness
to the initial set’s composition. Despite the initial set’s quality impacting BRAL-T’s performance,
in Table 8, the AUBC results in the twisted cases are competitive with the results of the WAAL
baseline in Table-2, and all achieve better F-Acc compared with other baselines.

Ablation Study on Different Action Numbers. In the reinforcement learning process, we set
number of candidate action to be 5 in Section 5. To evaluate the impact of varying action space sizes,
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we conducted an ablation study on the Cifar10-imb dataset, comparing BRAL-T’s performance
across different numbers of actions: 5, 10, 50, and 100. The results are shown in Table 9

# Actions AUBC F-Acc
5 0.762 0.851
10 0.763 0.853
50 0.755 0.851
100 0.758 0.854

Table 9: Ablation Study on Different Candidate Action Number.

Under all different setting of action numbers, BRAL-T achieves best AUBC and F-Acc results com-
pared with baselines in Table 1. Setting a large number of actions will increase the complexity of
policy training. As we keep the policy architecture to be the same and simple for time efficiency, in
some active learning iteration policy might not be trained well with large action number which lead
to a small drop of AUBC score. But in general, our method is robust to action number. The reason
we choose 5 in the experiment is mainly for the consideration of time efficiency.

Ablation Study on Different Setting of λ. During the TrustSet extraction, we introduce curriculum
learning where λ is introduced to control the effect of SuperLoss. We study the impact of λ on the
CIFAR10-imb dataset for further sensitivity analysis, the result is shown in table 10 below:

λ AUBC F-Acc
0.25 0.762 0.851
1.00 0.752 0.842
2.00 0.749 0.830

Table 10: Impact of λ value on CIFAR10-imb dataset.

Increasing the value of λ reduces the influence of SuperLoss on the task loss. In an imbalanced
dataset, data samples are limited, especially in rare classes. Focusing on difficult data during the
early stages of active learning can significantly increase the difficulty of model training. As a result,
increasing λ leads to a reduction in AUBC and F-Acc for BRAL-T, highlighting the importance of
incorporating curriculum learning into the active learning process. However, overall, the AUBC and
F-Acc values remain competitive with the baselines presented in Table 1 of the paper.

Compare between RL and Ground Truth Labels. Although label information of unlabeled data
pool is not available during active learning, in order to evaluate the approximation performance
of RL policy, for baseline GradNd we assume ground truth label of unlabeled data pool is avail-
able when calculating the GradNd score of data samples and we pick class-balanced data with top
GradNd score for each active learning iteration. We compare BRAL-T with GradNd on Cifar10 and
Cifar10-imb datasets and shows the accuracy-budget results in Figure 8.
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Figure 8: Comparison between BRAL-T with RL policy and Ground Truth Labels.

In Cifar10 dataset, BRAL-T achieves good performance to approximate TrustSet, where only small
gap exists when labeled dataset becomes larger. In Cifar10-imb dataset, similarly, when labeled
dataset is limited, BRAL-T achieves similar accuracy compared with GradNd. When the size of
labeled dataset becomes larger, the accuracy difference performs to be acceptable larger. As a con-
clusion, the RL policy in BRAL-T achieves good performance to approximate ground truth TrustSet
selection.

19


	Introduction
	Related Work
	Problem Definition
	Method
	TrustSet
	Reinforcement Learning

	Experiment
	Image Classification Results
	Active Learning on More Long-tail Datasets
	Active Learning for Finetuning Results
	Ablation Study

	Conclusion
	Method Details
	Experiment Details
	More Experiment Results
	Confidence Intervals of Results in Image Classification Tasks.
	Pairwise Comparison
	Time Overhead Comparison
	More Ablation Study


