
Enhancing Large Language Model’s Capabilities in Open Domains via
Autonomous Tool Integration from GitHub

Anonymous ACL submission

Abstract

Large Language Models (LLMs) excel in tra-001
ditional natural language processing tasks but002
struggle with problems that require complex003
domain-specific calculations or simulations.004
While equipping LLMs with external tools to005
build LLM-based agents can enhance their ca-006
pabilities, existing approaches lack the flexibil-007
ity to address diverse and ever-evolving user008
queries in open domains. Currently, there is009
also no existing dataset that evaluates LLMs on010
open-domain knowledge that requires tools to011
solve. Notably, the largest open-domain plat-012
form is GitHub. To this end, we introduce Ope-013
nAct based on human expert consult and repos-014
itories in GitHub. It comprises 339 questions015
spanning 7 diverse domains that need to be016
solved with domain-specific methods. In our017
experiments, even state-of-the-art LLMs and018
LLM-based agents demonstrate shallow suc-019
cess rates on OpenAct, underscoring the need020
for a novel approach. Based on the character-021
istics of this task, we present OpenAgent, a022
novel LLM-based Agent system that can tackle023
evolving queries in open domains through au-024
tonomously integrating specialized tools from025
GitHub. OpenAgent employs 1) a hierarchi-026
cal framework where specialized agents han-027
dle specific tasks and can assign tasks to infe-028
rior agents, 2) a bi-level experience learning029
mechanism to learn from both humans’ and030
its own experiences to tackle tool flaws. Ex-031
periments demonstrate OpenAgent’s superior032
effectiveness and efficiency that significantly033
outperforms current methods.034

1 Introduction035

Large Language Models (LLMs) have demon-036

strated exceptional capabilities through diverse037

traditional natural language processing (NLP)038

tasks (OpenAI, 2022, 2023; Team et al., 2023; An-039

thropic, 2024). However, LLMs still struggle with040

specialized tasks that require calculation, simula-041

tion, data augmentation, etc (Qin et al., 2024). To042

GTSM8K (Cobbe et
al. 2021): John
writes 20 pages a
day. How long will it
take him to write 3
books that are 400
pages each?

AgentBench (Liu et
al. 2023): Looking
for a queen size
bedspread set in
the color redwood,
and price lower
than 70.

Ability limited by the
predefined toolset to
in-domain tasks.

Domain
Knowledge

Benchmarks

Agent
Benchmarks

A Fixed Toolset An Open Toolset

Previous Works Our Work

OpenAct

Case1: Calculate the
UCCSD energy of a
linear H6 molecule
with alternating bond
distances of 0.9 and
1.1 angstroms.

Case2: Help me to
detect the structural
variations in given
gene sequences and
save the structural
variations in
`output_result.vcf`.

Autonomous expand
its toolset and
capacity to tackle
open-domain tasks.

Figure 1: The comparison between our work and previ-
ous studies from both dataset and model perspectives.

indicates that a model is capable of solving tasks
within a benchmark, whereas indicates the opposite.

tackle it, researchers equip LLMs with external 043

tools (e.g., search engines (Nakano et al., 2021; Qin 044

et al., 2023a), code executors (Qian et al., 2023b; 045

Cai et al., 2023b), scientific simulators (Liu et al., 046

2022; Bran et al., 2023b)) to function as agents that 047

are capable of solving complex tasks and extend the 048

capability boundary of LLMs beyond traditional 049

NLP tasks. Existing LLM-based agents (AutoGPT, 050

2023; Wu et al., 2023; XAgent, 2023; Schick et al., 051

2023; Parisi et al., 2022; Patil et al., 2023; Hong 052

et al., 2024) have access to a pre-defined toolset 053

and can combine its cognitive abilities with the 054

specialized functionalities of these tools. 055

However, the effectiveness of current LLM 056

Agents is constrained by the pre-defined toolset 057

they rely on. This design paradigm restricts them to 058

addressing in-domain problems while lacking the 059

generalization capability to handle diverse open- 060

domain questions, which is a critical limitation 061

given that real-world user queries often require 062

domain-specialized tools. This contradiction raises 063

our core research problem: Are LLM agents able 064

to autonomously search for and adapt new tools 065

for open-domain tasks? 066

1

Addressing this challenge requires reevaluat-067

ing existing evaluation paradigms. Current bench-068

marks are constructed based on pre-defined toolsets069

rather than real-world demands, creating an artifi-070

cial performance ceiling that fails to assess mod-071

els’ ability to handle tasks requiring external spe-072

cialized tools. Real-world tasks often necessitate073

specialized tools and domain-specific knowledge074

that extend beyond the inherent capabilities of pre-075

trained language models and a fixed toolset. Such076

tasks, like gene mutation detection, quantum chem-077

istry analysis, and financial modeling, are typically078

executed by domain experts utilizing sophisticated079

professional tools and software.080

In this context, GitHub emerges as it is the081

largest platform that contains implementations of082

algorithms and methodologies in open domains that083

are employed by experts in their respective fields. If084

LLM-based agents could effectively search for, de-085

ploy, and utilize relevant repositories from GitHub,086

they could independently extend their toolset. This087

capability would enable LLM agents to dynami-088

cally adapt and grow their abilities, significantly089

enhancing their versatility and effectiveness in ad-090

dressing complex, real-world applications.091

To this end, we introduce OpenAct. Its construc-092

tion began by identifying key issues and method-093

ologies across multiple domains. We then collected094

relevant tools on GitHub and carefully designed a095

series of tasks that reflect domain needs. OpenAct096

is the first dataset designed to evaluate LLMs on ful-097

filling open-domain real-world tasks. It comprises098

339 queries across 7 diverse domains, including fi-099

nance, chemistry, bioinformatics, computer vision,100

etc. Selected tasks in traditional benchmarks and101

ours are listed in Figure 1.102

Experiments show that both vanilla LLMs and103

general-purpose LLM agents perform poorly on104

OpenAct. The key challenges are: (1) Lack of Qual-105

ity Assurance: GitHub repositories often contain106

flaws, bugs, or incomplete/misleading documen-107

tation, (2) Alignment Gap: GitHub tools require108

adjustments to fit user needs, (3) Workflow Com-109

plexity: The process involves many diverse tasks,110

making it hard for LLMs to stay effective. Notably,111

(2) contributes to (3).112

To solve these challenges, we introduce Ope-113

nAgent, a novel LLM-based agent system that114

autonomously extends tools from GitHub. It pos-115

sesses two key features: (1) a hierarchical structure116

that dynamically decomposes the whole process117

into distinct subtasks (e.g. setting up environments,118

Figure 2: Illustration of GPT-4-based OpenAgent per-
forms against baselines on 339 queries from 7 domains
in OpenAct.

reading Issues/PRs), and (2) a bi-level experience 119

learning mechanism to accumulate both in-task 120

and cross-task experiences. Generally, OpenAgent 121

starts with searching suitable repositories, then set- 122

ting up the necessary environment, and utilizing 123

the repository to fulfill user queries. 124

We conduct extensive experiments on Open- 125

Act to demonstrate the effectiveness of OpenA- 126

gent compared to state-of-the-art LLMs and LLM 127

Agents. Ablation studies prove the necessity of 128

both the above two key features. 129

In summary, our contributions are threefold: 130

• We introduce OpenAct, a comprehensive 131

dataset comprising 339 queries across 7 di- 132

verse domains, which is specifically designed 133

to evaluate the capabilities of LLMs’ open- 134

domain capability in real-world scenarios. 135

• We propose OpenAgent, a novel LLM Agent 136

system that autonomously extends its toolset 137

by integrating repositories from GitHub. It 138

employs a hierarchical structure and possesses 139

a bi-level experience learning mechanism. 140

• Experiments demonstrate the effectiveness of 141

OpenAgent and its two key features. 142

2 Related Work 143

LLM-based Agents. Large Language Mod- 144

els (LLMs) (OpenAI, 2022, 2023; Touvron et al., 145

2

Table 1: Comparison of Benchmarks for Evaluating LLMs on Domain Knowledge and Tool Utilization. The
“Domain Num.” column indicates the number of domains evaluated by each benchmark, with “-” denoting
benchmarks that do not assess domain knowledge. “Open End” denotes the presence of an open-ended environment
for exploration within the benchmark. “Repository-Level” specifies whether the tasks in the benchmark are scoped
at the repository level, with the number in the bracket denoting the number of repositories relevant to the benchmark.

Benchmark Domain Num. Task Source Task Types Code Use Tool Use Open End Repository-Level
Minedojo (Fan et al., 2022) - Internet Action ✓ ✓ ✓ ✗

OSWorld (Xie et al., 2024) - Internet Action ✗ ✓ ✓ ✗

ToolBench (Qin et al., 2023b) - Tool QA ✗ ✓ ✗ ✗

MetaTool (Huang et al., 2024b) - Tool QA ✗ ✓ ✗ ✗

AgentBench (Liu et al., 2023) - Tool QA ✓ ✓ ✗ ✗

GTSM8K (Cobbe et al., 2021) 1 Domain QA ✗ ✓ ✗ ✗

ScienceQA (Lu et al., 2022) 3 Domain QA ✓ ✗ ✗ ✗

SciEval (Sun et al., 2023) 3 Domain QA ✗ ✗ ✗ ✗

SciBench (Wang et al., 2024) 3 Domain QA ✓ ✗ ✗ ✗

SWE-Bench (Jimenez et al., 2024) 1 GitHub Coding ✓ ✓ ✗ ✓(12)
ML-Bench (Tang et al., 2024) 1 GitHub Coding ✗ ✓ ✗ ✓(14)
SUPER (Bogin et al., 2024) - GitHub QA ✓ ✓ ✗ ✓(45)

OpenAct (Ours) 7 Domain and Github QA and Coding ✓ ✓ ✓ ✓(21)

2023a,b) have demonstrated remarkable profi-146

ciency across traditional natural language process-147

ing (NLP) tasks. LLM-based agents (AutoGPT,148

2023; Wu et al., 2023; Li et al., 2023; XAgent,149

2023) are LLMs equipped with external tools that150

can accomplish tasks requiring complex calcula-151

tions or real-time actions (Yao et al., 2022a; Cheng152

et al., 2024; Park et al., 2023; Ye et al., 2023; Ma153

et al., 2024; Cai et al., 2023a; Wang et al.; Bo-154

gin et al., 2024; Kumar et al., 2023; Liu et al.;155

Bran et al., 2023a; Huang et al., 2024a; Qi et al.,156

2024; Kraus et al., 2023; Koldunov and Jung, 2024;157

Thulke et al., 2024; Vaghefi et al., 2023). However,158

existing research typically supports a limited set159

of tools, which cannot meet the diverse demands160

of humans. Recently, there has been a focus on161

tool creation (Cai et al., 2023b; Qian et al., 2023b;162

Wang et al., 2023; Qian et al., 2023a) for agents163

to dynamically create tools, which are typically164

file-level code scripts. The functionalities of these165

created tools remain simple and limited, insuffi-166

cient to meet complex real-world user queries.167

Benchmarking LLMs on Domain Knowledge,168

Tool Use and Open-Ended Tasks. Different169

benchmarks evaluate LLMs across diverse do-170

mains and capabilities. Domain knowledge bench-171

marks initially focused on mathematics (Cobbe172

et al., 2021; Hendrycks et al., 2021). Subsequent173

works(Lu et al., 2022; Sun et al., 2023) broadened174

the scope to encompass three domains: mathemat-175

ics, physics, and chemistry. (Wang et al., 2024) fur-176

ther advanced this approach by incorporating code177

interpreter functionality while continuing to focus178

on these three domains. These benchmarks are typ-179

ically derived from established knowledge sources180

such as textbooks and curated problem repositories, 181

which do not fully capture real-world complexities 182

or cutting-edge questions in rapidly evolving fields. 183

In parallel, tool use datasets (Qin et al., 2023b; 184

Huang et al., 2024b; Liu et al., 2023) are designed 185

based on the functionalities of pre-defined tools and 186

APIs. Recent works have begun to bridge the gap 187

between domain knowledge and practical applica- 188

tion by focusing on coding tasks derived from real- 189

world GitHub repositories. However, their scope 190

remains limited to specific domains (Jimenez et al., 191

2024; Tang et al., 2024; Bogin et al., 2024). 192

Lastly, while open-ended exploration is crucial 193

for real-world tasks, existing research has primar- 194

ily studied it in action-oriented environments (Fan 195

et al., 2022; Wang et al., 2023; Xie et al., 2024). 196

In conclusion, existing benchmarks remain lim- 197

ited in their scope, domains, tool use, or coding 198

tasks in isolation. They frequently lack the com- 199

bination of multimodality, code use, tool utiliza- 200

tion, and open-ended exploration that characterizes 201

many real-world problem-solving scenarios. Ta- 202

ble 1 lists the main differences between our bench- 203

mark and previous works. 204

3 Dataset: OpenAct 205

3.1 Dataset Construction 206

We present OpenAct, a high-quality benchmark 207

spanning 7 professional domains that bridge open- 208

domain knowledge with executable implementa- 209

tion resources. As is shown in Figure 3, the dataset 210

construction process involves the following stages: 211

Domain-Specific Problem Curation. We col- 212

laborated with domain experts to identify frontier 213

challenges within their respective fields that are 214

3

Specialist
Consultation

Candidate
Repositories

Target
Repositories

Extensive
Search

Human
Filtering

Candidate
Problems

LLM
Proposing

Human
Testing/

Filtering/
Enhancement

Question
-Answer
Pairs

Figure 3: The construction pipeline of OpenAct.

amenable to computational solutions. This pro-215

cess yielded 7-10 candidate problems per domain216

through iterative refinement with expert feedback.217

Repository Selection and Filtering. We con-218

ducted systematic searches on GitHub to identify219

repositories implementing solutions for the curated220

problems. From an initial pool of 10 repositories221

per domain, we applied rigorous filtering criteria:222

(1) Removal of repositories with duplicate function-223

ality or implementation approaches; (2) Verifica-224

tion of active maintenance status within the past 6225

months; (3) Assessment of documentation quality.226

This yielded 21 repositories across seven domains.227

Query Generation and Validation. For each228

repository, we employed GPT-4 to generate 30229

candidate queries of varying complexity levels.230

Through manual validation we retained 5-10 ex-231

ecutable queries per repository, ensuring: (1) Solv-232

ability using the target repository; (2) Coverage233

of different functionality aspects; (3) Absence of234

ambiguous phrasing. This process resulted in 113235

validated base queries.236

Problem Enhancement. To investigate informa-237

tion hinting strategies, we designed three prompt238

conditions for each base query: (1) Explicit Hint:239

Direct repository specification with GitHub URL;240

(2) Implicit Hint: Domain/keyword-based hints241

without repository identification; (3) textitNo Hint:242

Base query without supplemental information.243

This multi-condition approach yields 339244

instruction-answer pairs with expert-validated245

ground truth solutions. Table 2 summarizes the246

dataset statistics across domains. Appendix A con-247

tains more detailed statistics of OpenAct.248

Table 2: Statistics of OpenAct.

Domain Num. of Repo. Num. of Query
Finance 2 45
Chemistry 4 66
Bioinformatics 2 30
Computer Vision 6 90
Network Analysis 2 30
Security Analysis 2 30
Visualization 3 48
Total 21 339

3.2 Data Categorization 249

We categorized the collected repositories based on 250

the difficulty of the Setup and Apply phases. 251

For the Setup difficulty, we divided the col- 252

lected repositories into 3 classes: (1)Setup-Easy: 253

The README provides a detailed and correct 254

setup tutorial, with which the environment can be 255

set up fluently. (2)Setup-Medium: The README 256

misses some details or contains slight flaws, which 257

requires the agent to solve based on error reports. 258

(3)Setup-Hard: The README provides an incor- 259

rect tutorial because of human error or insufficient 260

maintenance, which needs agents to find relevant 261

Issues/PRs to solve. 262

For the Apply difficulty, we also divided the 263

repositories into 3 classes: (1)Apply-Easy: Sim- 264

ply requires running some commands given by the 265

README. (2)Apply-Medium: Requires writing 266

configuration files or downloading extra resources, 267

like data and trained models. (3)Apply-Hard: Re- 268

quires modifying the source code of the repositories 269

or need to refer to relevant Issues/PRs for help. 270

3.3 Operation Environment 271

To ensure experiment reproducibility and minimize 272

dependency on local environments, we designed 273

a comprehensive interface that allows LLMs to 274

interact seamlessly with a Docker container. In 275

our work, all interactions with by the LLMs are 276

executed within a controlled Docker environment. 277

3.4 Evaluation Metrics 278

We designed 2 evaluation metrics for tasks in Ope- 279

nAct: Completeness and Pass Rate. 280

Pass Rate The Pass Rate is defined as the pro- 281

portion of queries that successfully meet the prede- 282

fined criteria relative to the total number of queries. 283

This evaluation is conducted exclusively based on 284

the comparison of the final answer with the expert- 285

generated "golden answers" by GPT-4. A query is 286

deemed to pass if there is a concordance between 287

these two answers. 288

Completeness To precisely evaluate the perfor- 289

mance of OpenAgent and its baselines, we fur- 290

4

ther designed a metric to evaluate the whole execu-291

tion process with a GPT-4-based evaluation agent,292

scoring from 0 to 10. The evaluation covers three293

phases: Search, Setup, and Apply. GPT-4 assigns294

scores of [0, 3] for Search, Setup, and Apply, and295

[0, 1] for the final answer. These scores are subse-296

quently aggregated and normalized to a 10-point297

scale to derive the overall completeness score.298

We sampled 120 queries and results for human299

annotation, achieving an 87.5% absolute match300

with GPT-4 evaluations, indicating the high relia-301

bility of our metrics. The details of this check are302

depicted in Appendix B.303

4 OpenAgent304

Our preliminary experimental results show that305

both vanilla LLMs and general-purpose LLM306

agents perform poorly on OpenAct. Even when307

we provide the LLM with relevant GitHub inter-308

faces and a well-constructed environment to create309

a custom LLM agent, the model’s performance re-310

mains inferior We attribute it to several challenges311

in employing GitHub repositories to fulfill a task:312

(1) Lack of Quality Assurance: GitHub reposi-313

tories often lack standardization and may contain314

flaws or bugs, and their documentation may also315

be incomplete, misleading, or containing errors.316

(2) Alignment Gap between Tools and Queries:317

Tools on GitHub need adjustments to suit the users’318

needs. (3) Workflow Complexity: The whole319

workflow involves dozens of different tasks. The320

significant differences between these tasks can eas-321

ily distract the LLMs from completing the whole322

process effectively.323

To address this, we propose OpenAgent, with324

2 novel features: (1) Hierarchical Agent System,325

where models delegate subtasks to reduce work-326

flow burden (Section 4.1), (2) Bi-Level Experi-327

ence Learning (Section 4.2), which learns from328

Issues/PRs for in-task knowledge and accumulates329

cross-task experience. The first layer of the Hi-330

erarchical Agent System consists of three main331

components and we introduce them in Section 4.3.332

4.1 Hierarchical Agent System333

As shown in the figure, the Hierarchical Agent334

System breaks down complex tasks into smaller335

sub-tasks, where each agent receives a query from336

a higher-level entity and responds by either tak-337

ing direct action or delegating tasks to sub-agents.338

These interactions fall into two categories: (1) Ac-339

tion Calls: Direct interactions with the environ- 340

ment, such as executing commands, checking files, 341

or submitting results. (2) Agent Calls: Assigning 342

sub-tasks to specialized agents, such as setting up 343

environments or modifying files. 344

Each agent processes its query based on previous 345

actions and observations. If it delegates to a sub- 346

agent, the sub-agent continues the process with a 347

refined query. If the agent acts, it either completes 348

the task (reporting the result back) or interacts with 349

the environment and records feedback. 350

This recursive process continues until all tasks 351

are broken down into simple, executable actions. 352

By structuring tasks hierarchically, the system effi- 353

ciently manages complexity, allowing each agent to 354

focus on its specific role while collectively achiev- 355

ing intelligent behavior. 356

4.2 Bi-Level Experience Learning 357

We developed and implemented an experience 358

learning feature for OpenAgent, encompassing 359

both in-task and cross-task learning paradigms. 360

Due to the non-standardization of GitHub reposi- 361

tories, some lack perfect READMEs and necessary 362

setup information. Additionally, flaws in the source 363

code pose challenges. In such cases, learning from 364

human experiences becomes an efficient approach. 365

Building upon the hierarchical framework, we 366

introduce a specialized agent, the Issue/PR Agent 367

to handle the experience learning process. This 368

agent is called when a higher-level agent encoun- 369

ters a problem that might benefit from past expe- 370

riences or community solutions. It is responsible 371

for searching, evaluating, and returning relevant 372

information from GitHub Issues and Pull Requests. 373

Apart from in-task knowledge learned from com- 374

/ /

Agent Call Action Call

Action EnvironmentAgent

𝑄!"#

𝐴$
! 𝑂$

! 𝐴%!𝑄!

𝐴&!'# 𝐴&!'#𝑂&!'#

Agent Human Agent Human

𝐴(!"#

… …

…

… …
Query Submit

Figure 4: Illustration of the Hierarchical Agent System,
where blocks mean memory list and same background
color denote same information.

5

Methods Finance Chemistry Bioinformatics Computer Vision Network Analysis Security Analysis Visualization Avg.

GPT-3.5-Turbo Based

Vanilla 0 36.4 0 0 0 0 31.3 11.5
ReAct 2.2 3.0 3.3 6.7 0 0 0 2.4

ReAct + Sum. 0 0 0 0 0 0 0 0
OpenAgent (Ours) 8.9 24.2 23.3 8.9 10.0 33.3 20.1 17.1

GPT-4 Based

Vanilla 0 68.2 0 0 0 0 43.8 19.5
XAgent 0 40.9 0 0 40.0 0 81.3 23.0
ReAct 51.1 19.7 17.8 22.2 10.4 30.0 23.3 24.6

ReAct + Sum. 31.1 19.7 26.7 22.9 14.8 33.3 26.7 24.4
OpenAgent (Ours) 68.9 34.9 86.7 45.6 16.7 43.3 35.4 47.3

Table 3: Pass Rates (%) of different methods across various domains in the OpenAct dataset. Results are shown for
both GPT-3.5-Turbo and GPT-4-based implementations. “All” represents the overall pass rate across all domains.

munity experiences and solutions, OpenAgent can375

also learn from its own past experiences to improve376

decision-making over time. It updates its knowl-377

edge by summarizing past actions and outcomes,378

refining its approach for future tasks.379

After completing a task, the agent stores its exe-380

cution environment in a Docker image, allowing for381

easy reuse when similar queries arise. To enhance382

retrieval, it abstracts the repository’s functionality383

and summarizes key experiences, ensuring efficient384

adaptation to new challenges.385

4.3 Main Phases386

Repository Search. In the search phase, the387

agent identifies suitable repositories to fulfill the388

user query. It first checks previously stored reposi-389

tories to determine if any match the query. If a suit-390

able repository is found, its environment is loaded391

directly, bypassing the setup phase. If no stored392

repository is available, the agent searches GitHub393

for relevant options. If the user specifies a repos-394

itory, the agent retrieves it by name; otherwise, it395

searches by topic to find relevant repositories. Once396

candidate repositories are gathered, the agent eval-397

uates their suitability by analyzing their README398

files and determining whether they can effectively399

address the user’s request.400

Environment Setup. Once a suitable repository401

is identified, the agent sets up its execution en-402

vironment. This begins with cloning the reposi-403

tory and installing dependencies as outlined in its404

README file. However, since many repositories405

lack standardized documentation or contain flaws,406

the agent may need to search GitHub Issues and407

Pull Requests to resolve problems. If necessary, it408

modifies the repository’s source files to fix bugs.409

To ensure security and isolation, all operations are410

conducted within a Docker environment. 411

Tool Application. After configuring the environ- 412

ment, the agent proceeds to apply the repository 413

to solve the user query. If the repository is well- 414

structured and provides a clear entry point, such as 415

a command-line interface, the agent can use it di- 416

rectly. However, for non-standardized repositories 417

with limited documentation, the agent relies on hu- 418

man experiences extracted from Issues and PRs. If 419

the execution produces extensive output, the agent 420

writes a Python script to extract key information 421

efficiently. Elaborated introduction to these phases 422

are in Appendix A. 423

Note that although this process follows a hier- 424

archical structure, the agent dynamically decides 425

which phase, subtask, or action to execute based on 426

the specific query. This flexibility ensures adapt- 427

ability to diverse and complex tasks. 428

5 Experiment 429

5.1 Experiment Settings 430

Baselines. To validate the effectiveness of our 431

OpenAgent, we design the following baselines: (1) 432

LLM: Vanilla LLMs without external tools (2) Re- 433

Act (Yao et al., 2022b): ReAct is a widely-used 434

LLM-based agent task-solving technique (Auto- 435

GPT, 2023; Wu et al., 2023). In our settings, Re- 436

Act is equipped with the same actions as our Ope- 437

nAgent to extend tools from GitHub for fair com- 438

parison. (3) ReAct+Summary: Due to the com- 439

plexity of the tool extension, the whole process 440

tends to involve lengthy context, surpassing the 441

context window of LLMs. Hence, we design this 442

ReAct variant which will summarize the context 443

when the length of the context reaches the thresh- 444

old. (4) XAgent (XAgent, 2023): XAgent is a pow- 445

erful general-purposed LLM-based agent, which 446

6

Method Pass Rate

OpenAgent w/ PRs&Issues 47.3
OpenAgent w/o PRs&Issues 40.3

Table 4: Results of ablating in-task experience learning.

is equipped with numerous external tools and can447

reason, plan, code, and reflect.448

Implementation Details We implement Ope-449

nAgent and baseline methods except XA-450

gent based on the gpt-4-0125-preview and451

gpt-3.5-turbo-16k respectively with a 0.7 tem-452

perature, under a 0-shot setting. There is no GPT-453

3.5-based XAgent because its behindhand reason-454

ing and planning ability can’t support XAgent’s455

complex workflows. Specially, the following main456

experiments reflect the success rate on the first en-457

counter with the problem, incorporating PR/Issue458

but without using experience summary (cross-task459

experience learning) to enhance the strategy.460

5.2 Overall Results461

Table 3 reports the Pass Rates of each method. We462

get several observations: (1) While Vanilla LLMs463

and XAgent demonstrate good performance in fa-464

miliar domains like Chemistry and Visualization,465

it is impossible for them to fulfill questions in un-466

acquainted domains like Bioinformatics, Finance,467

etc. (2) ReAct achieves a lower Pass Rate than the468

agency structure in both settings, which demon-469

strates that simply adapting the ReAct framework470

cannot achieve good results. (3) ReAct+Summary471

achieves lower performance than ReAct because472

the summarization will lose critical information.473

Thus, it is infeasible to avoid the over-length prob-474

lem by simply summarizing the long context. (4)475

All GPT-4-based methods outperform their GPT-476

3.5 counterparts significantly, showing that Ope-477

nAct is a challenging dataset needing powerful478

LLMs to achieve. (5) OpenAgent with hierarchi-479

cal architecture significantly outperforms all base-480

lines and incurs the least computation cost in both481

settings, demonstrating the effectiveness and effi-482

ciency of the Hierarchical Agent System.483

5.3 Abalation Study484

To evaluate the effectiveness of the bi-level experi-485

ence learning mechanism, we conduct the ablation486

study. For in-task experience learning, we re-487

move the PRs/Issues actions to re-run the main488

experiments. Experimental results are shown in Ta-489

Method w/o SelfExp w/ SelfExp

GPT-3.5 17.6 58.8
GPT-4 47.0 82.3

Table 5: Results of employing cross-task experience
learning.

ble 4 and we observe that without PRs/Issues, the 490

pass rate decreases to 47.3%. It not only verifies 491

the non-standardization problem of GitHub reposi- 492

tories but also proves that learning from PRs/Issues 493

can overcome this challenge. 494

For cross-task experience learning, We select 495

2 repositories: Qlib and AiZynthFinder, which 496

both belong to the Hard Apply category. We run 497

their 51 queries and utilize the GPT-4-based Ope- 498

nAgent to store the repositories with summarized 499

practice experience. We then re-run these queries 500

but OpenAgent would retrieve the stored repos- 501

itories and utilize the summarized experience to 502

accomplish the queries. As shown in Table 5, lever- 503

aging the experience summarized by GPT-4-based 504

OpenAgent, GPT-3.5-based OpenAgent can even 505

achieve a higher pass rate than GPT-4-based Ope- 506

nAgent without summarized experience. Simul- 507

taneously, GPT-4-based OpenAgent can achieve 508

a higher Pass Rate even though it leverages the 509

summarized experience by itself. 510

The above studies prove the effectiveness of bi- 511

level experience learning. 512

5.4 Impact of Different Phases 513

We delve deeper into each phase from a thorough 514

understanding of OpenAct and OpenAgent. 515

Search. As introduced in Section 3.1, we design 516

three types of prompts to denote the target repos- 517

itories. We calculate the Seach Success Rate of 518

each type of prompt. If OpenAgent can get the cor- 519

rect repositories of a query, it is denoted as search 520

success. Then, we calculate the proportion of the 521

search success queries over all queries of each type 522

of prompt. The experimental results are listed in 523

Table 6. We can observe that the Explicit Repo 524

Prompt achieves the highest Search Success Rate 525

(near 100%) as the prompt has specified reposito- 526

ries. Implicit Repo Prompt achieves 66.0% Search 527

Success Rate, showing that OpenAgent can infer 528

the relevant GitHub Topics based on the domains 529

or careers. Finally, if no repository prompt is pro- 530

vided, the search success rate decreases signifi- 531

cantly. It demonstrates that OpenAgent falls short 532

7

of inferring GitHub Topics based on the query only.533

It needs further research in the future to improve534

the performance in this situation.535

Table 6: Analysis for the search difficulty.

Prompt Search Success Rate

Explicit Repo Prompt 96.0
Implicit Repo Prompt 66.0
No Repo Prompt 32.0

Setup & Apply. Table 7 shows the Pass Rates536

for the repositories categorized based on Setup and537

Apply difficulties, as described in Section 3.2.538

For Setup difficulty, both Medium and Hard539

repositories achieve similar Pass Rates. We at-540

tribute this to OpenAgent’s human experience541

learning capability that helps overcome imperfect542

READMEs.543

For Apply difficulty, the Pass Rate for Hard544

decreases by over 12% compared to Easy and545

Medium. This demonstrates that while OpenA-546

gent can effectively handle repositories with easy547

and medium Apply difficulty, it requires further548

study to conquer those with hard Apply difficulty.549

Table 7: Analysis for the setup & apply difficulty.

Setup/Apply Difficulty Easy Medium Hard Total

Easy 72.3 69.0 56.2 64.4
Medium 60.7 70.0 41.5 57.7
Hard 50.0 67.0 51.5 57.4

Total 64.1 68.7 51.4 60.7

5.5 Error Analysis550

Although our method can autonomously extend551

tools from GitHub, we still observe some failures.552

Repository Select Failure A key challenge for553

OpenAgent is selecting the appropriate repository554

from GitHub to address user queries. We noticed555

instances where OpenAgent selected repositories556

that were not capable of resolving the given queries.557

This issue was particularly prevalent when the user558

query did not specify a particular repository. Then559

the agent’s decision-making process relies heavily560

on the README files of repositories. However,561

these files sometimes lack clear and explicit de-562

scriptions of the repository’s functionality, or over-563

claim its functionality, and lead to misjudgments564

by the agent. For example, in the Finance scenario,565

OpenAgent erroneously selected the vnpy repos-566

itory, which is suited for quantitative trading but567

not for research applications like setting specific 568

models (e.g., LSTM). 569

Environment Configuration Failure In cases 570

like Bringing-Old-Photos-Back-to-Life, we 571

observed failures in the environment setup. While 572

an official Dockerfile was present, it was outdated 573

and non-functional without enough maintenance. 574

The correct Dockerfile was located within a Pull 575

Request, which the agent should ideally access to 576

find the accurate setup instructions. However, Ope- 577

nAgent sometimes opted to modify the existing, 578

incorrect Dockerfile rather than seeking the cor- 579

rect version in PRs. Due to unresolved bugs in the 580

Dockerfile, the agent was unable to correctly set up 581

the environment, leading to failure. 582

Execution Configuration Failure The reposi- 583

tory Qlib presented unique challenges, as it re- 584

quires writing a specific configuration file for exe- 585

cution. This file encompasses a range of parameters 586

including dataset settings, model hyperparameters, 587

and backtesting parameters. Incorrect settings in 588

any of these parameters can lead to results that do 589

not meet the user query’s requirements. In practice, 590

we observed that OpenAgent may incorrectly set 591

the time range for data or specified erroneous file 592

paths, resulting in execution failure. 593

These observed failures primarily stem from the 594

quality and complexity of the repositories. These 595

insights underscore the need for further improve- 596

ments in OpenAgent’s robustness and decision- 597

making algorithms to enhance its success rate in 598

diverse and complex scenarios. 599

We also conduct Case Study in Appendix D to 600

further show the detailed process of OpenAgent. 601

6 Conclusion 602

In this paper, we introduced OpenAct, a compre- 603

hensive dataset designed to evaluate the capabili- 604

ties of LLMs in open-domain, real-world scenar- 605

ios. Our experiments highlighted the limitations 606

of existing LLM-based agents and demonstrated 607

the effectiveness of our proposed OpenAgent sys- 608

tem. OpenAgent’s hierarchical framework and bi- 609

level experience learning mechanism significantly 610

enhance its capabilities, allowing them to tackle 611

complex tasks across diverse domains. Our work 612

paves the way for more robust and flexible LLM- 613

based agents, capable of evolving alongside rapidly 614

changing technological landscapes. 615

8

7 Limitation616

Our study has explored the tool extension capability617

of LLM-based agents, yet both researchers and618

practitioners must be mindful of certain limitations619

and risks when using the approach to develop new620

techniques or applications.621

Firstly, our method relies on the utilization of622

Pull Requests (PRs) and Issues from GitHub as623

primary sources of human experience. However, it624

is important to recognize that similar functionali-625

ties may not be universally available across other626

repository hosting platforms. Consequently, the627

generalizability of our findings is confined to the628

GitHub ecosystem, posing a limitation to the ap-629

plicability of our approach beyond this specific630

context.631

Secondly, the dynamic nature of GitHub reposi-632

tories, characterized by frequent updates, bug fixes,633

and the evolution of repository functionalities, in-634

troduces a layer of volatility. This fluidity can sig-635

nificantly impact the reproducibility of our experi-636

mental results over time, as the state of the reposito-637

ries at the time of study may not reflect their future638

states.639

Thirdly, our method necessitates the use of640

Docker for the execution of repository content.641

This dependency on Docker implicates substantial642

consumption of server resources, including CPU,643

memory, and storage. Such resource-intensive re-644

quirements may pose practical limitations on the645

scalability and feasibility of deploying OpenAgent,646

particularly in environments with constrained com-647

putational resources.648

References649

Anthropic. 2024. The claude 3 model family: Opus,650
sonnet, haiku. https://www-cdn.anthropic.com/651
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/652
Model_Card_Claude_3.pdf. Accessed: 2025-01-653
30.654

AutoGPT. 2023. Autogpt.655

Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle656
Richardson, Erin Bransom, Peter Clark, Ashish Sab-657
harwal, and Tushar Khot. 2024. Super: Evaluating658
agents on setting up and executing tasks from re-659
search repositories.660

A. M. Bran, S. Cox, O. Schilter, C. Baldassari, A. D.661
White, and P. Schwaller. 2023a. Chemcrow: Aug-662
menting large-language models with chemistry tools.663
arXiv preprint arXiv:2304.05376.664

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas- 665
sari, Andrew D White, and Philippe Schwaller. 2023b. 666
Chemcrow: Augmenting large-language models with 667
chemistry tools. 668

T. Cai, X. Wang, T. Ma, X. Chen, and D. Zhou. 669
2023a. Large language models as tool makers. arXiv 670
preprint arXiv:2305.17126. 671

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, 672
and Denny Zhou. 2023b. Large language models as 673
tool makers. arXiv preprint arXiv:2305.17126. 674

K. Cheng, Q. Sun, Y. Chu, F. Xu, L. YanTao, J. Zhang, 675
and Z. Wu. 2024. SeeClick: Harnessing GUI ground- 676
ing for advanced visual GUI agents. In Proceedings 677
of the 62nd Annual Meeting of the Association for 678
Computational Linguistics (Volume 1: Long Papers), 679
pages 9313–9332, Bangkok, Thailand. Association 680
for Computational Linguistics. 681

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 682
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 683
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 684
Nakano, Christopher Hesse, and John Schulman. 685
2021. Training verifiers to solve math word prob- 686
lems. 687

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man- 688
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang, 689
De-An Huang, Yuke Zhu, and Anima Anandkumar. 690
2022. Minedojo: Building open-ended embodied 691
agents with internet-scale knowledge. 692

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 693
Arora, Steven Basart, Eric Tang, Dawn Song, and 694
Jacob Steinhardt. 2021. Measuring mathematical 695
problem solving with the math dataset. 696

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, 697
Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili 698
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 699
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 700
and Jürgen Schmidhuber. 2024. Metagpt: Meta pro- 701
gramming for a multi-agent collaborative framework. 702

K. Huang, Y. Qu, H. Cousins, W. A. Johnson, D. Yin, 703
M. Shah, D. Zhou, R. Altman, M. Wang, and L. Cong. 704
2024a. Crispr-gpt: An llm agent for automated de- 705
sign of gene-editing experiments. arXiv preprint 706
arXiv:2404.18021. 707

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan 708
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, 709
Neil Zhenqiang Gong, and Lichao Sun. 2024b. Meta- 710
tool benchmark for large language models: Deciding 711
whether to use tools and which to use. 712

Carlos E Jimenez, John Yang, Alexander Wettig, 713
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R 714
Narasimhan. 2024. SWE-bench: Can language mod- 715
els resolve real-world github issues? In The Twelfth 716
International Conference on Learning Representa- 717
tions. 718

9

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://github.com/Significant-Gravitas/AutoGPT
http://arxiv.org/abs/2409.07440
http://arxiv.org/abs/2409.07440
http://arxiv.org/abs/2409.07440
http://arxiv.org/abs/2409.07440
http://arxiv.org/abs/2409.07440
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2304.05376
https://aclanthology.org/2024.acl-long.505
https://aclanthology.org/2024.acl-long.505
https://aclanthology.org/2024.acl-long.505
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2206.08853
http://arxiv.org/abs/2206.08853
http://arxiv.org/abs/2206.08853
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2310.03128
http://arxiv.org/abs/2310.03128
http://arxiv.org/abs/2310.03128
http://arxiv.org/abs/2310.03128
http://arxiv.org/abs/2310.03128
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

N. Koldunov and T. Jung. 2024. Local climate services719
for all, courtesy of large language models. Commu-720
nications Earth & Environment, 5(1):13.721

M. Kraus, J. Bingler, M. Leippold, T. Schimanski, C. C.722
Senni, D. Stammbach, S. Vaghefi, and N. Webersinke.723
2023. Enhancing large language models with climate724
resources. Technical report, Swiss Finance Institute.725

V. V. Kumar, L. Gleyzer, A. Kahana, K. Shukla, and726
G. E. Karniadakis. 2023. Mycrunchgpt: A chatgpt727
assisted framework for scientific machine learning.728
Journal of Machine Learning for Modeling and Com-729
puting.730

Guohao Li, Hasan Abed Al Kader Hammoud, Hani731
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023.732
Camel: Communicative agents for "mind" explo-733
ration of large scale language model society.734

R. Liu, J. Wei, S. S. Gu, T. Wu, S. Vosoughi, C. Cui,735
D. Zhou, and A. M. Dai. Mind’s eye: Grounded736
language model reasoning through simulation. In737
The Eleventh International Conference on Learning738
Representations.739

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu,740
Soroush Vosoughi, Claire Cui, Denny Zhou, and An-741
drew M. Dai. 2022. Mind’s eye: Grounded language742
model reasoning through simulation.743

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu744
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen745
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-746
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng747
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie748
Huang, Yuxiao Dong, and Jie Tang. 2023. Agent-749
bench: Evaluating llms as agents.750

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-751
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter752
Clark, and Ashwin Kalyan. 2022. Learn to explain:753
Multimodal reasoning via thought chains for science754
question answering.755

P. Ma, T. Wang, M. Guo, Z. Sun, J. B. Tenenbaum,756
D. Rus, C. Gan, and W. Matusik. 2024. Llm and757
simulation as bilevel optimizers: A new paradigm758
to advance physical scientific discovery. In Interna-759
tional Conference on Machine Learning. PMLR.760

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,761
Long Ouyang, Christina Kim, Christopher Hesse,762
Shantanu Jain, Vineet Kosaraju, William Saunders,763
et al. 2021. Webgpt: Browser-assisted question-764
answering with human feedback. ArXiv preprint,765
abs/2112.09332.766

OpenAI. 2022. OpenAI: Introducing ChatGPT.767

OpenAI. 2023. Gpt-4 technical report.768

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:769
Tool augmented language models. arXiv preprint770
arXiv:2205.12255.771

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Mered- 772
ith Ringel Morris, Percy Liang, and Michael S 773
Bernstein. 2023. Generative agents: Interactive 774
simulacra of human behavior. arXiv preprint 775
arXiv:2304.03442. 776

Shishir G Patil, Tianjun Zhang, Xin Wang, and 777
Joseph E Gonzalez. 2023. Gorilla: Large language 778
model connected with massive apis. arXiv preprint 779
arXiv:2305.15334. 780

J. Qi, Z. Jia, M. Liu, W. Zhan, J. Zhang, X. Wen, J. Gan, 781
J. Chen, Q. Liu, M. D. Ma, B. Li, H. Wang, A. Kulka- 782
rni, M. Chen, D. Zhou, L. Li, W. Wang, and L. Huang. 783
2024. Metascientist: A human-ai synergistic frame- 784
work for automated mechanical metamaterial design. 785

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, 786
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong 787
Sun. 2023a. Communicative agents for software de- 788
velopment. arXiv preprint arXiv:2307.07924. 789

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan 790
Liu, and Heng Ji. 2023b. Creator: Disentan- 791
gling abstract and concrete reasonings of large lan- 792
guage models through tool creation. arXiv preprint 793
arXiv:2305.14318. 794

Y. Qin, S. Hu, Y. Lin, W. Chen, N. Ding, G. Cui, 795
Z. Zeng, Y. Huang, C. Xiao, C. Han, Y. R. Fung, 796
Y. Su, H. Wang, C. Qian, R. Tian, K. Zhu, S. Liang, 797
X. Shen, B. Xu, Z. Zhang, Y. Ye, B. Li, Z. Tang, J. Yi, 798
Y. Zhu, Z. Dai, L. Yan, X. Cong, Y. Lu, W. Zhao, 799
Y. Huang, J. Yan, X. Han, X. Sun, D. Li, J. Phang, 800
C. Yang, T. Wu, H. Ji, Z. Liu, and M. Sun. 2024. 801
Tool learning with foundation models. 802

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao 803
Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding, 804
Huadong Wang, et al. 2023a. Webcpm: Interactive 805
web search for chinese long-form question answering. 806
arXiv preprint arXiv:2305.06849. 807

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 808
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 809
Bill Qian, et al. 2023b. Toolllm: Facilitating large 810
language models to master 16000+ real-world apis. 811
arXiv preprint arXiv:2307.16789. 812

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 813
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 814
Cancedda, and Thomas Scialom. 2023. Toolformer: 815
Language models can teach themselves to use tools. 816
ArXiv preprint, abs/2302.04761. 817

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan 818
Shen, Baocai Chen, Lu Chen, and Kai Yu. 2023. Sci- 819
eval: A multi-level large language model evaluation 820
benchmark for scientific research. 821

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, 822
Junjie Lu, Yichi Zhang, Zexuan Deng, Helan Hu, 823
Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, 824
Haozhe Zhao, Liang Chen, Yan Wang, Tianyu Liu, 825
Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, 826
Wangchunshu Zhou, Yilun Zhao, Arman Cohan, and 827

10

http://arxiv.org/abs/2303.17760
http://arxiv.org/abs/2303.17760
http://arxiv.org/abs/2303.17760
http://arxiv.org/abs/2210.05359
http://arxiv.org/abs/2210.05359
http://arxiv.org/abs/2210.05359
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2209.09513
http://arxiv.org/abs/2209.09513
http://arxiv.org/abs/2209.09513
http://arxiv.org/abs/2209.09513
http://arxiv.org/abs/2209.09513
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2412.16270
http://arxiv.org/abs/2412.16270
http://arxiv.org/abs/2412.16270
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149

Mark Gerstein. 2024. Ml-bench: Evaluating large828
language models and agents for machine learning829
tasks on repository-level code.830

G. Team, R. Anil, S. Borgeaud, Y. Wu, J. Alayrac, J. Yu,831
R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth, et al.832
2023. Gemini: a family of highly capable multi-833
modal models. arXiv preprint arXiv:2312.11805.834

D. Thulke, Y. Gao, P. Pelser, R. Brune, R. Jalota, F. Fok,835
M. Ramos, I. Wyk, A. Nasir, H. Goldstein, et al.836
2024. Climategpt: Towards ai synthesizing interdis-837
ciplinary research on climate change. arXiv preprint838
arXiv:2401.09646.839

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier840
Martinet, Marie-Anne Lachaux, Timothée Lacroix,841
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal842
Azhar, et al. 2023a. Llama: Open and effi-843
cient foundation language models. arXiv preprint844
arXiv:2302.13971.845

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-846
bert, Amjad Almahairi, Yasmine Babaei, Nikolay847
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti848
Bhosale, et al. 2023b. Llama 2: Open founda-849
tion and fine-tuned chat models. arXiv preprint850
arXiv:2307.09288.851

S. Vaghefi, Q. Wang, V. Muccione, J. Ni, M. Kraus,852
J. Bingler, T. Schimanski, C. C. Senni, N. We-853
bersinke, C. Huggel, and M. Leippold. 2023. Chatcli-854
mate: Grounding conversational ai in climate science.855
Swiss Finance Institute Research Paper No. 23-88.856

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-857
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and858
Anima Anandkumar. 2023. Voyager: An open-ended859
embodied agent with large language models. arXiv860
preprint arXiv:2305.16291.861

X. Wang, Y. Chen, L. Yuan, Y. Zhang, Y. Li, H. Peng,862
and H. Ji. Executable code actions elicit better llm863
agents. In Forty-first International Conference on864
Machine Learning.865

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu866
Zhang, Satyen Subramaniam, Arjun R. Loomba,867
Shichang Zhang, Yizhou Sun, and Wei Wang.868
2024. Scibench: Evaluating college-level scientific869
problem-solving abilities of large language models.870

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,871
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,872
Xiaoyun Zhang, and Chi Wang. 2023. Auto-873
gen: Enabling next-gen llm applications via multi-874
agent conversation framework. arXiv preprint875
arXiv:2308.08155.876

XAgent. 2023. Xagent: An autonomous agent for com-877
plex task solving.878

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan879
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-880
jun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu,881
Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caiming882

Xiong, Victor Zhong, and Tao Yu. 2024. Osworld: 883
Benchmarking multimodal agents for open-ended 884
tasks in real computer environments. 885

S. Yao, H. Chen, J. Yang, and K. Narasimhan. 2022a. 886
Webshop: Towards scalable real-world web interac- 887
tion with grounded language agents. In Advances in 888
Neural Information Processing Systems, volume 35, 889
pages 20744–20757. Curran Associates, Inc. 890

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 891
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b. 892
React: Synergizing reasoning and acting in language 893
models. ArXiv preprint, abs/2210.03629. 894

Y. Ye, X. Cong, S. Tian, J. Cao, H. Wang, Y. Qin, Y. Lu, 895
H. Yu, H. Wang, Y. Lin, Z. Liu, and M. Sun. 2023. 896
Proagent: From robotic process automation to agen- 897
tic process automation. 898

Appendix 899

A Prompts 900

A.1 Main Agent 901

You are a professional programmer. Given a
query, your task is to search for a github
repository and use it to solve the query.

You should make sure the result of `apply`
function well completed the query. If it is
lack of required elements, you can call `apply`
again if you think the result is close to what
you want and you think this repository can be

used to solve your query. You can also call `
search_by_query` function to find another
repository if you think this repository is not
suitable for your query.

902

A.2 Search Agent 903

You are a professional programmer. Given a task
, you want to find a github repository to solve
the task.

904

You are a professional programmer. Given a task
, you want to find a github repository to solve
the task. Now, your colleagues have explored

some repositories. If you think any of the
repository(s) might can solve your task, call `
use_existing_repository` function to use it.
Otherwise, call `find_a_new_repository`
function to find another repository.

You will be given the query of the task and
name(s) and description(s) of existed
repositories.

Repository's name: {{name of repository 1}}
Description: {{description of repository 1}}

Repository's name: {{name of repository 2}}
Description: {{description of repository 2}}
......

905

11

http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2311.09835
https://doi.org/10.2139/ssrn.4414628
https://doi.org/10.2139/ssrn.4414628
https://doi.org/10.2139/ssrn.4414628
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2311.10751
http://arxiv.org/abs/2311.10751
http://arxiv.org/abs/2311.10751

A.3 Setup Agent906

You are a professional programmer. Your task is
to set up the environment of the repository
and prepare necessary data.

You will be provided with the readme file of
the repository. You can also use `
check_file_or_directory` function to check the
`/<==repo_name==>` directory whether there is a
existed Dockerfile. If setting up the
environment is complex and there is an existing
dockerfile, you can use `
set_container_with_existed_dockerfile` function
to directly use that dockerfile. If there is
any problem with the dockerfile, you can try to
use `read_pulls_to_solve_problem` function to
see the pulls of this repository to solve the
problem. However, `read_pulls_to_solve_problem`
should not be used for reasons other than
troubleshooting issues with the Dockerfile. If
the existed dockerfile is built successfully,
you can call `submit` function directly with
property "work_directory" marked because the
required docker container has already been
built.

Usually the dockerfile is close to `/<==
repo_name==>`, so if you don't find it in one
or two try, it means there isn't a dockerfile
in this repository. You don't need to try more
times.

If there is no existing dockerfile, you should
analyze the readme file and derive the
necessary commands and execute them to set up
the environment of the repository and prepare
necessary data in a given container, whose base
image is 'continuumio/miniconda3'. If error
happens due to inappropriate base image, you
can use `echo` to create a dockerfile yourself,
with proper base image and necessary packages,
and build it.

While operating, please note the following
points:
- The commands will be run in a docker
container. You don't need to use virtual
environments, use the base environment only.
Use pip or conda to install packages. In
special cases, you can use apt-get to install
necessary packages. If you use apt-get, do not
forget to use apt-get update and --fix-missing.
- Any command requiring execution in a specific
directory should be reformulated as: `/bin/sh
-c "cd <specific directory> && <commands to be
executed in this directory>"`. Every command
must start with '/bin/sh -c " cd ' to locate a
specific directory.
- The repository have been clone to the root
directory at `/<==repo_name==>`.
- Follow the sequence of the commands, install
all necessary packages first.
- Never create or activate any conda
environment even if the readme requires or does
so. You should install the packages in the
base environment.
- If you have problem with the version of
python, please reinstall python of the

907

appropriate version with `conda install python
=<version>`.
- If a function you called return you with a
file path, you should pass the file path to the
next function you call if need.

- If there are different choices to do the same
task and you failed using one of them, you can
try another alternative.

Your commands should be the parameter of the `
execute_command` function. Each time you should
send one or many commands. The `

execute_command` function will run the commands
and return the output of the commands.

In this step, you should just set up the
environment and prepare the data. You don't
need to run other programs or train the model.

908

A.4 Apply Agent 909

You are a professional programmer. Your task is
to utilize a github repository to solve a

given query. You will operate in a docker
container.

Note that it has been ensured that the
repository's environment has been set up and
all the data required by the readme has been
fully prepared, so you mustn't execute any
command to set up the environment or prepare
the data or check relevant files about the
environment or data anymore, unless the user
provide you with a link to download necessary
data. <==data_path==>

Also, all the dependencies have been installed
in the base environment, please don't switch to
any other conda environment. If you find you

lack of any packages or tools while operating,
use pip, conda or apt-get to install it. If you
use apt-get, do not forget to use `apt-get

update` and `--fix-missing`.

Your goal is to study the readme file
especially the command lines in it and call
appropriate functions to utilize the repository
to solve the query. Do not execute any command
to get result that you can't perceive yourself

, like starting a server.

Note that the default configuration of the
final executable file may not meet the demand
of the query. If there is any special demands
in the query, you should check the final
executable file to check whether it meets the
demand of the query. If not, you should make
proper modification(s).

If you run a command and find the result lack
of required element(s), which may because the
repository itself doesn't support relevant
function, you can check the issues to try to
solve the problem.

If you need to deal with files provided by the
user, you should firstly use `
upload_directory_to_container` to upload it

910

12

from local to the docker container. By default,
the path claimed in the query is local path,
you need to upload it. If required message can
be retrieved from the output of execution of
the program, summarize it to natural language
and submit it. If any file is generated to
answer the query, you should use `
download_directory_from_container` to download
the file from the docker container to local
before you submit if necessary. You should also
ensure required directories all exist before
running a program.

We only have CPU. If the repository doesn't ask
for configuration of device, ignore it.

Readme:{{readme}}

911

A.5 Modify Agent912

You are a professional programmer. Your task is
to make modification(s) to code files to meet
the given requirement. You will be given the
query of modification, the content of a file
and the path to the file. If you think you can
meet the query through modifying this file, you
can modify this file.

If the query contains path that contains
information for modification, transmit that
path at "query_file_path" in "
modify_entire_file". You don't need to check
the query file yourself, because you may
neglect important message by checking and
summarizing, just pass the query path and let "
modify_entire_file" function to decide.

Code relevant to the query may not always
reside in the currently provided file. In such
cases, you should analyze the `from...import
...` or `<module name>...` sections to suggest
potential target file paths.

If the target path in the current file is
relative path, you should decide the target
file based on the current files path.

If it starts from a module's name, which
suggests the file is a python package, the file
is in `/opt/conda/lib/python3.11/site-packages
/<package name>` directory (python version
should be decided by using `which pip`). Don't
forget the suffix of the file.

You might need to locate the target file by
checking the content of the files recursively.
After the target file is located, you should
use proper functions to modify the code.

913

A.6 Judge Agent914

You are a professional programmer. Your task is
to judge how good a programmer use a github
repository to handle a query. You will be given
query and the actions the programmer took to
handle the query. If the task includes input or
output file, you will be given path to

915

programmer's output. Path to input is in the
query and path to the ground truth outcome will
be given if there is ground truth. You can

check the content in these paths and use proper
ways to judge the relevance of different files.
If the files are readable you can directly

check them. If not, you can use the provided
functions to check the md5 hash value of the
files or compare the similarities of different
images. Note that you can only check directory
or file saved in local. If no input path,
output path, truth path is given, do not check
file or directory, just score based on the log.

// For ReAct & ReAct + Summary
The rule of scoring is as follows. The initial
score is 0. You will be given the log of user
calling functions to use the repository. For
correctly setting up the environment and
preparing the data, 2 point should be added for
environment and 1 point should be added for

data. If no data is required, point for data
should be added.\nIn the given application
phase, 0~4 scores should be added based on the
performance. You should judge the performance
based on whether it follows the instruction in
the readme. If right actions(including commands
and function calling) are taken and get a

result, you should add 4. If asked
configuration is not applied or wrong actions
are taken, minus 1 point for each fault based
on 4. If ground truth is provided, if the
result of the application is not correct, minus
1 point.\nIn conclusion, the final score is

the sum of the scores of the setup (0~3) and
application phase (0~4).

// For GitAgent
The rule of scoring is as follows. The initial
score is 0. You will be given the log of user
calling functions to use the repository,
without the steps the environment is setup.\nIn
the given application phase, 0~4 scores should
be added based on the performance. You should

judge the performance based on whether it
follows the instruction in the readme. If right
actions(including commands and function

calling) are taken and get a result, you should
add 4. If asked configuration is not applied

or wrong actions are taken, minus 1 point for
each fault based on 4. If ground truth is
provided, if the result of the application is
not correct, minus 1 point.\nGenerally, if
valid output is given, the score should be 4.

Query:{{query}}

Action:{{action_log}}

Input path:{{input_path}}

Output path:{{output_path}}

Ground Truth path:{{truth_path}}

916

13

B GPT-4 Evaluation Alignment Checking917

Figure 5: GPT-4 Evaluation Alignment Check
We randomly selected 120 questions from the918

OpenAct and conducted both manual scoring and919

machine scoring using our designed GPT-based920

Agent, then visualized the results in the above fig-921

ure. The circular points represent the coordinates922

corresponding to human scores and machine scores,923

with the size of the circles indicating the number924

of questions with that particular score combination.925

As shown, there is a high consistency between ma-926

chine scoring and human subjective assessment.927

14

C Dataset Details928

C.1 Overall Statistics929

Please refer to Table 8 for the overall statistics930

regarding the repositories.931

C.2 Repositories Categorized by Field932

Please refer to Table 9 for the field of each Github933

repository.934

C.3 Repositories Categorized by Difficulties935

Please refer to Table 10 for the difficulty of each936

Github repository.937

15

Table 8: GitHub Repositories

Author Name Address
danielgatis rembg https://github.com/danielgatis/rembg
ocrmypdf OCRmyPDF https://github.com/ocrmypdf/OCRmyPDF
cdfmlr pyflowchart https://github.com/cdfmlr/pyflowchart
HarisIqbal88 PlotNeuralNet https://github.com/HarisIqbal88/

PlotNeuralNet
lukas-blecher LaTeX-OCR https://github.com/lukas-blecher/

LaTeX-OCR
s0md3v Photon https://github.com/s0md3v/Photon
s0md3v Bolt https://github.com/s0md3v/Bolt
s0md3v Smap https://github.com/s0md3v/Smap
MultiQC MultiQC https://github.com/MultiQC/MultiQC
xinyu1205 recognize-anything https://github.com/xinyu1205/

recognize-anything
bukosabino ta https://github.com/bukosabino/ta
molshape ChemFormula https://github.com/molshape/

ChemFormula
tencent-quantum-lab TenCirChem https://github.com/

tencent-quantum-lab/TenCirChem
harirakul chemlib https://github.com/harirakul/chemlib
ultralytics yolov5 https://github.com/ultralytics/yolov5
mermaid-js mermaid-cli https://github.com/mermaid-js/

mermaid-cli
microsoft qlib https://github.com/microsoft/qlib
fritzsedlazeck Sniffles https://github.com/fritzsedlazeck/

Sniffles
MolecularAI aizynthfinder https://github.com/MolecularAI/

aizynthfinder
microsoft Bringing-Old-Photos-

Back-to-Life
https://github.com/microsoft/
Bringing-Old-Photos-Back-to-Life

PyCQA bandit https://github.com/PyCQA/bandit

16

https://github.com/danielgatis/rembg
https://github.com/ocrmypdf/OCRmyPDF
https://github.com/cdfmlr/pyflowchart
https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/lukas-blecher/LaTeX-OCR
https://github.com/lukas-blecher/LaTeX-OCR
https://github.com/s0md3v/Photon
https://github.com/s0md3v/Bolt
https://github.com/s0md3v/Smap
https://github.com/MultiQC/MultiQC
https://github.com/xinyu1205/recognize-anything
https://github.com/xinyu1205/recognize-anything
https://github.com/bukosabino/ta
https://github.com/molshape/ChemFormula
https://github.com/molshape/ChemFormula
https://github.com/tencent-quantum-lab/TenCirChem
https://github.com/tencent-quantum-lab/TenCirChem
https://github.com/harirakul/chemlib
https://github.com/ultralytics/yolov5
https://github.com/mermaid-js/mermaid-cli
https://github.com/mermaid-js/mermaid-cli
https://github.com/microsoft/qlib
https://github.com/fritzsedlazeck/Sniffles
https://github.com/fritzsedlazeck/Sniffles
https://github.com/MolecularAI/aizynthfinder
https://github.com/MolecularAI/aizynthfinder
https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life
https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life
https://github.com/PyCQA/bandit

Table 9: GitHub repositories categorized by 7 fields.

Domain Repository

Finance
microsoft/qlib
bukosabino/ta

Chemistry

molshape/ChemFormula
tencent-quantum-lab/TenCirChem
harirakul/chemlib
MolecularAI/aizynthfinder

Bioinformatics
MultiQC/MultiQC
fritzsedlazeck/Sniffles

CV

danielgatis/rembg
lukas-blecher/LaTeX-OCR
ultralytics/yolov5
microsoft/Bringing-Old-Photos-Back-to-Life
mermaid-js/mermaid-cli
xinyu1205/recognize-anything

Network Analysis
s0md3v/Photon
s0md3v/Smap

Security Analysis
PyCQA/bandit
s0md3v/Bolt

Chart Paint
cdfmlr/pyflowchart
ocrmypdf/OCRmyPDF
HarisIqbal88/PlotNeuralNet

Table 10: GitHub repositories classified by 9 types of difficulties.

Application
Easy

Application
Medium

Application
Hard

Environment
Easy

Pyflowchart
Bolt

yolov5

OCRmyPDF
Rembg

TenCirChem
ChemFormula

Chemlib

Environment
Medium

MultiQC
Photon
Smap

Bandit
recognize-everything

Aizynthfinder
mermaid-cli

Environment
Hard Latex-OCR

Bring-Old-Photos-
Back-to-Life

qlib
PlotNeuralNet

17

C.4 Elaboration on Main Phases of938

OpenAgent939

Repository Search During the Search phase, the940

agent finds suitable repositories that can be used941

to accomplish user queries. The repositories come942

from two resources: repositories stored in the past943

and repositories hosted in GitHub. Hence, this944

phase contains three subtasks: (1) Stored Reposi-945

tory Retrieval: The agent retrieves from existing946

stored repositories by judging their suitability with947

the user query. If a repository is deemed suitable,948

its environment is loaded, bypassing the subsequent949

Setup phase, and directly enters the Apply phase.950

(2) GitHub Repository Search: If the stored repos-951

itories cannot be used to accomplish user queries,952

the agent will resort to GitHub to search for suitable953

ones. There are two ways to search for repositories.954

If the user queries specify the particular reposi-955

tories, the agent will take action to call GitHub956

search by name API directly. If not, OpenAgent957

should search for the proper repositories according958

to the repository function. As GitHub lacks the959

semantic search API, we resort to the topic search960

API. The agent would extract a list of potential961

GitHub topics from the query and subsequently962

call GitHub search by topic API to search reposi-963

tories. (3) Repository Function Judgment: Upon964

obtaining repository candidates, the agent judges965

each repository’s suitability in resolving the user966

query. The agent will read the README of each967

repository to understand its function and then de-968

liver a judgment on the repository’s suitability.969

Environment Setup Upon identifying the suit-970

able repositories, the agent would initiate the Setup971

phase aimed at configuring their execution environ-972

ment. The agent commences by cloning reposito-973

ries from GitHub and executing commands (includ-974

ing the installation of dependencies and download975

of requisite data) according to the README. Due976

to the non-standardization problem, there may ex-977

ist flaws or bugs in the repositories so the agent978

will initiate a Pull Requests Exploration or Issues979

Exploration subtask to leverage human practice ex-980

perience to resolve the problems. If necessary, the981

agent will initiate a File Modification subtask to982

modify the source files of the repository to fix the983

bugs.984

Tool Application Given the configured environ-985

ment, the agent proceeds to apply the repository to986

address the user query. This application process987

varies based on the complexity and design of in- 988

dividual repositories. Well-developed repositories 989

provide clear entry for allowing straightforward 990

applications (e.g., Command-Line Interface). Nev- 991

ertheless, for those non-standardized repositories 992

that do not provide clear entry, especially lacking 993

detailed documentation, the agent needs to resort to 994

human experience again (see in Section 4.2). If ex- 995

tensive output (e.g., lengthy execution logs) ensues, 996

the agent needs to go to the Long Context Process 997

subtask which writes a Python program (e.g., regu- 998

lar expressions) to extract critical information from 999

the lengthy file. Thus, the File Modification subtask 1000

is also involved. 1001

Note that although we design this hierarchical 1002

strategy, which phase, subtask, or action to be 1003

achieved is decided by OpenAgent itself dynami- 1004

cally. We do not limit the agent’s behavior strictly. 1005

18

D Case Study1006

To detail how OpenAgent works during the whole1007

tool extension process, we conduct the case study1008

to demonstrate the behavior of OpenAgent.1009

Adaptive Repository Search Strategies. Ope-1010

nAgent demonstrates a remarkable ability to au-1011

tonomously select and implement varied search1012

strategies for repository retrieval (see in Figure 6).1013

This adaptability is evident from its high search1014

success rate across different repositories. OpenA-1015

gent tailors its search approach based on the speci-1016

ficity of the user query. For instance, in the case1017

of Sniffles, where the repository name is pro-1018

vided (Figure 7), OpenAgent directly searches for1019

the repository using the given name. In contrast,1020

for queries of Qlib, where no specific repository is1021

mentioned (Figure 8), the agent summarizes rele-1022

vant GitHub repository topics from the query and1023

sequentially searches these topics to identify the1024

most suitable repository.1025

19

I am a fintech researcher
aiming to utilize data from the
A market (csi300) to train a
LightGBM model. You should
give me the back test result.

fintech
market-forecasting
machine-learning
financial-modeling

…

vnpy/vnpy
microsoft/qlib
waditu/tushare

……/FinGPT
……

User Query Search by topic

User Query Search by Name

Use a Github repository named
Sniffles to help me to detect
the structural variations in
given gene sequences and save
the structural variations in
output result.vcf.

Sniffles fritzsedlazeck/
Sniffles.git

Repos

Repo
…… However, the
repository seems to not
support the LightGBM
model directly, which is
a requirement of the
query.
The repository contains
an AI-oriented
quantitative investment
platform, which can
support the functionality
mentioned in the query…

Figure 6: Comparison of two different repository search methods.

find_a_new_repository(Repo_name: Sniffles)
{"repo_name": "Sniffles",
"repo_url": "https://github.com/fritzsedlazeck/Sniffles.git"}

Use a Github repository named Sniffles to help me to
detect the structural variations in given gene sequences
and save the structural variations in `output_result.vcf`.

Repository

Since no repository has been
cached and the query

specifically mentions the name
of the repository 'Sniffles', I

need to find this new
repository.

Figure 7: An example about the repository search of Sniffles.

20

Dynamic Handling of Setup Challenges. The1026

agent is proficient in managing setup processes,1027

even in the presence of bugs or incomplete informa-1028

tion in the official repository documentation. For1029

repositories like AiZynthFinder, with comprehen-1030

sive setup instructions in the README (Figure 9),1031

OpenAgent efficiently follows the guidelines to set1032

up the environment. Conversely, for repositories1033

such as Bringing-Old-Photos-Back-to-Life,1034

although it provides an official dockerfile to build1035

the execution environment, there exist some bugs1036

in it. In this situation, OpenAgent proactively seeks1037

solutions by reviewing pull requests (PRs) and mod-1038

ifies the dockerfile accordingly to rectify the bugs1039

(Figure 10).1040

21

find_a_new_repository
(Topics: [Fintech, csi500, LightGBM, backtesting, machine-learning,
data-science, financial-data, stock-market-analysis])
…
{" repo_name": ”Qlib",
"repo_url": "https://github.com/microsoft/Qlib.git"}

Since no repository has been
cached, I have to find a new
one. I need a repository that

provides data from the A
market (csi500) and supports
training a LightGBM model.

I am a fintech researcher aiming to utilize data from the
A market (csi300) to train a LightGBM model. You
should give me the back test result.

The repository provides a
way to load and prepare

data, train a LightGBM model,
and perform back-testing,
which aligns with the query

requirements...

Repository

Figure 8: An example about the repository search of Qlib.

Report:
1. Environment has beed set and data has

been prepared.
2. The required data has been downloaded

to the '/data' directory.

check_file_or_directory (Path:/aizynthfinder)
This directory is too large to be shown. Please choose a smaller
subdirectory. And the subdirectories of this directory are: …
check_file_or_directory (Path:/aizynthfinder/aizynthfinder)
Content of this directory:…
>> cd /aizynthfinder && conda install python=3.9 && python
-m pip install aizynthfinder
......
Executed successfully. The output of the execution is omitted.
>> cd / && download_public_data /data
0%| |

Traceback (most recent call last):
......
FileNotFoundError: [Errno 2] No such file or directory:
'/data/uspto_model.hdf5’

>> cd / && mkdir data && download_public_data /data
100%|██████████|
Executed successfully. The output of the execution is omitted.

First, I will check if there is
an existing Dockerfile in the

repository.

There is no Dockerfile in the
root directory. Let's check the
subdirectories for a Dockerfile.

There is no Dockerfile in the
repository. I will now install
the necessary packages. The
readme file states that the

project requires python
version 3.9 - 3.11. I will

install python 3.9 and then
install the aizynthfinder

package.

Now, I will download the
necessary data using the
'download_public_data'

command. I will download the
data to '/data' directory.

It seems the '/data'
directory does not exist. I

will create it and then try to
download the data again.

Docker Image

Figure 9: An example about the repository setup of AiZynthFinder.

22

Efficient Execution of Complex User Queries.1041

OpenAgent capably handles the execution phase,1042

addressing various challenges that arise with com-1043

plex user queries. An example includes a scenario1044

where the agent needed to install additional tools1045

(e.g., “curl”) mid-process to fulfill a data down-1046

load request (Figure 11). In another instance, for1047

a query requiring transaction details in Qlib (Fig-1048

ure 12), OpenAgent resolved a missing directory1049

issue by consulting GitHub Issues and adapting the1050

configuration file to generate the required output.1051

For example, a query asks OpenAgent to download1052

specific data for analysis (see in Figure 11). During1053

the apply process, the agent found that the “curl”1054

had not been installed and then it used “apt-get”1055

to install “curl” before going on. For another ex-1056

ample, a user query asks OpenAgent to give the1057

transaction details (see in Figure 12). OpenAgent1058

first ran the repo but when it tried to get the trans-1059

action details in the “record” directory, it found1060

that there exists no “record” directory in the reposi-1061

tory. Next, OpenAgent resorted to the Issue from1062

GitHub and found an issue that can solve the record1063

output problem. Then, it modified the configura-1064

tion file according to the issue content and re-run1065

the command.1066

All the above phenomena demonstrate the robust-1067

ness and flexibility of our method which can han-1068

dle various non-standardized GitHub repositories1069

to extend them as tools to accomplish user queries.1070

The agent effectively navigates and utilizes non-1071

standardized GitHub repositories, extending their1072

functionalities to meet diverse user queries. This1073

success can be attributed to our designed human1074

experience learning, which enables OpenAgent to1075

focus on resolving subtasks by referring to human1076

practice experience.1077

23

Report:

Environment has beed set and data has been
prepared.

check_file_or_directory (Path:/Bringing-Old-Photos-Back-to-Life)
This directory is too large to be shown. Please choose a smaller
subdirectory. And the subdirectories of this directory are: …

set_container_with_existed_dockerfile
(Path:/Bringing-Old-Photos-Back-to-Life/Dockerfile)
Error: manifest for nvidia/cuda:11.1-base-ubuntu20.04 not found:
manifest unknown: manifest unknown
read_pulls_to_solve_problem
(Query:"Dockerfile manifest for nvidia/cuda:11.1-base-ubuntu20.04 not found”)

I need to check whether
there is an existing

Dockerfile in the repository.
If there is, I can use it to
set up the environment.

There is a Dockerfile in the
repository. I will use it to
set up the environment.

I have modified the
Dockerfile according to the
pull request. Now I will try
to set up the environment
again using the modified

Dockerfile.

set_container_with_existed_dockerfile
(Path:/Bringing-Old-Photos-Back-to-Life/Dockerfile)
Docker container built successfully. You can choose to finish directly.

The Dockerfile has a problem,
it can't find the manifest for

nvidia/cuda:11.1-base-
ubuntu20.04. I will read the
pulls to see if anyone has

solved this problem.
The PR mentions that it addresses

the issue of the original base
image no longer being available,

which is the problem described. It
also states that it has updated
the base image to a current and
available one, which should solve
the Dockerfile manifest issue.

This Pull Request addresses two primary issues:
- The original base image was no longer available.
I've updated it to use a current and available image.
…

modify_file_content
(Query: Refer to the file at `/pr_diff.txt` and make corresponding
modifications to the Dockerfile.)

I need to modify the
Dockerfile according to the

difference in the pull request
to solve the problem。

The PR mentions that it addresses
the issue of the original base

image no longer being available,
which is the problem described. It
also states that it has updated
the base image to a current and
available one, which should solve
the Dockerfile manifest issue.

check_file_or_directory (Path:/pr_diff.txt）
diff --git a/Dockerfile b/Dockerfile
index 8764e00..a88e0df 100644
--- a/Dockerfile
+++ b/Dockerfile
modify_entire_file
(Query: 1. Change the first line from ’…’ to ’…’. 2. After the
'RUN apt update...' line, add… 3. Replace all occurrences of …)
FROM nvidia/cuda:11.1-base-ubuntu20.04
FROM nvidia/cuda:12.1.0-base-ubuntu20.0
--- +++

The content of '/pr_diff.txt' shows
the differences between the old

and new versions of the Dockerfile.
I can use this information to

modify the Dockerfile accordingly.

Docker Image

Figure 10: An example about the repository setup of Bringing-Old-Photos-Back-to-Life.

24

>> mkdir -p Sniffles/input &&
HTTPDIR=https://storage.googleapis.com/deepvariant/pacbio-case-study-testdata && curl
${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam >
Sniffles/input/HG002.pfda_challenge.grch38.phased.chr20.bam &&
curl ${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam.bai >
Sniffles/input/HG002.pfda_challenge.grch38.phased.chr20.bam.bai
Error: /bin/sh: 1: curl: not found
>> apt-get update && apt-get install curl -y
Get:1 http://deb.debian.org/debian bullseye InRelease [116 kB]
Get:2 http://deb.debian.org/debian-security bullseye-security InRelease [48.4 kB]
…
>> mkdir -p Sniffles/input &&
HTTPDIR=https://storage.googleapis.com/deepvariant/pacbio-case-study-testdata && curl
${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam > …… &&
curl ${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam.bai > ……
% Total % Received % Xferd Average Speed Time Time Time Current
100 1551M 100 1551M 0 0 1647k 0 0:16:04 0:16:04 --:--:-- 2568k
>> sniffles –I
Sniffles/input/HG002.pfda_challenge.grch38.phased.chr20.bam -v
Sniffles/output_result.vcf
Running Sniffles2, build 2.2
…
Analyzing 193107 alignments total...
193107/193107 alignments processed (100%, 8657/s); 195/195 tasks done; parallel
0/4; 921 SVs.

The first step is to create a
directory to store input data

and then download the
specified files into that
directory. The original

commands are usable here, I
just need to modify the
directory to place the

downloaded data.

Use a github repository named "Sniffles" to help me to detect the
structural variations in given gene sequences and save the structural
variations in output_result.vcf. Data of the original sequence should
be downloaded using this command: mkdir -p input
HTTPDIR=https://storage.googleapis.com/deepvariant/pacbio-case-
study-testdata Report

It seems 'curl' command is not
found. This could be due to

curl being not installed in this
environment. I'll install 'curl'

using 'apt-get install'.

Now that 'curl' is installed, I'll
retry the command for

downloading the data files into
the 'input' directory.

Now that the data has been
downloaded successfully, the
next step is to run Sniffles
to detect the structural
variations in the gene

sequences. According to the
README file, the command to
call Sniffles is like … I can
modify this command to use
the data that we have just

downloaded and set the
output file as

`output_result.vcf` as
required by the user.

SVs Record

Figure 11: An example about the repository apply of Sniffles.

25

check_file_or_directory
(Path:/qlib/examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158_csi500.yaml)
Content of this file: ……
modify_file_content
(Path:/qlib/examples/benchmarks/LightGBM/workflow_config_lightgbm_Alpha158_csi500.yaml,
Modify Query: Change the start_time to '2008-01-01', the end_time to '2019-12-
31', the fit_start_time to '2008-01-01', and the fit_end_time to '2018-12-31'.)

Before executing the
command, I need to check
the content of the yaml

configuration file to ensure
it is set up correctly for the

given task.

According to the readme
file, the yaml configuration
file needs to be modified to

match the task's
requirements. The

start_time, end_time,
fit_start_time, and

fit_end_time need to be
adjusted to reflect the
time range from 2008 to

2018 for training and 2018
to 2019 for testing.

I am a fintech researcher aiming to utilize data from the A market
(csi500) spanning from 2008 to 2018 to train an LightGBM model, with
the goal of forecasting market conditions from 2018 to 2019, and get
its backtest result. You should not only give me the back test result,
but also the transaction details in csv format of how to get such result.

The content of the current
file contains the fields that

need to be modified
according to the request.

The 'start_time', 'end_time',
'fit_start_time', and
'fit_end_time' are all

present and can be changed
to satisfy the requirement.

modify_entire_file
(Query: Change the 'start_time' value to '2008-
01-01', the 'end_time' value to '2019-12-31', the
'fit_start_time' value to '2008-01-01', and the
'fit_end_time' value to '2018-12-31'.)
data_handler_config: &data_handler_config

start_time: 2008-01-01
end_time: 2020-08-01 2019-12-31
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31 2018-12-31

I need to find out how to
get the transaction details
in csv format, so I should
check the issues to see if

anyone has solved this
problem or mentioned it

before.

Read_Issues_to-Solve_problem
(Query: How can I get transaction details in csv format from the analysis results?)

According to the issue
conversation, you can

extract the transaction
details by modifying the

record field of your
configuration yaml file. Add

the following
configuration: …

……
A: Hi all, I am just curious that if there exists a
function already that could yield something like two
lists which include current trading decisions for stocks.
B: I add … to … and it works.

modify_file_content
(Query: In … section, add the following executor configuration: …)

According to the issue
conversation, you can

extract the transaction
details by modifying the

record field of your
configuration yaml file. Add

the following
configuration: …

As per the issue
conversation, to get

transaction details, I need
to add the executor
configuration to the
'port_analysis_config'

section of the yaml file.
The new executor

configuration will enable
Qlib to generate and log

detailed transaction records. modify_entire_file
(Query: In … section, append …)
port_analysis_config: &port_analysis_config

executor:
class: SimulatorExecutor
module_path: qlib.backtest.executor
kwargs:

time_per_step: day
generate_portfolio_metrics: True
verbose: True

>> cd qlib/examples && qrun
benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
'The following are analysis results of benchmark return(1day).’

risk
mean 0.000477
std 0.012295
annualized_return 0.113561

Now that the configuration
file has been updated to

meet the query's
requirements, I'll execute

the 'qrun' command with the
configuration file to train

the LightGBM model and get
the backtest result.

>> cd qlib/examples && qrun
benchmarks/LightGBM/workflow_config_lightgbm_Alpha158.yaml
[2018-01-02 00:00:00]: sell SH601375, price 1.11, amount 2317104.654033043, deal_amount
2317104.654033043, factor 0.17716467380523682, value 2569786.93, cash 6101362.80.
[2018-01-02 00:00:00]: sell SH601155, price 1.32, amount 2128948.000840169, deal_amount
2128948.000840169, factor 0.0456189289689064, value 2818432.00, cash 8915567.15.
……

Now that the executor
configuration has been

added to get transaction
details, I'll re-run the 'qrun'
command with the updated
configuration to get the

backtest result and
transaction details.

Long_text_handle

The output is saved in
`/output.txt`, you should …

The LightGBM model was
trained using the A market
data from 2008 to 2018 to
forecast market conditions

for 2018 to 2019. The
program has generated a

series of transaction
details, such as buy and
sell records for different
stocks with their prices,

amounts, and deal amounts
indicated.

def process_output_lines(output):
......

transaction_details = process_output_lines(output)
if transaction_details:

if not os.path.exists(directory):
os.makedirs(directory)

df = pd.DataFrame(......)
df.to_csv(......)

python /data_handler.py

The handled data is saced in
`/result/transaction.csv`.

download_directory_from_container
(container path: `/result/transaction.csv`, local path : `.`)
`/result/transaction.csv` has been successfully downloaded to local at `.`.

Now that the executor
configuration has been

added to get transaction
details, I'll re-run the 'qrun'
command with the updated
configuration to get the

backtest result and
transaction details.

Back test report Transaction Deatails

Figure 12: An example about the repository apply of Qlib.

26

	Introduction
	Related Work
	Dataset: OpenAct
	Dataset Construction
	Data Categorization
	Operation Environment
	Evaluation Metrics

	OpenAgent
	Hierarchical Agent System
	Bi-Level Experience Learning
	Main Phases

	Experiment
	Experiment Settings
	Overall Results
	Abalation Study
	Impact of Different Phases
	Error Analysis

	Conclusion
	Limitation
	Prompts
	Main Agent
	Search Agent
	Setup Agent
	Apply Agent
	Modify Agent
	Judge Agent

	GPT-4 Evaluation Alignment Checking
	Dataset Details
	Overall Statistics
	Repositories Categorized by Field
	Repositories Categorized by Difficulties
	Elaboration on Main Phases of OpenAgent

	Case Study

