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ABSTRACT

Recent research revealed that the reasoning performance of large reasoning mod-
els (LRMs) is significantly degraded after safety alignment (i.e., fine-tuning on
safety datasets). This phenomenon implies that safety alignment for LRMs has im-
paired the well-learned parameters crucial for reasoning capabilities. Thus, an in-
teresting question arises: can we protect the parameters crucial for reasoning from
being interfered by safety alignment, thereby acquiring safety capabilities while
maintaining the original reasoning capabilities of LRMs? Motivated by the recent
finding that safety capabilities are associated with only a subset of the full param-
eter space, we propose a novel method that achieves reasoning-preserved safety
alignment for LRMs. It first identifies reasoning-critical parameters based on a
Fisher Information Matrix where each diagonal element represents the importance
of the parameter to reasoning capabilities, and then freezes these parameters dur-
ing fine-tuning on safety datasets. Experiments on multiple reasoning and safety
benchmarks validate that our proposed method achieves strong safety performance
while maintaining the original reasoning performance of LRMs. Our code is pub-
licly available at https://anonymous.4open.science/r/RPSA

1 INTRODUCTION

Recent advancements in large reasoning models (LRMs) have showcased their potential in solv-
ing complex reasoning tasks, achieving human-level performance on challenging benchmarks (Guo
et al., 2025). These developments highlight the growing potential of LRMs as a foundation for
tackling challenging tasks (Brown et al., 2020; Touvron et al., 2023). However, deploying LRMs
in real-world applications raises serious safety concerns. As LRMs become more powerful, the
risks of misuse and unintended consequences increase, making their safety alignment crucial (Jiang
et al., 2025; Li et al., 2025a; Huang et al., 2025; Zhou et al., 2025). Current safety alignment for
LRMs typically uses supervised fine-tuning or reinforcement learning from human feedback (Bai
et al., 2022a; Dai et al., 2024; Ouyang et al., 2022; Wang et al., 2023). However, recent research
reveals that safety alignment applied to LRMs often causes substantial degradation in reasoning per-
formance, and this phenomenon is termed safety tax (Huang et al., 2025; Xue & Mirzasoleiman,
2025), exposing special challenges for LRMs to acquire safety capacities.

Although some mitigation strategies have been proposed to address the safety tax issue for im-
proving safety capacities of LRMs, they, unfortunately, still degrade reasoning capabilities to a large
extent (Huang et al., 2025). For example, the data-centric method that incorporates chain-of-thought
reasoning (Jiang et al., 2025) can maintain reasoning performance to some degree, yet often compro-
mises safety capabilities. Besides, the parameter-efficient fine-tuning method of low-rank adaptation
(LoRA) (Xue & Mirzasoleiman, 2025) restricts the scope of parameter updates, but this method op-
erates at a coarse granularity without considering the varying importance of individual parameters
for reasoning tasks. In summary, these methods suffer from a trade-off between reasoning capabili-
ties and safety capacities in safety alignment for LRMs.

This trade-off actually implies that safety alignment for LRMs has impaired the well-learned param-
eters crucial for reasoning capabilities. Thus, an interesting question naturally arises:
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Can we protect the parameters crucial for reasoning from being interfered by
safety alignment, thereby acquiring safety capabilities while maintaining the orig-
inal reasoning capabilities of LRMs?

Motivated by the recent finding that safety capabilities are associated with only a subset of the full
parameter space (Wei et al., 2024; Li et al., 2025b; Zhao et al., 2025a), we conjecture that not all
parameters need to be updated for achieving safety capacities in safety alignment for LRMs. In this
way, when reasoning-critical parameters can be identified and frozen, only updating the remaining
parameters in safety alignment is still expected to improve the safety performance for LRMs.

Based on the above insight, we propose a novel method that selectively freezes reasoning-critical
parameters to achieve reasoning-preserved safety alignment for LRMs. Concretely, our method
first estimates the importance of each parameter for reasoning capabilities according to the diagonal
elements in the Fisher Information Matrix derived from a reasoning corpus. It then ranks parameters
by their Fisher values and freezes the top-k fraction during safety fine-tuning, where k is dynamically
adjusted during the training process based on the gradient conflict between reasoning and safety
objectives. This adaptive freezing strategy ensures that parameters most critical for reasoning remain
protected when conflicts arise, while allowing more flexibility when gradients align. We apply this
dynamic freezing approach to both full fine-tuning and LoRA-based parameter-efficient training,
with parameters selectively frozen according to their Fisher importance scores. In comprehensive
evaluations, our method substantially reduces the safety tax, maintaining reasoning performance
close to the original model while achieving safety comparable to standard alignment methods.

2 RELATED WORK

LLM/LRM Alignment and Safety Training. Mainstream post-training alignment methods op-
timize output preferences through various approaches: supervised instruction tuning (Guo et al.,
2025; Jaech et al., 2024; Bianchi et al., 2024), InstructGPT’s Proximal Policy Optimization with
reward models (Ouyang et al., 2022), Constitutional AI’s AI-generated harmlessness feedback (Bai
et al., 2022b), Self-Instruct’s synthetic instructions (Wang et al., 2023), Direct Preference Opti-
mization’s direct preference objectives (Rafailov et al., 2023), and Safe-RLHF’s safety-constrained
reward maximization (Dai et al., 2024). Recent work explores safety-aware fine-tuning (Choi et al.,
2024), multi-round red-teaming (Ge et al., 2024), and prospect-theoretic alignment objectives (Etha-
yarajh et al., 2024). Guan et al. (2024) proposes deliberative alignment linking safety and reasoning
through integrated processes. However, how safety gradients interact with reasoning critical weights
during training remains underexplored. These methods primarily operate on output distributions or
objective functions without considering parameter-level importance for reasoning, motivating our
parameter-aware protection approach.

Safety Tax and Reasoning–Safety Trade-off. Recent research (Huang et al., 2025; Zhou et al.,
2025) revealed the safety tax phenomenon where safety alignment significantly degrades reasoning
capabilities in LRMs. Safety guardrails prove brittle under pruning, low-rank modifications, and
downstream fine-tuning (Xue & Mirzasoleiman, 2025; Huang et al., 2025). Current mitigations
operate at various levels: data-centric approaches like SafeChain incorporate chain-of-thought into
safety datasets (Jiang et al., 2025), though this can increase attack vulnerability; mechanistic meth-
ods localize safety-critical layers for selective freezing (Li et al., 2025b); and parameter-efficient
approaches employ LoRA for constrained updates (Xue & Mirzasoleiman, 2025). However, these
methods do not directly identify and protect parameters based on reasoning importance.

3 METHODOLOGY

In this section, we propose Reasoning-Preserved Safety Alignment (RPSA), a method for LRMs
that selectively freezes reasoning-critical parameters to achieve safety alignment without sacrificing
reasoning ability. We resolve this by computing importance scores using the diagonal Fisher In-
formation Matrix (FIM) on a reasoning corpus to identify parameters most essential for reasoning.
Based on these scores, our method constructs a protection mask that selectively freezes reasoning-
critical parameters during safety fine-tuning, with the frozen ratio dynamically adjusted based on
gradient conflicts between reasoning and safety objectives. This adaptive freezing strategy ensures
that parameters most critical for reasoning remain protected when conflicts arise, while allowing
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more flexibility when gradients align. This targeted method preserves the model’s reasoning cir-
cuitry while enabling effective safety alignment, significantly reducing the reasoning degradation
that typically occurs after safety training.

3.1 QUANTIFYING PARAMETER IMPORTANCE WITH EMPIRICAL FISHER INFORMATION

Assume that we have a LRM fθR
with parameters θR, which has been optimized on training dataset

DR for reasoning tasks. Our goal is to obtain a new set of parameters θS by fine-tuning on safety
dataset DS , such that the safety loss LS is minimized while the reasoning loss LR is preserved. To
understand how changes in parameters affect reasoning performance, we consider a second-order
Taylor expansion of the reasoning loss LR(θ) around the optimal reasoning parameters θ∗

R:

LR(θ) ≈ LR(θ
∗
R) + (θ − θ∗

R)
⊤∇θLR(θ

∗
R) +

1

2
(θ − θ∗

R)
⊤H(θ − θ∗

R), (1)

where θ ∈ Rd is the vector of model parameters, ∇θLR(θ
∗
R) ∈ Rd is the gradient of the reasoning

loss evaluated at θ∗
R, and H = ∇2

θLR(θ
∗
R) ∈ Rd×d is the Hessian matrix. Since θR is around the

optimal θ∗
R, the gradient term can be neglected, and the increase in loss is dominated by the quadratic

term. Computing the exact Hessian H is infeasible for large models. A common alternative is to
approximate it using the Fisher Information Matrix (FIM) (Kunstner et al., 2019). For autoregressive
models, the FIM can be written token-wise as:

F = E(x,y<t)∼p(x,y<t)

[
Eyt∼pθ(yt|x,y<t)

[
∇θ log pθ(yt | x,y<t) ∇θ log pθ(yt | x,y<t)

⊤
]]

, (2)

where (x, y<t) is the input context (original input plus previously generated tokens), and yt is the
current token output. For computational efficiency, we focus on the diagonal elements of F :

Fi,i = E(x,y<t)∼p(x,y<t)

[
Eyt∼pθ(yt|x,y<t)

[( ∂

∂θi
log pθ(yt | x,y<t)

)2]]
. (3)

Computing the expectation over the entire input space is practically impossible, since the space is
effectively infinite. Usually, this expectation is approximated using the model’s training data for
x,y < t and yt, which is known as the empirical Fisher. However, most LRMs do not publicly
release their training data. To work around this, we instead use a Monte Carlo approach: we collect
model responses, including chain-of-thought (CoT) reasoning steps, from the MATH-500 dataset
(Lightman et al., 2023), to construct a reference dataset Dref . Then for each sample (x,y) in Dref ,
we perform backpropagation to compute the squared gradients with respect to each parameter θi,
providing a Monte Carlo estimate of the Fisher diagonal:

F̂i,i =
1

|Dref |
∑

(x,y)∈Dref

1

|y|

|y|∑
t=1

(
∂

∂θi
log pθ(yt | x,y<t)

)2

, (4)

After approximating the Hessian H of the reasoning loss with the diagonal of the Fisher Information
Matrix F , the second-order term of LR(θ) can be expressed as

1

2
(θ − θ∗

R)
⊤H(θ − θ∗

R) ≈ 1

2

d∑
i=1

F̂i,i(θi − θ∗R,i)
2. (5)

This formulation indicates that the contribution of each parameter θi to the increase in reasoning
loss is proportional to both its squared deviation (θi − θ∗R,i)

2 and the corresponding diagonal Fisher
entry F̂i,i. Parameters associated with larger F̂i,i values are more sensitive, such that even small
perturbations can lead to substantial increases in LR, whereas parameters with smaller F̂i,i can be
adjusted with comparatively minor impact on reasoning performance. In this sense, the diagonal
Fisher entries quantify the importance of parameters in preserving the model’s reasoning capability.

3.2 PROTECTING REASONING CAPABILITIES DURING ALIGNMENT

We adopt a parameter freezing strategy to preserve reasoning capabilities during safety fine-tuning
by freezing the most important parameters. However, when many parameters θi have F̂i,i = 0, it
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is impossible to establish their relative importance. Therefore, we restrict the freezing operation to
parameters with non-zero F̂i,i only. Let the frozen ratio be a hyperparameter k ∈ [0, 1]. We first
compute the corresponding percentile threshold: τk = Q1−k({Fi | Fi > 0}) , where Q1−k(·)
denotes the (1 − k)-th percentile computed over parameters with non-zero Fisher values. A binary
mask is then defined as Mi = 1[Fi ≤ τk]. During fine-tuning, gradients are modified by this mask,
g̃i = Mi · gi, so that parameters with Mi = 0 are frozen (g̃i = 0), ensuring that reasoning-critical
parameters remain unchanged while adaptation for safety occurs only in the remaining parameters.

This Fisher-based freezing method can be applied to different fine-tuning paradigms. In full fine-
tuning (FFT), Fisher importance is computed for all trainable parameters θ, and the top-k fraction of
parameters among those with non-zero Fisher values are frozen. In parameter-efficient fine-tuning
with LoRA, where the base model parameters are already frozen, Fisher importance is computed
directly on the initialized LoRA parameters θLoRA, and the top-k fraction of LoRA parameters with
non-zero Fisher values are selectively frozen.

3.3 DYNAMIC FREEZING STRATEGY

A key challenge of our method lies in the choice of the hyperparameter k. The optimal value of
k may vary across different models, and exhaustively searching for it can be both time-consuming
and computationally expensive. To mitigate this issue, we introduce an adaptive approach that dy-
namically updates k during training based on gradient information, providing a flexible alternative
to manual hyperparameter tuning.

During training, we introduce two datasets, the reasoning dataset and the safety dataset, and compute
gradients from each, denoted by gR, gS ∈ Rd. In practice, we use the same Dref used in the FIM
estimation as the reasoning dataset. The gradient gS corresponds to the unmasked gradient obtained
during the safety fine-tuning process. For each parameter θj , the associated gradients are denoted
by gR,j and gS,j . We then define the conflict measure c as the proportion of parameters with non-
zero F̂i,i whose gradients have opposing signs, computed only over parameters with non-zero Fisher
values. This is because only parameters with non-zero Fisher values can be frozen; parameters with
zero Fisher are unaffected by our method and thus irrelevant for the conflict measure. Formally, the
conflict is given by

c =

∣∣{ j | F̂j,j > 0 ∧ gR,jgS,j < 0}
∣∣∣∣{ j | F̂j,j > 0}

∣∣ . (6)

We keep a sliding window of size W to record the recent history of the conflict values c. For the first
W steps, when there is insufficient history, we set kdyn = 0.5. Afterward, we compute the mean µ
and standard deviation σ of the past W conflict values to serve as a baseline. The current conflict
value is normalized relative to this baseline and mapped into [0, 1] to obtain kdyn:

kdyn = clip

(
c− µ

2σ
+ 0.5, 0, 1

)
, (7)

where clip(·, 0, 1) truncates the result into the [0, 1] range. Note that we use 2σ as the scaling factor,
since under the normal distribution assumption about 95% of the samples fall within [µ−2σ, µ+2σ].
This provides a natural interval for mapping c into the range [0, 1]. This makes the frozen ratio
adaptive: lower conflict decreases kdyn to update more parameters, while higher conflict increases
kdyn to freeze more and preserve reasoning capacity.

4 EXPERIMENTS

4.1 IDENTIFYING REASONING-CRITICAL PARAMETERS WITH FISHER INFORMATION

To approximate the original training distribution, we adopt a reference dataset Dref . Specifically,
we sample 100 problems from the MATH-500 (Lightman et al., 2023), which provides a diverse set
of mathematical reasoning tasks that are representative of the complex, multi-step logical processes
LRMs are designed to handle. These problems are fed into the target models, and both the final
answers and the associated CoT traces are collected. The resulting corpus serves as a surrogate
reasoning dataset, enabling the estimation of Fisher information for identifying parameters that are
critical to reasoning performance.

4
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Figure 1: Fisher information distribution across layers and modules. We report the mean Fisher
information for parameters grouped by their module and layer index. In each sub-figure, the upper
panel illustrates the Fisher information of different modules within each layer, the lower panel sum-
marizes the mean Fisher information at the layer level.
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Figure 2: Mean Fisher information across layers for each parameter matrix and the overall mean
Fisher information for each module. In each subfigure, the left panel displays the mean Fisher
information of individual parameter matrices, while the right panel compares the overall mean Fisher
information for the Attention and MLP modules.

Using this corpus to estimate diagonal Fisher information for the reasoning loss, we find a highly
non-uniform layer-wise distribution as shown in Figure 1. We highlight two important observations:

Reasoning-critical parameters are concentrated in the early and final layers of the model.
Previous study Zhao et al. (2025b) argues that the reasoning capability of large language models
mainly emerges in their last few layers, often associating complex reasoning with progressively ab-
stract and context-sensitive representations. However, our Fisher-based analysis provides a distinct
perspective. As shown in Figure 1, the layers with the highest average Fisher information are the
very first layers, followed by the final layers of the network. While the last layers exhibit high
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Fisher scores in Qwen (1b), this pattern is not observed in LLaMA (1a); moreover, in Qwen, the
mean Fisher of the last layers is lower than that of the initial layers. These observations suggest
that early layers may play a crucial role in preparing, refining, or filtering representations that are
essential for subsequent reasoning. This insight could inform more efficient model training and
fine-tuning strategies by emphasizing the critical role of early layers.

Attention modules are critical for reasoning. In Figure 2, our Fisher-based analysis shows large
module-wise differences. Across all modules, the Fisher value of the value projection matrix V
is the largest, and this trend is consistently observed in both models. From the perspective of the
mean values across the two models, the key projection matrix K also holds a significant position.
This may indicate that the abilities of K and V to model token-to-token relationships and to ag-
gregate information are crucial for reasoning. Although certain feed-forward components such as
the up and down projections also show elevated Fisher values, their importance appears secondary
compared with the dominant contribution of attention modules. This observation is further echoed
by our experiments in Section 4.3, where applying LoRA to attention modules led to larger perfor-
mance drops. Overall, this contrast suggests that reasoning capability in LLMs is disproportionately
grounded in attention rather than evenly distributed across modules.

Llama Qwen
0

25

50

75

AIME

Llama Qwen

GPQA

Llama Qwen

HumanEval+

Llama Qwen

MBPP+

Original Random Fisher

Figure 3: Evaluation results on AIME and GPQA datasets after adding perturbations to the model.
Fisher-guided perturbations consistently underperform random perturbations.

Verifying the Effectiveness of Fisher Information in Identifying Reasoning-Critical Parame-
ters. We designed a straightforward experiment based on the hypothesis that if parameters with
high Fisher information are indeed critical for reasoning, then perturbing these parameters should
lead to a larger decline in the model’s reasoning performance compared to perturbing other param-
eters. To test this, we ranked all model parameters according to their Fisher information values and
applied a 0.9× scaling to the top 1% of parameters, and for comparison, we also applied the same
scaling to 1% of randomly selected parameters. In both cases, only a small fraction of parameters
were perturbed, ensuring that the overall network structure remained largely intact. The impact of
these perturbations on the model’s reasoning ability was evaluated using problems from the 2024
AIME (American Invitational Mathematics Examination) and the Main subset of the GPQA (Rein
et al., 2024) benchmark, representing high-level reasoning tasks, as well as the HumanEval+ and
MBPP+ (Liu et al., 2023) datasets, which focus on programming tasks that test the model’s cod-
ing and problem-solving abilities. As shown in Figure 3, perturbing the Fisher-top 1% caused a
markedly larger drop than random perturbation, supporting that high-Fisher parameters are critical
for reasoning and validating Fisher as a practical importance estimator.

4.2 MITIGATING THE SAFETY TAX WITH SELECTIVE PARAMETER FREEZING

In our main experiment, we apply our proposed RPSA method to two commonly used safety fine-
tuning paradigms: full fine-tuning (FFT) and LoRA. We first use 100 samples from the MATH-500
dataset to compute the FIM for both the full model parameters and the LoRA adapters attached to the
model. We set the window size of dynamic k strategy to W = 20. In implementation, we compute
the reasoning gradient gR, the conflict ratio c, and the corresponding kdyn every 25 training steps,
and recompute the gradient mask M accordingly. Under the LoRA setting, we use r = 4, α = 16,

6
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and a dropout rate of 0.05. LoRA is applied exclusively to the MLP modules. In Section 4.3, we
discuss the effect of different ranks r on the performance of RPSA, and the impact of applying
LoRA to different modules. Detailed experimental settings can be found in Appendix A.

4.2.1 EXPERIMENTAL SETUP

Models. We conduct experiments on distilled lightweight LRMs from the DeepSeek-R1 series
(Guo et al., 2025), specifically DeepSeek-R1-Distill-Llama-8B (R1-Llama-8B) and DeepSeek-R1-
Distill-Qwen-7B (R1-Qwen-7B). These distilled models preserve the core reasoning capabilities
and overall performance of their larger counterparts while offering a more compact architecture.

Datasets. To evaluate reasoning capabilities, we conduct experiments on the 2024 AIME, the Main
subset of GPQA (Rein et al., 2024), HumanEval+ (HE+), and MBPP+ (Liu et al., 2023) benchmarks.
AIME and GPQA focus on challenging reasoning tasks, with AIME targeting mathematical problem
solving and structured derivations, and GPQA emphasizing multi-step logical thinking and common-
sense reasoning. HumanEval+ and MBPP+ evaluate code generation and programming reasoning,
measuring the model’s ability to produce correct and functional programs. For safety evaluation,
we use the StrongReject (Souly et al., 2024) and WildJailbreak (Jiang et al., 2024) datasets. For
reasoning benchmarks, we report Pass@1 accuracy to measure correctness. For safety benchmarks,
we report the Attack Success Rate (ASR), which quantifies the harmfulness of the model.

Evaluation. All evaluations follow the recommended configurations in Guo et al. (2025) and are
conducted using the lm-evaluation-harness framework (Gao et al., 2024). To accommodate CoT
reasoning, we modify the prompt templates and answer extraction logic. The model is evaluated
with a temperature of 0.6 and top-p sampling of 0.95 to reduce repetitive or incoherent outputs. All
instructions are provided directly in the user prompt without any system prompt. For CoT reason-
ing, prompts explicitly include the phrase Please think step by step and the <think>
prefix. For mathematical problems, prompts further instruct the model to reason step by step and
enclose the final answer in the form of \boxed{answer}. Prompt templates are also adjusted to
comply with official guidelines, with detailed templates provided in Appendix B.

4.2.2 MAIN RESULTS

The results of our experiments, visualized in Figure 4 and detailed in Table 1, demonstrate that our
proposed method effectively mitigates the safety tax. Figure 4 shows the trade-off between reasoning
performance (x-axis) and safety, measured by the average StrongReject and WildJailbreak ASR (y-
axis, inverted so higher positions indicate lower ASR), with the upper-right corner representing
models with both high reasoning performance and high safety. To quantify this trade-off more
concretely, we additionally define a Safety Tax Rate (STR), measured as STR = ∆R/∆S, where ∆R
denotes the average performance drop across all reasoning benchmarks, and ∆S denotes the average
reduction in ASR across all safety benchmarks. Intuitively, STR captures how much reasoning
ability is lost per unit of safety gain: lower values indicate a more favorable trade-off.

Across all four subplots, the Original models (blue circles) establish a baseline of strong reasoning
ability but poor safety, reflected in high ASR scores. Standard alignment methods expose the safety
tax: FFT (green triangles) nearly eliminates ASR but causes a catastrophic drop in reasoning, while
LoRA (orange triangles) achieves a milder trade-off with improved reasoning ability. In contrast, our
proposed RPSA method further mitigates the reduction on the reasoning ability, with lower average
harmfulness in most cases.

As shown in Table 1, our method significantly reduces STR under different settings on the R1-
Llama-8B model. Applied to the baseline FFT, it lowers STR from 0.9221 to 0.5837, achieving a
maximum reduction of 36.70%. When applied to LoRA, it further decreases STR from 0.2354 to
0.0834, corresponding to a 64.57% reduction. Overall, combining our method with LoRA yields a
reduction from 0.9221 (original FFT) to 0.0834, representing a 90.96% decrease. On the R1-Qwen-
7B model, our approach achieves up to a 43.39% reduction in STR, demonstrating its consistent and
substantial effectiveness.

It is worth noting that we employ MATH-500, a mathematics-domain dataset, as a reference dataset
for computing the FIM. Nevertheless, when evaluating the model fine-tuned with our method on
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Figure 4: Results for different methods on various datasets. Please note that LoRA and FFT overlap
at the same spot in the AIME subfigure of R1-Qwen-7B, with only a small difference along the y-
axis. The same color denotes the same base fine-tuning method (FFT/LoRA). Our proposed method,
RPSA, is highlighted with star markers.

Table 1: Experimental comparison of our RPSA method with baseline methods. The best perfor-
mance in each group is highlighted in bold.

Model Method Reasoning Performance ↑ Harmfulness ↓ STR↓
AIME GPQA HE+ MBPP+ SR WJ

R1-Llama-8B

Original 53.33 53.79 78.05 82.28 64.22 49.60 N/A

FFT 10.00 26.56 26.83 12.43 6.71 3.20 0.9221
+RPSA 26.67 36.38 40.24 36.51 2.87 1.60 0.5837

LoRA 33.33 49.33 65.85 67.46 1.28 3.20 0.2354
+RPSA 36.67 52.68 79.88 79.63 0.00 2.40 0.0834

R1-Qwen-7B

Original 60.00 50.22 84.15 79.37 64.22 53.60 N/A

FFT 43.33 49.11 66.46 60.05 1.28 8.40 0.2533
+RPSA 46.67 51.78 73.78 64.29 0.63 8.00 0.1704

LoRA 43.33 48.44 75.61 57.14 0.64 9.20 0.2279
+RPSA 53.33 50.00 73.17 66.93 0.96 11.20 0.1434

HumanEval+ and MBPP+, two code generation benchmarks, we also observe comparable improve-
ments. This indicates that our identification of reasoning-critical parameters exhibits strong cross-
domain generalization, thereby underscoring the practicality of our approach.

4.3 HYPERPARAMETER ANALYSIS

We analyze three knobs that affect the safety–reasoning tradeoff: LoRA rank, LoRA target modules,
and the frozen ratio k. All experiments in this subsection are conducted on DeepSeek-R1-Distill-
Llama-8B.

LoRA Rank. The rank of LoRA adapters is crucial as it determines the sparsity of parameter
updates. According to Xue & Mirzasoleiman (2025), We performed a hyperparameter search over

8
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(a) LoRA rank search.
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(b) LoRA module search.

Figure 5: Hyperparameter search for LoRA rank and LoRA module on the Llama-8B model under
constant frozen ratio k = 0.6. Results on plain LoRA can be found in Appendix C

the LoRA rank. Figure 5a presents the results for ranks ranging from 1 to 32 under a constant
k = 0.6. Most settings yield consistently low STR (e.g., ranks 2, 4, 8, 32). For consistency with
prior work (Xue & Mirzasoleiman, 2025), we adopt rank = 4 in our main experiments.

LoRA Module. We investigated the effect of applying LoRA to different modules, considering
three setups: MLP-only, Attention-only, and Both. We conducted fine-tuning under a constant
k = 0.6, and the results are shown in Figure 5b. Applying LoRA to only the Attention module leads
to a degradation in reasoning performance, which is consistent with our earlier analysis in Section
4.1. In contrast, applying LoRA to the MLP modules, or to both MLP and Attention, preserves
almost the same average reasoning performance as the MLP-only setting. Despite the lowest STR
observed for MLP & Attention, we adopt MLP-only as the default target for LoRA in our main
experiments, both for consistency with prior work and computational efficiency.

4.4 ABLATION STUDY
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Figure 6: Comparison of Fisher-Guided mask,
Random mask and FFT with no masking. The leg-
end is the same as Figure 5

We compared Fisher-guided masking with a
random masking baseline under the same con-
stant frozen ratio k = 0.6 using the FFT
paradigm. In the Fisher method, we iden-
tify all parameters with non-zero Fisher val-
ues, rank them, and freeze the top 60%. For
the random baseline, we freeze the same num-
ber of parameters sampled uniformly at ran-
dom. We then operate the safety fine-tuning
on both models. As shown in Figure 6, mod-
els frozen with Fisher guidance consistently
achieve higher STR than those trained with ei-
ther no masking or random masking. While the
random mask results in a decrease in STR com-
pared to the original FFT, it still underperforms the Fisher-guided method. These results highlight
the effectiveness of our proposed Fisher-guided approach.

5 CONCLUSION

In summary, we introduced a Fisher-information-based method to safeguard reasoning parameters
during safety alignment, effectively mitigating the degradation of reasoning ability in large reasoning
models. Our experiments demonstrate that this approach achieves a more favorable balance between
safety and reasoning compared with existing methods. To further reduce the computational overhead
from hyperparameter search, we incorporate an adaptive strategy to automatically adjust the freezing
proportion, ensuring that our framework remains both practical and flexible across diverse settings.
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ETHICS STATEMENT

Our experiments involve publicly available datasets and model outputs that may contain harmful
or biased content prior to safety fine-tuning. Such content is used only for analysis in controlled
settings, and we do not release or promote it beyond the scope of this research.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our methods, training procedures, and evaluation settings in the
main paper, with hyperparameters and training settings documented in Appendix A. All datasets
used are publicly available, and their sources are explicitly specified. The URL for our code is
provided in the abstract, and the code files are included in the supplementary materials.
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A TRAINING DETAILS

Table 2: We divide our experiments into two categories: Full fine-tuning and LoRA-based fine-
tuning. For a fair comparison, both settings are conducted under the same base hyperparameter
configuration, unless otherwise specified. All reported results are obtained under this unified setup.

Hyperparameter Full fine-tuning LoRA

Learning rate 1× 10−5 1× 10−4

Epochs 3 6
Per Device Batch size 2 2
Precision bfloat16 bfloat16
Optimizer AdamW AdamW
Weight decay 1× 10−4 1× 10−4

Gradient clipping 1.0 1.0
Scheduler Cosine, warmup 100 steps Cosine, warmup 100 steps
Eval steps 100 100
Save steps 100 (keep best) 100 (keep best)
Random seed 42 42
Hardware 4 × H100 GPUs 2 × H100 GPUs
LoRA config — r = 4, α = 16, dropout = 0.05

Frameworks PyTorch + Hugging Face Transformers + vLLM

B EVALUATION PROMPTS

AIME Prompt

Solve the following math problem. Present the final answer in the format: Final Answer:
boxed{your answer}.
Problem: {{problem}}
Answer:

GPQA Prompt

What is the correct answer to this question:{{Question}}
Choices:
(A) {{choice1}}
(B) {{choice2}}
(C) {{choice3}}
(D) {{choice4}}
Please reason step by step, and present your final answer using the format: Final Answer:
boxed{X}, where X is one of A, B, C, or D.

HumanEval Prompt

Solve the following problem.

Problem:
{{ prompt }}

Please reason step by step, and put your final answer within a code block:
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MBPP+ Prompt

{{prompt if prompt is defined else text}} Your code should satisfy the following assertion:
{{test list[0]}}. Please reason step by step, and put your final answer within a code block:

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we further conducted a comprehensive hyperparameter search for the standalone
LoRA module, as illustrated in Figure 7. The experimental results indicate that, except for the case
where r = 16 on MLP modules, our method consistently outperforms plain LoRA across most
configurations. This suggests that our approach exhibits a higher level of robustness and effective-
ness under varying hyperparameter settings. The observed performance gains further highlight the
advantages of our method over the standard LoRA implementation.
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(a) LoRA rank search.
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(b) LoRA module search.

Figure 7: Hyperparameter search for LoRA rank and LoRA module on the Llama-8B model with
plain LoRA.

D USE OF LARGE LANGUAGE MODELS

Large language models were employed exclusively to improve the clarity, grammar, and readability
of the manuscript. They were not used for research ideation, experiment design, data analysis, or
retrieval of related work.

14


	Introduction
	Related Work
	Methodology
	Quantifying Parameter Importance with Empirical Fisher Information
	Protecting Reasoning Capabilities During Alignment
	Dynamic Freezing Strategy

	Experiments
	Identifying Reasoning-Critical Parameters with Fisher Information
	Mitigating the Safety Tax with Selective Parameter Freezing
	Experimental Setup
	Main Results

	Hyperparameter Analysis
	Ablation Study

	Conclusion
	Training Details
	Evaluation Prompts
	Additional Experimental Results
	Use of Large Language Models

