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Abstract

Instrumental Variable (IV) regression is a standard technique for estimating causal
effects in the presence of unobserved confounders. The classic IV setting assumes
access to an external variable - called the instrument - which directly influences
the treatment variable. In this work, we consider a more challenging yet realistic
setting where the treatment is latent, and we can only observe a nonlinear (po-
tentially high-dimensional) transformation of it. Particularly, using insights from
the independent component analysis (ICA) literature, we propose a general con-
trastive learning framework to recover the latent treatment up to an affine transfor-
mation when it is linearly related to the instrument. We prove that the recovered
representation is compatible with classical IV techniques. Empirically, we demon-
strate the effectiveness of our method using control function and two-stage least
squares (2SLS) estimators and evaluate the robustness of the learned estimators in
distribution shift setting.

1 Introduction

Standard supervised learning techniques, such as ordinary least squares (OLS), assume that the
residuals on the target variable are independent of the features to retrieve the true causal effect.
However, this assumption does not generally hold. Consider a setting where we observe a treatment
X and an outcome Y = fo(X) + €, with E[e] = 0 but E[¢|X] # 0. Such a data generative
mechanism violates the standard assumption that the noise is independent of the features, leading
to E[Y|X] # fo(X), and thus classical supervised learning methods fail to recover the true causal
effect. To address this, Instrumental Variable (IV) regression [Newey and Powell, 2003] assumes
the observation of an instrument that affects the outcome only through the treatment variable and is
thus independent from the residuals. Originally formulated for linear models, IV methods have been
extended to nonlinear settings using universal approximators like neural networks [J. Hartford and
Taddy, 2017, Liyuan Xu, 2021] or kernels [Singh et al., 2019].

Similarly, the field of causal representation learning (CRL) [Scholkopf et al., 2021] often relies on
an observed auxiliary variable to learn representations that are suitable for performing causal down-
stream tasks. It is closely related to nonlinear independent component analysis (ICA), which aims
to recover independent sources from nonlinearly mixed signals. A central question in ICA is that
of identifiability—whether the sources can be recovered from observational data alone. This task is
provably impossible without additional assumptions on the data-generating process [Hyvirinen and
Pajunen, 1999]. Just as an instrumental variable enables identification of a causal effect, identifia-
bility of nonlinear ICA can be achieved by introducing an auxiliary variable [Hyvirinen et al., 2019,
Khemakhem et al., 2020], under the assumption that the latent variables are independent conditioned
on the auxiliary. This setting provides a more natural theoretical foundation for CRL, where the un-
derlying features are causally related and thus not independent. We show that these assumptions are
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fulfilled by standard assumptions in the IV setting, allowing us to recover latent features for IV that
we can also leverage to perform extrapolation tasks.

We consider a representation-based IV setting in which the treatment variable is latent and causally
related to an observed auxiliary variable. We show that, under assumptions compatible with the
IV setting, the latent variables are recoverable up to an affine transformation, which is sufficient to
recover the causal effect between the observed transformation of the latent treatment and the target.
As a practical instantiation of this framework, we propose two variants of contrastive methods that
provably recover the latent treatment (up to some indeterminacy) and demonstrate its consistency
with IV methods such as two-stage least squares (2SLS) and the Control Function (CF) approach.

2 Recovering Latent Treatments

2.1 Data Generating Process

We consider a representation-based variant of the classical instru-
mental variable (IV) setting, similar to Saengkyongam et al. [2024], a
where the corresponding graphical model is shown in Figure 1. We

\
assume that the treatment variable Z € Z is unobserved (we denote
latent variables as gray nodes), while the outcome Y € ) C R and
instrument variable A € A C R% are observed. In addition, we @T T
0 0
90

1
7

observe variable X € X, which is a transformation of the treat-
ment. Throughout the paper, we assume that our data are generated

as follows:
Z = M()A + V
S X :=0(2) M Figure 1: Causal graph of the
Y= fo(2)+1U(V)+e data generating process

where go : Z — X is a nonlinear injective mixing function, fy : Z — Rand !/ : Z — R are assumed
measurable and integrable. Treatment Z and effect Y are confounded by unobserved variable V,
with E[V] = 0 and E[V?] < oo. Residuals ¢ are assumed independent from V' and E[¢] = 0 and
E[e?] < oo. We further assume My € R92*44 (o be a matrix of rank dyz (with d4 > dz + 1).
Our goal is to recover the latent treatment Z up to some indeterminacy exploiting A as an auxiliary
variable. We argue that this is sufficient for IV regression.

2.2 Identifiability of Latent Treatments

In the general setting, identifying the exact ground-truth latent variable Z from observed data alone
is infeasible. We build upon theory from Khemakhem et al. [2020] to show that the latent treatment
Z can be recovered up to an affine transformation, particularly in the case where V' is an isotropic
multivariate Gaussian. Let us define an encoder ¢ : X — Z, typically parametrized as a neural
network, whose goal is to approximate the inverse mixing function g, 1 Let pg(z|a) be the pos-

terior distribution of X := ¢~ 1(Z) given A, then we define affine identifiability as (introduced in
Saengkyongam et al. [2024]):

Definition 2.1 (Affine identifiability). We say that the latents Z are identifiable up to an affine
transformation if there exist an encoder ¢ : X — Z such that:

p(z|a) = py(z]a) = IR € R¥2*92 invertible, c € R such that ¢ 0 go(2) = Rz +¢,Vz € Z.

In particular, we show that under the assumptions of our data generating process, Z is identifiable
up to an affine transformation, where we leverage A as an auxiliary variable.

Lemma 2.2. Assume our data are sampled according to Equation (1), with A being a random
variable independent from V. ~ N(0,Xv), an isotropic multivariate Gaussian random variable.
Further assume that the support of A contains at least dyz + 1 affinely independent points. Then Z
is identifiable up to an affine transformation.

Proof Sketch: We rely on an identifiability result from Hyvirinen et al. [2019], which is guaranteed
by the conditional independence of the latent Z given instrument A and by the full-rankness of M.
The full proof is stated in Appendix A.3.
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In other words, if we can approximate the ground-truth conditional probability p(z|a) using a suit-
able learning algorithm, we are guaranteed that the learned encoder approximates the ground-truth
latent treatment up to an affine transformation. This affine identifiability of the latent treatment is
then sufficient to carry out IV regression.

2.3 Causal Effect Identifiability

Guo and Small [2016] provide assumptions on the instrument for identifiability of a nonlinear
causal-effect, in the classical IV setting with observed treatment. We first state them and then discuss
how they relate to our setting where the treatment is unobserved.

Assumption 2.3. Let A, Z and Y be sampled according to Equation (1). Furthermore, assume:

(i) Relevance: The instrument variable has a direct causal influence on treatment, i.e., P(Z|A)
is not constant in A.

(ii) Quasi-exogeneity: A 1l ¢ and E[I(V')|A4] is constant.

(iii) Strong Exogeneity: A 1l V.
Remark 2.4. Note that classical IV methods typically assume E[I(V)|A] = 0. However, this as-
sumption restricts [ to a very specific class of functions. In practice, relaxing this condition intro-
duces a location indeterminacy in the estimated causal effect. Importantly, this indeterminacy does
not affect predictive performance nor the robustness of the estimates to distributional shifts.

If A satisfies assumptions (i) and (ii), we say that it is a valid instrument and the ground-truth causal
effect fj satisfies:
E[Y|A] = E[fo(Z)|A] + constant 2
This equation is generally ill-posed [Nashed and Wahba, 1974], but it motivates a two-stage least
squares estimator (2SLS): first, regress Z on A: Z4 = E[Z|A], then regress Y on the predicted
treatment Z 4 with an intercept to account for the constant. In addition, if A fulfills assumption (iii)
then fo and [ satisfy:
E[Y|Z,V] = fo(2Z) + V) 3)
This equality motivates the control function method, where we first regress Z on A obtaining an
estimate Z4 = E[Z|A]. Then (since A L V') the residuals can be consistently estimated from
Vi=-27 4. As afinal step, we perform additive regression of Y on Z and V to estimate foandl.

However, in our case, the treatment is not directly observed; instead, we observe a nonlinear trans-
formation X := go(Z). Since we previously showed that the true treatment can be recovered up
to an affine transformation (under assumptions on gy and A that are compatible with those stated
above), one can easily verify that, if the assumptions hold for the true treatment Z, they also hold
for any invertible affine transformation of Z:

Lemma 2.5. Let R € R2*92 pe an invertible matrix, ¢ € R and Z := RZ +c. If Aisa
valid instrument for treatment Z according to Assumption 2.3, it is a valid instrument for treatment

Z along the same assumptions.

See Appendix A.2 for proofs and additional details on functional assumptions on fj and / that ensure
their recoverability.

A note on related work: The result we derived above is most closely related to the so-called
extrapolation identifiability [Saengkyongam et al., 2024]. Briefly, their method formulates the mo-
ment conditions in a reproducing kernel Hilbert space (RKHS) to enforce both linearity between
the treatment and the instrument, and independence of the treatment residuals from the instrument.
Particularly, they leverage control function to perform extrapolation on unseen values of instrument

A.

3 InfolV: A Contrastive Learning Framework for IV

Following our previous identifiability results, we propose a two-phase method to perform IV regres-
sion. In the first phase, the instrument A is used as an auxiliary variable to recover the latent treat-
ment variable Z up to an affine transformation. Specifically, we apply a general contrastive learning
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(a) R? scores per method and V distribution (Gaus- (b) Average MSE score per shift, for control function
sian), A is of dimension 8, Z of dimension 6 and X approach. Same dimensions for A, X and Z as de-
of dimension 10. We run each method with 10 differ- scribed in (a). Y is scalar. Each method is run with
ent seeds. 10 different seeds.

Figure 2: Comparison of methods: (a) RZ? scores and (b) MSE under shifts.

framework [Hyvirinen et al., 2019], which provably (i) learns an encoder that identifies the true
inverse mixing function gg up to an affine transformation, and (ii) approximates the conditional dis-
tribution p(z|a), enabling its use in a second phase for unconfounded causal effect estimation (either
via 2SLS or the control function method). We also introduce a variant based on InfoNCE [van den
Oord et al., 2019], a common contrastive learning objective, and demonstrate its identifiability ca-
pacity in Appendix A.3.2. We provide more details to both variants in Appendix A.3.

4 Experiments

For our experiments we sample A, X, Z, Y according to the data generating process introduced
in Section 2.1. We consider the isotropic multivariate Gaussian case where A ~ N(0,I;,) and
V ~ N(0,14,). We first estimate the latent treatment exploiting the two contrastive methods de-
scribed in Appendix A.3. In order to verify that we recover the ground-truth latents up to an affine
transformation, we compute their R2-score against our estimated latent features. Both methods ap-
proximate the ground-truth latent variables, as attested by the high R? scores. However, the NCE
method (R? = 0.96) is more consistent, whereas the Auxiliary Variable method (R? = 0.86) can
even fail for some seeds (minimum observed: 0.57). Based on the estimated latents, we perform as
the next step IV regression via the control function method and 2SLS (implementation details in Ap-
pendix B). We show that the learned causal-effect is robust to distribution shift, by evaluating it for
A ~ N (test Ia, ) with pes € {1,2,...,5}. We evaluate our method against: (i) an oracle model
that performs IV regression on the ground-truth Z, (ii) a naive model that performs ordinary-least-
squares estimation of Y based on ground-truth Z. As expected, the OLS method yields equivalent
results as IV methods when no shifts are applied to the test data distribution. However, as the shift
increases, the MSE scores for two-stage least squares (Figure 2b) and also for the control function
method (see Figure 3 in Appendix) remain stable while OLS fails to generalize on the test data dis-
tribution. Please refer to Appendix B.1 and B.2 for further details on the data generating process, the
neural net architectures and the hyperparameters. We also show examples of learned causal effect
in the one dimension case in Appendix B.3.

5 Discussion and Conclusion

Our work demonstrates that contrastive learning is effective for learning latent representations in an
IV setting where the treatment is unobserved. In particular, we empirically show that it integrates
well with both two-stage least squares and control function approaches. In future work we aim to ex-
plore its integration with anchor regression [Dominik Rothenhdusler et al., 2021], which relaxes the
standard IV assumption by allowing the instrument to directly influence the outcome. Furthermore,
we aim to evaluate our method on high-dimensional and real-world data.
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A Theory

A.1 Identifiability Proofs

In the following, we prove the identification result in Lemma 2.2. After defining the exponential
family, we recall the identifiability theorem of [Khemakhem et al., 2020] and show that the repre-
sentation IV setting fulfills its conditions, ensuring that the latent treatment is identifiable up to an
invertible affine transformation.

Definition A.1 (Conditional Factorial “simple” Exponential distribution). A multivariate condi-
tional distribution is simple factorial exponential, if its density function can be written as:

prale) =[] 2 explTionta)

where Q); is a real-valued function, Z; : A — R the normalization constant, T; : R — R%4 are the
sufficient statistics and \; : R%4 — R% are such that % # 0 for all 4.

This corresponds to the exponential family with 1-dimension sufficient statistics. We state the main
identifiability result of Khemakhem et al. [2020] in the case of ”simple” exponential distributions.

Theorem A.2 ([Khemakhem et al., 2020] Identifiability of conditionally exponential latents). Let
x € R¥X, and a € R be observed random variables and z € R q latent variable of exponential
conditional distribution w.r.t a pr (z|a) as defined in A.1. Let gy : R — R be an injective
function such that:

X = g0 (Z) +e
with € a random variable independent from z, yielding to the following conditional generative
model:
Pgo, 1A (2, 2]a) = pg, (x]2)pr,A (2]0) )

Further assume:

1. The sufficient statistic T(z) = (T;(2;))%2, is differentiable and its Jacobian is full-rank a.e

2. There exist dz + 1 distinct points u°, ..., u%* such that the matrix

La(u) = (A (u) = Xu?), ..., Au™) — A(uP))
is invertible.
Then Vg, 5\, T,
Paon1(al0) = py 5 #(wla) = go(z) = RT(§(2)) + ¢,V € X.

where R € R%2%497 jg jnvertible, c € R%Z.

This theorem states that we recover the true latent variables up to an invertible affine transformation
and a point-wise nonlinear function 7. However, we later show in the proof that sufficient statistic T’
is the identity in the Gaussian linear case. Second assumption, usually refered as sufficient variability
assumption, ensures that the individual components of Z are independently modulated by A such
that Z is recoverable. This condition is ensured by the fact that M is full-rank.

Remark A.3. The theorem is initially stated in the case of noisy observed data, i.e., X = go(Z) +
€. However, as argued in the proof B.2.2 (Step I), the equality in the noisy case implies equality
in noise-free probability density (i.e., X := go(Z)). The rest of the proof relies on a noise-free
distribution of X. For simplicity, we conduct experiments in the noise-free case. Nevertheless, the
results suggest that the conclusions would extend to the additive noise case, provided the residuals
remain independent of the latent features.

Lemma 2.2. Assume our data are sampled according to Equation (1), with A being a random
variable independent from V. ~ N(0,Xyv), an isotropic multivariate Gaussian random variable.
Further assume that the support of A contains at least dyz + 1 affinely independent points. Then Z
is identifiable up to an affine transformation.
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Proof. Without loss of generality, we prove the result for V' a centered multivariate Gaussian with
identity covariance matrix. We show that our data generating process verifies all assumptions stated
in Theorem A.2. Let us recall that we sample data from the following SCM:

VN0, I,)
S§:87:= MOA+V
X = go(Z)

with go injective and M, full row rank. We have, by independence of A and V' = (V4,..., V. ):

p(zla) = py (2 — Moa) = Hpv i —m'a)

where {m'}; are the rows of My. By hypothesis on the distribution of V', we have:

e—%(zq'—mia)2 (5)

a):Hr

22 —2z;ma+(m'a)?) (6)

_H\/ﬂ

We recognize a simple exponential distribution as introduced in A.l, with parameters for all ¢ €
{1, ceny dz}I

—t2)2
Qi(t) = )\ VieR
Zi(u) = emw?*/2 yy e Ria
Ty(t) = t, vteR
Xi(u) = mtu, Vu € Rda

We verify the second assumption. Let us pick u® = 0g4,, then Vu!,...,u% € supp(A) linearly
independent:

L= (A(u'), ...; M(u™)) (7
mlu! mlu? . miudz
: : : : (®)
mizyl mizy2 . mizydz
= MyU 9)

with U € R¥4*4z the matrix formed with columns {u!,...,u%?}. Let us set U := M. We note
that:

o The matrix U = MJ € R94*9z has rank d4. If two columns of U were equal, or if a
column was zero, then the column space of U would be linearly dependent, implying that
rank(U) < d4. Therefore, all columns of U are distinct and non-zero.

* My has full row rank, therefore L = MM{ is not only square and symmetric but also
positive definite and thus invertible.

Finally, we verify that the first assumption holds. T is differentiable a.e. and

T L
9y = L, 1=y
0z; 0 else

So its Jacobian is the identity matrix on R%#*¢Z and is thus full-rank.
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A.2 Causal Effect Identifiability

As mentioned, our method assumes that the treatment is a latent variable (unobserved) but recov-
erable up to an affine transformation using contrastive learning. We argue that this indeterminacy
does not affect the indentifiability of the causal-effect. Particularly, if the IV assumptions stated in
Section 2.3 hold for latent Z, they also hold for a non-constant affine transformation of Z.

Lemma 2.5. Let R € R%2%9z pe an invertible matrix, ¢ € R% and 7 = RZ +ec If Ais a
valid instrument for treatment Z according to Assumption 2.3, it is a valid instrument for treatment
Z along the same assumptions.

Proof. Relevance. Let Z := RZ + ¢ with R € R%7 %47 invertible and ¢ € R%#. Using the change
of variable formula yields:

p(2la) = |det R7| - p(z]a). (10)
By hypothesis 3z such that W (z) # 0 and R is non-zero. Therefore, the relevance assumption

also holds for Z.

Quasi-exogeneity. Let us verify that the assumption ii) holds for A w.r.t the residuals of Z.
We have:

Z=RZ+c
= RMyA+ RV +ec.
We identify the residuals of Zas: V= RV + ¢, similarly the control function in the unobserved
case is now [ = [ o 7, with 7(2) := R™'z — ¢. We then have E[I(V)|A] = E[I(V)|A] = constant.
Exogeneity. Finally, z — Rz + c is an affine and invertible transformation and thus a measurable
function. since V L A it follows that V 1L A. O

Let us verify Equation (2). Assumption 2.3 ii) implies that E[e| A] = 0, we then have:
E[Y[A] = E[fo(Z) + (V) + &|4]
= E[fo(2)|A] + E[I(V)|A]
= E[fo(Z)|A] + constant.
This constant term emerges because E[/(V)] may have a non-zero mean, while classic IV setting
usually assumes that the expectation of residuals conditioned on the treatment is 0, which would
highly restrict function [ in our case. However, this difference does not invalidate IV. Let ¢ :=
E[l(V)|A] and € := (V) — ¢ + &, we have:
Y =[f(Z)+1(V)+e
= (fo(Z2)+¢c)+ (I(V) —c+e)
= fl (Z) + g)
where f1(z) := fo(z) + c. We have E[¢]A] = 0 and therefore:
E[Y|A] = E[f1(2)|A4].
This additive constant ¢ yields a location indeterminacy: the true causal-effect fj is only recovered
up to an additive constant.

Let us now verify Equation (3). We recall that ¢ 11V, thus:
EY|Z, V] =E[E[fo(Z2)+ (V) +¢€|Z,V]
=E[fo(2) +1(V)|Z, V]
= fo(Z) +1(V).

As mentioned before, our difference with the classic IV setting lies in that we do not directly observe
treatment Z but rather a nonlinear mixing of it X = ¢¢(Z). Luckily we demonstrated in 2.2 that
latent treatment was recoverable up to affine transformation in our IV setting. Furthermore, Newey
et al. [1999] argues that f; and [ are identifiable up to an additive constant if they are differentiable,
assuming that we observe the treatment. Since we only observe treatment and thus residuals up to an
unknown affine invertible transformation «, we are actually looking to recover foox~!andlox™!,
which are obviously also differentiable. As a consequence we recover the true causal effect up to an
affine transformation, inverting the transformation indeterminacy of our retrieved latent features.

10
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A.3 Latent Estimation

Following the identifiability result from previous section, we propose to estimate g, ! and p(z|a)
using contrastive methods. We train an encoder ¢ : X — Z, parametrized as a neural network, to
approximate the inverse of ground-truth mixing function gy. We also train a decoder ¢ : Z — X to

reconstruct X from the estimated latent Z := ¢(X) using reconstruction loss:

Erecon = E[HX - ’L/)(¢(X)||2]

This loss term ensures that our encoder is injective/invertible, but is generally not sufficient to iden-
tify latents Z [Khemakhem et al., 2020]. In addition to the reconstruction loss, we present two
contrastive methods exploiting auxiliary variable A to ensure identifiability and learn p(z|a).

A.3.1 Auxiliary Variable

The first approach was introduced by Hyvirinen et al. [2019] and we state its identifiability property
in this section. It consists in first creating two datasets:

Dypos = (X, A) and D,,ey = (X, A)

where (X, A) ~ Px 4 and A~ Pyis sampled independently from X ~ Px. A nonlinear logistic
head h : Z x A — {0, 1} parametrized as a neural network, is trained to discriminate between the
two datasets:

d.
h(z,a) =Y ¥i(¢i(x),a) (11)
i=1
where ¢; is the i-th element of our encoder ¢ and ¢ := (41,...,%q4,) is a neural network. We

optimize it using cross-entropy loss to estimate the probability that a given pair belong to the positive
or negative pair:

Lew = E(x a)~py 4 [—logh(g(X), Al +Ex _p, iwp, [— log(1—h(g(X),A)|. (12

The following theorem states that an encoder trained on this loss will converge to the true inverse
mixing function up to an affine transformation.

Theorem A.4 ([Hyvérinen et al., 2019], Theorem 3). Assume:
1. X := go(2), with go invertible.
2. {Zi}i=1.....a, are conditionally independent and exponential given auxiliary variable A,

Definition A.1, Z|A = a ~ pr r(z|a)

3. The sufficient statistic T(z) = (Ti(z:))}2, is differentiable and its Jacobian is full-rank
a.e.

4. There exist n + 1 distinct points u°, ..., u™ such that the matrix.
La(u) = A (u) = Xu?), ..., Mu™) — A(uP))
is invertible.

5. The regression head r has universal approximation capacity and is trained on Cross-
Entropy Loss to discriminate between Dpos and Di,eg.

Then in the limit of infinite data, ¢ identifies ground-truth latent Z up to an invertible affine trans-
formation.

Remark A.5. Theorem A.4 is initially stated in the general exponential case £ > 1 while we are in
the simple case with £ = 1. Moreover, the theorem states that we recover up the true inverse mixing
function up to a point-wise transformation (defined by the sufficient statistic), which is the identity in
the location-scale Gaussian case (see proof of Lemma 2.2 where we state that the sufficient statistic
is the identity).

11
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A3.2 InfoNCE

Our second proposed approach is similar but leverages InfoNCE loss [van den Oord et al., 2019].
We train an encoder ¢ to maximize the similarity between our estimated latents z := ¢(z) and its
corresponding instrument @, and minimize the similarity with a the other instruments from the batch.
In essence, in contrast to the previous approach, we do not only compare a positive to a negative
pair, but we have B — 1 negative pairs in practice, where B is the batch size. The loss is given by:

oSimw ($(X),A)

ap, € (000, A)

ENCE =K 10g (13)

with simyy (Z, A) = ZTW A where W € R42*d4 g a learnable matrix. We later show that in the
event of infinite data, an encoder trained on NCE loss identifies the latent up to an affine transfor-
mation.

Theorem A.6. Assume we train an invertible encoder ¢ to minimize Lycg. Then under Assumptions
1-4 of Theorem A.4, ¢ identifies ground-truth latent Z up to an invertible affine transformation and
point-wise invertible transformation.

Proof. As argued in van den Oord et al. [2019], in the limit of infinite data and ¢ having universal
approximation capacity, if:

VV*7 ¢* = arg min ENCE, (14)
oW
then
e® (@W7a p(x\a). (15)
p(z)
¢*(x)W"a = log c + log p(z|a) — log p(z) (16)
:logc—&—logpz(gal(xﬂa) —logpz(gal(x)) (17)
=logc+logpz(z|a) —logpz () (18)

We use the change of variable formula to go from (17) to (18) and notice that the Jacobian determi-
nants cancel themselves. We define c the proportionality constant that is not dependent on a or x. At
line (19) we simply set z := ¢~ '(z). By assumption, {Z;};—1..4, given A follow an exponential
distribution as introduced in, thus:

¢"(x)W*a = logpr a(z|la) —logpz (z) +logec (19)
=loge+ T(2)A\(a) +log Q(z) —log Z(a) — To(z), (20)

with Tp(z) := pz(z). By collecting these equations for every ay, k € {0,...,dz} as defined in
assumption 4 of Theorem A.4 and taking out the case ag, we obtain for all k € {1, ...,dz}:

Z
(@)W (a ~ a0) = T(:) (Nax) ~ Naw) + log 72 a1
which yield the following matrix form:
¢ ()W A=T(z)L+C, (22)

with A a R%2*44 matrix whose k-th row is given by ay — ao which is non-zero by assumption, L
is defined as in Theorem A.4 assumption 4 and C'is a vector of dimension dz whose k-th element

is given by log gézzg By assumption, L is invertible thus we can multiply both side by its inverse,

which yields the following result:

¢*(x)R="T(2)+C, (23)
with C := CL ' and R := W*AL™!.

Finally, by assumption 7" has full-rank Jacobian and is thus non-degenerate. As a consequence, the
mapping z — zR has to cover the full-space and thus cannot be degenerate. Since R is a square
matrix we deduce its invertibility.

O
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Figure 3: Average MSE score per distribution shift for two-stages least squares method. Let us recall
that all models are trained on data generated with A ~ N(0, I, ) and evaluated on data generated
with A ~ N(pa, Ia,), with pa € {0,1,2,3,4} . Ais of dimension 8, Z of dimension 6 and X of
dimension 10. Y is scalar. Each method is run with 10 different seeds.

Our theorem states the identifiability of ground-truth latent variables up to an affine invertible trans-
formation and a point-wise invertible transformation defined by 7', the sufficient statistic associated
with the distribution of Z|A. However, as stated in Remark A.5 the sufficient statistic is the identity
in the location-scale Gaussian case.

Lemma A.7. Assume our data are sampled according to Equation (1), with A ~ N(0,24) and
V ~ N(0,%yv) two independent isotropic multivariate Gaussian random variables. Then an en-
coder trained on Lycg on infinite data identifies the ground-truth latent up to an invertible affine
transformation.

B Experiments

B.1 Data generation

Let us recall that we sample X, Y, Z, A according to the following SCM:
AV ~N(0,14,),N(0,14,)

Z = MyA+V

X :=go(2)
Yi=fo(Z)+1(V)+e

S: (24)

In our experimental setup, go is implemented as a two-layer neural network with a hidden dimension
of 16. To ensure injectivity, we employ LeakyReL U activations with a negative slope of —0.2 and
sample the weight matrices of each layer to be full-rank. Similarly, My is constructed to be full-
rank using a QR-decomposition-based procedure: two random matrices are independently sampled,
the @ factors from their QR decompositions are extracted, and their product is used as Mj. Since
the @ factor of a QR decomposition is orthogonal (and hence invertible), this procedure guarantees
that My is full rank by construction. One could just pick @ as My, however this would lead to
orthogonal matrices only. fy and [ are two-layers neural network with hidden dimension 16. To
preserve their differentiability, we use Tanh as activation functions. We sample 10,000 data points
from our training SCM and 2,000 data points for each validation set (with shifted instrument).

As shown in Figure 3, both NCE and Auxiliary Variable methods learn relevant features to perform
control function in a second step.

B.2 Model and Training specs

Our encoder is a three-layer neural network with 32 hidden units. The NCE method (see Ap-
pendix A.3.2) requires only an additional trainable matrix of size d4 X dz, whereas the auxiliary
variable method (see Appendix A.3.1) uses a logistic head implemented as a two-layer neural net-
work with 16 hidden units, Tanh activations, and a linear output layer. Encoders are trained for 50
epochs. For the final IV regression step, we use an additive model fy + vy in the control function

13
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Figure 4: Estimated causal effect with NCE loss and control function (in red), ground-truth causal
effect (in orange), OLS model (in green), (Z;Y) (in grey)

approach, where both fy and vy are three-layer neural networks with 32 hidden units and Tanh acti-
vations. In the two-stage least squares approach, only fy is used, with the same architecture. During
IV training, the parameters used for latent estimation are frozen, and the model is trained for an
additional 50 epochs. The oracle models share the exact same architecture as the corresponding IV
models (control function or two-stage). The naive baseline is a single three-layer network with 32
hidden units. Both baselines are trained on 100 epochs.

Finally, we use Adam optimizer with (81, 52) = (0.9,0.999). As our experiment are conducted in
relatively low dimensions, both training and inference are done on an Apple M4 Pro chip.

B.3 Causal effect estimation in dimension one

We additionally evaluate our method in a setting where both Z and X are scalar, while A is sampled
from a two-dimensional uniform distribution. Figure 4 shows the learnt causal-effect. We consider
three scenarios: a) corresponds to the case of a linear causal effect; b) corresponds to a nonlinear
causal effect implemented as a linear layer with hidden dimension 16, followed by a tanh activation
and a final linear layer; and c) corresponds to a similar architecture where the nonlinear activation is
the absolute value function instead of tanh. In all cases, we first estimate the latent variable Z using
the InfoNCE variant and then apply the control function technique for causal effect estimation. As
discussed in Appendix A.2, our method recovers the ground-truth causal effect fy up to an affine
indeterminacy that arises from latent variable estimation. To account for this, we learn an affine
transformation that aligns the estimated latent representation with the ground-truth Z, and we report
the causal effect after applying this transformation. For comparison, we also fit an OLS model
mapping the ground-truth Z to the outcome Y. The OLS estimator fails to recover the causal effect,
as Z is confounded with the residual variation in Y. Importantly, despite the affine indeterminacy,
our method still yields a valid estimate of the causal relationship from the observed X to Y.

B.4 Latent IV methods adaptation

In this section, we provide a detailed description of how we adapt the control function and two-stage
least squares (2SLS) methods to our latent IV setting. Assume that we have trained an encoder ¢ to
invert the true mixing function gy using one of the strategies described in Appendix A.3.

We first estimate the linear relationship between the observed instrument A and the encoded latent
Z := ¢(X) up to an affine transformation:

M,é=argmin|Z — MA —c|?.
M,c

B.4.1 Control function approach
1. Compute the predicted latent features Z = ¢(X).

2. Estimate the control variable V as
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3. Perform additive regression on Y, estimating

i, = axgmin Y — u(2) — w(V)2
W,V

B.4.2 Two-Stage Least Squares

1. Compute the predicted latent features from A:
Z A= M A+ é.
2. Regress Y on Z 4 to estimate:

h = argmin ||Y — h(Z4)]%.
h

C Related Work

Other IV methods [J. Hartford and Taddy, 2017] extend the classic two-stage least squares approach
to nonlinear settings using neural networks. Similarly, Liyuan Xu [2021] propose a method that al-
ternates between the first and second stage, using dictionary learning to extract features from the
instruments. An other line of work [Zhang et al., 2023, A. Bennett and Schnabel, 2019, Saengky-
ongam et al., 2024] aims to recover a function f that satisfies appropriate moment conditions, typ-
ically expressed as E[h(A)(Y — f(X))] = 0 for every measurable function h, in order to enforce
the independence of the residuals from instrument A. However, this leads to an infinite family of
conditions, making it impractical to verify directly. As a result, one must choose a function class
for h that is expressive enough to approximate the space of all measurable functions and ensure that
the moment condition sufficiently captures the independence constraint. As for nonlinear ICA, there
exist approaches that ensure identifiability without relying on an auxiliary variable. In the context
of time-series data, temporal dependencies have been shown to enable identifiability [Hyvérinen
and Morioka, 2016]. Structural assumptions on the mixing function, such as additivity [Lachapelle
et al., 2023] or sparsity [Lachapelle et al., 2022, Moran et al., 2022], have also been proposed.
Without such auxiliaries, weaker results such as block-identifiability when we have access to style
transforming data augmentations [Von Kiigelgen et al., 2021] or when working with multimodal
data [Daunhawer et al., 2023].

Building on this line of work, Ilyes Khemakhem [2020] proposed a novel framework called Indepen-
dently Modulated Component Analysis (IMCA), which further relaxes the conditional independence
assumption while retaining most of the identifiability guarantees established in the auxiliary variable
setting.
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