A Graph Fusion Approach for Cross-Lingual
Machine Reading Comprehension

Anonymous ACL submission

Abstract

Although great progress has been made for
Machine Reading Comprehension (MRC) in
English, scaling out to a large number of lan-
guages remains a huge challenge due to the
lack of large amounts of annotated training
data in non-English languages. To address this
challenge, some recent efforts of cross-lingual
MRC employ machine translation to transfer
knowledge from English to other languages,
through either explicit alignment or implicit
attention. For effective knowledge transition,
it is beneficial to leverage both semantic and
syntactic information. However, the existing
methods fail to explicitly incorporate syntax
information in model learning. Consequently,
the models are not robust to errors in align-
ment and noises in attention. In this work, we
propose a novel approach, named GraFusion-
MRC, which jointly models the cross-lingual
alignment information and the mono-lingual
syntax information using a graph. We de-
velop a series of algorithms including graph
construction, learning, and pre-training. The
experiments on two benchmark datasets for
cross-lingual MRC show that our approach
outperforms all strong baselines, which veri-
fies the effectiveness of syntax information for
cross-lingual MRC. The code will be made
open-sourced on Github.

1 Introduction

Machine Reading Comprehension (MRC) (Ra-
jpurkar et al., 2016; Joshi et al., 2017), which aims
to improve the ability of machines to read and un-
derstand human texts, is a challenging task in Nat-
ural Language Understanding (NLU) (Rajpurkar
et al., 2016). Various large-scale human-annotated
corpora, such as SQuAD (Rajpurkar et al., 2016),
have greatly advanced the progress in the MRC
task (Seo et al., 2017; Yu et al., 2018; Devlin
et al., 2019). However, those large-scale human-
annotated datasets are mostly in resource-rich lan-
guages, such as English. For most languages in

s einer Anzahl von Eierrohrchen.

Q' Where are egg tubes found inside of an insect? A: ovaries

Q: Wo befinden sich Eierrohrchen im Inneren eines Insekts?  A:  Eierstocke
up of a number of egg tubes

Figure 1: A passage (P), a question (Q), and an answer
(A) in English with the translations in German.

the world, there is, however, scarce annotated data
for MRC, which limits the corresponding MRC
performance.

To tackle the challenge of data scarcity in low-
resource languages, recent attempts in cross-lingual
NLU adopt machine translation to transfer the
knowledge learned from the high quality annotated
data in resource-rich languages (i.e., the source
languages) to low-resource languages (i.e., the tar-
get languages) (Schuster et al., 2019). For exam-
ple, several methods (Hu et al., 2020; Liang et al.,
2020) translate training data in English to target lan-
guages, and use the translated data to train the cross-
lingual MRC models. Some other methods (Cui
et al., 2019; Fang et al., 2021) translate test cases in
a target language to English, and use the represen-
tation of the translated cases in English to enhance
the representations of the original test cases.

For effective knowledge transfer across lan-
guages, both semantic and syntactic information
is highly valuable and thus should be well repre-
sented. However, all previous translation-based
approaches carry over knowledge across languages
only through unstructured texts, where semantic
and syntactic information is implicitly represented
and complicatedly entangled. To represent the
correlation among words in different languages,
previous works either build translation alignments
or learn attention matrices. However, it is very
challenging to learn the connection between words
across languages solely relying on texts only. Ad-
mitted by previous studies, misalignments often



happen and badly hurt model performance (Xu
et al., 2020; Li et al., 2020; Pei et al., 2020). More-
over, deep learning models may pay attention to
less relevant words in long text (Zhang et al., 2020).

Can we use syntax information explicitly to en-
hance knowledge transfer across languages and im-
prove cross-lingual MRC? In this paper, we tackle
this challenge. Figure 1 shows a motivating exam-
ple. Suppose the source training example is in En-
glish: the question is “Where are egg tubes found
inside of an insect?”, and the answer “ovaries” is
in the sentence “The ovaries are made up of a num-
ber of egg tubes ...” After the English example is
translated into German, the corresponding answer
“Eierstocke” in “Die Eierstocke bestehen aus einer
Anzahl von Eierrohrchen ...” is not correctly iden-
tified due to misalignment by an off-the-shelf align-
ment tool GIZA++ (Och and Ney, 2003). Check-
ing many cases manually, we find misalignments
commonly happen in complex sentence structures
(e.g., involving passive voice where word orders
are different from usual) and usages of rare words
(e.g., “ovaries” and “Eierstocke” belong to the do-
main of biology). In such cases, syntax informa-
tion can help the model to figure out the correct
alignment. In the example in Figure 1, although
“ovaries” and “Eierstocke” are not correctly aligned,
their parents “made/bestehen”, and siblings “num-
ber/Anzahl” are correctly aligned. Therefore, if we
can leverage the syntax structure to propagate the
alignment information, we can learn better repre-
sentation for the target language.

Carrying the above insights, in this paper, we
jointly model the cross-lingual alignment informa-
tion and the mono-lingual syntax information us-
ing a graph. We make the following contributions.
First, we propose using syntax information to en-
hance knowledge transfer across languages. Sec-
ond, we develop a novel graph fusion approach to
model the syntax structure as well as the alignment
across the source and target inputs. We design
a series of algorithms including graph construc-
tion, learning, and pre-training. Last, we evaluate
our approach on two public cross-lingual MRC
benchmarks. The experimental results show that
our model effectively transfers knowledge from
source language to target language through atten-
tion guided by syntax information, and hence out-
performs all the strong baselines. The code will be
released on Github. The limitation of our work can
be found in Appendix.

2 Related Work

Given a question and a passage, the MRC task (Ra-
jpurkar et al., 2016; Joshi et al., 2017) builds a
model to find the span of the correct answer for
the question from the given passage. Limited by
the availability of large-scale annotated data, for
most languages in the world, the MRC task re-
lies on cross-lingual MRC models, which transfer
knowledge from a resource-rich language to some
low-resource languages. As a baseline, some multi-
lingual pre-trained models, such as mBERT (De-
vlin et al., 2019), XLLM (Lample and Conneau,
2019), and XLM-R (Conneau et al., 2020), are fine-
tuned by training data in English and then directly
applied to other languages.

There are also researches employ machine trans-
lators to generate parallel corpus as data augment.
For example, some approaches translate training
data from English to some target languages, and
then adds the translated training sets into the fine-
tuning stage (Cui et al., 2019; Hu et al., 2020; Liang
et al., 2020; Yuan et al., 2020; Liu et al., 2020).
Some other methods translates test cases in a target
language into English, and combines the represen-
tation of the original test cases and the representa-
tion of the translated case to English through the
attention mechanism (Cui et al., 2019; Fang et al.,
2021).

Although these approaches improve the MRC
results substantially, one weakness remained is the
alignment quality between the example in origi-
nal language and the translated example. Previous
studies (Xu et al., 2020; Li et al., 2020; Pei et al.,
2020) indicate that misalignments often happen
and can badly degrade the model performance. In-
spired by the observation in SG-Net (Zhang et al.,
2020) that the syntax information can prevent a
model from attending to some dispensable words
and show significant gains in the English MRC
task, we propose to use the syntax information to
guide the correlation between the inputs in source
and target languages.

3 Methodology

3.1 Overview of Network Architecture

Figure 2 shows the overview of our approach. The
backbone is a stack of bidirectional Transform-
ers (Vaswani et al., 2017) with IV + 2 layers. The
first layer encodes the inputs, and the last layer
learns the final representations for decoding.
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Figure 2: The overview of our model GraFusionMRC,
where the red and green nodes represent the words in
the source and target language, respectively.

Our major technical contribution is in the mid-
dle N layers, where a graph neural network is con-
structed and trained to model both syntax and align-
ment information. Such information jointly con-
tributes to the knowledge transfer across languages
and results in better representation for the target
language through enhanced attention matrices.

Given an instance .S in the source language, we
first apply a machine translator to translate it to
an instance 7' in the target language (or given an
instance 7T’ in the target language, we can translate
it to S in English). We then unify the length of S
and T to be [ by padding or truncating operations,
and input S € R™™? and T € R™*? in parallel
to our model, where d is the dimensionality of
the token embedding vectors. The input is then
encoded by a Transformer as follows:

A = Transformer(S), (D
Al = Transformer(T). ()

We then take the concatenation of Ajf
and A}, and apply N Syntax-enhanced and
Alignment-aware Fusion Transformer layers (or
SA-Transformer for short) to produce the represen-
tation by

[AfL;Afl] = Transformer,([A; _1; A;_l]), 3)

where the subscripts n € [1, N] indicate that the
variables are at the n-th SA-Transformer layer, and
[A2; Al] € R¥*4 is the concatenation of the rep-
resentations of the parallel sentences in the source
and the target languages.

Each SA-Transformer layer applies a multi-head
self-attention operation (Vaswani et al., 2017) fol-
lowed by a feed-forward layer. Specifically, the
multi-head self-attention operation first obtains a
triplet consisting of the query Q;, the key K;
and the value V; € R2*% for each head; by

applying linear transformations W, VVf, and

WP € R¥dr on the input matrix [A%_; AY ],
respectively, where d}, is the dimensionality of each
head, and matrices VViq, VVZk ,and W} are parame-
ters to be learned. Then, each head; conducts the

following attention operation:

T
iKi

Vdy,

where ¢ denotes the i-th head of the multi-head
operation, and G' € R?*? is the attention matrix
to be described in Section 3.2.

After obtaining the representation [A%: Al ] via
(3), we further add another Transformer layer to
separately project A® and A! back to the individ-
ual language spaces and obtain A® and A* € R!*?,
respectively, since our final goal is to predict the
labels in the individual languages.

We then use A° and A’ to predict the answer
span in the source and target languages, respec-
tively. Let us take A’ as an example to elabo-
rate. Following LBMRC (Liu et al., 2020), we
feed A’ to two separate linear layers, each fol-
lowed by a softmax operation to produce the fi-
nal span prediction p’,. and p!_, € R, i.e., the
predictions of the start and the end positions, re-
spectively. For example, pl,, is calculated by
Pl = softmax( A -ug, + by, ), where ug, € R?
and by, € R! are two trainable parameters. We
then calculate the standard cross entropy loss for
the predicted start and end positions in the target
language by

head; = softmax( +G)V;,, &

D
1 17l
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where || D|| is the total number of training examples,
YLy, and y! ;€ R’ are the ground-truth labels
for the start and end positions of the i-th training
example.

3.2 Syntax-Enhanced and Alignment-Aware
Graph (SA-Graph)

To incorporate the syntax and alignment informa-
tion into Transformer, we learn an attention matrix
G, where an element G; ; in G is the attention
score indicating the attention that word ¢ pays to
the word j. To learn the matrix G, we first con-
struct the syntax-enhanced and alignment-aware
graph (or SA-Graph for short), where each node
corresponds to a word, and the edges represent the



syntax and alignment information. Given a pair
of parallel sentences as input, we build a graph
to represent the relations among the words in the
sentences. Each word in the parallel sentences cor-
responds to a node in the graph, and the edges be-
tween the nodes are based on the relations between
the words. As introduced in Section 1, we consider
two types of relations of words, cross-lingual word
alignment and mono-lingual syntactic dependency.
We build edges for those two relations.

In machine translation, the corresponding words
in source and target languages can be aligned with
each other. Taking German sentence “Wir sollten
die Umwelt schiitzen” and its parallel sentence “We
should protect the environment” in English as an
example, we can apply some off-the-shelf align-
ment tools, such as GIZA++! (Och and Ney, 2003),
to compute the word alignment. The aligned words
often share similar semantic meaning, for exam-
ple, “Wir” and “We”, “sollten” and “should”, “die”
and “the”, “Umwelt” and “environment”, as well
as “schiitzen” and “protect”. We then add word-
alignment edges between the nodes corresponding
to those words.

In addition to the edges between words across
languages, we also consider the syntactic structures
of sentences and build edges between words within
the same language. Specifically, we first split a
given passage into sentence-level and then apply
the Stanza toolkit? (Qi et al., 2020) to extract the
dependency between words for each sentence. Two
words are connected by a word-dependency edge if
there exists a dependency between them. We also
add a special word-dependency edge between the
same words in a passage.

Based on the graph, the representation f; of a
word ¢ is derived by

where h; ,, is the representation of word 7 from
the n-th layer, N/ (¢) denotes the neighbors of word
i in the SA-Graph, and F(-, -) is the aggregation
function of word ¢ and its neighbors that will be
described in Equation (8), Section 3.3. Once f; ,,
is computed, the attention matrix G is obtained by

att Fin+050) (Wape £in+bar), (1)

where W, € R?*? and b?,, € R? are trainable
parameters. For convenient representation, we use

Gij=(

"https://github.com/moses-smt/giza-pp
Zhttps://github.com/stanfordnlp/stanza

fiinstead of f; ,, in the following. Next, we present
the learning process of the representation f;.

3.3 Graph Learning

After we construct the SA-Graph, we perform
a learning algorithm over the graph. For each
node ¢, we want to learn a better representation
fi = F(h;, N (i)) than its original representation
h; by aggregating the information from its neigh-
bors N (7). As described in Section 3.2, there are
two types of edges in the graph. Correspondingly,
the node representation f; consists of two parts:

fi= S Uft+ £ (8)

where f{' is the representation of word ¢ aggre-
gated from the alignment information, i.e., f{* =
Fa(hi, N (1)), where N, (i) is the set of neighbors
of word ¢ that are connected by word-alignment
edges. Similarly, fid aggregates the dependency in-
formation, i.e., f# = Fy(h;, Ny(i)), where Ny(i)
is the set of dependency neighbors. In Equation (8),
in addition to the average function, other combi-
nation operators, such as weighted sum or max-
pooling, may also be considered. Here we choose
the simple but effective average method based on
our empirical study. Experiments with other com-
bination operators are presented and discussed in
Appendix.

To learn aggregation by alignment F,(-, -), for
a word ¢, the representation f* aggregates the in-
formation from its neighbors N, (7) connected by
the word-alignment edges. As indicated in the pre-
vious studies (Xu et al., 2020; Li et al., 2020; Pei
et al., 2020), word alignment is a challenging task
and misalignments may exist in results produced
by existing methods. To mitigate the alignment er-
rors, we develop a gate mechanism to guard against
irrelevant alignment.

gi=0(Vi-h; + Wi -h;),

f=01-g)0(Va-hi)+g oW hj)&g)
where h; = avg{h;|h; € N, (i)} is the average
of the representations of the nodes in the neighbor
set NV, (i), o is the sigmoid function, ® denotes
element-wise multiplication, g; € R< serves as
the role of gating, and matrices Vi, Wy, V5 and
W, € R4%4 are model parameters. g; is the gate
to control whether the aligned information should
contribute to the representation of word . If the
nodes connected by the alignment edge bear very



different semantic meanings, the weights in the
gate are close to zero, which switch off the infor-
mation flow.

In addition to cross-lingual word alignment in-
formation, the mono-lingual syntax information
discloses the inherent dependency among words
and thus also benefits the representation of words.
The representation fid aggregates the syntax in-
formation for node ¢ using a graph attention net-
work (Velickovic et al., 2018) as follows.

£ =03 (auWshy,Yu € Ny(i))),  (10)

where W3 € R%*? is a model parameter, o is the
sigmoid function, and «a;, € R is the attention
coefficient that indicates the importance of word ¢
to its neighbor u, calculated as follows:

_ exp(LR(Wylh;; hy]))
>oken; (i) P(LR(Walhi; b))’

where LR is the Leaky ReLU activate function,
and W, € R?? is a model parameter.

1D

Qg

3.4 Pre-training SA-Graph

To enhance the representation power of the SA-
Graph, we use translated parallel data to pre-train
the graph (Reid and Artetxe, 2021). The basic idea
is to randomly mask some nodes in the graph and
use the representations of its semantic and syn-
tactic neighbors to recover it. As can be seen in
Fig. 3, for each masked node ¢, we aggregate the
representations of its neighbors. The aggregated
representation is then fed into a linear classifier,
which outputs the probabilities over the whole vo-
cabulary. Cross entropy is used to compute the
recovery loss as Lg4 (i) = —logP(i|N (7). Dur-
ing the pre-training stage, we propose two masking
strategies with each adopted half of the time.

Mono-lingual Masking: Given a source sentence
S and the translated sentence T, the first mask-
ing strategy constrains all the masked tokens to be
within only one language, i.e., either the source
or the target language. For those masked tokens,
since the corresponding words in the other lan-
guage should not be masked according to the mask-
ing constraint, the model can learn from the align-
ment information to predict the masked ones. In
other words, this masking strategy encourages the
model to explore the semantic correlation from the
alignment information. At each iteration in our
implementation, we first choose a language, and
then randomly mask 15% of nodes belonging to

Monolingual Masking  Cross-lingual Masking
© @ .
® o o | 0
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Figure 3: Illustration of the graph masking strategies.

the chosen language in SA-Graph are masked at
random.

Cross-Lingual Masking: The above mono-
lingual masking strategy would make the model
tend to ignore the word-dependency edges. To
facilitate the model to leverage the syntax informa-
tion, we further develop a cross-lingual masking
strategy: whenever a node is masked, its aligned
node must be masked together. In this way, we cut
off the alignment information flow, and the model
is forced to learn from word-dependency edges to
recover the masked nodes.

Besides the above two masking strategies, we
also employ translation language modeling (TLM)
in our pre-training process, which has shown strong
performance in XLM pre-trained model (Lample
and Conneau, 2019). For each masked word ¢,
we compute the recovery loss as Loy (i) =
—logP(ilh;). The final loss for the pre-training
is the sum of the loss of translation language mod-
eling and our graph masking tasks, i.e., L(i) =
Lsa(i) + Lo (i)

4 Experiments

We evaluate the proposed GraFusionMRC ap-
proach on two benchmark datasets. In this section,
we first describe the experiment setup. We then
report and analyze the experimental results. We
also illustrate how SA-Graph affects the attention
weights through a case study. The further analysis
of our model is presented in Appendix.

4.1 Datasets, Evaluation and Baselines

Datasets: MLQA (Lewis et al.,, 2020) and
TyDiQA-GoldP dataset (Clark et al., 2020) are two
recent public benchmark datasets for cross-lingual
machine reading comprehension. They contain a
total of 14 languages, including English (en), Ara-
bic (ar), German (de), Spanish (es), Hindi (h?),
Vietnamese (vt), simplified Chinese (zh), Bengali
(bn), Finnish ( fu), Indonesian (id), Korean (ko),
Russian (ru), Swahili (sw), and Telugu (te). The
details of these two datasets are given in the Ap-
pendix. Although MLQA and TydiQA provide



sufficient test data, their training data is quite lim-
ited. Following FILTER (Fang et al., 2021), we use
SQuAD v1.1 (Rajpurkar et al., 2016) English train-
ing data as additional data during the fine-tuning
stage of our model. Moreover, the English training
data in SQuAD v1.1 is further translated into the
target languages in the MLQA and TyDiQA-GoldP
test data via the translation system?®. Besides, to
pre-train our SA-Graph model, we further collect
additional parallel sentences following Lample and
Conneau (2019); Huang et al. (2019). There are
one million pairs of parallel sentences in English
and each target language.

Evaluation Metrics: We adopt the standard evalu-
ation metrics from the SQuAD dataset (Rajpurkar
et al.,, 2016), including F1 and Exact Match
(EM) scores. The F1 score is used to measure
the overlap of tokens between the predicted and
ground-truth answer spans, while the EM score
only counts the cases where the predicted answer
spans exactly match the ground-truth answer spans.
We run the official evaluation script provided by
MLQA (Lewis et al., 2020) and TyDiQA (Clark
et al., 2020) to report the results.

Baselines: We compare GraFusionMRC with the
following two groups of approaches.

1) Fine-tuning with English training data only:
In this group of baselines, we pick the existing
cross-lingual models, including mBERT (Devlin
et al., 2019), XLLM (Lample and Conneau, 2019),
MMTE (Siddhant et al., 2020) and XLM-R (Con-
neau et al., 2020). These models are fine-tuned
using English training data only.

2) Models using translation: In this group, we
first select XLM-R as the representative for cross-
lingual models, since it performs the best among all
the models in the first group in our experiments for
the cross-lingual MRC task. We then fine-tune the
XLM-R model with the combined translated train-
ing data of all languages jointly, which is denoted
as XLM-R (translate-train). We also include the
FILTER (Fang et al., 2021) as baseline, which
leverages the intrinsic cross-lingual correlation be-
tween different languages.

4.2 Implementation Details

We implement on top of HuggingFace’s Transform-
ers (Wolf et al., 2019) and report results on two both
base and large models, i.e., GraFusionMRCpgs.

3https://console.cloud.google.com/storage/browser/xtreme
_translations

and GraFusionMRCiq4.. We initialize our base
model by the pre-trained XLM-R base model re-
leased by HuggingFace®*, which contains 12 layers;
and use XLM-R large model for initializing our
large model, which contains 24 layers. We set the
number of intermediate Transformer layers, i.e.,
the Syntax-Enhanced and Alignment-Aware Trans-
former layers, to 10 in the base model and to 22
in the large model. The first bottom Transformer
layer is used for encoding the raw input sentences
and the top layer converts the joint representation
of the sentences in the source and target languages
back to individual language spaces.

To make a fair comparison, we reproduce
FILTER based on the XLM-R model. During
the fine-tuning stage, following LBMRC (Liu
et al., 2020) and XLM-R (Conneau et al., 2020),
we pair the passage and question for each
language as [<cls> ,question,</s> ,</s>
,passage,</s>| as the input. We then concate-
nate the input of the target language with the trans-
lated input in the source language. Since we em-
ploy individual Transformer layers to encode the
inputs for each language at the bottom of our model,
the supporting max sequence length of each lan-
guage can be 512. We empirically set the max
sequence length to 384 for each language to bal-
ance efficiency. Then we concatenate the source
and target input and feed a sequence of length 768
to the SA-Transformer to extract their correlation.
Limited by space, the fine-tuning details are given
in Appendix.

4.3 Experimental Results

We conduct experiments with three variants of
our GraFusionMRC approach: (1) GraFusion-
MRC+a: only the word-alignment edges are used in
graph learning; (2) GraFusionMRC+ad: both the
word-alignment and word-dependency edges are
included in the graph learning stage to obtain the
node representation; and (3) GraFusionMRC+adp:
the pre-training stage is added before the graph
learning stage to enhance the representation power
of the SA-Graph.

The results on MLQA and TyDiQA-GoldP
datasets are presented in Table 1 and Table 2, re-
spectively. In the first group of baselines, the
XLM-Rpyse model consistently outperforms all
other baselines in most of the target languages,
demonstrating itself as a strong baseline for the

*https://huggingface.co/xIm-roberta-base



Model en ar de es hi vi zh Avg.
mBERT 80.2/67.0 52.3/34.6 59.0/43.8 67.4/49.2 50.2/353 61.2/40.7 59.6/38.6 61.4/442
XLM 68.6/552 425/252 50.8/372 547/379 344/21.1 483/30.2 40.5/21.9 485/32.7
MMTE 78.51/- 56.1/- 58.4/- 64.9/- 46.2 /- 59.4/- 583/-  603/41.4
XLM-Rpgse 78.5/653 56.1/36.8 61.7/47.1 66.0/48.7 60.1/424 63.6/43.5 60.1/35.5 63.7/45.6
XLM-Rpgsc (translate-train) | 77.8/64.4 58.0/38.1 63.4/49.1 68.7/51.9 62.8/46.1 653/459 61.8/369 654/475
FILTERpese | 772/639 602/412 669/527 70.5/532 64.5/47.2 66.8/47.7 634/42.1 67.1/49.7
GraFusionMRCpgsc+a 7771640 61.2/422 67.6/534 729/557 66.0/484 67.1/48.6 64.6/43.3 68.2/50.8
GraFusionMRCpgsc+ad 77.5/63.8 619/428 689/549 73.4/564 66.6/49.2 684/49.1 652/440 68.8/51.5
GraFusionMR Cpqs+adp 7747638 62.8/43.4 69.3/553 74.0/56.8 67.1/49.5 68.8/49.5 65.6/44.3 69.3/51.8
XLM-Ryqrge (translate-train) | 83.5/70.6 66.6/47.1 70.1/54.9 74.1/56.6 70.6/53.1 74.0/529 62.1/37.0 71.6/532
CFILTERGge 840/708 72.1/5L1 T48/600 T81/60.1 760/57.6 T81/S15_705/470 762/577
GraFusionMRCiqrgeta 84.2/71.5 73.0/52.0 754/60.3 788/60.9 77.9/584 79.0/57.8 71.4/48.6 77.1/58.5
GraFusionMRCig,4c+ad 83.9/71.0 73.77/525 759/61.2 79.6/61.2 78.6/58.7 79.9/598 72.4/48.8 77.7/59.0
GraFusionMRC4; go+adp 83.5/70.7 74.2/52.7 76.2/61.7 80.1/62.0 79.2/59.0 80.4/60.1 73.0/49.3 78.1/59.4
Table 1: MLQA results (F1 / EM) for each language.
Model en ar bn fi id ko ru SW te Avg.
mBERT 753/63.6 62.2/42.8 49.3/327 59.7/453 64.8/458 58.8/50.0 60.0/38.8 57.5/379 49.6/384 59.7/439
XLM 66.9/53.9 59.4/412 27.2/150 582/414 625/458 142/5.1 49.2/307 394/216 155/69 43.6/29.1
MMTE 62.9/49.8 63.1/39.2 558/41.9 53.9/42.1 60.9/47.6 49.9/42.6 589/37.9 63.1/472 542/458 58.1/438
XLM-Rpgse 719/57.1 543/32.1 57.8/446 639/504 685/513 61.2/387 60.4/33.8 652/556 649/47.6 63.1/457
XLM-Rpqse (translate-train) | 71.6 / 56.4 57.8/34.5 60.8/48.6 67.1/53.0 71.9/537 63.3/404 62.2/347 62.8/53.7 67.3/509 65.0/47.3
CFILTERy. | 684/555 S83/346 613/467 61.7/540 722/545 655/411 633/354 723/63.1 67.1/496 662/483
GraFusionMRCygse+a 7127557 60.1/37.1 62.4/488 69.0/54.6 73.5/572 67.2/435 64.6/380 73.9/641 68.1/53.4 67.8/50.3
GraFusionMRCpqge+ad 70.8/554 61.4/38.6 / 69.7/55.1 74.9/59.0 68.1/44.7 64.8/36.7 / 7047532 68.6/49.0
GraFusionMRCy,se+adp 70.6/55.1 62.6/39.5 / 70.4/55.7 75.7/59.3 69.0/46.1 65.5/37.2 / 71.0/53.6 69.3/49.5
XLM-Ryqge (translate-train) | 75.1/62.0 66.9/39.8 63.8/47.5 70.1/52.8 77.1/61.7 67.8/43.4 66.5/41.8 657/47.8 69.6/43.4 69.2/48.9
FILTER4rge 72.4/59.1 728/50.8 70.5/56.6 73.3/572 76.8/59.8 689/457 689/46.6 77.4/657 69.9/504 723/54.7
" GraFusionMRCigrgea | 7417613 7347/51.6 71.7/57.5 74.1/58.0 7787624 69.5/46.2 69.8/46.7 78.0/657 70.3/53.0 732/558
GraFusionMRCiqygc+ad 739/612 742/532 / 749/59.5 79.2/642 70.5/47.5 70.4/47.6 / 72.0/549 73.6/554
GraFusionMRCiqygc+adp 73.5/60.8 75.1/53.8 / 76.2/61.0 79.8/64.2 71.3/48.3 71.3/48.2 / 72.5/55.7 74.2/56.0

Table 2: TyDiQA-GoldP results (F1 / EM) for each language. As

the Stanza toolkit does not support languages

Bengali and Swahili, we don’t report results on these two languages in the syntactic fusion setting. We correct the
ko text segment module of FILTER and bring its performance back from 33.1 to 68.9 of the F1 score.

cross-lingual MRC task. Based on this observa-
tion, we use XLM-R as the representative for cross-
lingual models, and further fine-tune this model
with translated training data in target languages.

As shown in the first row (“XLM-R (translate-
train)”) of the second and third group of baselines,
adding translated data in target languages substan-
tially improves the model performance, which sug-
gests that the translated data strengthen knowledge
transfer effectively. We also observe the FILTER
method performs better than the strong baseline
XLM-R (translate-train) on both datasets. It indi-
cates that the attention between the source sentence
and the translated target sentence leads to better
representation of words, and further contributes to
the cross-lingual MRC task.

All three variants of our GraFusionMRC ap-
proach outperform the XLM-R and FILTER mod-
els on both datasets. In particular, the GraFu-
sionMRC+adp method achieves an average im-
provement of 2 points over the FILTER model in
both MLQA and TyDiQA-GoldP. The major dif-
ference of GraFusionMRC from FILTER is that

we enhance the learning of the attention matrix be-
tween the inputs in the source and target languages
through explicit syntax and alignment information.
Moreover, our gate mechanism and graph attention
network increase the model robustness against the
errors in alignment and syntactic parsing.

When we compare the three variants of the Gra-
FusionMRC approach, the general trend is that us-
ing both the syntax edges and alignment edges
is better than using alignment edges alone. This
justifies the effectiveness of injecting syntax in-
formation into representation learning. Moreover,
the pre-training using large-scale parallel data also
boosts the model performance with a clear gain.

An interesting observation is that our base
GraFusionMRCy,se model even outperforms the
large XLM-R;4;-gc model in the TyDiQA-GoldP
dataset among languages fi, ko, sw, and te. The
use of alignment and syntactic information success-
fully bridges the model performance gap caused by
the number of parameters, and once again confirms
the effectiveness of utilizing SA-Graph.
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Figure 4: Effectiveness of graph masking strategies of Arabic, German and Spanish on MLQA dataset.
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Figure 5: Visualization of different attention matrices.
The German and English sentence is presented in green
and orange color, respectively. We also highlight the
correct answer spans in both German and English.

4.4 TImpacts of Different Masking Strategies

In this section, we provide a detailed analysis to bet-
ter understand the effectiveness of different graph
masking strategies. Specifically, we further ex-
plore the impacts on GraFusionMRC+ad of differ-
ent choices of graph masking strategies, including
using either mono-lingual or cross-lingual masking
strategies or employ them both. Fig. 4 shows the F1
scores of Arabic, German, and Spanish on MLQA
datasets under different choices of strategies.

It can be observed that in all three languages, the
cross-lingual masking strategy performs better, but
converges slower than the mono-lingual masking
strategy. This may be attributed to the reason that
the cross-lingual masking strategy is more complex
than mono-lingual, and thus needs more training
steps to fit the training data, and provide stronger
alignment capture capabilities. Meanwhile, com-
bining both strategies can obtain the best perfor-
mance, which indicates that those two strategies
might focus on different alignment information and
thus be complementary to each other.

4.5 Visualization

To showcase the effectiveness of our SA-Graph,
we compare the attention distributions from the last
fusion layer of the FILTER model with that of our
proposed GraFusionMRC in Figure 5. The triple
of (P,Q,A) in English is (“... along with a rise in
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-
3 |
-002 .
u 4 n -01
-001 3 n
| . . 3
CEE TR o0 -00

object-oriented programming . ..”, “In the 1990s,
what type of programming changed the handling
of databases?”, “object-oriented”). The original an-
swer in German “objektorientierte” is misaligned to
the word “were” in English by the GIZA++ toolkit.
With the help of syntactic information, our model
is able to learn a higher attention weight between
“objektorientierte” and the correct parallel word
“object-oriented”. The visualization of the example
illustrates the benefit of the SA-Graph, which im-
proves knowledge transfer through the enhanced
attention matrix.

5 Limitation

The demand for syntactic information of our model
limits its application to broader low-resource lan-
guages, that are not supported by Stanza. Besides,
we propose to use syntactic information to en-
hance the correlation between different languages
because we manually find some alignment errors
by solely using the GIZA++ toolkit. Practically,
recent works, e.g., AWEsoME (Dou and Neubig,
2021), can provide more robust performance on
aligning different language pairs. However, those
methods are more sophisticated and have higher
computational complexity, this requires a balance
between performance and efficiency.

6 Conclusion

In this paper, we develop a novel GraFusionMRC
approach that leverages both cross-lingual align-
ment information and mono-lingual syntactic infor-
mation for cross-lingual MRC. To the best of our
knowledge, we are the first to explicitly inject both
information to enhance the representation learn-
ing in the cross-lingual MRC task. We develop a
systematic approach including the construction of
the Syntax-Enhanced and Alignment-Aware Graph,
the learning algorithms, as well as the pre-training
strategies. The experimental results show that our
approach outperforms all strong baselines on two
public cross-lingual MRC benchmarks.
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A More Details for the Datasets

We evaluate our model on two public cross-
lingual machine reading comprehension datasets:
MLQA (Lewis et al., 2020) and TyDiQA-GoldP
dataset (Clark et al., 2020).

o MLQA (Lewis et al., 2020), is a cross-lingual
machine reading comprehension benchmark
that covers 7 languages, including English,
Arabic, German, Spanish, Hindi, Vietnamese
and Simplified Chinese. The number of
question-answering instances in the test set for
those languages is 11590, 5335, 4517, 5254,
4918, 5495, and 5137, respectively.

TyDiQA-GoldP (Clark et al., 2020), is an-
other cross-lingual machine reading compre-
hension benchmark covering 9 typologically
diverse languages, including English, Arabic,
Bengali, Finnish, Indonesian, Korean, Rus-
sian, Swahili, and Telugu. The number of
question-answering instances in the develop-
ment set for those languages is 440, 921, 113,
782, 565, 276, 812, 499, and 669, respectively.

B Comparison of Different

Combinations

In this subsection, we study the effect of different
aggregation functions in our GraFusionMRC+ad
model. For each node 7 in SA-Graph, to aggregate
the f* and fl-d vector, we experiment with three
different types of aggregation functions: concate-
nation, weighted sum, and max-pooling. Please
note that, for concatenation operation, we need an
extra trainable matrix W, € R24%4 to project the
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Figure 6: Further analysis on the choice of different
aggregation functions using the GraFusionMRC+ad
model.

vector back to the dimension of d for consistency.
For better comparison, we also report the results of
the average operation, which is used in our model.

As shown in Figure 6, the average function tends
to show the best performance on both MLQA and
TyDiQA-GoldP datasets, which indicates that the
average operation is a simple but effective method
to aggregate the cross-lingual and mono-lingual
correlation. We can also see that the concatenation
operation shows the worst. A possible explanation
could be that the introduction of the matrix W,
increases the computational complexity of the ag-
gregation process, making it more difficult to find
the global optimal solution. Another interesting
observation is that the performance of the weighted
sum operation outperforms the max-pooling op-
eration. This may be because the weighted sum
operation could capture the fine-grained correlation
between vectors while the max-pooling operations
only capture the significant information.

C Fine-tuning Details

We select the hyperparameters from batch size:
{16, 32, 64}, learning rate: {1le-5, 3e-5, Se-5, le-
6, 5e-6}, and warmup rate: {5%, 10%, 15%}.
All experiments are conducted on 4 16G NVIDIA
P100 GPUs. Each experiment is repeated 10 times
and the average results are reported. The num-
ber of parameters of FILTER, GraFusionMRC+a
and GraFusionMRC+ad model are 1.02, 1.07 and
1.15 times that of XLLM-R. For MLQA dataset, the
best performance of GraFusionMRC+adp model
is achieved at batch size=32, learning rate=5e-5,
warmup rate=10%. It takes about 8 hours to get
the best result running on 4 16G P100. As for
the TyDiQA-GoldP dataset, we achieve the best re-
sults at batch size=064, learning rate=3e-5, warmup
rate=5%. It takes about 10 hours to get the best
result running on 4 16G P100.
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