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ABSTRACT

Tabular data is the most common type of data in real-life scenarios. In this
study, we propose the TabKANet model for tabular data modeling, which tar-
gets the bottlenecks in learning from numerical content. We constructed a
Kolmogorov-Arnold Network (KAN) based Numerical Embedding Module and
unified numerical and categorical features encoding within a Transformer archi-
tecture. TabKANet has demonstrated stable and significantly superior perfor-
mance compared to Neural Networks (NNs) across multiple public datasets in
binary classification, multi-class classification, and regression tasks. Its perfor-
mance is comparable to or surpasses that of Gradient Boosted Decision Tree mod-
els (GBDTs). Our code is publicly available on GitHub: https://github.com/Al-
thpremed/TabK ANet.

1 INTRODUCTION

The tabular dataset is data organized into rows and columns, consisting of typically continuous, cat-
egorical, or ordered different features. It is the most commonly used and oldest data management
model in building real-world businesses. At the same time, as the foundational data storage struc-
ture of relational databases, tabular data has widespread applications in almost any field, including
medicinel (Johnson et al., 20165 [Ulmer et al., 2020), finance (Clements et al., [2020; [Arun et al.,
2016), e-commerce (McMahan et al., 2013 |Richardson et al.l [2007), and more (Chandola et al.,
2009; Buczak & Guvenl [2015).

Despite recent advancements in neural network (NN) architectures for tabular data modeling, many
still believe that the state-of-the-art techniques for performing tasks in tabular data, such as classi-
fication or regression, are based on tree ensemble methods, like Gradient Boosted Decision Trees
(GBDT) (Hollmann et al.,[2022;|Chen & Guestrin,|2016; Prokhorenkova et al.,|2018)). This perspec-
tive is rooted in the observation that tree-based ensemble models often exhibit competitive predictive
accuracy and much faster training speeds. This stands in stark contrast to widely researched fields
of Al such as computer vision and natural language processing, where NN have significantly out-
performed competing machine learning methods (Vaswani, [2017; Koroteev, 2021} |OpenAlL [2023).

Although there is an ongoing debate about whether Neural Networks outperform GBDTs on tabular
data (McElfresh et al., [2024)). We must recognize that there are the distinct advantages of NNs in
tabular data modeling:

* Potential for modeling large-scale complex tabular structures: Deep learning models may
demonstrate superior performance.

* Better scalability at both the input and output ends: This provides a foundation for multi-
modal applications.

* Self-supervised learning and pre-training schemes for tabular data offer greater potential
for NN in tabular modeling.

Therefore, modeling tabular data with neural networks is worth studying. There are attempts to
utilize advanced neural networks like Transformer in tabular data modeling. More specifically, they
have used Transformers to encode categorical items in tabular data (Huang et al., [2020), which we
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believe is insufficient for they did not serve continuous numerical items in the same manner. In
real-world datasets, numerical items are crucially important. If only the categorical parts are en-
coded using Transformers and continuous numerical items are simply fused through concatenation,
it will lead to the unequal weighting of column items in model perception. We need a sensible
tool to achieve vector mapping of continuous numerical items at a comparable scale while ensuring
sufficient sensitivity to numerical distinctions.

Recently, the introduction of Kolmogorov-Arnold Network (KAN) (Liu et al.l2024b) has garnered
significant attention from the AI communities, quickly piquing the interest of researchers and prac-
titioners. A vital feature of the KAN is its ability to approximate functions of arbitrary complexity
by selecting appropriate activation functions and parameters. This feature offers neural networks
more flexible performance compared to Multilayer Perceptron (MLP) (Hornik et al.l |{1989). KAN
shows a natural affinity of continuous numerical values, making it possible to become a significant
component in processing the numerical features in tabular data.

In this study, we proposed the TabKANet, which conducted a targeted design for extracting numer-
ical information from table data based on KAN, unifying category features and numerical features
under the Transformers architecture. This is a new architecture designed for modeling tabular data,
providing robust performance and a clear business structure framework.

We tested the performance of TabKANet, MLP (Hornik et al., [1989), KAN (Liu et al.| [2024b)),
TabTransformer (Huang et al.| [2020), TabNet (Arik & Pfister, [2021), XGBoost (Chen & Guestrin,
2016)), and CatBoost (Prokhorenkova et al., [2018]), across 12 widely used tabular tasks. TabKANet
demonstrated consistent performance improvements across all tasks compared to other NN mod-
els, especially when the performance disparity between NNs and GBDTs is more pronounced. Our
method achieved identical performance to the GBDT schemes in almost all datasets and even sur-
passed in multiple tasks. This indicates that our innovation in the KAN-based Numerical Embedding
Module greatly exceeds earlier NN models and fully captures the potential value of numerical fea-
tures in tabular data. It is worth noting that our work also emphasizes the combination of batch
normalization with KAN has superior performance advantages in mapping multiple continuous nu-
merical information.

2 RELATED WORK

2.1 TABULAR DATA MODELLING WITH NEURAL NETWORK

Tabular data is the primary format of data in real-world machine learning applications. Until
recently, these applications were mainly addressed using classical decision tree models, such as
GBDT. The XGBoost (Chen & Guestrin, 2016) and CatBoost (Prokhorenkova et al., [2018)) are per-
formance leaders in tabular data modeling for years.

However, with the development of deep neural networks, the performance gap between NNs and
traditional GBDT models in table data tasks has begun to narrow. Recent advancements, exem-
plified by TabTransformer, have integrated transformers into tabular modeling approaches (Huang
et al.l 2020). TabNet employs a sequential attention mechanism to identify semantically significant
feature subsets for processing at each decision point, drawing insights from decision tree method-
ologies (Arik & Pfister,2021). TabPFN introduces a transformer architecture for in-context learning
to approximate Bayesian inference through pre-training, facilitating swift resolutions for small tab-
ular classification tasks without necessitating hyperparameter adjustments (Hollmann et al., [2022).
FT-Transformer improved the ability of tabular data modeling by numerical embedding through lin-
ear transformation (Gorishniy et al.,|2021). Recent research suggests that GBDTs perform better in
handling datasets with skewed or heavy-tailed feature distributions than NNs, which may be due to
their ability to better adapt to the irregularity of the data (McElfresh et al., 2024).

In addition, some studies explore the application of NNs in other areas of tabular data modeling,
including few-shot learning, pretraining or imporve the performance by ensemble large language
models (Hegselmann et al., 2023 |Chen et al., 2023} Y1in et al.|[2020; Harar1 & Katz, [2022} Bertsimas
et al.,2022; Nam et al.;, 2023} |Ucar et al.,|2021;|Somepalli et al.| [2021; Rubachev et al., 2022). There
are also research in applying generative models for improving tabular task performance (Li et al.
2024b; Liu et al., 2024a; Kotelnikov et al., [2023)).
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2.2 KOLMOGOROV-ARNOLD NETWORK

MLPs have been the fundamental component of neural networks (Hornik et al.,|1989). They feature
a fully connected architecture that can approximate complex functions and possess expressive solid
power, making them widely popular in various applications. However, despite their popularity, the
MLP architecture also has some drawbacks. For instance, the activation functions are fixed. This
rigidity in the network may limit the model’s flexibility in capturing complex relationships within
the data, as it relies on predefined nonlinear functions.

Liu et al. introduced the KAN as a alternative to MLPs to address the limitations (Liu et al., 2024b).
Their research differs from previous studies because it recognizes the similarity between MLPs and
networks that employ the Kolmogorov-Arnold theorem. A notable feature of KANs is the absence
of traditional neural network weights. In KANs, each "weight” is represented as a small function.
Unlike traditional NNs, where nodes apply fixed nonlinear activation functions, each edge in a KAN
is characterized by a learnable activation function. This architectural paradigm allows KANs to be
more flexible and adaptive than traditional methods, potentially enabling them to model complex
relationships within the data.

With the introduction of KAN, researchers have been exploring their application to address scientific
problems better, including time series forecasting, image segmentation, and hyperspectral image
classification (L1 et al., [2024a} |Genet & Inzirillo), [2024; [Lobanov et al.| 2024)). Previous work has
also proposed to use the KAN network for tabular data modeling (Poeta et al.,[2024)). However, their
method involves using the entire KAN model for table data classification and does not establish an
excellent numerical feature embedding module, nor does it include Transformer architecture. This
deficiency resulted in their work not fully demonstrating the potential of the KAN model in tabular
data modeling.

3 THE TABKANET

For the vast majority of tables, the table data inevitably contains both continuous numerical and
categorical items. In a table with m categorical items and n numerical items, we will handle these
two types of data separately. Let (z,y) denote a feature-target pair, where © = {Xcur, Xnum }-
The X, € R™ denotes all the categorical features and X,;;, € R™ denotes all of the numerical
features. Let X¢y = {21, 22, ..., 2y } With each z; being a categorical feature, for ¢ € {1,...,m}.
Let Xoym = {x1,22,...,2,} with each z; being a numerical feature, for i € {1,...,n}. To
achieve structural consistency of table data in neural networks, we need to first unify the dimensional
expressions of numerical and categorical columns.

For category items, we encode all categories for each column, using methods such as One Hot
Encoding or Label Encoding. For X ,, the common practice is to map each categorical item to a
specific dimensional space through an embedding layer. This results in a matrix that represents the
categorical features:

f(Xcat) =

Tm1 Tmd

As mentioned in Sec[2.T} GBDTs outperform NN in table modeling tasks because of the skewed or
heavy-tailed features in table information. Current scientific research has not yet proposed a simple,
stable, and universal numerical embedding module, which is an important bottleneck for NNs in
table tasks (McElfresh et all [2024). Therefore, improving the ability of NN in table modeling
requires designing better solutions to achieve numerical embedding.

In a Kolmogorov-Arnold Network, the concepts of inner functions and outer functions are at the
core of the network architecture:

Inner functions ¢, , are univariate functions that operate on input variables x,,. They correspond to
the first layer of the network, responsible for transforming each input variable into an intermediate
representation. These functions deal with individual input features and output one or more values
that will subsequently be used by the outer functions.
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Outer functions @, are functions that operate on the outputs of the inner functions. They correspond
to the second layer of the network, responsible for summarizing and combining all intermediate
values generated by the inner functions to produce the final output. These functions perform a
weighted sum of the outputs of the inner functions to generate the final prediction results.

Mathematically, a multivariate continuous function f can be represented as:

f(x) = Z o Z Dq,p(Tp)

Here, ¢, represents the inner functions, and ®, represents the outer functions.

In KAN, Basis splines (B-splines) are used to construct these inner and outer functions. B-splines
are smooth functions defined piece-wise and are well-suited for approximating complex function
shapes. By learning the control points of B-splines, KAN can adjust the shape of these functions to
approximate the target function.

Inspired by the KAN Network, we have redesigned the numerical embedding module in table mod-
eling. The architecture design of TabKANet is shown in Fig[l] and the illustration of the data flow
procedure is shown in Fig[2]
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Figure 1: The architecture design of TabKANet.
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Figure 2: Illustration of data flow procedure in TabKANet. Implement dual-stream information
extraction and achieve unified dimensional representation under Transformer architecture.

We have designed a KAN-based Nurmercal Embedding Module to better achieve feature extraction
of numerical information. Specifically, we made the following three core improvements:

1. Replacing Layer Normalization (LN) in tabular data modeling for numerical items with
Batch Normalization (BN).

~
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2. Employing the KAN network for numerical items feature integration and extraction.

3. Mapping both categorical and numerical items into matrices of the unified dimension to
feed into the Transformer, thereby leveraging the self-attention mechanism for modeling
all data equally.

These improvements are based on the following considerations. Firstly, normalization for numerical
items is crucial, which is essential to avoid gradient explosion, especially with real-world data.
Previous work used LN to normalize numerical features (Huang et al.,2020). This is a subconscious
best solution, which is to distribute numerical information as much as possible based on its global
distribution. However, this may not be true. KAN also suffers from overfitting, and we need to
ensure sufficient training during the learning process while ensuring authenticity to alleviate the
skewed features. We have demonstrated the robust adaptability of BN through experiments in the[d.7]
section, especially when combined with KAN, which can collect internal information on numerical
values to a greater extent. As mentioned earlier, KAN, as a theoretically more powerful model than
MLP, mainly when used on the input side of data, can extract information and stabilize changes
better. In this process, BN and KAN work together, where BN is primarily used to alleviate data
skew and amplify numerical differences, while KAN is responsible for integrating information,
stabilizing output, and extracting internal value.

Additionally, since we cannot pre-determine the contribution weights of each column in tabular data,
a pragmatic solution is to construct uniform representations for each column’s features. This allows
for the development of a unified downstream model for effective learning. Employing a consistent
Transformer architecture for learning after encoding the column features also offers a highly scalable
framework for tabular data modeling. Another important task is that when using a KAN-based Nu-
merical Embedding Module, multiple training rounds can result in varying numerical normalization
results due to the influence of BN. Repeatedly pairing numerical normalization results and category
features will bring additional training data. We integrate these data features in Transformer, which
is also important in significantly improving model performance.

4 EXPERIMENTS

4.1 DATASETS

In this study, we evaluated the TabK ANet model and baseline models on 6 widely used binary classi-
fication datasets, 2 multi-class datasets, and 4 regression datasets from the UCI repository, OpenML,
and Kaggle (Asuncion et al [2007). These datasets exhibit extensive representativeness, spanning
various domains, including finance, business, chemistry, geography, ecology, image recognition, and
sports.

Table [T] details the characteristics of all datasets and their corresponding abbreviations used in this
paper. All datasets are publicly available; the links can be accessed in the appendix in Table[I0]

In our experimental design, each dataset is divided into five cross-validation folds, with the training,
validation, and testing data ratio being 60%, 20%, and 20%, respectively. We utilize the Area Under
the Curve (AUC) as the evaluation metric for binary tasks and the macro F1 score as the assessment
metric for multi-class tasks. We employ the Root Mean Square Error (RMSE) for the evaluation
metric of regression tasks.

4.2 BASELINE MODELS

As a comparison, we constructed the baseline MLP (Hornik et al. [1989) model, the baseline
KAN (Liu et al., 2024b) model, the TabTransformer (Huang et al., 2020)), the TabNet model (Arik
& Pfister, 2021), the XGBoost (Chen & Guestrin, [2016), and the CatBoost model (Prokhorenkova:
et al., [2018). XGBoost and CatBoost are both gradient boost algorithms that utilize decision trees.
TabNet is inspired by feature selection and combination strategies of GBDT and integrates these
into a deep learning framework. MLP is a traditional deep learning model consisting of multiple
layers of neurons. KAN model replaces MLP with Kolmogorov-Arnold Network to achieve table
data learning. TabTransformer adapts the Transformer architecture for the categorical features of
tabular data.
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Table 1: The dataset feature used in this study.

Dataset Name Abbreviation Num. Class Num. Data Num. Features
Blastchar Customer Churn BL 2 7,043 21
Online Shoppers ON 2 12,330 18
Seismic Bumps SE 2 2,583 19
Biodegradation BI 2 1,055 42
Credit Risk CR 2 1,000 21
Bank Marketing BA 2 45,211 17
Image Segmentation SG 7 2,310 20
Forest Covertype FO 7 581,012 55
CA House Prices CA - 20,640 10
Moneyball MO - 1,232 15
Sarcos Robotics SA - 48,933 28
CPU Predict CPU - 8,192 13

4.3 RESULTS IN BINARY CLASSIFICATION

Table [2| shows the performance comparison between TabKANet and the comparison methods on 6
different datasets.

Table 2: Comparison between TabKANet and baseline NN methods. The evaluation metric is the
mean =+ standard deviation of AUC. The best performance is in bold for each row.

Dataset MLP TabTransformer KAN TabNet TabKANet
BI 0.9033+0.035 0.9037+0.034  0.898740.021 0.84534+0.048  0.9110+0.032
CR 0.7468+0.037 0.7143+0.017 0.7193+£0.048 0.7238+0.039  0.7727+0.047
BL 0.8276+0.014 0.8278+0.014  0.82594+0.015 0.81034+0.017 0.8284+0.013
SE 0.731440.032 0.7316+0.025 0.7189+£0.026  0.7247+0.066  0.7495+0.043
ON 0.7229+0.012 0.7216+0.007 0.7785+£0.029 0.9141+£0.062  0.9195+0.005
BA 0.8873+0.002 0.8925+0.007 0.8966+0.003  0.9226+0.055 0.9321+0.004

TabKANet achieved the best performance compared to NN models across all datasets. In the ON
dataset. TabKANet demonstrated a substantial improvement, achieving a 27.4% increase compared
to TabTransformer. Our method greatly enhances the performance shortcomings of the NNs, espe-
cially for tabular datasets where the feature extraction capabilities of neural networks fall signifi-
cantly behind GBDTs due to the limitations in numerical feature learning.

Table |3| shows the performance comparison between TabKANet and the GBDT methods in binary
classification. In the CR and BL datasets, we have achieved performance advantages over GBDT.
Meanwhile, the performance difference with the best GBDT model in all datasets is within 1.5%.

Table 3: Results for GBDTs and our proposed model in binary classification tasks. The evaluation
metric is the mean =+ standard deviation of AUC. The best performance is in bold for each row.

Dataset XGBoost CatBoost TabKANet
BI 0.9187+£0.032  0.9230+£0.035 0.9110£0.032
CR 0.7686+£0.041 0.7683+0.033  0.7727+0.047
BL 0.8137+£0.013  0.8247+0.012  0.8284+0.013
SE 0.7556+£0.027  0.7571+0.029 0.7495+0.043
ON 0.9272+£0.006  0.9326:£0.005 0.9195+0.005
BA 0.9298+0.002  0.9379+0.024 0.9321+£0.004
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4.4 RESULTS IN MULTI-CLASS CLASSIFICATION

Table ] shows the performance comparison between TabKANet and the comparison NN models in
2 multi-class classification datasets. Since multi-class problems often involve challenges related to
sample imbalance, we used macro F1 as the evaluation metric during training. The results indicate
TabKANet achieved a significant performance advantage, showing substantial improvements in both
macro F1 and macro ACC.

Table 4: Multi-class dataset using NN. The best performance is in bold for each row. Each score
represents the average in 5-fold cross-validation. The best performance is in bold for each row. (The
SG dataset only contains numerical terms and is unsuitable for TabTransformer.)

Dataset ‘ Metrics Method
MLP TabTransformer KAN TabNet TabKANet
SG ACC 90.97 - 96.10  96.09 97.54
F1 90.73 - 95.69 94.96 97.56
FO ACC 67.09 68.76 85.40 65.09 87.47
F1 48.03 49.47 71.56  52.52 72.76

Table [5] shows the performance comparison between TabKANet and the GBDT models in multi-
class tasks. In the SG dataset, our performance difference from the best-performing XGBoost is
within 0.5%, and in the FO dataset, we have achieved a leading advantage over GBDT in terms
of both Macro F1 and Ac. The FO dataset has a huge amount of data, and experimental results
demonstrate that TabKANet effectively utilizes the huge advantages of NN, demonstrating excellent
performance in complex and larger data tasks. On the other hand, all methods achieved over 90%
macro F1 in the SG dataset, indicating that this is a relatively simple task, and our proposed method
still achieved a leading performance advantage.

Table 5: Results for GBDTs and our proposed model in multi-classification datasets. Each score
represents the average in 5-fold cross-validation. The best performance is in bold for each row.

Dataset ‘ Metrics Method
| XGBoost CatBoost TabKANet
SG ACC 97.90 97.39 97.54
F1 97.88 97.35 97.56
FO ACC 86.03 82.13 87.47
F1 71.11 67.22 72.76

4.5 RESULTS IN REGRESSION TASKS

Table [6] shows the performance comparison between TabKANet and the comparison NN models in
regression tasks. Table [/| shows the performance comparison of the top-performance NN models
and the GBDT models in regression tasks. We used RMSE as an evaluation metric in regression
tasks. TabK ANet demonstrates a significant advantage over other NN models. Especially for the SA
dataset with the largest data volume in the Regression datasets, TabK ANet significantly outperforms
all other methods. TabKANet achieved better results than TabNet and came very close to GBDTs
for the CA dataset with a relatively large amount of data. On the other hand, for the MO dataset,
which has a smaller number of data points (only 1,232), TabKANet appears to be less effective.

4.6 THE ROBUSTNESS TEST OF TABKANET

To demonstrate the superiority of TabKANet, we conducted further tests to evaluate its performance
on noisy data and compared it with the performance of TabTransformer, baseline MLP, and KAN
models. We performed the following experiments on the binary classification datasets ON, BA,
and BL. On the test sample, we randomly replaced the categorical or numerical items every 10
percentage points, ranging from 10% to 50%. Then, input these test data into the trained model to
predict their AUC scores.
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Table 6: Comparison between TabKANet and baseline NN methods. The evaluation metric is the
mean RMSE obtained from the 5-fold cross-validation testing procedure. The best performance is
in bold for each row. (The SA and CPU datasets only contain numerical terms which are unsuitable
for TabTransformer.)

Dataset MLP  TabTransformer KAN  TabNet TabKANet

CA 7.422 7.515 7.527 5207 5.202
MO 0.799 0.801 0.779  0.339 0.386
SA 3.236 - 3.024  2.056 1.732
CPU 6.731 - 6.714  2.841 2.834

Table 7: Results for GBDT and top performance NN models in regression tasks. The evaluation
metric is the mean RMSE obtained from the 5-fold cross-validation testing procedure. The best
performance is in bold for each row.

Dataset XGBoost CatBoost TabNet TabKANet

CA 4.731 4.462 5.207 5.202
MO 0.235 0.232 0.339 0.386
SA 2.173 2.297 2.056 1.732
CPU 2.926 2.683 2.841 2.834

In both the ON and BA datasets, TabKANet achieved a significant advantage over other deep learn-
ing models. As for the BL dataset, deep learning models even surpassed the capabilities of the
GBDT method. However, the BL dataset has the fewest numerical features, with only 3 out of 20
input features.

ON Category Noise Test BA Category Noise Test BL Category Noise Test
! —'_\_’—‘ I '
==
09 09
S| = »
] o 095
2 S 2
= s
S oss S S0 =
] ]
E E
S s 2
-
e 0.
0. e 0.
- ~—
07 B 07 08
0 10% W% % A% 50% 0 10% 0% 0% 0% 50% 0 0% 0% 0% 4% S0%
MLP == KAN == TabTransformer =—e TabK ANet MLP = KAN = TabTransformer == TabK ANet MLP == KAN == TabTransformer =—e TabK ANet
ON Numerical Noise Test BA Numerical Noise Test BL Numerical Noise Test
1 1 101
o » = 1005
9] 9] e 9]
2w 2 0 N 2 !
< =< — =
3 3 — 2 \—.:e.—_-s’-—'ﬁ
g 3 3
N 85 S 05 S 0.995
5 = =
g E E
2 o8 ] 2 09
—_— e e P —P
075 075 0985
07 07 098
0 0% 20% W% 0% s0% 0 10% 20% 30% 0% 0% 0 10% 0% W% 4% s0%
MLP = KAN = TabTransformer =—eTabK ANet MLP = KAN == TabTransformer =—e TabK ANet MLP = KAN = TabTransformer ==—e TabK ANet

Figure 3: Robustness evaluation of TabKANet by introducing random noise for categorical and
numerical features separately. a) Noise tests in the ON dataset. b) Noise tests in the BA dataset. ¢)
Noise tests in the BL dataset.

Fig. B illustrates the predictive performance when random noise is introduced proportionally in the
category features of the ON dataset. As the error rate of the category items increases, the perfor-
mance of all models declines. However, TabKANet maintains a significant performance advantage
and experiences only a 2.7% decrease in AUC when the category error rate reaches 50%. This
result demonstrates that TabKANet exhibits stronger robustness as the error rate of category items
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gradually increases. Similarly, as shown in Fig. [3p the BA dataset also shows similar results when
categorical inputs contain errors.

It is particularly noteworthy that when the numerical entries in the ON dataset of Fig[3h exhibit a
gradual increase in errors, the MLP and TabTransformer models are virtually unaffected. In con-
trast, TabKANet’s performance gradually declines as the proportion of erroneous numerical entries
increases. Eventually, when 50% of the numerical entries in the test set are incorrect, its performance
advantage over TabTransformer diminishes from over 27% to just 8%. A similar trend is observed
in Fig. [3p, as the proportion of erroneous numerical entries increases, the performance of all models
declines, and TabKANet’s performance converges with that of other deep learning models. This
further demonstrates the performance advantage of TabKANet, which can significantly enhance the
sensitivity to numerical features in the NN structure.

The ON dataset contains 6 numerical features, which other models have struggled to learn effec-
tively. This inability to grasp the underlying information has led to a lack of response to errors in
numerical error tests, a significant factor contributing to the underperformance of NNs compared
to GBDTs. While the KAN model has shown some sensitivity, it outperforms MLP and TabTrans-
former in both the ON and BA datasets, this advantage is minimal and rapidly deteriorates with the
introduction of numerical errors.

In Fig. E}:, we observe that as the categorical entries in the BL dataset become erroneous, all models
experience a similar degree of performance decline. However, when numerical entries are corrupted,
MLP remains largely unaffected, while the performance of the KAN model deteriorates more sig-
nificantly than that of TabKANet and TabTransformer. As previously mentioned, deep learning
methods generally outperform GBDT in the BL dataset. This indicates that numerical entries are
not the performance bottleneck in the BL dataset, and our approach does not hinder the performance
of deep learning models.

In summary, our method not only harnesses the enhanced extraction capabilities of KAN for nu-
merical features but also, through a strategic combination, further strengthens this performance,
significantly bolstering the overall stability of the model.

4.7 ABLATION EXPERIMENT

Unlike TabTransformer, this study also introduces the use of Batch Normalization instead of Layer
Normalization for the extraction of numerical entries in tabular tasks (Huang et al., 2020). The
rationale behind this approach is that BN can better capture the intrinsic feature differences within
each numerical feature earlier in the learning process, thereby enhancing the model’s ability to learn
the skewed or heavy-tailed features in the numerical features.

Building on the same TabKANet model, Table E] illustrates the performance differences between
using LN and BN in binary classification tasks, with all models trained using a batch size of 128.
TabKANet with LN shows improvement over TabTransformer, especially in tasks heavily reliant on
numerical information such as BA and ON. However, when we employ BN for numerical normal-
ization, the performance gain becomes even more pronounced.

For tasks where the improvement in numerical feature extraction does not yield significant benefits,
such as the BL dataset, switching to BN for normalization does not diminish performance. This
suggests that our approach is not only effective but also robust across various types of tabular data.
For more experiments please refer to[A.4]

Table 8: We compared the performance differences of TabTransformer using MLP to concatenate
numerical items and the TabKANet using LN and BN. The best performance is in bold for each row.

Dataset TabTransformer TabKANet-LN  TabKANet-BN
BI 0.9037+0.034 0.9048+0.032  0.9110+0.032
CR 0.7143£0.017 0.7495+£0.042  0.7727+0.047
BL 0.8278+0.014 0.8283+0.012  0.8284+0.013
SE 0.7316£0.025 0.7375+£0.016  0.7495+0.043
ON 0.7216+£0.007 0.8841£0.009  0.9195+0.005
BA 0.8925+0.007 0.9197+£0.003  0.9321+0.004
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4.8 LIMITATION AND FUTURE WORKS

TabKANet has some potential limitations:

1. Since TabKANet’s inclusion of the KAN network, Transformer, and MLP, despite achiev-
ing good results, it would perform even better if more detailed structural adjustments could
be made to specific datasets or tasks.

2. Compared to traditional GBDT methods or GBDT-inspired methods (such as TabNet), ta-
ble modeling developed based on NN, demand a significant increase in training time and
hardware resources.

3. If some table tasks do not include numerical items or the contribution of numerical items
is small, our solution may not be effective.

For future work, we believe it can focus on the following aspects:

1. This study is entirely based on supervised learning, which proves the performance of our
proposed method in basic experiments. Semi-supervised and unsupervised pre-training
methods have the potential to further improve its performance.

2. For real world tasks, especially artificial intelligence modeling of industrial processes in-
volving large amounts of tabular data, it is necessary to provide guidance on model hy-
perparameters, structural scale size, and their relationship with tabular data through more
extensive experiments.

3. TabKANet has shown performance in our experiments which is close to or even exceeds
the GBDT methods, indicating the potential for building larger-scale table models for mul-
timodal information.

5 CONCLUSIONS

In our study, we introduced TabKANet, a novel approach to table modeling that leverages a KAN-
based numerical embedding module. The impressive performance of our model has been validated
across a series of public tabular datasets, showcasing its advantages in terms of stability and ease
of implementation. TabKANet’s capability to effectively integrate information opens new proba-
bility for constructing intricate multimodal systems, potentially incorporating visual or language
models. We are optimistic that TabKANet will serve as a solid foundation for future developments
in table modeling, providing a versatile framework that can be expanded to address the challenges
of tomorrow’s data-driven landscape. Furthermore, the KAN-based numerical embedding module
can be regarded as a flexible tool for enhancing the representation of numerical features in various
applications.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS
All categorical features in this study are encoded through Label Encoding. For MLP, KAN, Tab-

Transformer, and TabKANet, we use the AdamW optimizer with a learning rate set to le — 3 for
binary and multi-class classification tasks. We employ the SGD optimizer for regression tasks with
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a learning rate of 1e — 4. For TabNet, we utilize the pytorch_tabnet library with the Adam optimizer,
setting the learning rate to le — 3.

The XGBoost classifier is constructed using the XGBoost library in Python, with the maximum
depth set to 8, the learning rate set to 0.1, and the number of trees set to 1000. The CatBoost classifier
is built using the CatBoost library in Python, with the maximum depth set to 8, the learning rate set
to 0.1, and the number of trees set to 1000.

All Transformer components are configured with the embedding dimension of 64, the number of
heads to 8, and the number of layers to 3. The KAN network of TabKANet has one layer of neurons,
with the number of neurons set to 64 and the embedding dimension also set to 64. For the output
MLP, adjustments are made based on the total count of input categorical and numerical features.

A.2 KAN NETWORK SETTING

In this paper, the number of numerical feature items in all datasets ranges from 3 to 27. In all our
experiments with the KAN network, we have configured only one hidden layer, and the number of
neurons in this hidden layer is fixed at 64. Furthermore, the number of output elements is set to
n X 64. To ensure rigor, we compared the scenario where the number of neurons was set to 2n + 1
in the experiments with binary classification datasets, representing a dynamic allocation scheme
for neurons based on the number of numerical inputs. Table [0] shows the performance differences
between two different settings of the KAN module.

Overall, the difference caused by the two different settings is not significant. We suggest setting
the number of hidden layer neurons in KAN to max(2n + 1,dim) during the initial experiment.
Here, n represents the number of numerical input elements, and dim denotes the unified embedding
dimension.

Table 9: Performance comparison between the dynamic allocation of neurons in KAN and the locked
quantity setting. The best performance is in bold for each row.

Dataset TabKANet-dynamic = TabKANet-locked
BI 0.9198+0.029 0.911040.032
CR 0.760040.038 0.7727+0.047
BL 0.82624+0.013 0.8284+0.013
SE 0.763210.037 0.749540.043
ON 0.916140.005 0.9195+-0.005
BA 0.929440.004 0.93211-0.004

A.3 DATASET INFORMATION

The links to the datasets used in this paper are shown in Table [I0] We also display the number of
numerical and categorical features in Table [T 1]

Table 10: Dataset links.

Dataset URL

Blastchar Customer Churn
Online Shoppers

Seismic Bumps
Biodegradation

Credit Risk

Bank Marketing

Image Segmentation
Forest Covertype

https://www.kaggle.com/blastchar/telco-customer—churn
https://www.openml.org/search?type=data&status=any&id=45060
https://archive.ics.uci.edu/ml/datasets/seismic-bumps
https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation
https://www.openml.org/search?type=data&sort=runs&status=any&id=31
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://www.openml.org/search?type=data&status=active&id=36
https://www.openml.org/search?type=data&status=active&id=150

CA House Prices https://www.openml.org/search?type=data&status=active&id=43705
Moneyball https://www.openml.org/search?type=data&status=active&id=41021
Sarcos Robotics https://www.openml.org/search?type=data&status=active&id=44976
CPU Predict https://www.openml.org/search?type=data&status=active&id=227
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Table 11: Number of categorical and numerical features in different datasets.

Task \ Dataset #Cat. Features #Num. Features
Blastchar Customer Churn 17 3
Online Shoppers 11 6
. . Seismic Bumps 14 4
Binary Classfication Biodegradation 24 17
Credit Risk 15 5
Bank Marketing 10 6
. Image Segmentation 0 19
Multi-class Forest Covertype 44 10
CA House Prices 1 8
Rearession Moneyball 7 7
g Sarcos Robotics 0 27
CPU Predict 0 12

A.4 WHY IS BN BETTER

Our adoption of Batch Normalization for normalizing numerical features means that the choice of
batch size during training can influence the model’s performance. Fig. |4 illustrates the performance
variation of TabKANet across three datasets when utilizing different batch sizes. The CR dataset
contains the smallest amount of data, with only 1,000 data points, and its best-performing batch size
is 64. Adjusting the batch size according to the total size of the training set when using Batch Nor-
malization helps to improve the model’s performance. In addition, this demonstrates the potential
for further performance improvement by adjusting structural parameters based on TabKANet.

BN Dataset ON Dataset CR Dataset
0.935 0.935 0.79
0.934 0.785
0.933 093 0.78
0.932 0.775
0.925
L0931 8] © 0.77
=) =] =2
< 093 < <0.765
0.92
0.929 0.76
0.928 0.915 0.755
0.927 0.75
0.926 0.91 0.745
32 64 128 256 512 32 64 128 256 512 32 64 128 256 512
Batch Size Batch Size Batch Size

Figure 4: Impact of different batch sizes on TabKANet performance.

In Figurdd} we employ the numerical term “Balance” from the BN dataset and “Informa-
tions_Duration” from the ON dataset to illustrate the variance in data interpretation between BN
and LN. The horizontal axis represents the normalized ground truth of all numerical information,
which is also the result obtained by LN. The vertical axis represents the normalized data values un-
der different conditions. As the batch size increases, the results of BN and LN become increasingly
similar.

The scatter plots reveal that employing BN with an optimal batch size can mitigate data skewness,
amplifying subtle distinctions in the heavy-tail data. Concurrently, iterative numerical and categor-
ical realignments were conducted throughout the training phase to bolster the model’s capacity for
generalization.
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