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ABSTRACT

Unsupervised 3D representation learning reduces the burden of labeling mul-
timodal 3D data for fusion perception tasks. Among different pre-training
paradigms, differentiable-rendering-based methods have shown most promise.
However, existing works separately conduct pre-training for each modalities due
to computational costs of processing large point clouds with images. As such,
mutual benefit of high-level semantics (from image) and 3D structure (from point
cloud) has not been exploited. To address this gap, we propose a joint unsu-
pervised differentiable-rendering-based pre-training method for images and point
clouds, termed CLAP, short for Curvature sampLing and leArnable Prototype.
Specifically, our method overcomes the computational hurdle by Curvature Sam-
pling to select the more informative points/pixels for pre-training. To uncover the
performance benefits brought by their complementarity, we propose to use learn-
able prototypes to represent parts of the 3D scenes in a common feature space and
an Expectation-Maximization training scheme to associate embeddings of each
modality to prototypes. We further propose a swapping prediction loss that ex-
plores their interplay through prototypes along with a Gram Matrix Regularization
term to maintain training stability. Experiments on NuScenes and Waymo datasets
show that CLAP achieves up to 100% more performance gain as compared to pre-
vious SOTA pre-training methods. Codes and models will be released.

1 INTRODUCTION

3D perception facilitates spatial applications such as autonomous driving. The autonomous system,
on which these applications are deployed, are typically equipped with multiple sensors including
visual ones like cameras that produce RGB images, and range sensors like LiDAR (Light-Detection-
And-Ranging) that generate point clouds. Fusion of these two modalities (Liu et al., 2023; Liang
et al., 2022; Li et al., 2022b; Liang et al., 2019; Li et al., 2022a; Meyer et al., 2019; Chen et al., 2017)
have generally improved over use of a single modality, e.g., camera (Ding et al., 2020; Chen et al.,
2016; Simonelli et al., 2019; Wang et al., 2021b; Zhang et al., 2021; Ku et al., 2019) or LiDAR (Shi
et al., 2019; Yan et al., 2018; Shi et al., 2021; Yin et al., 2021; Fan et al., 2021; Bai et al., 2022)
separately, in 3D perception performance.

However, training multimodal 3D perception models is expensive as labeling in 3D space is no-
toriously time-and-energy-consuming. Unsupervised 3D representation learning, which pre-trains
backbones without any label and fine-tuned the pre-trained weight for downstream performance im-
provement, has shown the potential to alleviate the labeling burden in 3D perception. Amongst the
many unsupervised 3D pre-training methods (Liang et al., 2021; Huang et al., 2021; Chen et al.,
2022; Yang et al., 2023; et al, 2023; Huang et al., 2023; Zhu et al., 2023; Yang et al., 2024), use
of mask auto-encoding (reconstruction) and differntiable rendering has emerged as the most per-
formant. However, encoding and processing high-dimensional multi-modal data (images and point
clouds) is computationally expensive: If one were to pre-train using all points and pixels within
the point cloud and image, even the most advanced GPU to date is only able to hold a batch size
of 1. Therefore, existing methods, e.g., UniPad (Yang et al., 2024), has conventionally pre-trained
each modality separately. The limitation of separate pre-training is that each encoder is restricted
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Reconstruction Loss
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(a) Previous 3D pre-training via differentiable rendering: separate pre-training

Surrounding Camera Images

Lidar Point Cloud

Sample Informative Points/Pixels
For Reconstruction Loss

(b) Our proposed method CLAP: jointly pre-training for fusion perception 
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Lidar Encoder

Camera Encoder
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Figure 1: Unlike previous SOTA unsupervised 3D representation learning method UniPAD (Yang
et al., 2024) that separately pre-train LiDAR and camera encoders with differential rendering (a),
our proposed method CLAP conducts joint pre-training for fusion perception.

to its own modality. Recovering 3D information from images is an ill-posed problem; point clouds
provide geometry cues but lack higher-level semantics.

To address this pain point, we propose a joint unsupervised pre-training method of image and point
cloud modalities based on differentiable rendering to exploit their complementarity. Our method,
CLAP, short for Curvature sampLing and leArnable Prototype, addresses the primary computational
challenge by a curvature sampling strategy, which comes from the observation that there exists
redundancy in information when sampling multiple points on the same flat surface. This is enabled
by estimating the curvature of each point in the 3D space by taking second order derivative of the
SDF (signed distance field) function. This sampling strategy captures variations in the point cloud
and in turn provide more informative points than the conventional sampling strategy in (Yang et al.,
2024).

As our curvature sampling strategy has reduced the computational burden to allow both modalities
to be simultaneously processed, we propose to model the interplay between image and point cloud
modalities through a set of learnable prototypes, which represents parts of the 3D scene and enables a
common feature space to bridge the two modalities. These prototypes are trained via an Expectation-
Maximization (EM) algorithm that maximizes similarity between embeddings for each modality and
the set of prototypes. Furthermore, we propose to use the swapping prediction loss to explore the
interaction between the two modalities. Last but not least, we utilize a Gram Matrix Regularization
term to minimize similarity across prototypes, avoiding collapse of prototype when trained naively.

Our contributions are 4-folds: (1) We propose a curvature sampling strategy to identify informa-
tive points (and pixels) for sampling, which enables the first joint differentiable-rendering-based
pre-training method for fusion perception. (2) Learnable prototypes are utilized to learn a com-
mon feature space and an Expectation-Maximization approach is proposed to train the prototypes
to represent parts of the 3D scene. (3) We further propose to use a swapping prediction loss for
modality interplay and a Gram Matrix Regularization loss that avoids collapse of prototype learning.
(4) Through extensive experiments on the popular autonomous driving datasets NuScenes (Caesar
et al., 2020) and Waymo (Sun et al., 2020), we demonstrate the effectiveness of CLAP . For exam-
ple, CLAP achieves up to 100% more improvement than previous SOTA 3D pre-training methods
and shows potential scaling property.

2 RELATED WORK

Fusion 3D Object Detection. Light-Detection-And-Ranging (LiDAR) and camera are important
sensors for autonomous driving perception. Previous works mainly focus on single-modality 3D
perception. For LiDAR-based 3D object detection, there are three main streams with different em-
bedding schemes for point clouds inputs. 1) Point-based methods (Shi et al., 2019; 2020b) utilize
point-level embeddings for 3D object detection. 2) Voxel-based methods (Yan et al., 2018; Deng
et al., 2021; Yin et al., 2021; Bai et al., 2022; Yang et al., 2018; Fan et al., 2021) voxelize the 3D
scene and use sparse convolution or transformer for embedding. 3) Point-voxel-combined meth-
ods (Shi et al., 2020a; 2021) utilize both embeddings from 1) and 2). For camera-based 3D percep-
tion, (Ding et al., 2020; Chen et al., 2016; Simonelli et al., 2019; Wang et al., 2021b; Zhang et al.,
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2021; Ku et al., 2019) embed 2D features on image plane and project these 2D features into 3D
space with estimated depth. Recently, research starts to focus on fusion 3D perception (Chen et al.,
2017; Liu et al., 2023; Liang et al., 2022; Li et al., 2022b; Liang et al., 2019; Li et al., 2022a; Meyer
et al., 2019) with camera images and LiDAR point clouds as inputs. These methods focus on inte-
grating embeddings of different modalities and train in an supervised manner. There are other works
on fusion-based semantic segmentation (Wu et al., 2024) and object tracking (Liu et al., 2024). As
labeling in 3D space is costly, we explore unsupervised 3D pre-training for fusion 3D perception.

3D Pre-training. Annotating for 3D data is notoriously time- and energy-consuming and the emer-
gence of unsupervised representation learning for 2D image (He et al., 2020; Tian et al., 2019;
Caron et al., 2020; Grill et al., 2020; Wang et al., 2021c; He et al., 2022) provides a promising way
to alleviate the annotation burden. Existing works (et al, 2020; Liu et al., 2020; Hou et al., 2021;
Chen et al., 2022; Huang et al., 2021; Liang et al., 2021; Liu et al., 2021a; Sautier et al., 2022; Pang
et al., 2023; Yang et al., 2023; et al, 2023; Huang et al., 2023; Zhu et al., 2023) in unsupervised 3D
representation learning into scene-level 3D point clouds can be divided into two contrastive-based
and masked-and-reconstruction-based paradigms. Contrastive-based works (et al, 2020; Liu et al.,
2020; Hou et al., 2021; Chen et al., 2022; Huang et al., 2021; Liang et al., 2021; Pang et al., 2023;
Liu et al., 2021a) propose various ways to build suitable views and conduct contrastive learning to
improve the performance in downstream perception task. Inspired by (He et al., 2022) in image
domain, (Yang et al., 2023; et al, 2023; Huang et al., 2023; Zhu et al., 2023) propose to first mask
the input point clouds and pre-train the 3D encoders with a shallow decoder for reconstructing the
unmasked inputs. (Sun et al., 2023; Zhang et al., 2024; Li et al., 2022c) are pioneering works to in-
troduce contrastive learning into fusion perception. They consider camera and LiDAR embeddings
as different views of the scene and apply the contrastive loss between the two modalities. Inspired by
the success of neural field in representing 3D scenes (Mildenhall et al., 2021; Wang et al., 2021a) and
previous attempts to introduce neural rendering to 3D pre-training for point clouds (Yan et al., 2023;
Huang et al., 2023; Zhu et al., 2023), UniPAD (Yang et al., 2024) proposes to use a differentiable-
rendering decoder for masked-and-reconstruction pre-training and achieves SOTA performance for
unsupervised 3D representation learning on fusion 3D perception. However, due to the high GPU
memory consumption, UniPAD (Yang et al., 2024) is only able to separately pre-train the image and
point cloud encoders and fails to utilize the interaction between modalities during pre-training. In
this paper, we explore unsupervised joint pre-training for 2D and 3D backbones via differentiable
rendering with Curvature Sampling and Prototype Learning. Previous work like SwAV (Caron et al.,
2020) is related to our prototype learning part. SwAV (Caron et al., 2020) explores learnable proto-
types to represent different categories in the same modality (image) and uses swapping assignment
prediction loss for different views of the same image instance. On the contrary, learnable prototypes
in CLAP are used to represent part of the 3D scenes and learn the interaction between modalities,
which differs from the context in (Caron et al., 2020). Thus we propose a Expectation-Maximization
training scheme to maximize similarity between prototypes and 3D embeddings. Then a swapping
prediction loss is used to learn the modality interaction. Furthermore, to avoid prototypes collapsing
to the same vector, we propose a Gram Matrix Regularization loss.

3 METHOD

In this section, we introduce CLAP for joint unsupervised 3D pre-training via differentiable ren-
dering on fusion 3D perception. As described in Fig. 2, CLAP pre-trains the image, LiDAR and
fusion encoders jointly with Neural Field Rendering. In order to enable joint pre-training, Curvature
Sampling is proposed as shown in (a) of Fig. 2. To further make use of both modalities, we utilize
learnable prototypes to represent parts of the 3D scenes as shown in Fig. 2 (b). To optimize the
learnable prototype, we train a common feature space with an Expectation-Maximization training
scheme and incorporate interaction between modalities by a swapping prediction loss. Finally a
Gram Matrix Regularization loss is proposed to avoid collapse in prototype learning. We first dis-
cuss the formulation and overall pipeline in Section 3.1. Then we introduce the details about neural
field and differentiable rendering in Section 3.2. Finally, we describe the curvature sampling and
prototype learning separately in Section 3.3 and 3.4.

3.1 FORMULATION AND PIPELINE

Notations. To begin with, we denote the input image set from Ncam cameras as I = {In ∈
RH×W×3}Ncam

n=1 and LiDAR point cloud as P ∈ RNp×(3+d). H and W are the height and width
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Figure 2: The pipeline of CLAP. In order to jointly pre-train the LiDAR, camera and fusion en-
coders, we first embed the paired LiDAR point clouds and camera images with f enc

P , f enc
I and f enc

fusion.
Then based on the fusion features, CLAP applies differentiable rendering to predict both range and
rgb with the SDF and RGB values of the sampled points along LiDAR/camera rays from fSDF and
fRGB, with which we compute loss against the observed LiDAR point cloud and camera images. To
make joint pre-training feasible, we propose Curvature Sampling to sample informative parts of the
3D scene, as descriped in (a). Furthermore, we propose to use learnable prototypes to represent parts
of objects in a common feature space and utilize an Expectation-Maximization approach to maxi-
mize the similarity between prototypes and 3D embeddings of each modality. To delve deeper into
the interplay of image semantics and LiDAR geometry, we use swapping prototype prediction loss.
Finally, we propose a Gram Matrix Regularization loss to prevent collapse of prototype learning.

of the images and each pixel on the images has 3 values for RGB. Np is the number of points in the
LiDAR point cloud and each of them contains xyz-location and d feature channels. For example,
in NuScenes (Caesar et al., 2020) dataset, d = 2 represents the intensity and timestamp of each
point and there are Ncam = 6 surrounding cameras on the autonomous vehicle. For each pair of
camera image and LiDAR point cloud, we have the transformation matrix Tn ∈ R3×4 indicating
the projection between the camera plane and LiDAR coordinate, where n = 1, 2, ..., Ncam.

Encoding. The goal of unsupervised 3D representation learning for fusion perception is to pre-train
the LiDAR, camera and fusion encoder in an unsupervised manner. Hence, we first voxelize and
embed the raw LiDAR point cloud P with LiDAR encoder f enc

P

P̂ = f enc
P (P), (1)

where P̂ ∈ RD̂×Ĥ×Ŵ×d̂P is the embedded 3D features for LiDAR point cloud. D̂, Ĥ and Ŵ are
spatial resolutions of the embedded features and d̂P is number of feature channels after encoding.
Then for camera images I, f enc

I encodes them with swin transformer (Liu et al., 2021b) and uses
T = {Tn}Ncam

n=1 to project the 2D features to 3D space.

Î = f enc
I (I, T ,P), (2)

where Î ∈ RD̂×Ĥ×Ŵ×d̂I is the embedded 3D features for surrounding camera images with the
similar dimensions as P̂ except for d̂I feature channels. The projection of 2D features to 3D space
is similar to (Liu et al., 2023): we transform LiDAR points back to image planes with T and use
the projected ranges from LiDAR to project the 2D features to 3D space. With P̂ and Î, we further
concatenate them along feature dimension and apply the fusion encoder f enc

fusion to get the fusion
feature F̂ ∈ RD̂×Ĥ×Ŵ×d̂F with d̂F feature dimensions,

F̂ = f enc
fusion([P, I]). (3)

Loss Function. To guide f enc
P , f enc

I and f enc
fusion to learn good representations in an unsupervised

manner, CLAP first embed the fusion features F̂ with a shallow 3D convolution network f 3D to get
F̃ = f 3D(F̂) and we have F̃ ∈ RD̂×Ĥ×Ŵ×d̂F . Then a rendering loss Lrend is applied on F̃ for
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masked-reconstruction on both point clouds P and images I. Furthermore, a prototype learning
scheme Lproto is utilized in order to bridge the two modalities and incorporate interaction of image
semantics and LiDAR geometry into pre-training. The overall loss function is as below:

L = ωr × Lrend(P, F̃, I) + ωproto × Lproto(P̂, Î), (4)
with ωr and ωproto as weighting parameters to balance the losses.

3.2 NEURAL FIELD AND DIFFERENTIABLE RENDERING

Inspired by the success of UniPAD (Yang et al., 2024), CLAP applies a differentiable rendering de-
coder with neural field to conduct the masked-and-reconstruction pre-training. Different from (Yang
et al., 2024), an additional surface signed distance field loss is applied to better optimize the scene
geometry. Here we first introduce Neural Field, which is the basis for camera images and point
clouds rendering, and then discuss the differentiable rendering process on range and RGB values.

Neural Field. Given a specific point p = [x, y, z] ∈ R3 in the 3D space, the feature fp ∈ Rd̂F at p
is queried from the fusion 3D embedding F̃ by trilinear interpolation

fp = f tri(p, F̃), (5)

where f tri is an built-in module implemented in Pytorch (Paszke et al., 2019). Taking the concatena-
tion of location p and queried feature fp as inputs, we predict the signed distance value s ∈ R (Chan
& Zhu, 2005; Malladi et al., 1995) and color value c ∈ R3 (Wang et al., 2021a) at p with fSDF and
fRGB. fRGB and fSDF are parameterized by Multi-layer Perceptron.

s = fSDF([p, f ]) , c = fRGB([p, f ]), (6)

Differentiable Rendering. Similar to (Mildenhall et al., 2021; Wang et al., 2021a), we first sample
NL or NC rays at the LiDAR or camera sensor origin o, each of which is described by its normalized
direction d and o. Next, we sample Nray points following (Wang et al., 2021a) along each ray. Here
each point along the ray can be interpreted by p = o + rd, where r is the range from the sensor
origin to the point p. Thus the sampled point set can be annotated by {pn = o + rnd}

Nray
n=1 and

we predict the estimated signed distance value sn and color value cn for them with fRGB and fSDF.
Following (Wang et al., 2021a), we estimate the occupancy value αn for each sampled point,

αn = max (
Φh(sn)− Φh(sn+1)

Φh(sn)
, 0). (7)

Here Φh(x) = (1 + e−hx)−1 stands for the sigmoid function paired with a learnable scalar h. After
that, we predict the accumulated transmittance tn similar to (Wang et al., 2021a)

tn =

n−1∏
i=1

(1− αi). (8)

Based on tn, we compute an unbiased and occlusion-aware weight wn = tnαn (Wang et al., 2021a)
and integrate all samples along the ray to predict the range r̃ or color c̃ along this ray,

r̃ =

Nray∑
n=1

wn ∗ rn , c̃ =

Nray∑
n=1

wn ∗ cn (9)

For the observed LiDAR points, it is evident that signed distance value should be 0. The loss function
for differentiable rendering is a combination of L-1 loss on surface SDF, range and color predictions.

Lrend =
1

NL

NL∑
i=1

(|ri − r̃i|+ ωsur|si|) +
ωC

3 ·NC

NC∑
i=1

3∑
j=1

|cji − c̃ji |, (10)

where ωsur and ωC are weighting parameters for the losses. ri is the observed range along the ith

sampled ray and si is the predicted signed distance value at the observed points. cji is the value of
jth channel in the image pixel, where j = {1, 2, 3} corresponds to RGB channels.

3.3 CURVATURE SAMPLING

In order to make joint unsupervised representation learning feasible, we have to make NL ≪
NP and NC ≪ H · W · Ncam. Intuitively, uniform sampling with range can be used,
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Flat Ground
(lower curvature)

Vehicle Surface
(higher curvature)

Figure 3: Inspiration of Curvature Sampling.

same as “Memory-friendly Ray Sampling” in (Yang
et al., 2024). But due to the relatively small sample
number compared to the raw inputs (∼ 1

100 ), this
sampling method brings little improvement against
separate pre-training, which is contradictory to our
motivation. Hence, we need to sample more infor-
mative part of the scene for Lrend. As shown in
Figure 3, we are inspired by the observation that
surface with higher curvature (surface of a vehicle)
generally contains more information as compared
to that with lower curvature (road plane). There-
fore, we propose the Curvature Sampling for effec-
tive sampling. In order to make it more intuitive,
we show camera image here and the curvature estimation is actually computed in 3D with the SDF
function. For each point p in the LiDAR point cloud P, we first estimate surface normal by deriving
the signed distance function with respect to p

n =
δfSDF([p, f ])

δp
, (11)

where n ∈ R3 is the predicted normal. Then we normalized n to get the direction of the normal
ñ = n

||n||2 . Here || · ||2 is the L-2 norm. Next we apply differential operator on ñ with respect to p

c =
δñ

δp
. (12)

and get c ∈ R3. Then we estimate the geodesic curvature (Toponogov, 2006) of each point pn

in LiDAR point cloud by computing the norm of cn and use it as the sampling weights ωn, that
is ωn = ||cn||2. With ωn, we sample NL points with a Multinomial Sampler implemented in
PyTorch (Paszke et al., 2019) for differentiable rendering. For pixels on image plane, we project
the LiDAR point cloud back to image planes with T , assign ωn of each point to the projected pixel
and apply a gaussian blur kernel of size Kgaus to densify the weights, with which we sample NC
pixels for Lrend. As the curvature estimation is noisy especially in the first few epochs, we apply
uniform sampling to warm-up for Nwarmup epochs and after that Curvature Sampling is utilized. We
implement curvature estimation within torch.no grad() context, so that it is computed only once and
not stored. Thus the computational and GPU memory overhead is less than 1% and negligible.

3.4 PROTOTYPE LEARNING

Curvature Sampling allows for joint pre-training, prompting us to explore how camera and LiDAR
data can be used to understand “objectness” or “object parts” in an unsupervised way. We use
learnable prototypes to represent segments of 3D scenes and establish a shared feature space that
connects the two modalities. Firstly, we randomly initialize NK learnable prototypes K ∈ RNK×dK ,
each of which is a dK vectors. Then an Expectation-Maximization training approach is proposed to
maximize the similarity between these prototypes and 3D embeddings from the two modalities. To
delve deeper into the interplay between image semantics and LiDAR geometry, we use the swap-
ping prototype prediction loss. Finally, to avoid the prototype collapsing into one same vector, we
introduce a Gram Matrix Regularization Loss.

Expectation-Maximization. In order to guide the learnable prototypes to represent parts of the
environment, we propose an Expectation-Maximization (Moon, 1996) training scheme to optimize
the prototypes. We first project the LiDAR embeddings P̂ and camera embeddings Î separately with
two projection heads f proj

P and f proj
I to the same dimension as K

Ṗ = f proj
P (P̂) , İ = f proj

I (Î), (13)

where f proj
P and f proj

I are parameterized by Multi-Layer Perceptron and Ṗ ∈ RD̂×Ĥ×Ŵ×dK , İ ∈
RD̂×Ĥ×Ŵ×dK . We denote N3D = D̂ × Ĥ × Ŵ and then normalize and reshape the projected
embeddings into Ṗ ∈ RN3D×dK and İ ∈ RN3D×dK . After that, similarity scores SP/I ∈ RN3D×NK

between 3D embeddings and prototypes are computed separately for LiDAR and camera branches

SP = Ṗ ·K⊺ , SI = İ ·K⊺. (14)

6
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In the Expectation step, we compute the probability ŜP/I that each prototype is assigned to each
embeddings by applying a softmax operation on SP/I. Then for Maximization step, we expect to
maximize the probability of the assignment between one prototype to one specific part of the scene
and this is equal to minimize the entropy of the similarity matrix. Thus, the EM loss is computed as

LEM = − 1

N3DNK

N3D∑
n=1

NK∑
m=1

{Ŝn,m
P logŜn,m

P + Ŝn,m
I logŜn,m

I }. (15)

Swapping Prototype Prediction. To further explore interaction between modalities, we detach SP/I
and apply sinkhorn algorithm (Cuturi, 2013) to approximate them to double stochastic matrix in
Nsink iterations. We denote the updated matrix as codes QP/I ∈ RN3D×NK . The swapping prototype
prediction loss is computed with a temperature parameter τ , inspired by (Caron et al., 2020),

LSwAV = − 1

N3DNK

N3D∑
n=1

NK∑
m=1

{Qn,m
I log

exp(Sn,m
P )/τ∑NK

k=1 exp(S
n,k
P )/τ

+Qn,m
P log

exp(Sn,m
I )/τ∑NK

k=1 exp(S
n,k
I )/τ

}.
(16)

Gram Matrix Minimization. When training the randomly initialized prototypes, the network might
learn a short cut with all prototypes being the same (Caron et al., 2020), which is called collapse. To
avoid this, we estimate similarity between prototypes by the gram matrix G = KK⊺ of prototypes
K, the dimension of which is G ∈ RNK×NK . Finally we minimize the average of the non-diagonal
elements of G in order to avoid collapse

LGMM =
1

NK(NK − 1)

NK∑
n

NK∑
m=1,m̸=n

Gn,m. (17)

Overall Prototype Learning Loss. We apply weighting parameters ωSwAV, ωEM and ωGMM to bal-
ance the three losses proposed above, which leads to the overall loss function for prototype learning,

Lproto = ωSwAVLSwAV + ωEMLEM + ωGMMLGMM. (18)

4 EXPERIMENTS

Unsupervised 3D representation learning for fusion perception aims to pre-train both LiDAR and
camera encoders and initialize downstream models with the pre-trained weights to gain performance
improvement in downstream tasks. In this section, we design extensive experiments on the popu-
lar autonomous driving dataset NuScenes (Caesar et al., 2020) and Waymo (Sun et al., 2020) to
demonstrate the effectiveness of CLAP. To begin with, we describe experiment setups in Section
4.1. Next, we show and analyze main results in Section 4.2. Finally, we provide ablation study and
visualizations separately in Section 4.3 and 4.4.

4.1 SETTINGS

Datasets. We use the popular autonomous driving dataset NuScenes (Caesar et al., 2020) and
Waymo (Sun et al., 2020) to evaluate the performance of CLAP. NuScenes (Caesar et al., 2020)
uses one roof LiDAR and six surrounding cameras to collect data. The LiDAR is a 32-beam Velo-
dyne and collecting frequency is 20Hz. The frequency of camera capturing is 12Hz. (Caesar et al.,
2020) conducts the synchronization and provides paired data of LiDAR point cloud and camera im-
ages. The whole NuScenes dataset contains 1000 scenes collected in Boston and Singapore. Each
scene lasts for around 20 seconds and there are a total of 5.5 hours data. Following convention prac-
tice from (Caesar et al., 2020; Team, 2020), we divide the whole dataset into training set with 850
scenes and validation set with 150 scenes. Waymo (Sun et al., 2020) uses one top 64-beam LiDAR,
4 corner LiDARs and 5 surrounding cameras to collect point clouds and camera images. Following
the same practice in (Sun et al., 2020; Team, 2020), the collected 1000 scenes are split into training
set (798 scenes) and validation set (202 scenes). All pre-trainings are conducted on the training
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Table 1: Results for fine-tuning on 5% of training set in NuScenes. “Init.” means the way to initial-
ize models. We guarantee convergence of from-scratch model and fix the training iteration for all
fine-tuning experiments. We provide mAP and NDS as an evaluation of the overall performance of
different models and highlight the best mAP and NDS with bold font. We also indicate the perfor-
mance improvement by green color. “C.V.”, “Mot.”, “Bic.”, “Ped.” and “T.C.” are abbreviations for
Construction Vehicle, Motorcycle, Bicycle, Pedestrian and Traffic Cone. Results are in %.

Init. mAP NDS Car Truck C.V. Bus Trailer Barrier Mot. Bic. Ped. T.C.
Rand. 48.69 55.28 78.52 46.64 16.18 50.44 22.11 57.00 46.87 30.56 76.16 62.40
ALSO 45.34 −3.35 49.19 −6.09 77.61 41.98 14.61 36.09 12.55 58.10 42.89 30.56 74.09 64.98

OCC-MAE 47.39 −1.30 54.97 −0.31 77.43 46.25 15.26 50.06 19.35 55.35 43.24 30.92 74.69 61.34
SLidR 47.23 −1.46 52.77 −2.51 77.12 45.04 16.19 50.50 22.17 57.74 41.47 30.22 71.11 60.71
PPKT 49.58 +0.89 55.85 +0.57 79.24 47.26 17.26 51.37 21.14 59.55 44.82 31.43 78.03 65.73

UniPAD 49.81 +1.12 55.29 +0.01 80.81 42.81 17.08 48.98 25.85 61.72 50.19 27.53 78.53 64.57
CLAP 51.17 +2.48 57.04 +1.76 79.56 48.43 18.84 56.34 23.98 60.60 48.87 34.11 78.08 62.87

set without labels and we conduct downstream 3D object detection training in few-shot setting via
uniform sampling of the training data (NuScenes 5% and Waymo 1%).

Downstream 3D Object Detectors. For NuScenes, we select the SOTA 3D object detector called
BEVFusion (Liu et al., 2023) and for Waymo, we use CenterPoint (Yin et al., 2021). Both BEVFu-
sion and CenterPoint are implemented in the popular code repository for autonomous driving per-
ception called OpenPCDet (Team, 2020). For evaluation metrics, we use average precisions of vari-
ous categories (APs), mean average precision (mAP) and NuScenes Detection Score (NDS) (Caesar
et al., 2020) for NuScenes and mAP (mean accurate precisions) and mAPH (mean accurate pre-
cisions with headings) at different difficulty levels (Level-1 and 2) for Waymo (Sun et al., 2020).
We follow a similar setting in (He et al., 2019; et al, 2023) to gradually increase training iterations
of the from-scratch model until convergence is observed. Here convergence means further increas-
ing training iterations will not improve the performance. Then the number of training iterations is
fixed for fine-tuning pre-trained models. This setting avoids the case that pre-training only acceler-
ates convergence and makes sure that pre-training indeed improve the performance of downstream
models, that is improving the sample efficiency of the downstream task.

Baseline Pre-training Method for Fusion Perception. We incorporate three kinds of pre-training
baseline methods: 1) an occupancy estimation method called ALSO (Boulch et al., 2023), 2) occu-
pancy masked autoencoder called Occupancy-MAE (Min et al., 2023), 3) multi-modality methods
including SLidR (Sautier et al., 2022), PPKT (Liu et al., 2021a) and UniPAD (Yang et al., 2024).
We use the official implementations to pre-train the backbones with same setting as CLAP.

Implementation Details of CLAP, pre-training and fine-tuning are provided in Appendix A.

4.2 MAIN RESULTS

NuScenes Results. As shown in Table 1, CLAP achieves 2.48% mAP improvement over randomly
initialization at convergence, which is 100% more improvement for mAP than SOTA unsupervised
3D representation method UniPAD (Yang et al., 2024) and the best among all initialization methods.
For NDS metric, UniPAD (Yang et al., 2024) only achieves comparable performance and PPKT (Liu
et al., 2021a) makes a gain of 0.57% while CLAP surpasses the train-from-scratch model by 1.76%
. When it turns to different categories, CLAP generally benefit the performance of all the categories
and for Construction Vehicle, Bus, Barrier, Motorcycle and Bicycle, the improvement over random
initialization are more than 2% AP.

Waymo Results. In Table 2, we provide the average performance difference of mAP and mAPH
over different difficulty levels. It can be found that CLAP achieves the best performance at conver-
gence. Meanwhile, the performance gain brought by CLAP is approximately two times as the best
(OCC-MAE (Min et al., 2023)) of previous pre-training methods. This demonstrates the effective-
ness and generalization ability of CLAP.

Potential Scaling Property. As we are not able to scale up the pre-training dataset at current stage,
we explore potential scaling property by gradually decreasing the sample numbers (2.5%, 1% and
0.5%) for fine-tuning on NuScenes, which increases the ratio between pre-training data and fine-
tuning data. The results are shown in Table 3 (F.T. is fine-tuning). It can be found that as the ratio
between pre-training data and fine-tuning data gets larger, the performance improvement by CLAP
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Table 2: Results for Waymo (Sun et al., 2020).

Init.
Level-1 Level-2

∆̄
mAP mAPH mAP mAPH

Rand. 61.60 58.58 55.62 52.87 0
ALSO 62.09 59.03 56.12 53.32 +0.47

OCC-MAE 62.33 59.32 56.36 53.63 +0.74

SLidR 62.10 59.09 56.10 53.36 +0.49

PPKT 62.32 59.22 56.37 53.55 +0.69

UniPAD 61.57 58.64 55.64 52.93 +0.02

CLAP 62.87 59.88 56.88 54.16 +1.28

Table 3: Results on scaling property.

Init. F.T. Data mAP NDS
Random

5%
48.69 55.28

CLAP 51.17 +2.48 57.04 +1.76

Random
2.5%

39.12 40.01
CLAP 42.86 +3.74 42.18 +2.17

Random
1%

26.22 29.82
CLAP 30.53 +4.31 31.87 +2.05

Random
0.5%

16.49 22.61
CLAP 23.71 +7.22 27.32 +4.71

Table 4: Ablation Study. The second line
is joint pre-training with sampling method
from UniPAD.

Joint Pre-train Cur. Sam. Proto. Learning mAP

✗ ✗ ✗ 49.81

✓ ✗ ✗ 49.55

✓ ✓ ✗ 50.81

✓ ✓ ✓ 51.17

Low Weight High Weight

Figure 4: Visualization of curvature estimation.

increases and CLAP provides a gain up to 7.22% mAP and 4.71% NDS with 0.5% fine-tuning data.
These results show that CLAP is promising in scaling property and in the future, if we can scale up
the pre-training dataset, CLAP might further improve current SOTA performance.

4.3 VISUALIZATIONS

We use CLAP to estimate the curvature of point clouds and use heatmap color to indicate the weight
computed in Section 3.3. As shown in Figure 4 (orange boxes for those regions with relatively
correct estimation and green ones for those with noisy estimation), it can be found that though some
noise exists (because pre-training is conducted in unsupervised manner), CLAP is able to predict
high weights for those highly informative region for sampling and meanwhile assign lower weights
to most of the background, which makes joint pre-training feasible.

4.4 ABLATION STUDY

We conduct ablation study to evaluate the effectiveness of different components. Results are in
Table 4. The first line is seperate pre-training with UniPAD (Yang et al., 2024). The second one
is jointly pre-training using UniPAD (Yang et al., 2024) and uniform sampling guided by range
(“Memory-friendly Ray Sampling” in (Yang et al., 2024)) to address the GPU memory limitation.

It can be found that using simple sampling method does not bring improvement over separate pre-
training. Then we add Curvature Sampling in third line and found that Curvature Sampling enables
more effective sampling and improves the performance over uniform sampling guided by range and
separate pre-training. Finally, the Prototype Learning scheme (fourth line) learns a common feature
space for segments of 3D scenes and introduces interaction of LiDAR and camera encoders, which
achieves the best performance.

5 CONCLUSION

In this paper, we propose CLAP for unsupervised fusion joint pre-training via differentiable render-
ing. CLAP uses Curvature Sampling to sample more informative parts and learnable prototypes to
represent parts of 3D scenes, optimized with an Expectation-Maximization approach. To explore
the interplay between LiDAR geometry and image semantics, a swapping prediction loss is used
with a regularization loss to avoid collapse. Experiment results demonstrate that CLAP is superior
in unsupervised 3D representation learning and has the potential to scale up.
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ETHICS STATEMENT

We further discuss potential negative social impact of CLAP in this section.

Job Displacement. Automation of tasks that require 3D perception, such as autonomous vehicles
or robotics, might lead to job losses in sectors like transportation, warehousing, and manufacturing.
While automation can create new jobs, the transition period can be challenging for those whose jobs
are automated away.

Security Risks. The deployment of autonomous systems could introduce new vulnerabilities. Any
failures in autonomous driving or robotics could lead to accidents or be exploited maliciously.

Accessibility and Inequality. The benefits of advanced 3D perception technologies might not be
evenly distributed across society. Wealthier regions or organizations may have earlier and better
access to these technologies, potentially widening the gap between different socioeconomic groups.

REPRODUCIBILITY STATEMENT

We provide method details in Section 3 and implementation details in Appendix A, which are enough
for reproducing the experiments. Besides, we will release the code and models once the paper is
accepted.
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A MORE IMPLEMENTATION DETAILS

CLAP. The feature channels for embeddings P̂, Î, F̂ and prototypes K are respectively set to d̂P =

256, d̂I = 80, d̂F = 512 and d̂K = 128. Sampling number for point cloud and pixel are NL = 8192
and NC = 1024×Ncam. The number of sample points along each ray is Nray = 96. Warm-up epochs
for Curvature Sampling is Nwarmup = 4. We set the number of learnable prototypes and sinkhorn
update iterations to NK = 512 and Nsink = 3. The temperature for swapping prediction loss is
τ = 1.0. The loss weighting parameters are implemented as ωr = 2.0, ωproto = 1.0, ωsur = 0.05,
ωC = 0.05, ωSwAV = 1.0, ωEM = 0.1 and ωGMM = 0.1. We use torch.auto grad() (Paszke et al.,
2019) to implement the derivatives in the curvature estimation.

Pre-training. We use a learning rate of 0.00005 with a cosine learning schedule for pre-training and
use mask augmentation for CLAP with a masking rate of 0.9. All the pre-trainings are conducted on
8-H100 clusters for similar time (∼ 45 mins / epoch). As pre-trained image backbones are broadly
used for image feature extraction, the implementation of Yang et al. (2024) also use a pre-trained
image backbone from Contributors (2020) to initiate their pre-training and the training set for this
backbone does not involve any data from NuScenes Caesar et al. (2020) and Waymo Sun et al.
(2020). We adopt this practice for training-from-scratch model and CLAP.

Downstream Training. We follow the common practice in OpenPCDet Team (2020) and only
change the training iterations in order to observe the convergence of train-from-scratch models,
which avoids the case that pre-training only accelerate convergence and make sure that pre-training
indeed improve the performance of downstream models. The training epoch is 108 for BEVfusion
Liu et al. (2023) with 5% of NuScenes Caesar et al. (2020) training data and 252 for CenterPoint
Yin et al. (2021) with 1% of Waymo Sun et al. (2020) training data.

B MORE EXPERIMENT RESULTS

B.1 SEMANTIC SEGMENTATION

We fine-tune Cylinder3D Zhou et al. (2020) for LiDAR semantic segmentation on Semantic KITTI
dataset Behley et al. (2021). We use mIoU as eval metric. Results are 28.23% for random initializa-
tion, 31.88(+3.55)% for UniPAD and 34.28(+6.05)% for CLAP. It can be found that CLAP is able
to benefit different tasks and achieves 70% more improvement than UniPAD Yang et al. (2024).

B.2 REPEATED EVALUATION

We use the same fixed random seed for all experiments in the main paper for reproducibility. As
repeated evaluation can further reveal the training robustness, we repeat fine-tunings on NuScenes
for 5 times with random initialization, UniPAD and CLAP. Mean and standard deviation of mAP
are 48.55± 0.18% (Rand.), 49.66± 0.29% (UniPAD) and 51.16± 0.10% (CLAP). CLAP achieves
the best average performance and robustness against random seeds.

B.3 TRANSFERRING TO OTHER DATASETS

We conduct further experiments to evaluate the transferring ability of CLAP. Specifically, we se-
lect LiDAR-based 3D object detector CenterPoint Yin et al. (2021) on Once Mao et al. (2021) for
the downstream task. A 40-beam LiDAR is utilized in Once Mao et al. (2021) to collect 15k la-
beled training data. We randomly sample 5% and also use all of the labeled training set to train
the from-scratch model until convergence is observed. Then we use pre-trained weights by CLAP
on NuScenes Caesar et al. (2020) to initialize the same model and fine-tune it with the same train-
ing iterations as the randomly initialized model. Results are shown in Table 5. It can be found
that pre-training by CLAP also benefits LiDAR-based 3D object detection, even in a cross-dataset
setting. And if we look at the performance of “Rand*” and “CLAP*”, CLAP also accelerates the
convergence in downstream task.
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Init. F.T. mAP
Vehicle Pedestrian Cyclist

0-30m 30-50m 50m- 0-30m 30-50m 50m- 0-30m 30-50m 50m-

Rand*

5%

20.48 58.03 25.22 12.98 11.62 9.75 6.97 21.55 6.83 3.11
CLAP* 22.86 +2.38 58.37 26.38 14.07 12.60 9.50 7.88 30.08 10.50 5.39
Rand 46.07 76.71 51.15 31.84 37.53 20.12 9.84 62.00 42.61 24.18
CLAP 46.88 +0.81 76.98 51.64 31.31 38.79 20.60 9.74 63.75 43.21 26.83

Rand*

100%

64.00 86.21 70.20 58.20 57.80 41.18 23.55 75.95 61.45 45.80
CLAP* 64.74 +0.74 88.14 72.59 59.13 57.37 42.24 24.22 77.11 61.91 45.63
Rand 65.03 88.18 74.23 61.75 57.32 38.90 21.96 78.07 64.32 48.16
CLAP 65.56 +0.53 87.97 72.77 62.11 58.33 40.11 21.29 78.63 64.70 47.27

Table 5: Results for transferring experiments on Once Mao et al. (2021) dataset. CenterPoint Yin
et al. (2021) is used as the downstream detector. “Init.” indicates the initialization methods. “F.T.”
indicates the number of training samples in fine-tuning stage. Overall mAP and APs for different
categories within different ranges are shown in this table. “Rand*” means training the randomly
initialized model with the original training iterations in OpenPCDet Team (2020). “Rand” indicates
that we increase the number of training iterations for randomly initialized model until convergence
is observed. “CLAP*” indicates that we pre-train the backbones with CLAP on NuScenes Caesar
et al. (2020) and then fine-tune on Once with the original iterations in Team (2020). “CLAP” uses the
same fine-tuning iterations as “Rand”. We use green color to highlight the performance improvement
brought by CLAP. All the results are in %.

Init. mAP NDS mAP mAPH
Rand. 64.57 67.61 69.00 67.57

UniPAD 64.69 68.06 69.03 67.56
CLAP 65.11 68.38 69.49 68.04

Table 6: Fine-tuning on 100% NuScenes and Waymo with fixed random seed.

B.4 MORE FINE-TUNING DATA

We fine-tune on 100% NuScenes and Waymo with fixed random seed to provide more insights. Here,
we show mAP and NDS for NuScenes in 2nd and 3rd cols and Level-2 mAP, mAPH for Waymo.
CLAP improves random initialization by +0.55 whereas UniPAD by +0.15 on average, showing
CLAP’s effectiveness. With Table 3 in the paper, more gain can be expected with more unlabeled
data in real scenario.

C VISUALIZATION OF PROTOTYPE LEARNING

We use the model pre-trained by CLAP to infer the 3D features and assign prototypes to different
LiDAR points in the 3D space. Then we use different random colors to indicate different prototypes
and visualize them, as shown in Figure 5. If can be found that the background road plane inside the
same frame is generally assigned to the same prototype. And foreground vehicles are assigned to
another prototype. This demonstrates that the proposed prototype learning scheme actually learns
to represent parts of the scenes with prototypes in an unsupervised manner. However, as our pre-
training does not incorporate any label, it can also be found that the prototype assignment has some
noise, for example some of the road plane points are assigned to other prototypes.

D THE USE OF LARGE LANGUAGE MODELS.

We use Large Language Models to help and aid editing/polishing the paper. In details, we polish
the Introduction and Related Work sections with Large Language Models, which mostly focuses on
grammar, spelling and word choice.
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(a) (b)

Figure 5: Visualization of the prototype learning results. Different color indicates different prototype
assignments.
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