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Abstract

Instrumental Variable (IV) regression is a standard technique for estimating causal1

effects in the presence of unobserved confounders. The classic IV setting assumes2

access to an external variable - called the instrument - which directly influences3

the treatment variable. In this work, we consider a more challenging yet realistic4

setting where the treatment is latent, and we can only observe a nonlinear (po-5

tentially high-dimensional) transformation of it. Particularly, using insights from6

the independent component analysis (ICA) literature, we propose a general con-7

trastive learning framework to recover the latent treatment up to an affine transfor-8

mation when it is linearly related to the instrument. We prove that the recovered9

representation is compatible with classical IV techniques. Empirically, we demon-10

strate the effectiveness of our method using control function and two-stage least11

squares (2SLS) estimators and evaluate the robustness of the learned estimators in12

distribution shift setting.13

1 Introduction14

Standard supervised learning techniques, such as ordinary least squares (OLS), assume that the15

residuals on the target variable are independent of the features to retrieve the true causal effect.16

However, this assumption does not generally hold. Consider a setting where we observe a treatment17

X and an outcome Y = f0(X) + ε, with E[ε] = 0 but E[ε|X] ̸= 0. Such a data generative18

mechanism violates the standard assumption that the noise is independent of the features, leading19

to E[Y |X] ̸= f0(X), and thus classical supervised learning methods fail to recover the true causal20

effect. To address this, Instrumental Variable (IV) regression [Newey and Powell, 2003] assumes21

the observation of an instrument that affects the outcome only through the treatment variable and is22

thus independent from the residuals. Originally formulated for linear models, IV methods have been23

extended to nonlinear settings using universal approximators like neural networks [J. Hartford and24

Taddy, 2017, Liyuan Xu, 2021] or kernels [Singh et al., 2019].25

Similarly, the field of causal representation learning (CRL) [Schölkopf et al., 2021] often relies on26

an observed auxiliary variable to learn representations that are suitable for performing causal down-27

stream tasks. It is closely related to nonlinear independent component analysis (ICA), which aims28

to recover independent sources from nonlinearly mixed signals. A central question in ICA is that29

of identifiability—whether the sources can be recovered from observational data alone. This task is30

provably impossible without additional assumptions on the data-generating process [Hyvärinen and31

Pajunen, 1999]. Just as an instrumental variable enables identification of a causal effect, identifia-32

bility of nonlinear ICA can be achieved by introducing an auxiliary variable [Hyvärinen et al., 2019,33

Khemakhem et al., 2020], under the assumption that the latent variables are independent conditioned34

on the auxiliary. This setting provides a more natural theoretical foundation for CRL, where the un-35

derlying features are causally related and thus not independent. We show that these assumptions are36
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fulfilled by standard assumptions in the IV setting, allowing us to recover latent features for IV that37

we can also leverage to perform extrapolation tasks.38

We consider a representation-based IV setting in which the treatment variable is latent and causally39

related to an observed auxiliary variable. We show that, under assumptions compatible with the40

IV setting, the latent variables are recoverable up to an affine transformation, which is sufficient to41

recover the causal effect between the observed transformation of the latent treatment and the target.42

As a practical instantiation of this framework, we propose two variants of contrastive methods that43

provably recover the latent treatment (up to some indeterminacy) and demonstrate its consistency44

with IV methods such as two-stage least squares (2SLS) and the Control Function (CF) approach.45

2 Recovering Latent Treatments46

2.1 Data Generating Process47
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Figure 1: Causal graph of the
data generating process

We consider a representation-based variant of the classical instru-48

mental variable (IV) setting, similar to Saengkyongam et al. [2024],49

where the corresponding graphical model is shown in Figure 1. We50

assume that the treatment variable Z ∈ Z is unobserved (we denote51

latent variables as gray nodes), while the outcome Y ∈ Y ⊂ R and52

instrument variable A ∈ A ⊂ RdA are observed. In addition, we53

observe variable X ∈ X , which is a transformation of the treat-54

ment. Throughout the paper, we assume that our data are generated55

as follows:56

S :


Z :=M0A+ V

X := g0(Z)

Y := f0(Z) + l(V ) + ε

(1)

where g0 : Z → X is a nonlinear injective mixing function, f0 : Z → R and l : Z → R are assumed57

measurable and integrable. Treatment Z and effect Y are confounded by unobserved variable V ,58

with E[V ] = 0 and E[V 2] < ∞. Residuals ε are assumed independent from V and E[ε] = 0 and59

E[ε2] < ∞. We further assume M0 ∈ RdZ×dA to be a matrix of rank dZ (with dA ≥ dZ + 1).60

Our goal is to recover the latent treatment Z up to some indeterminacy exploiting A as an auxiliary61

variable. We argue that this is sufficient for IV regression.62

2.2 Identifiability of Latent Treatments63

In the general setting, identifying the exact ground-truth latent variable Z from observed data alone64

is infeasible. We build upon theory from Khemakhem et al. [2020] to show that the latent treatment65

Z can be recovered up to an affine transformation, particularly in the case where V is an isotropic66

multivariate Gaussian. Let us define an encoder ϕ : X → Z , typically parametrized as a neural67

network, whose goal is to approximate the inverse mixing function g−1
0 . Let pϕ(x|a) be the pos-68

terior distribution of X̃ := ϕ−1(Z) given A, then we define affine identifiability as (introduced in69

Saengkyongam et al. [2024]):70

Definition 2.1 (Affine identifiability). We say that the latents Z are identifiable up to an affine71

transformation if there exist an encoder ϕ : X → Z such that:72

p(x|a) = pϕ(x|a) =⇒ ∃R ∈ RdZ×dZ invertible, c ∈ RdZ such that ϕ ◦ g0(z) = Rz + c,∀z ∈ Z .

In particular, we show that under the assumptions of our data generating process, Z is identifiable73

up to an affine transformation, where we leverage A as an auxiliary variable.74

Lemma 2.2. Assume our data are sampled according to Equation (1), with A being a random75

variable independent from V ∼ N (0,ΣV ), an isotropic multivariate Gaussian random variable.76

Further assume that the support of A contains at least dZ + 1 affinely independent points. Then Z77

is identifiable up to an affine transformation.78

Proof Sketch: We rely on an identifiability result from Hyvärinen et al. [2019], which is guaranteed79

by the conditional independence of the latent Z given instrument A and by the full-rankness of M0.80

The full proof is stated in Appendix A.3.81
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In other words, if we can approximate the ground-truth conditional probability p(x|a) using a suit-82

able learning algorithm, we are guaranteed that the learned encoder approximates the ground-truth83

latent treatment up to an affine transformation. This affine identifiability of the latent treatment is84

then sufficient to carry out IV regression.85

2.3 Causal Effect Identifiability86

Guo and Small [2016] provide assumptions on the instrument for identifiability of a nonlinear87

causal-effect, in the classical IV setting with observed treatment. We first state them and then discuss88

how they relate to our setting where the treatment is unobserved.89

Assumption 2.3. Let A, Z and Y be sampled according to Equation (1). Furthermore, assume:90

(i) Relevance: The instrument variable has a direct causal influence on treatment, i.e., P (Z|A)91

is not constant in A.92

(ii) Quasi-exogeneity: A⊥⊥ ε and E[l(V )|A] is constant.93

(iii) Strong Exogeneity: A⊥⊥V .94

Remark 2.4. Note that classical IV methods typically assume E[l(V )|A] = 0. However, this as-95

sumption restricts l to a very specific class of functions. In practice, relaxing this condition intro-96

duces a location indeterminacy in the estimated causal effect. Importantly, this indeterminacy does97

not affect predictive performance nor the robustness of the estimates to distributional shifts.98

If A satisfies assumptions (i) and (ii), we say that it is a valid instrument and the ground-truth causal99

effect f0 satisfies:100

E[Y |A] = E[f0(Z)|A] + constant (2)
This equation is generally ill-posed [Nashed and Wahba, 1974], but it motivates a two-stage least101

squares estimator (2SLS): first, regress Z on A: ZA = E[Z|A], then regress Y on the predicted102

treatment ZA with an intercept to account for the constant. In addition, if A fulfills assumption (iii)103

then f0 and l satisfy:104

E[Y |Z, V ] = f0(Z) + l(V ) (3)
This equality motivates the control function method, where we first regress Z on A obtaining an105

estimate ZA = E[Z|A]. Then (since A⊥⊥V ) the residuals can be consistently estimated from106

V̂ := Z−ZA. As a final step, we perform additive regression of Y on Z and V̂ to estimate f0 and l.107

However, in our case, the treatment is not directly observed; instead, we observe a nonlinear trans-108

formation X := g0(Z). Since we previously showed that the true treatment can be recovered up109

to an affine transformation (under assumptions on g0 and A that are compatible with those stated110

above), one can easily verify that, if the assumptions hold for the true treatment Z, they also hold111

for any invertible affine transformation of Z:112

Lemma 2.5. Let R ∈ RdZ×dZ be an invertible matrix, c ∈ RdZ and Ẑ := RZ + c. If A is a113

valid instrument for treatment Z according to Assumption 2.3, it is a valid instrument for treatment114

Ẑ along the same assumptions.115

See Appendix A.2 for proofs and additional details on functional assumptions on f0 and l that ensure116

their recoverability.117

A note on related work: The result we derived above is most closely related to the so-called118

extrapolation identifiability [Saengkyongam et al., 2024]. Briefly, their method formulates the mo-119

ment conditions in a reproducing kernel Hilbert space (RKHS) to enforce both linearity between120

the treatment and the instrument, and independence of the treatment residuals from the instrument.121

Particularly, they leverage control function to perform extrapolation on unseen values of instrument122

A.123

3 InfoIV: A Contrastive Learning Framework for IV124

Following our previous identifiability results, we propose a two-phase method to perform IV regres-125

sion. In the first phase, the instrument A is used as an auxiliary variable to recover the latent treat-126

ment variable Z up to an affine transformation. Specifically, we apply a general contrastive learning127
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(a) R2 scores per method and V distribution (Gaus-
sian), A is of dimension 8, Z of dimension 6 and X
of dimension 10. We run each method with 10 differ-
ent seeds.

(b) Average MSE score per shift, for control function
approach. Same dimensions for A, X and Z as de-
scribed in (a). Y is scalar. Each method is run with
10 different seeds.

Figure 2: Comparison of methods: (a) R2 scores and (b) MSE under shifts.

framework [Hyvärinen et al., 2019], which provably (i) learns an encoder that identifies the true128

inverse mixing function g0 up to an affine transformation, and (ii) approximates the conditional dis-129

tribution p(z|a), enabling its use in a second phase for unconfounded causal effect estimation (either130

via 2SLS or the control function method). We also introduce a variant based on InfoNCE [van den131

Oord et al., 2019], a common contrastive learning objective, and demonstrate its identifiability ca-132

pacity in Appendix A.3.2. We provide more details to both variants in Appendix A.3.133

4 Experiments134

For our experiments we sample A,X,Z, Y according to the data generating process introduced135

in Section 2.1. We consider the isotropic multivariate Gaussian case where A ∼ N (0, IdA
) and136

V ∼ N (0, IdV
). We first estimate the latent treatment exploiting the two contrastive methods de-137

scribed in Appendix A.3. In order to verify that we recover the ground-truth latents up to an affine138

transformation, we compute their R2-score against our estimated latent features. Both methods ap-139

proximate the ground-truth latent variables, as attested by the high R2 scores. However, the NCE140

method (R2 = 0.96) is more consistent, whereas the Auxiliary Variable method (R2 = 0.86) can141

even fail for some seeds (minimum observed: 0.57). Based on the estimated latents, we perform as142

the next step IV regression via the control function method and 2SLS (implementation details in Ap-143

pendix B). We show that the learned causal-effect is robust to distribution shift, by evaluating it for144

A ∼ N (µtest, IdA
) with µtest ∈ {1, 2, . . . , 5}. We evaluate our method against: (i) an oracle model145

that performs IV regression on the ground-truth Z, (ii) a naive model that performs ordinary-least-146

squares estimation of Y based on ground-truth Z. As expected, the OLS method yields equivalent147

results as IV methods when no shifts are applied to the test data distribution. However, as the shift148

increases, the MSE scores for two-stage least squares (Figure 2b) and also for the control function149

method (see Figure 3 in Appendix) remain stable while OLS fails to generalize on the test data dis-150

tribution. Please refer to Appendix B.1 and B.2 for further details on the data generating process, the151

neural net architectures and the hyperparameters. We also show examples of learned causal effect152

in the one dimension case in Appendix B.3.153

5 Discussion and Conclusion154

Our work demonstrates that contrastive learning is effective for learning latent representations in an155

IV setting where the treatment is unobserved. In particular, we empirically show that it integrates156

well with both two-stage least squares and control function approaches. In future work we aim to ex-157

plore its integration with anchor regression [Dominik Rothenhäusler et al., 2021], which relaxes the158

standard IV assumption by allowing the instrument to directly influence the outcome. Furthermore,159

we aim to evaluate our method on high-dimensional and real-world data.160
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A Theory235

A.1 Identifiability Proofs236

In the following, we prove the identification result in Lemma 2.2. After defining the exponential237

family, we recall the identifiability theorem of [Khemakhem et al., 2020] and show that the repre-238

sentation IV setting fulfills its conditions, ensuring that the latent treatment is identifiable up to an239

invertible affine transformation.240

Definition A.1 (Conditional Factorial ”simple” Exponential distribution). A multivariate condi-
tional distribution is simple factorial exponential, if its density function can be written as:

pT,λ(z|a) =
∏
i

Qi(zi)

Zi(a)
exp[Ti(zi)λi(a)]

where Qi is a real-valued function, Zi : A → R the normalization constant, Ti : R → RdA are the241

sufficient statistics and λi : RdA → RdA are such that ∂λi

∂u ̸= 0 for all i.242

This corresponds to the exponential family with 1-dimension sufficient statistics. We state the main243

identifiability result of Khemakhem et al. [2020] in the case of ”simple” exponential distributions.244

Theorem A.2 ([Khemakhem et al., 2020] Identifiability of conditionally exponential latents). Let245

x ∈ RdX , and a ∈ RdA be observed random variables and z ∈ RdZ a latent variable of exponential246

conditional distribution w.r.t a pT,λ(z|a) as defined in A.1. Let g0 : RdZ → RdX be an injective247

function such that:248

X = g0(Z) + ε

with ε a random variable independent from z, yielding to the following conditional generative249

model:250

pg0,T,λ(x, z|a) = pg0(x|z)pT,λ(z|a) (4)

Further assume:251

1. The sufficient statistic T (z) = (Ti(zi))
dZ
i=1 is differentiable and its Jacobian is full-rank a.e252

2. There exist dZ + 1 distinct points u0, ..., udZ such that the matrix

Lλ(u) = (λ(u1)− λ(u0), ...., λ(un)− λ(u0))

is invertible.253

Then ∀g̃, λ̃, T̃ ,254

pg0,λ,T (x|a) = pg̃,λ̃,T̃ (x|a) =⇒ g0(x) = RT̃ (g̃(x)) + c,∀x ∈ X .

where R ∈ RdZ×dZ is invertible, c ∈ RdZ .255

This theorem states that we recover the true latent variables up to an invertible affine transformation256

and a point-wise nonlinear function T . However, we later show in the proof that sufficient statistic T257

is the identity in the Gaussian linear case. Second assumption, usually refered as sufficient variability258

assumption, ensures that the individual components of Z are independently modulated by A such259

that Z is recoverable. This condition is ensured by the fact that M0 is full-rank.260

Remark A.3. The theorem is initially stated in the case of noisy observed data, i.e., X = g0(Z) +261

ε. However, as argued in the proof B.2.2 (Step I), the equality in the noisy case implies equality262

in noise-free probability density (i.e., X := g0(Z)). The rest of the proof relies on a noise-free263

distribution of X . For simplicity, we conduct experiments in the noise-free case. Nevertheless, the264

results suggest that the conclusions would extend to the additive noise case, provided the residuals265

remain independent of the latent features.266

Lemma 2.2. Assume our data are sampled according to Equation (1), with A being a random267

variable independent from V ∼ N (0,ΣV ), an isotropic multivariate Gaussian random variable.268

Further assume that the support of A contains at least dZ + 1 affinely independent points. Then Z269

is identifiable up to an affine transformation.270
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Proof. Without loss of generality, we prove the result for V a centered multivariate Gaussian with
identity covariance matrix. We show that our data generating process verifies all assumptions stated
in Theorem A.2. Let us recall that we sample data from the following SCM:

S :


V

iid∼ N (0, IdZ
)

Z :=M0A+ V

X := g0(Z)

with g0 injective and M0 full row rank. We have, by independence of A and V = (V1, ..., Vdz ):

p(z|a) = pV (z −M0a) =
∏
i

pVi
(zi −mia)

where {mi}i are the rows of M0. By hypothesis on the distribution of V , we have:271

p(z|a) =
∏
i

1√
2π
e−

1
2 (zi−mia)2 (5)

=
∏
i

1√
2π
e−

1
2 (z

2
i −2zim

ia+(mia)2) (6)

We recognize a simple exponential distribution as introduced in A.1, with parameters for all i ∈
{1, ..., dZ}: 

Qi(t) =
e−t2/2
√
2π

, ∀t ∈ R
Zi(u) = e(m

iu)2/2, ∀u ∈ RdA

Ti(t) = t, ∀t ∈ R
λi(u) = miu, ∀u ∈ RdA

272

We verify the second assumption. Let us pick u0 = 0dA
, then ∀u1, ..., udZ ∈ supp(A) linearly273

independent:274

L = (λ(u1), ..., λ(un)) (7)

=

 m1u1 m1u2 . . . m1udZ

...
...

...
...

mdZu1 mdZu2 . . . mdZudZ

 (8)

=M0U (9)

with U ∈ RdA×dZ the matrix formed with columns {u1, ..., udZ}. Let us set U := MT
0 . We note275

that:276

• The matrix U = MT
0 ∈ RdA×dZ has rank dA. If two columns of U were equal, or if a277

column was zero, then the column space of U would be linearly dependent, implying that278

rank(U) < dA. Therefore, all columns of U are distinct and non-zero.279

• M0 has full row rank, therefore L = M0M
T
0 is not only square and symmetric but also280

positive definite and thus invertible.281

Finally, we verify that the first assumption holds. T is differentiable a.e. and

∂Ti
∂zj

(z) =

{
1, i = j

0 else

So its Jacobian is the identity matrix on RdZ×dZ and is thus full-rank.282

283
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A.2 Causal Effect Identifiability284

As mentioned, our method assumes that the treatment is a latent variable (unobserved) but recov-285

erable up to an affine transformation using contrastive learning. We argue that this indeterminacy286

does not affect the indentifiability of the causal-effect. Particularly, if the IV assumptions stated in287

Section 2.3 hold for latent Z, they also hold for a non-constant affine transformation of Z.288

Lemma 2.5. Let R ∈ RdZ×dZ be an invertible matrix, c ∈ RdZ and Ẑ := RZ + c. If A is a289

valid instrument for treatment Z according to Assumption 2.3, it is a valid instrument for treatment290

Ẑ along the same assumptions.291

Proof. Relevance. Let Ẑ := RZ + c with R ∈ RdZ×dZ invertible and c ∈ RdZ . Using the change292

of variable formula yields:293

p(ẑ|a) = |det R−1| · p(z|a). (10)
By hypothesis ∃z such that ∂p(.|a)

∂a (z) ̸= 0 and R is non-zero. Therefore, the relevance assumption294

also holds for Ẑ.295

296

Quasi-exogeneity. Let us verify that the assumption ii) holds for A w.r.t the residuals of Ẑ.297

We have:298

Ẑ = RZ + c

= RM0A+RV + c.

We identify the residuals of Ẑ as: V̂ := RV + c, similarly the control function in the unobserved299

case is now l̃ = l ◦ τ , with τ(z) := R−1z − c. We then have E[l̃(V )|A] = E[l(V )|A] = constant.300

Exogeneity. Finally, z 7→ Rz + c is an affine and invertible transformation and thus a measurable301

function. since V ⊥⊥A it follows that V̂ ⊥⊥A.302

Let us verify Equation (2). Assumption 2.3 ii) implies that E[ε|A] = 0, we then have:303

E[Y |A] = E[f0(Z) + l(V ) + ε|A]
= E[f0(Z)|A] + E[l(V )|A]
= E[f0(Z)|A] + constant.

This constant term emerges because E[l(V )] may have a non-zero mean, while classic IV setting304

usually assumes that the expectation of residuals conditioned on the treatment is 0, which would305

highly restrict function l in our case. However, this difference does not invalidate IV. Let c :=306

E[l(V )|A] and ε̃ := l(V )− c+ ε, we have:307

Y = f0(Z) + l(V ) + ε

=
(
f0(Z) + c

)
+

(
l(V )− c+ ε

)
= f1(Z) + ε̃,

where f1(z) := f0(z) + c. We have E[ε̃|A] = 0 and therefore:308

E[Y |A] = E[f1(Z)|A].
This additive constant c yields a location indeterminacy: the true causal-effect f0 is only recovered309

up to an additive constant.310

Let us now verify Equation (3). We recall that ε⊥⊥V , thus:311

E[Y |Z, V ] = E[E[f0(Z) + l(V ) + ε|Z, V ]

= E[f0(Z) + l(V )|Z, V ]

= f0(Z) + l(V ).

As mentioned before, our difference with the classic IV setting lies in that we do not directly observe312

treatment Z but rather a nonlinear mixing of it X = g0(Z). Luckily we demonstrated in 2.2 that313

latent treatment was recoverable up to affine transformation in our IV setting. Furthermore, Newey314

et al. [1999] argues that f0 and l are identifiable up to an additive constant if they are differentiable,315

assuming that we observe the treatment. Since we only observe treatment and thus residuals up to an316

unknown affine invertible transformation κ, we are actually looking to recover f0 ◦κ−1 and l ◦κ−1,317

which are obviously also differentiable. As a consequence we recover the true causal effect up to an318

affine transformation, inverting the transformation indeterminacy of our retrieved latent features.319
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A.3 Latent Estimation320

Following the identifiability result from previous section, we propose to estimate g−1
0 and p(z|a)321

using contrastive methods. We train an encoder ϕ : X → Z , parametrized as a neural network, to322

approximate the inverse of ground-truth mixing function g0. We also train a decoder ψ : Z → X to323

reconstruct X from the estimated latent Ẑ := ϕ(X) using reconstruction loss:324

Lrecon = E[∥X − ψ(ϕ(X)∥2]

This loss term ensures that our encoder is injective/invertible, but is generally not sufficient to iden-325

tify latents Z [Khemakhem et al., 2020]. In addition to the reconstruction loss, we present two326

contrastive methods exploiting auxiliary variable A to ensure identifiability and learn p(z|a).327

A.3.1 Auxiliary Variable328

The first approach was introduced by Hyvärinen et al. [2019] and we state its identifiability property329

in this section. It consists in first creating two datasets:330

Dpos = (X,A) and Dneg = (X, Ã)

where (X,A) ∼ PX,A and Ã ∼ PA is sampled independently from X ∼ PX . A nonlinear logistic331

head h : Z × A → {0, 1} parametrized as a neural network, is trained to discriminate between the332

two datasets:333

h(x, a) :=

dz∑
i=1

ψi(ϕi(x), a) (11)

where ϕi is the i-th element of our encoder ϕ and ψ := (ψ1, ..., ψdZ
) is a neural network. We334

optimize it using cross-entropy loss to estimate the probability that a given pair belong to the positive335

or negative pair:336

LCL = E(X,A)∼PX,A
[− log h(g(X), A)] + EX∼PX ,Ã∼PA

[
− log(1− h(g(X), Ã))

]
. (12)

The following theorem states that an encoder trained on this loss will converge to the true inverse337

mixing function up to an affine transformation.338

Theorem A.4 ([Hyvärinen et al., 2019], Theorem 3). Assume:339

1. X := g0(Z), with g0 invertible.340

2. {Zi}i=1,...,dZ
are conditionally independent and exponential given auxiliary variable A,341

Definition A.1, Z|A = a ∼ pT,λ(z|a)342

3. The sufficient statistic T (z) = (Ti(zi))
dZ
i=1 is differentiable and its Jacobian is full-rank343

a.e.344

4. There exist n+ 1 distinct points u0, ..., un such that the matrix.

Lλ(u) = (λ(u1)− λ(u0), ...., λ(un)− λ(u0))

is invertible.345

5. The regression head r has universal approximation capacity and is trained on Cross-346

Entropy Loss to discriminate between Dpos and Dneg .347

Then in the limit of infinite data, ϕ identifies ground-truth latent Z up to an invertible affine trans-348

formation.349

Remark A.5. Theorem A.4 is initially stated in the general exponential case k ≥ 1 while we are in350

the simple case with k = 1. Moreover, the theorem states that we recover up the true inverse mixing351

function up to a point-wise transformation (defined by the sufficient statistic), which is the identity in352

the location-scale Gaussian case (see proof of Lemma 2.2 where we state that the sufficient statistic353

is the identity).354
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A.3.2 InfoNCE355

Our second proposed approach is similar but leverages InfoNCE loss [van den Oord et al., 2019].356

We train an encoder ϕ to maximize the similarity between our estimated latents z := ϕ(x) and its357

corresponding instrument a, and minimize the similarity with ã the other instruments from the batch.358

In essence, in contrast to the previous approach, we do not only compare a positive to a negative359

pair, but we have B − 1 negative pairs in practice, where B is the batch size. The loss is given by:360

LNCE = E

[
log

esimW (ϕ(X),A)∑
Ã∼PA

esimW (ϕ(X),Ã)

]
(13)

with simW (Z,A) = ZTWA where W ∈ RdZ×dA is a learnable matrix. We later show that in the361

event of infinite data, an encoder trained on NCE loss identifies the latent up to an affine transfor-362

mation.363

Theorem A.6. Assume we train an invertible encoder ϕ to minimize LNCE. Then under Assumptions364

1-4 of Theorem A.4, ϕ identifies ground-truth latent Z up to an invertible affine transformation and365

point-wise invertible transformation.366

Proof. As argued in van den Oord et al. [2019], in the limit of infinite data and ϕ having universal367

approximation capacity, if:368

W ∗, ϕ∗ = argmin
ϕ,W

LNCE, (14)

then369

eϕ
∗(x)W∗a ∝ p(x|a)

p(x)
. (15)

ϕ∗(x)W ∗a = log c+ log p(x|a)− log p(x) (16)

= log c+ log pZ(g
−1
0 (x)|a)− log pZ

(
g−1
0 (x)

)
(17)

= log c+ log pZ(z|a)− log pZ
(
z
)

(18)

We use the change of variable formula to go from (17) to (18) and notice that the Jacobian determi-370

nants cancel themselves. We define c the proportionality constant that is not dependent on a or x. At371

line (19) we simply set z := ϕ−1(x). By assumption, {Zi}i=1,...,dZ
given A follow an exponential372

distribution as introduced in, thus:373

ϕ∗(x)W ∗a = log pT,λ(z|a)− log pZ
(
z
)
+ log c (19)

= log c+ T (z)λ(a) + logQ(z)− logZ(a)− T0(z), (20)

with T0(z) := pZ(z). By collecting these equations for every ak, k ∈ {0, ..., dZ} as defined in374

assumption 4 of Theorem A.4 and taking out the case a0, we obtain for all k ∈ {1, ..., dZ}:375

ϕ∗(x)W ∗(ak − a0) = T (z)
(
λ(ak)− λ(a0)

)
+ log

Z(a0)

Z(ak)
, (21)

which yield the following matrix form:376

ϕ∗(x)W ∗A = T (z)L+ C, (22)

with A a RdZ×dA matrix whose k-th row is given by ak − a0 which is non-zero by assumption, L377

is defined as in Theorem A.4 assumption 4 and C is a vector of dimension dZ whose k-th element378

is given by log Z(a0)
Z(ak)

. By assumption, L is invertible thus we can multiply both side by its inverse,379

which yields the following result:380

ϕ∗(x)R = T (z) + C̃, (23)

with C̃ := CL−1 and R :=W ∗AL−1.381

Finally, by assumption T has full-rank Jacobian and is thus non-degenerate. As a consequence, the382

mapping z 7→ zR has to cover the full-space and thus cannot be degenerate. Since R is a square383

matrix we deduce its invertibility.384

385
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Figure 3: Average MSE score per distribution shift for two-stages least squares method. Let us recall
that all models are trained on data generated with A ∼ N (0, IdA

) and evaluated on data generated
with A ∼ N (µA, IdA

), with µA ∈ {0, 1, 2, 3, 4} . A is of dimension 8, Z of dimension 6 and X of
dimension 10. Y is scalar. Each method is run with 10 different seeds.

Our theorem states the identifiability of ground-truth latent variables up to an affine invertible trans-386

formation and a point-wise invertible transformation defined by T , the sufficient statistic associated387

with the distribution of Z|A. However, as stated in Remark A.5 the sufficient statistic is the identity388

in the location-scale Gaussian case.389

Lemma A.7. Assume our data are sampled according to Equation (1), with A ∼ N (0,ΣA) and390

V ∼ N (0,ΣV ) two independent isotropic multivariate Gaussian random variables. Then an en-391

coder trained on LNCE on infinite data identifies the ground-truth latent up to an invertible affine392

transformation.393

B Experiments394

B.1 Data generation395

Let us recall that we sample X,Y, Z,A according to the following SCM:396

S :


A, V ∼ N (0, IdA

),N (0, IdZ
)

Z :=M0A+ V

X := g0(Z)

Y := f0(Z) + l(V ) + ε

(24)

In our experimental setup, g0 is implemented as a two-layer neural network with a hidden dimension397

of 16. To ensure injectivity, we employ LeakyReLU activations with a negative slope of −0.2 and398

sample the weight matrices of each layer to be full-rank. Similarly, M0 is constructed to be full-399

rank using a QR-decomposition-based procedure: two random matrices are independently sampled,400

the Q factors from their QR decompositions are extracted, and their product is used as M0. Since401

the Q factor of a QR decomposition is orthogonal (and hence invertible), this procedure guarantees402

that M0 is full rank by construction. One could just pick Q as M0, however this would lead to403

orthogonal matrices only. f0 and l are two-layers neural network with hidden dimension 16. To404

preserve their differentiability, we use Tanh as activation functions. We sample 10,000 data points405

from our training SCM and 2,000 data points for each validation set (with shifted instrument).406

As shown in Figure 3, both NCE and Auxiliary Variable methods learn relevant features to perform407

control function in a second step.408

B.2 Model and Training specs409

Our encoder is a three-layer neural network with 32 hidden units. The NCE method (see Ap-410

pendix A.3.2) requires only an additional trainable matrix of size dA × dZ , whereas the auxiliary411

variable method (see Appendix A.3.1) uses a logistic head implemented as a two-layer neural net-412

work with 16 hidden units, Tanh activations, and a linear output layer. Encoders are trained for 50413

epochs. For the final IV regression step, we use an additive model fθ + νθ in the control function414
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(a) (b) (c)

Figure 4: Estimated causal effect with NCE loss and control function (in red), ground-truth causal
effect (in orange), OLS model (in green), (Z;Y) (in grey)

approach, where both fθ and νθ are three-layer neural networks with 32 hidden units and Tanh acti-415

vations. In the two-stage least squares approach, only fθ is used, with the same architecture. During416

IV training, the parameters used for latent estimation are frozen, and the model is trained for an417

additional 50 epochs. The oracle models share the exact same architecture as the corresponding IV418

models (control function or two-stage). The naive baseline is a single three-layer network with 32419

hidden units. Both baselines are trained on 100 epochs.420

Finally, we use Adam optimizer with (β1, β2) = (0.9, 0.999). As our experiment are conducted in421

relatively low dimensions, both training and inference are done on an Apple M4 Pro chip.422

B.3 Causal effect estimation in dimension one423

We additionally evaluate our method in a setting where both Z and X are scalar, while A is sampled424

from a two-dimensional uniform distribution. Figure 4 shows the learnt causal-effect. We consider425

three scenarios: a) corresponds to the case of a linear causal effect; b) corresponds to a nonlinear426

causal effect implemented as a linear layer with hidden dimension 16, followed by a tanh activation427

and a final linear layer; and c) corresponds to a similar architecture where the nonlinear activation is428

the absolute value function instead of tanh. In all cases, we first estimate the latent variable Z using429

the InfoNCE variant and then apply the control function technique for causal effect estimation. As430

discussed in Appendix A.2, our method recovers the ground-truth causal effect f0 up to an affine431

indeterminacy that arises from latent variable estimation. To account for this, we learn an affine432

transformation that aligns the estimated latent representation with the ground-truth Z, and we report433

the causal effect after applying this transformation. For comparison, we also fit an OLS model434

mapping the ground-truth Z to the outcome Y . The OLS estimator fails to recover the causal effect,435

as Z is confounded with the residual variation in Y . Importantly, despite the affine indeterminacy,436

our method still yields a valid estimate of the causal relationship from the observed X to Y .437

B.4 Latent IV methods adaptation438

In this section, we provide a detailed description of how we adapt the control function and two-stage439

least squares (2SLS) methods to our latent IV setting. Assume that we have trained an encoder ϕ to440

invert the true mixing function g0 using one of the strategies described in Appendix A.3.441

We first estimate the linear relationship between the observed instrument A and the encoded latent442

Ẑ := ϕ(X) up to an affine transformation:443

M̂, ĉ = argmin
M,c

∥Ẑ −MA− c∥2.

B.4.1 Control function approach444

1. Compute the predicted latent features Ẑ = ϕ(X).445

2. Estimate the control variable V̂ as446

V̂ = Ẑ − M̂A− ĉ.
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3. Perform additive regression on Y , estimating447

µ̂, ν̂ = argmin
µ,ν

∥Y − µ(Ẑ)− ν(V̂ )∥2.

B.4.2 Two-Stage Least Squares448

1. Compute the predicted latent features from A:449

ẐA = M̂A+ ĉ.

2. Regress Y on ẐA to estimate:450

ĥ = argmin
h

∥Y − h(ẐA)∥2.

C Related Work451

Other IV methods [J. Hartford and Taddy, 2017] extend the classic two-stage least squares approach452

to nonlinear settings using neural networks. Similarly, Liyuan Xu [2021] propose a method that al-453

ternates between the first and second stage, using dictionary learning to extract features from the454

instruments. An other line of work [Zhang et al., 2023, A. Bennett and Schnabel, 2019, Saengky-455

ongam et al., 2024] aims to recover a function f that satisfies appropriate moment conditions, typ-456

ically expressed as E[h(A)(Y − f(X))] = 0 for every measurable function h, in order to enforce457

the independence of the residuals from instrument A. However, this leads to an infinite family of458

conditions, making it impractical to verify directly. As a result, one must choose a function class459

for h that is expressive enough to approximate the space of all measurable functions and ensure that460

the moment condition sufficiently captures the independence constraint. As for nonlinear ICA, there461

exist approaches that ensure identifiability without relying on an auxiliary variable. In the context462

of time-series data, temporal dependencies have been shown to enable identifiability [Hyvärinen463

and Morioka, 2016]. Structural assumptions on the mixing function, such as additivity [Lachapelle464

et al., 2023] or sparsity [Lachapelle et al., 2022, Moran et al., 2022], have also been proposed.465

Without such auxiliaries, weaker results such as block-identifiability when we have access to style466

transforming data augmentations [Von Kügelgen et al., 2021] or when working with multimodal467

data [Daunhawer et al., 2023].468

Building on this line of work, Ilyes Khemakhem [2020] proposed a novel framework called Indepen-469

dently Modulated Component Analysis (IMCA), which further relaxes the conditional independence470

assumption while retaining most of the identifiability guarantees established in the auxiliary variable471

setting.472
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