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Abstract

Although great progress has been made for001
Machine Reading Comprehension (MRC) in002
English, scaling out to a large number of lan-003
guages remains a huge challenge due to the004
lack of large amounts of annotated training005
data in non-English languages. To address this006
challenge, some recent efforts of cross-lingual007
MRC employ machine translation to transfer008
knowledge from English to other languages,009
through either explicit alignment or implicit010
attention. For effective knowledge transition,011
it is beneficial to leverage both semantic and012
syntactic information. However, the existing013
methods fail to explicitly incorporate syntax014
information in model learning. Consequently,015
the models are not robust to errors in align-016
ment and noises in attention. In this work, we017
propose a novel approach, named GraFusion-018
MRC, which jointly models the cross-lingual019
alignment information and the mono-lingual020
syntax information using a graph. We de-021
velop a series of algorithms including graph022
construction, learning, and pre-training. The023
experiments on two benchmark datasets for024
cross-lingual MRC show that our approach025
outperforms all strong baselines, which veri-026
fies the effectiveness of syntax information for027
cross-lingual MRC. The code will be made028
open-sourced on Github.029

1 Introduction030

Machine Reading Comprehension (MRC) (Ra-031

jpurkar et al., 2016; Joshi et al., 2017), which aims032

to improve the ability of machines to read and un-033

derstand human texts, is a challenging task in Nat-034

ural Language Understanding (NLU) (Rajpurkar035

et al., 2016). Various large-scale human-annotated036

corpora, such as SQuAD (Rajpurkar et al., 2016),037

have greatly advanced the progress in the MRC038

task (Seo et al., 2017; Yu et al., 2018; Devlin039

et al., 2019). However, those large-scale human-040

annotated datasets are mostly in resource-rich lan-041

guages, such as English. For most languages in042
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Figure 1: A passage (P), a question (Q), and an answer
(A) in English with the translations in German.

the world, there is, however, scarce annotated data 043

for MRC, which limits the corresponding MRC 044

performance. 045

To tackle the challenge of data scarcity in low- 046

resource languages, recent attempts in cross-lingual 047

NLU adopt machine translation to transfer the 048

knowledge learned from the high quality annotated 049

data in resource-rich languages (i.e., the source 050

languages) to low-resource languages (i.e., the tar- 051

get languages) (Schuster et al., 2019). For exam- 052

ple, several methods (Hu et al., 2020; Liang et al., 053

2020) translate training data in English to target lan- 054

guages, and use the translated data to train the cross- 055

lingual MRC models. Some other methods (Cui 056

et al., 2019; Fang et al., 2021) translate test cases in 057

a target language to English, and use the represen- 058

tation of the translated cases in English to enhance 059

the representations of the original test cases. 060

For effective knowledge transfer across lan- 061

guages, both semantic and syntactic information 062

is highly valuable and thus should be well repre- 063

sented. However, all previous translation-based 064

approaches carry over knowledge across languages 065

only through unstructured texts, where semantic 066

and syntactic information is implicitly represented 067

and complicatedly entangled. To represent the 068

correlation among words in different languages, 069

previous works either build translation alignments 070

or learn attention matrices. However, it is very 071

challenging to learn the connection between words 072

across languages solely relying on texts only. Ad- 073

mitted by previous studies, misalignments often 074
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happen and badly hurt model performance (Xu075

et al., 2020; Li et al., 2020; Pei et al., 2020). More-076

over, deep learning models may pay attention to077

less relevant words in long text (Zhang et al., 2020).078

Can we use syntax information explicitly to en-079

hance knowledge transfer across languages and im-080

prove cross-lingual MRC? In this paper, we tackle081

this challenge. Figure 1 shows a motivating exam-082

ple. Suppose the source training example is in En-083

glish: the question is “Where are egg tubes found084

inside of an insect?”, and the answer “ovaries” is085

in the sentence “The ovaries are made up of a num-086

ber of egg tubes . . . ” After the English example is087

translated into German, the corresponding answer088

“Eierstöcke” in “Die Eierstöcke bestehen aus einer089

Anzahl von Eierröhrchen . . . ” is not correctly iden-090

tified due to misalignment by an off-the-shelf align-091

ment tool GIZA++ (Och and Ney, 2003). Check-092

ing many cases manually, we find misalignments093

commonly happen in complex sentence structures094

(e.g., involving passive voice where word orders095

are different from usual) and usages of rare words096

(e.g., “ovaries” and “Eierstöcke” belong to the do-097

main of biology). In such cases, syntax informa-098

tion can help the model to figure out the correct099

alignment. In the example in Figure 1, although100

“ovaries” and “Eierstöcke” are not correctly aligned,101

their parents “made/bestehen”, and siblings “num-102

ber/Anzahl” are correctly aligned. Therefore, if we103

can leverage the syntax structure to propagate the104

alignment information, we can learn better repre-105

sentation for the target language.106

Carrying the above insights, in this paper, we107

jointly model the cross-lingual alignment informa-108

tion and the mono-lingual syntax information us-109

ing a graph. We make the following contributions.110

First, we propose using syntax information to en-111

hance knowledge transfer across languages. Sec-112

ond, we develop a novel graph fusion approach to113

model the syntax structure as well as the alignment114

across the source and target inputs. We design115

a series of algorithms including graph construc-116

tion, learning, and pre-training. Last, we evaluate117

our approach on two public cross-lingual MRC118

benchmarks. The experimental results show that119

our model effectively transfers knowledge from120

source language to target language through atten-121

tion guided by syntax information, and hence out-122

performs all the strong baselines. The code will be123

released on Github. The limitation of our work can124

be found in Appendix.125

2 Related Work 126

Given a question and a passage, the MRC task (Ra- 127

jpurkar et al., 2016; Joshi et al., 2017) builds a 128

model to find the span of the correct answer for 129

the question from the given passage. Limited by 130

the availability of large-scale annotated data, for 131

most languages in the world, the MRC task re- 132

lies on cross-lingual MRC models, which transfer 133

knowledge from a resource-rich language to some 134

low-resource languages. As a baseline, some multi- 135

lingual pre-trained models, such as mBERT (De- 136

vlin et al., 2019), XLM (Lample and Conneau, 137

2019), and XLM-R (Conneau et al., 2020), are fine- 138

tuned by training data in English and then directly 139

applied to other languages. 140

There are also researches employ machine trans- 141

lators to generate parallel corpus as data augment. 142

For example, some approaches translate training 143

data from English to some target languages, and 144

then adds the translated training sets into the fine- 145

tuning stage (Cui et al., 2019; Hu et al., 2020; Liang 146

et al., 2020; Yuan et al., 2020; Liu et al., 2020). 147

Some other methods translates test cases in a target 148

language into English, and combines the represen- 149

tation of the original test cases and the representa- 150

tion of the translated case to English through the 151

attention mechanism (Cui et al., 2019; Fang et al., 152

2021). 153

Although these approaches improve the MRC 154

results substantially, one weakness remained is the 155

alignment quality between the example in origi- 156

nal language and the translated example. Previous 157

studies (Xu et al., 2020; Li et al., 2020; Pei et al., 158

2020) indicate that misalignments often happen 159

and can badly degrade the model performance. In- 160

spired by the observation in SG-Net (Zhang et al., 161

2020) that the syntax information can prevent a 162

model from attending to some dispensable words 163

and show significant gains in the English MRC 164

task, we propose to use the syntax information to 165

guide the correlation between the inputs in source 166

and target languages. 167

3 Methodology 168

3.1 Overview of Network Architecture 169

Figure 2 shows the overview of our approach. The 170

backbone is a stack of bidirectional Transform- 171

ers (Vaswani et al., 2017) with N + 2 layers. The 172

first layer encodes the inputs, and the last layer 173

learns the final representations for decoding. 174
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Figure 2: The overview of our model GraFusionMRC,
where the red and green nodes represent the words in
the source and target language, respectively.

Our major technical contribution is in the mid-175

dle N layers, where a graph neural network is con-176

structed and trained to model both syntax and align-177

ment information. Such information jointly con-178

tributes to the knowledge transfer across languages179

and results in better representation for the target180

language through enhanced attention matrices.181

Given an instance S in the source language, we182

first apply a machine translator to translate it to183

an instance T in the target language (or given an184

instance T in the target language, we can translate185

it to S in English). We then unify the length of S186

and T to be l by padding or truncating operations,187

and input S ∈ Rl×d and T ∈ Rl×d in parallel188

to our model, where d is the dimensionality of189

the token embedding vectors. The input is then190

encoded by a Transformer as follows:191

As
0 = Transformer(S), (1)192

193
At

0 = Transformer(T ). (2)194

We then take the concatenation of As
0195

and At
0, and apply N Syntax-enhanced and196

Alignment-aware Fusion Transformer layers (or197

SA-Transformer for short) to produce the represen-198

tation by199

[As
n;At

n] = Transformersa([As
n−1;A

t
n−1]), (3)200

where the subscripts n ∈ [1, N ] indicate that the201

variables are at the n-th SA-Transformer layer, and202

[As
n;At

n] ∈ R2l×d is the concatenation of the rep-203

resentations of the parallel sentences in the source204

and the target languages.205

Each SA-Transformer layer applies a multi-head206

self-attention operation (Vaswani et al., 2017) fol-207

lowed by a feed-forward layer. Specifically, the208

multi-head self-attention operation first obtains a209

triplet consisting of the query Qi, the key Ki210

and the value Vi ∈ R2l×dh for each headi by211

applying linear transformations W q
i , W k

i , and212

W v
i ∈ Rd×dh on the input matrix [As

n−1;A
t
n−1], 213

respectively, where dh is the dimensionality of each 214

head, and matricesW q
i ,W k

i , andW v
i are parame- 215

ters to be learned. Then, each headi conducts the 216

following attention operation: 217

headi = softmax(
QiK

>
i√

dk
+G)Vi, (4) 218

where i denotes the i-th head of the multi-head 219

operation, and G ∈ R2l×2l is the attention matrix 220

to be described in Section 3.2. 221

After obtaining the representation [As
n;At

n] via 222

(3), we further add another Transformer layer to 223

separately projectAs
n andAt

n back to the individ- 224

ual language spaces and obtainAs andAt ∈ Rl×d, 225

respectively, since our final goal is to predict the 226

labels in the individual languages. 227

We then use As and At to predict the answer 228

span in the source and target languages, respec- 229

tively. Let us take At as an example to elabo- 230

rate. Following LBMRC (Liu et al., 2020), we 231

feed At to two separate linear layers, each fol- 232

lowed by a softmax operation to produce the fi- 233

nal span prediction ptstr and ptend ∈ Rl, i.e., the 234

predictions of the start and the end positions, re- 235

spectively. For example, ptstr is calculated by 236

ptstr = softmax(At ·ustr+bstr), where ustr ∈ Rd 237

and bstr ∈ Rl are two trainable parameters. We 238

then calculate the standard cross entropy loss for 239

the predicted start and end positions in the target 240

language by 241

Lt = − 1

‖D‖

‖D‖∑
i=1

(ytstr,i · log(ptstr,i)+

ytend,i · log(ptend,i)),

(5) 242

where ‖D‖ is the total number of training examples, 243

ytstr,i and ytend,i ∈ Rl are the ground-truth labels 244

for the start and end positions of the i-th training 245

example. 246

3.2 Syntax-Enhanced and Alignment-Aware 247

Graph (SA-Graph) 248

To incorporate the syntax and alignment informa- 249

tion into Transformer, we learn an attention matrix 250

G, where an element Gi,j in G is the attention 251

score indicating the attention that word i pays to 252

the word j. To learn the matrix G, we first con- 253

struct the syntax-enhanced and alignment-aware 254

graph (or SA-Graph for short), where each node 255

corresponds to a word, and the edges represent the 256
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syntax and alignment information. Given a pair257

of parallel sentences as input, we build a graph258

to represent the relations among the words in the259

sentences. Each word in the parallel sentences cor-260

responds to a node in the graph, and the edges be-261

tween the nodes are based on the relations between262

the words. As introduced in Section 1, we consider263

two types of relations of words, cross-lingual word264

alignment and mono-lingual syntactic dependency.265

We build edges for those two relations.266

In machine translation, the corresponding words267

in source and target languages can be aligned with268

each other. Taking German sentence “Wir sollten269

die Umwelt schützen” and its parallel sentence “We270

should protect the environment” in English as an271

example, we can apply some off-the-shelf align-272

ment tools, such as GIZA++1 (Och and Ney, 2003),273

to compute the word alignment. The aligned words274

often share similar semantic meaning, for exam-275

ple, “Wir” and “We”, “sollten” and “should”, “die”276

and “the”, “Umwelt” and “environment”, as well277

as “schützen” and “protect”. We then add word-278

alignment edges between the nodes corresponding279

to those words.280

In addition to the edges between words across281

languages, we also consider the syntactic structures282

of sentences and build edges between words within283

the same language. Specifically, we first split a284

given passage into sentence-level and then apply285

the Stanza toolkit2 (Qi et al., 2020) to extract the286

dependency between words for each sentence. Two287

words are connected by a word-dependency edge if288

there exists a dependency between them. We also289

add a special word-dependency edge between the290

same words in a passage.291

Based on the graph, the representation fi of a292

word i is derived by293

fi,n = F(hi,n,N (i)), (6)294

where hi,n is the representation of word i from295

the n-th layer, N (i) denotes the neighbors of word296

i in the SA-Graph, and F(·, ·) is the aggregation297

function of word i and its neighbors that will be298

described in Equation (8), Section 3.3. Once fi,n299

is computed, the attention matrixG is obtained by300

Gn
i,j = (W n

att·fi,n+bnatt)·(W n
att·fj,n+bnatt), (7)301

where W n
att ∈ Rd×d and bnatt ∈ Rd are trainable302

parameters. For convenient representation, we use303

1https://github.com/moses-smt/giza-pp
2https://github.com/stanfordnlp/stanza

fi instead of fi,n in the following. Next, we present 304

the learning process of the representation fi. 305

3.3 Graph Learning 306

After we construct the SA-Graph, we perform 307

a learning algorithm over the graph. For each 308

node i, we want to learn a better representation 309

fi = F(hi,N (i)) than its original representation 310

hi by aggregating the information from its neigh- 311

bors N (i). As described in Section 3.2, there are 312

two types of edges in the graph. Correspondingly, 313

the node representation fi consists of two parts: 314

fi =
1

2
(fa

i + fd
i ), (8) 315

where fa
i is the representation of word i aggre- 316

gated from the alignment information, i.e., fa
i = 317

Fa(hi,Na(i)), whereNa(i) is the set of neighbors 318

of word i that are connected by word-alignment 319

edges. Similarly, fd
i aggregates the dependency in- 320

formation, i.e., fd
i = Fd(hi,Nd(i)), where Nd(i) 321

is the set of dependency neighbors. In Equation (8), 322

in addition to the average function, other combi- 323

nation operators, such as weighted sum or max- 324

pooling, may also be considered. Here we choose 325

the simple but effective average method based on 326

our empirical study. Experiments with other com- 327

bination operators are presented and discussed in 328

Appendix. 329

To learn aggregation by alignment Fa(·, ·), for 330

a word i, the representation fa
i aggregates the in- 331

formation from its neighbors Na(i) connected by 332

the word-alignment edges. As indicated in the pre- 333

vious studies (Xu et al., 2020; Li et al., 2020; Pei 334

et al., 2020), word alignment is a challenging task 335

and misalignments may exist in results produced 336

by existing methods. To mitigate the alignment er- 337

rors, we develop a gate mechanism to guard against 338

irrelevant alignment. 339

gi = σ(V1 · hi +W1 · h̄j),

fa
i = (1− gi)� (V2 · hi) + gi � (W2 · h̄j),

(9) 340

where h̄j = avg{hj |hj ∈ Na(i)} is the average 341

of the representations of the nodes in the neighbor 342

set Na(i), σ is the sigmoid function, � denotes 343

element-wise multiplication, gi ∈ Rd serves as 344

the role of gating, and matrices V1,W1,V2 and 345

W2 ∈ Rd×d are model parameters. gi is the gate 346

to control whether the aligned information should 347

contribute to the representation of word i. If the 348

nodes connected by the alignment edge bear very 349
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different semantic meanings, the weights in the350

gate are close to zero, which switch off the infor-351

mation flow.352

In addition to cross-lingual word alignment in-353

formation, the mono-lingual syntax information354

discloses the inherent dependency among words355

and thus also benefits the representation of words.356

The representation fd
i aggregates the syntax in-357

formation for node i using a graph attention net-358

work (Velickovic et al., 2018) as follows.359

fd
i = σ(

∑
(αiuW3hu, ∀u ∈ Nd(i))), (10)360

where W3 ∈ Rd×d is a model parameter, σ is the361

sigmoid function, and αiu ∈ R is the attention362

coefficient that indicates the importance of word i363

to its neighbor u, calculated as follows:364

αiu =
exp(LR(W4[hi;hu]))∑

k∈Nd(i)
exp(LR(W4[hi;hk]))

, (11)365

where LR is the Leaky ReLU activate function,366

andW4 ∈ R2d is a model parameter.367

3.4 Pre-training SA-Graph368

To enhance the representation power of the SA-369

Graph, we use translated parallel data to pre-train370

the graph (Reid and Artetxe, 2021). The basic idea371

is to randomly mask some nodes in the graph and372

use the representations of its semantic and syn-373

tactic neighbors to recover it. As can be seen in374

Fig. 3, for each masked node i, we aggregate the375

representations of its neighbors. The aggregated376

representation is then fed into a linear classifier,377

which outputs the probabilities over the whole vo-378

cabulary. Cross entropy is used to compute the379

recovery loss as LSA(i) = −logP (i|N (i)). Dur-380

ing the pre-training stage, we propose two masking381

strategies with each adopted half of the time.382

Mono-lingual Masking: Given a source sentence383

S and the translated sentence T , the first mask-384

ing strategy constrains all the masked tokens to be385

within only one language, i.e., either the source386

or the target language. For those masked tokens,387

since the corresponding words in the other lan-388

guage should not be masked according to the mask-389

ing constraint, the model can learn from the align-390

ment information to predict the masked ones. In391

other words, this masking strategy encourages the392

model to explore the semantic correlation from the393

alignment information. At each iteration in our394

implementation, we first choose a language, and395

then randomly mask 15% of nodes belonging to396

Contextual
Representation

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Fusion Function ℱ(⋅)

Attention

Monolingual Masking Cross-lingual Masking

Figure 3: Illustration of the graph masking strategies.

the chosen language in SA-Graph are masked at 397

random. 398

Cross-Lingual Masking: The above mono- 399

lingual masking strategy would make the model 400

tend to ignore the word-dependency edges. To 401

facilitate the model to leverage the syntax informa- 402

tion, we further develop a cross-lingual masking 403

strategy: whenever a node is masked, its aligned 404

node must be masked together. In this way, we cut 405

off the alignment information flow, and the model 406

is forced to learn from word-dependency edges to 407

recover the masked nodes. 408

Besides the above two masking strategies, we 409

also employ translation language modeling (TLM) 410

in our pre-training process, which has shown strong 411

performance in XLM pre-trained model (Lample 412

and Conneau, 2019). For each masked word i, 413

we compute the recovery loss as LTLM (i) = 414

−logP (i|hi). The final loss for the pre-training 415

is the sum of the loss of translation language mod- 416

eling and our graph masking tasks, i.e., L(i) = 417

LSA(i) + LTLM (i). 418

4 Experiments 419

We evaluate the proposed GraFusionMRC ap- 420

proach on two benchmark datasets. In this section, 421

we first describe the experiment setup. We then 422

report and analyze the experimental results. We 423

also illustrate how SA-Graph affects the attention 424

weights through a case study. The further analysis 425

of our model is presented in Appendix. 426

4.1 Datasets, Evaluation and Baselines 427

Datasets: MLQA (Lewis et al., 2020) and 428

TyDiQA-GoldP dataset (Clark et al., 2020) are two 429

recent public benchmark datasets for cross-lingual 430

machine reading comprehension. They contain a 431

total of 14 languages, including English (en), Ara- 432

bic (ar), German (de), Spanish (es), Hindi (hi), 433

Vietnamese (vi), simplified Chinese (zh), Bengali 434

(bn), Finnish (fu), Indonesian (id), Korean (ko), 435

Russian (ru), Swahili (sw), and Telugu (te). The 436

details of these two datasets are given in the Ap- 437

pendix. Although MLQA and TydiQA provide 438
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sufficient test data, their training data is quite lim-439

ited. Following FILTER (Fang et al., 2021), we use440

SQuAD v1.1 (Rajpurkar et al., 2016) English train-441

ing data as additional data during the fine-tuning442

stage of our model. Moreover, the English training443

data in SQuAD v1.1 is further translated into the444

target languages in the MLQA and TyDiQA-GoldP445

test data via the translation system3. Besides, to446

pre-train our SA-Graph model, we further collect447

additional parallel sentences following Lample and448

Conneau (2019); Huang et al. (2019). There are449

one million pairs of parallel sentences in English450

and each target language.451

Evaluation Metrics: We adopt the standard evalu-452

ation metrics from the SQuAD dataset (Rajpurkar453

et al., 2016), including F1 and Exact Match454

(EM) scores. The F1 score is used to measure455

the overlap of tokens between the predicted and456

ground-truth answer spans, while the EM score457

only counts the cases where the predicted answer458

spans exactly match the ground-truth answer spans.459

We run the official evaluation script provided by460

MLQA (Lewis et al., 2020) and TyDiQA (Clark461

et al., 2020) to report the results.462

Baselines: We compare GraFusionMRC with the463

following two groups of approaches.464

1) Fine-tuning with English training data only:465

In this group of baselines, we pick the existing466

cross-lingual models, including mBERT (Devlin467

et al., 2019), XLM (Lample and Conneau, 2019),468

MMTE (Siddhant et al., 2020) and XLM-R (Con-469

neau et al., 2020). These models are fine-tuned470

using English training data only.471

2) Models using translation: In this group, we472

first select XLM-R as the representative for cross-473

lingual models, since it performs the best among all474

the models in the first group in our experiments for475

the cross-lingual MRC task. We then fine-tune the476

XLM-R model with the combined translated train-477

ing data of all languages jointly, which is denoted478

as XLM-R (translate-train). We also include the479

FILTER (Fang et al., 2021) as baseline, which480

leverages the intrinsic cross-lingual correlation be-481

tween different languages.482

4.2 Implementation Details483

We implement on top of HuggingFace’s Transform-484

ers (Wolf et al., 2019) and report results on two both485

base and large models, i.e., GraFusionMRCbase486

3https://console.cloud.google.com/storage/browser/xtreme
_translations

and GraFusionMRClarge. We initialize our base 487

model by the pre-trained XLM-R base model re- 488

leased by HuggingFace4, which contains 12 layers; 489

and use XLM-R large model for initializing our 490

large model, which contains 24 layers. We set the 491

number of intermediate Transformer layers, i.e., 492

the Syntax-Enhanced and Alignment-Aware Trans- 493

former layers, to 10 in the base model and to 22 494

in the large model. The first bottom Transformer 495

layer is used for encoding the raw input sentences 496

and the top layer converts the joint representation 497

of the sentences in the source and target languages 498

back to individual language spaces. 499

To make a fair comparison, we reproduce 500

FILTER based on the XLM-R model. During 501

the fine-tuning stage, following LBMRC (Liu 502

et al., 2020) and XLM-R (Conneau et al., 2020), 503

we pair the passage and question for each 504

language as [<cls> , question,</s> ,</s> 505

, passage,</s>] as the input. We then concate- 506

nate the input of the target language with the trans- 507

lated input in the source language. Since we em- 508

ploy individual Transformer layers to encode the 509

inputs for each language at the bottom of our model, 510

the supporting max sequence length of each lan- 511

guage can be 512. We empirically set the max 512

sequence length to 384 for each language to bal- 513

ance efficiency. Then we concatenate the source 514

and target input and feed a sequence of length 768 515

to the SA-Transformer to extract their correlation. 516

Limited by space, the fine-tuning details are given 517

in Appendix. 518

4.3 Experimental Results 519

We conduct experiments with three variants of 520

our GraFusionMRC approach: (1) GraFusion- 521

MRC+a: only the word-alignment edges are used in 522

graph learning; (2) GraFusionMRC+ad: both the 523

word-alignment and word-dependency edges are 524

included in the graph learning stage to obtain the 525

node representation; and (3) GraFusionMRC+adp: 526

the pre-training stage is added before the graph 527

learning stage to enhance the representation power 528

of the SA-Graph. 529

The results on MLQA and TyDiQA-GoldP 530

datasets are presented in Table 1 and Table 2, re- 531

spectively. In the first group of baselines, the 532

XLM-Rbase model consistently outperforms all 533

other baselines in most of the target languages, 534

demonstrating itself as a strong baseline for the 535

4https://huggingface.co/xlm-roberta-base

6



Model en ar de es hi vi zh Avg.

mBERT 80.2 / 67.0 52.3 / 34.6 59.0 / 43.8 67.4 / 49.2 50.2 / 35.3 61.2 / 40.7 59.6 / 38.6 61.4 / 44.2
XLM 68.6 / 55.2 42.5 / 25.2 50.8 / 37.2 54.7 / 37.9 34.4 / 21.1 48.3 / 30.2 40.5 / 21.9 48.5 / 32.7
MMTE 78.5 / - 56.1 / - 58.4 / - 64.9 / - 46.2 / - 59.4 / - 58.3 / - 60.3 / 41.4
XLM-Rbase 78.5 / 65.3 56.1 / 36.8 61.7 / 47.1 66.0 / 48.7 60.1 / 42.4 63.6 / 43.5 60.1 / 35.5 63.7 / 45.6

XLM-Rbase (translate-train) 77.8 / 64.4 58.0 / 38.1 63.4 / 49.1 68.7 / 51.9 62.8 / 46.1 65.3 / 45.9 61.8 / 36.9 65.4 / 47.5
FILTERbase 77.2 / 63.9 60.2 / 41.2 66.9 / 52.7 70.5 / 53.2 64.5 / 47.2 66.8 / 47.7 63.4 / 42.1 67.1 / 49.7
GraFusionMRCbase+a 77.7 / 64.0 61.2 / 42.2 67.6 / 53.4 72.9 / 55.7 66.0 / 48.4 67.1 / 48.6 64.6 / 43.3 68.2 / 50.8
GraFusionMRCbase+ad 77.5 / 63.8 61.9 / 42.8 68.9 / 54.9 73.4 / 56.4 66.6 / 49.2 68.4 / 49.1 65.2 / 44.0 68.8 / 51.5
GraFusionMRCbase+adp 77.4 / 63.8 62.8 / 43.4 69.3 / 55.3 74.0 / 56.8 67.1 / 49.5 68.8 / 49.5 65.6 / 44.3 69.3 / 51.8

XLM-Rlarge (translate-train) 83.5 / 70.6 66.6 / 47.1 70.1 / 54.9 74.1 / 56.6 70.6 / 53.1 74.0 / 52.9 62.1 / 37.0 71.6 / 53.2
FILTERlarge 84.0 / 70.8 72.1 / 51.1 74.8 /60.0 78.1 / 60.1 76.0 / 57.6 78.1 /57.5 70.5 / 47.0 76.2 / 57.7
GraFusionMRClarge+a 84.2 / 71.5 73.0 / 52.0 75.4 / 60.3 78.8 / 60.9 77.9 / 58.4 79.0 / 57.8 71.4 / 48.6 77.1 / 58.5
GraFusionMRClarge+ad 83.9 / 71.0 73.7 / 52.5 75.9 / 61.2 79.6 / 61.2 78.6 / 58.7 79.9 / 59.8 72.4 / 48.8 77.7 / 59.0
GraFusionMRClarge+adp 83.5 / 70.7 74.2 / 52.7 76.2 / 61.7 80.1 / 62.0 79.2 / 59.0 80.4 / 60.1 73.0 / 49.3 78.1 / 59.4

Table 1: MLQA results (F1 / EM) for each language.

Model en ar bn fi id ko ru sw te Avg.

mBERT 75.3 / 63.6 62.2 / 42.8 49.3 / 32.7 59.7 / 45.3 64.8 / 45.8 58.8 / 50.0 60.0 / 38.8 57.5 / 37.9 49.6 / 38.4 59.7 / 43.9
XLM 66.9 / 53.9 59.4 / 41.2 27.2 / 15.0 58.2 / 41.4 62.5 / 45.8 14.2 / 5.1 49.2 / 30.7 39.4 / 21.6 15.5 / 6.9 43.6 / 29.1
MMTE 62.9 / 49.8 63.1 / 39.2 55.8 / 41.9 53.9 / 42.1 60.9 / 47.6 49.9 / 42.6 58.9 / 37.9 63.1 / 47.2 54.2 / 45.8 58.1 / 43.8
XLM-Rbase 71.9 / 57.1 54.3 / 32.1 57.8 / 44.6 63.9 / 50.4 68.5 / 51.3 61.2 / 38.7 60.4 / 33.8 65.2 / 55.6 64.9 / 47.6 63.1 / 45.7

XLM-Rbase (translate-train) 71.6 / 56.4 57.8 / 34.5 60.8 / 48.6 67.1 / 53.0 71.9 / 53.7 63.3 / 40.4 62.2 / 34.7 62.8 / 53.7 67.3 / 50.9 65.0 / 47.3
FILTERbase 68.4 / 55.5 58.3 / 34.6 61.3 / 46.7 67.7 / 54.0 72.2 / 54.5 65.5 / 41.1 63.3 / 35.4 72.3 / 63.1 67.1 / 49.6 66.2 / 48.3
GraFusionMRCbase+a 71.2 / 55.7 60.1 / 37.1 62.4 / 48.8 69.0 / 54.6 73.5 / 57.2 67.2 / 43.5 64.6 / 38.0 73.9 / 64.1 68.1 / 53.4 67.8 / 50.3
GraFusionMRCbase+ad 70.8 / 55.4 61.4 / 38.6 / 69.7 / 55.1 74.9 / 59.0 68.1 / 44.7 64.8 / 36.7 / 70.4 / 53.2 68.6 / 49.0
GraFusionMRCbase+adp 70.6 / 55.1 62.6 / 39.5 / 70.4 / 55.7 75.7 / 59.3 69.0 / 46.1 65.5 / 37.2 / 71.0 / 53.6 69.3 / 49.5

XLM-Rlarge (translate-train) 75.1 / 62.0 66.9 / 39.8 63.8 / 47.5 70.1 / 52.8 77.1 / 61.7 67.8 / 43.4 66.5 / 41.8 65.7 / 47.8 69.6 / 43.4 69.2 / 48.9
FILTERlarge 72.4 / 59.1 72.8 / 50.8 70.5 / 56.6 73.3 / 57.2 76.8 / 59.8 68.9 / 45.7 68.9 / 46.6 77.4 / 65.7 69.9 / 50.4 72.3 / 54.7
GraFusionMRClarge+a 74.1 / 61.3 73.4 / 51.6 71.7 / 57.5 74.1 / 58.0 77.8 / 62.4 69.5 / 46.2 69.8 / 46.7 78.0 / 65.7 70.3 / 53.0 73.2 / 55.8
GraFusionMRClarge+ad 73.9 / 61.2 74.2 / 53.2 / 74.9 / 59.5 79.2 / 64.2 70.5 / 47.5 70.4 / 47.6 / 72.0 / 54.9 73.6 / 55.4
GraFusionMRClarge+adp 73.5 / 60.8 75.1 / 53.8 / 76.2 / 61.0 79.8 / 64.2 71.3 / 48.3 71.3 / 48.2 / 72.5 / 55.7 74.2 / 56.0

Table 2: TyDiQA-GoldP results (F1 / EM) for each language. As the Stanza toolkit does not support languages
Bengali and Swahili, we don’t report results on these two languages in the syntactic fusion setting. We correct the
ko text segment module of FILTER and bring its performance back from 33.1 to 68.9 of the F1 score.

cross-lingual MRC task. Based on this observa-536

tion, we use XLM-R as the representative for cross-537

lingual models, and further fine-tune this model538

with translated training data in target languages.539

As shown in the first row (“XLM-R (translate-540

train)”) of the second and third group of baselines,541

adding translated data in target languages substan-542

tially improves the model performance, which sug-543

gests that the translated data strengthen knowledge544

transfer effectively. We also observe the FILTER545

method performs better than the strong baseline546

XLM-R (translate-train) on both datasets. It indi-547

cates that the attention between the source sentence548

and the translated target sentence leads to better549

representation of words, and further contributes to550

the cross-lingual MRC task.551

All three variants of our GraFusionMRC ap-552

proach outperform the XLM-R and FILTER mod-553

els on both datasets. In particular, the GraFu-554

sionMRC+adp method achieves an average im-555

provement of 2 points over the FILTER model in556

both MLQA and TyDiQA-GoldP. The major dif-557

ference of GraFusionMRC from FILTER is that558

we enhance the learning of the attention matrix be- 559

tween the inputs in the source and target languages 560

through explicit syntax and alignment information. 561

Moreover, our gate mechanism and graph attention 562

network increase the model robustness against the 563

errors in alignment and syntactic parsing. 564

When we compare the three variants of the Gra- 565

FusionMRC approach, the general trend is that us- 566

ing both the syntax edges and alignment edges 567

is better than using alignment edges alone. This 568

justifies the effectiveness of injecting syntax in- 569

formation into representation learning. Moreover, 570

the pre-training using large-scale parallel data also 571

boosts the model performance with a clear gain. 572

An interesting observation is that our base 573

GraFusionMRCbase model even outperforms the 574

large XLM-Rlarge model in the TyDiQA-GoldP 575

dataset among languages fi, ko, sw, and te. The 576

use of alignment and syntactic information success- 577

fully bridges the model performance gap caused by 578

the number of parameters, and once again confirms 579

the effectiveness of utilizing SA-Graph. 580
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Figure 4: Effectiveness of graph masking strategies of Arabic, German and Spanish on MLQA dataset.
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Figure 5: Visualization of different attention matrices.
The German and English sentence is presented in green
and orange color, respectively. We also highlight the
correct answer spans in both German and English.

4.4 Impacts of Different Masking Strategies581

In this section, we provide a detailed analysis to bet-582

ter understand the effectiveness of different graph583

masking strategies. Specifically, we further ex-584

plore the impacts on GraFusionMRC+ad of differ-585

ent choices of graph masking strategies, including586

using either mono-lingual or cross-lingual masking587

strategies or employ them both. Fig. 4 shows the F1588

scores of Arabic, German, and Spanish on MLQA589

datasets under different choices of strategies.590

It can be observed that in all three languages, the591

cross-lingual masking strategy performs better, but592

converges slower than the mono-lingual masking593

strategy. This may be attributed to the reason that594

the cross-lingual masking strategy is more complex595

than mono-lingual, and thus needs more training596

steps to fit the training data, and provide stronger597

alignment capture capabilities. Meanwhile, com-598

bining both strategies can obtain the best perfor-599

mance, which indicates that those two strategies600

might focus on different alignment information and601

thus be complementary to each other.602

4.5 Visualization603

To showcase the effectiveness of our SA-Graph,604

we compare the attention distributions from the last605

fusion layer of the FILTER model with that of our606

proposed GraFusionMRC in Figure 5. The triple607

of (P,Q,A) in English is (“. . . along with a rise in608

object-oriented programming . . . ”, “In the 1990s, 609

what type of programming changed the handling 610

of databases?”, “object-oriented”). The original an- 611

swer in German “objektorientierte” is misaligned to 612

the word “were” in English by the GIZA++ toolkit. 613

With the help of syntactic information, our model 614

is able to learn a higher attention weight between 615

“objektorientierte” and the correct parallel word 616

“object-oriented”. The visualization of the example 617

illustrates the benefit of the SA-Graph, which im- 618

proves knowledge transfer through the enhanced 619

attention matrix. 620

5 Limitation 621

The demand for syntactic information of our model 622

limits its application to broader low-resource lan- 623

guages, that are not supported by Stanza. Besides, 624

we propose to use syntactic information to en- 625

hance the correlation between different languages 626

because we manually find some alignment errors 627

by solely using the GIZA++ toolkit. Practically, 628

recent works, e.g., AWEsoME (Dou and Neubig, 629

2021), can provide more robust performance on 630

aligning different language pairs. However, those 631

methods are more sophisticated and have higher 632

computational complexity, this requires a balance 633

between performance and efficiency. 634

6 Conclusion 635

In this paper, we develop a novel GraFusionMRC 636

approach that leverages both cross-lingual align- 637

ment information and mono-lingual syntactic infor- 638

mation for cross-lingual MRC. To the best of our 639

knowledge, we are the first to explicitly inject both 640

information to enhance the representation learn- 641

ing in the cross-lingual MRC task. We develop a 642

systematic approach including the construction of 643

the Syntax-Enhanced and Alignment-Aware Graph, 644

the learning algorithms, as well as the pre-training 645

strategies. The experimental results show that our 646

approach outperforms all strong baselines on two 647

public cross-lingual MRC benchmarks. 648
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A More Details for the Datasets770

We evaluate our model on two public cross-771

lingual machine reading comprehension datasets:772

MLQA (Lewis et al., 2020) and TyDiQA-GoldP773

dataset (Clark et al., 2020).774

• MLQA (Lewis et al., 2020), is a cross-lingual775

machine reading comprehension benchmark776

that covers 7 languages, including English,777

Arabic, German, Spanish, Hindi, Vietnamese778

and Simplified Chinese. The number of779

question-answering instances in the test set for780

those languages is 11590, 5335, 4517, 5254,781

4918, 5495, and 5137, respectively.782

• TyDiQA-GoldP (Clark et al., 2020), is an-783

other cross-lingual machine reading compre-784

hension benchmark covering 9 typologically785

diverse languages, including English, Arabic,786

Bengali, Finnish, Indonesian, Korean, Rus-787

sian, Swahili, and Telugu. The number of788

question-answering instances in the develop-789

ment set for those languages is 440, 921, 113,790

782, 565, 276, 812, 499, and 669, respectively.791

B Comparison of Different792

Combinations793

In this subsection, we study the effect of different794

aggregation functions in our GraFusionMRC+ad795

model. For each node i in SA-Graph, to aggregate796

the fa
i and fd

i vector, we experiment with three797

different types of aggregation functions: concate-798

nation, weighted sum, and max-pooling. Please799

note that, for concatenation operation, we need an800

extra trainable matrixWcat ∈ R2d×d to project the801
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Figure 6: Further analysis on the choice of different
aggregation functions using the GraFusionMRC+ad
model.

vector back to the dimension of d for consistency. 802

For better comparison, we also report the results of 803

the average operation, which is used in our model. 804

As shown in Figure 6, the average function tends 805

to show the best performance on both MLQA and 806

TyDiQA-GoldP datasets, which indicates that the 807

average operation is a simple but effective method 808

to aggregate the cross-lingual and mono-lingual 809

correlation. We can also see that the concatenation 810

operation shows the worst. A possible explanation 811

could be that the introduction of the matrix Wcat 812

increases the computational complexity of the ag- 813

gregation process, making it more difficult to find 814

the global optimal solution. Another interesting 815

observation is that the performance of the weighted 816

sum operation outperforms the max-pooling op- 817

eration. This may be because the weighted sum 818

operation could capture the fine-grained correlation 819

between vectors while the max-pooling operations 820

only capture the significant information. 821

C Fine-tuning Details 822

We select the hyperparameters from batch size: 823

{16, 32, 64}, learning rate: {1e-5, 3e-5, 5e-5, 1e- 824

6, 5e-6}, and warmup rate: {5%, 10%, 15%}. 825

All experiments are conducted on 4 16G NVIDIA 826

P100 GPUs. Each experiment is repeated 10 times 827

and the average results are reported. The num- 828

ber of parameters of FILTER, GraFusionMRC+a 829

and GraFusionMRC+ad model are 1.02, 1.07 and 830

1.15 times that of XLM-R. For MLQA dataset, the 831

best performance of GraFusionMRC+adp model 832

is achieved at batch size=32, learning rate=5e-5, 833

warmup rate=10%. It takes about 8 hours to get 834

the best result running on 4 16G P100. As for 835

the TyDiQA-GoldP dataset, we achieve the best re- 836

sults at batch size=64, learning rate=3e-5, warmup 837

rate=5%. It takes about 10 hours to get the best 838

result running on 4 16G P100. 839
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