
Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient
Sequence Modeling

Mónika Farsang 1 Ramin Hasani 2 3 Radu Grosu 1

Abstract
We present LrcSSM, a nonlinear recurrent model
that processes long sequences as fast as today’s
linear state-space layers. By forcing the state-
transition matrix to be diagonal and learned at ev-
ery step, the full sequence can be solved in parallel
with a single prefix-scan, givingO(TD) time and
memory and only O(log T ) sequential depth, for
input-sequence length T and a state dimension
D. Moreover, LrcSSM offers a formal gradient-
stability guarantee that other input-varying sys-
tems such as Liquid-S4 and Mamba do not pro-
vide. Lastly, for network depth L, as the for-
ward and backward passes cost Θ(T DL) FLOPs,
with its low sequential depth and parameter count
Θ(DL), the model follows the compute-optimal
scaling law regime (β ≈ 0.42) recently observed
for Mamba, outperforming quadratic-attention
Transformers at equal compute while avoiding
the memory overhead of FFT-based long convo-
lutions. We show that on a series of long-range
forecasting tasks, LrcSSM outperforms LRU, S5
and Mamba.

1. Introduction
With the advent of linear state space models (LSSMs), more
and more architectures have emerged, with increasingly bet-
ter accuracy and efficiency. While LSSMs can be efficiently
parallelized, for example with the aid of the parallel scan
operator, this is considerably more difficult for traditional,
nonlinear state-space models (NSSMs). This lead to a de-
creasing interest in NSSMs, although these should arguably
capture input correlations in a more refined way through
their state.

Fortunately, recent work has shown how to apply the parallel
scan operator to NSSMs, by linearizing them in every time
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step, and by implementing this idea in their DEER frame-
work (Lim et al., 2024). Unfortunately, the state-transition
matrix (the Jacobian of the NSSM) was not diagonal, which
precluded scaling it up to very long sequences. Subsequent
work however, succeeded to scale up NSSMs by simply tak-
ing the diagonal of the Jacobian matrix, and stabilizing the
DEER updates with trust regions. They called this method
ELK (evaluating Levenberg-Marquardt via Kalman) (Gon-
zalez et al., 2024).

In this paper, we propose an alternative approach to scal-
ing up NSSMs. Instead of disregarding the non diagonal
elements of the NSSM Jacobian, which might contain im-
portant information about the multistep interaction among
neurons along feedback loops, we learn an NSSM whose
state-transition matrix is constrained to be diagonal, and
whose entries depend on both the current state and current
input.

In summary, our main contributions in this paper are the
following ones:

• To the best of our knowledge, we are the first to show
how to scale up a bioinspired RNN to a competitive
NSSM on long sequences, by using a diagonal nonlin-
ear state-and-input dependent state-transition matrix
and inherently a diagonal Jacobian matrix.

• We demonstrate that LrcSSMs can capture long-
horizon tasks in a very competitive fashion on a set of
standard benchmarks used to assess LSSMs accuracy
and efficiency.

• We show that LrcSSMs consistently outperform many
of the state-of-the-art LSSMs, including LRU, S5, S6,
and Mamba, especially on the EthanolConcentration
benchmark.

2. Background
Here we introduce the necessary background for under-
standing LrcSSMs: Firstly, the bioinspired nonlinear liquid
networks LTCs, STCs, and LRCs, known for their dynamic
expressivity. Secondly, the parallelization techniques en-
abling efficient training of traditionally sequential NSSMs.
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Figure 1. Liquid-Resistance Liquid-Capacitance NSSM (LrcSSM)
architecture.

2.1. Bio-inspired Liquid Neural Networks

Electrical Equivalent Circuits (EECs) are simplified models
defining the dynamic behavior of the membrane potential
(MP) of a postsynaptic neuron, as a function of the MP
of its presynaptic neurons and external input signals (Kan-
del et al., 2000; Wicks et al., 1996). In ML, EECs with
chemical synapses are termed liquid time constant networks
(LTCs) (Lechner et al., 2020; Hasani et al., 2021). For a
neuron i with m presynaptic neurons of MPs x and n in-
puts of value u, the forget conductance fi(x, u) and update
conductance zi(x, u) are defined as:

fi(x, u) =

m+n∑
j=1

gmax
ji σ(ajiyj + bji) + gleaki (1)

zi(x, u) =

m+n∑
j=1

kmax
ji σ(ajiyj + bji) + gleaki , (2)

where y= [x, u] concatenates the MP (state) of all neurons
and the inputs. In Equation (1), gmax

ji represents the max-
imum synaptic channel conductance, aji and bji param-
eterize the sigmoidal activation governing channel open-
ness, and gleaki is the leaking conductance. In Equation (2),
kmax
ji = gmax

ji erevji /eleaki , where erevji is the synaptic rever-
sal potential (equilibrium membrane potential) and eleaki is
the leaking potential. Since gmax

ji ≥ 0, the sign of kmax
ji

depends on erevji /eleaki . In biological neurons, the capaci-
tance has a nonlinear dependence on the MP of presynaptic
neurons and the external input as they both may cause the
neuron to deform (Howell et al., 2015; Severin et al., 2022;
Kumar et al., 2023). This behavior can be modeled by the
elastance σ(ϵi(x, u)) =

∑m+n
j=1 wjiyj + vj .

LRC:

ẋi = (−σ(fi(x, u))xi + τ(zi(x, u)) e
leak
i )σ(ϵi(x, u))

(3)

The states x of LRCs at time t can be computed using the
explicit Euler integration scheme as:

LRC: xt = xt−1 +∆t ẋt−1 (4)

2.2. Parallelization Techniques

The DEER method (Lim et al., 2024) formulates next-state
computation in NSSMs as a fixed-point problem and solves
it using a parallel version of the Newton’s method. At each
iteration step, DEER linearizes the NSSM. This approxi-
mation is widely effective across many domains, and often
yields accurate estimates and fast convergence. The main
limitation of DEER is the use of a square Jacobian, which
does not scale up to long sequences when included in the
parallel scan. The second limitation is its numerical insta-
bility, which arises from the nature of Newton’s method. In
particular, the undamped version lacks global convergence
guarantees and often diverges in practice (Wright, 2006;
Gonzalez et al., 2024).

As an improvement, (Gonzalez et al., 2024) introduces
Quasi-DEER, which scales DEER by using the diagonal of
the Jacobian, only. This is shown to achieve convergence
comparable to Newton’s method while using less memory
and running faster. Nevertheless, Quasi-DEER still suffers
from limited stability.

To stabilize its convergence, Quasi-DEER leverages a con-
nection between the Levenberg-Marquardt algorithm and
Kalman smoothing in their ELK (Evaluating Levenberg-
Marquardt with Kalman) algorithm (Gonzalez et al., 2024).
This stabilization of the Newton iteration by constraining
the step size within a trust region, prevents large and numer-
ically unstable updates. As a result, updates are computed
using a parallel Kalman smoother, with a running time that
is logarithmic in the length of the sequence. Algorithm 1
below, presents this method (Gonzalez et al., 2024).

3. Scaling Up Non-linear LRCs
A scalable DEER or ELK approximation, first computes the
dense Jacobian of the NSSM, as shown in Line 7 of Algo-
rithm 1, and then extracts its diagonal as shown in Line 8.
This results in a quasi approximation of the original DEER
technique, called Quasi-DEER and Quasi-ELK (Gonzalez
et al., 2024).

Our Parallelization. Instead of following this approach,
we directly modify the underlying nonlinear LRC of Equa-
tion (3), such that its Jacobian is diagonal by the formulation
itself. The main idea of this modification is that the state-
connectivity submatrices ax, wx, gmax,x, and kmax,x of
the state-and-input-connectivity matrices a, w, gmax, and
kmax, are constant parameter matrices that are theselves
diagonalizable. Consequently, all cross terms are zeroed out
in the LRC through diagonalization. Accordingly, we learn
the complex diagonal matrices directly, instead.

As a result, our own algorithm is no longer a quasi-
approximation, as we do not explicitly remove nondiag-
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onal entries. Instead we learn their contribution to the dy-
namics, within the complex eigenvalues of the diagonal.
Consequently, Line 8, Js←Diag(Js) of Algorithm 1, is
not needed anymore, and the update computations become
more efficient. In this way, we retain the best of both ap-
proaches: A much more precise, more stable, and more
scalable, parallelization technique.

3.1. Proposed Model

In order to achieve a diagonal Jacobian for the LRCs by
default, we first modify the Equations (1), (2), by splitting
their summation terms into a state-dependent and an input-
dependent group, respectively. For the former, we only keep
the self-loop synaptic parameters, and zero out all the cross-
state synaptic parameters in the associated matrices. For the
latter we keep the influence of all external inputs u through
their cross-input synaptic parameters, as this part is zeroed
out anyway in the Jacobian. To highlight the separation of
the terms, we include an extra superscript x for the learnable
parameters in the state-dependent part, and the superscript
of u for the parameters in the input-dependent part. This
separation results in Equations (5)-(7).

As a consequence, instead of keeping cross-synaptic activa-
tions, where each individual synapse between neuron j and
i has its own gmax

ji , bji and kmax
ji as it was in Equation (1)

and (2), we now only keep the self-loop neural activations,
where the synaptic parameters from the same neuron are
equal. Note that instead of the ij indices, we have only the j
index in Equations (5) and (6).

We denote the modified equations of the LRCs with an aster-
isk. This gives us the following equations for the f∗

i (xi, u),
z∗i (xi, u), and ϵ∗i (xi, u) terms:

f∗
i (xi, u) = gmax,x

i σ(axi xi + bxi )︸ ︷︷ ︸
xi state-dependent

+ gmax,u
i σ(

n∑
j=1

aujiuj + buj )︸ ︷︷ ︸
u input-dependent

+gleaki
(5)

z∗i (xi, u) = kmax,x
i σ(axi xi + bxi )︸ ︷︷ ︸

xi state-dependent

+ kmax,u
i σ(

n∑
j=1

aujiuj + buj )︸ ︷︷ ︸
u input-dependent

+gleaki
(6)

ϵ∗i (xi, u) = wx
i xi + vxi︸ ︷︷ ︸

xi state-dependent

+

n∑
j=1

wu
jiuj + vuj︸ ︷︷ ︸

u input-dependent

(7)

LrcSSM: ẋi = −σ(f∗
i (xi, u))σ(ϵ

∗
i (xi, u))xi

+ τ(z∗i (xi, u))σ(ϵ
∗
i (xi, u)) e

leak
i

(8)

For the final form our proposed LRC model, Equation (8)
can be formulated into the form of SSMs, by taking the
vectorial form of the states x of size m and input vector u
of size n:

LrcSSM: ẋ = A(x,u)x+ b(x,u), where (9)

A(x,u) = diag


−σ(f∗

1 (x1, u))σ(ϵ
∗
1(x1, u))

...
−σ(f∗

i (xi, u))σ(ϵ
∗
i (xi, u))

...
−σ(f∗

m(xm, u))σ(ϵ∗m(xm, u))

 ,

b(x,u) =


τ(z∗1(x1, u))σ(ϵ

∗
1(x1, u)) e

leak
1

...
τ(z∗i (xi, u))σ(ϵ

∗
i (xi, u)) e

leak
i

...
τ(z∗m(xm, u))σ(ϵ∗m(xm, u)) eleakm

 .

This diagonal A(x,u) form and the reduced version of
b(x,u) in Equation (9) results in a diagonal Jacobian ma-
trix which makes the parallelizable iterative state updates
exact and efficient, that is, this is not anymore a quasi-
approximation of the Jacobian.

3.2. Theoretical Insights

The LrcSSM architecture enjoys three important theoretical
properties. Firstly, by forcing the state-transition matrix of
LrcSSMs to be diagonal and learned at every time step, the
full sequence can be solved in parallel with a single prefix-
scan, giving O(TD) time and memory and only O(log T )
sequential depth, where T is the input-sequence length, and
D is the state dimension.

Secondly, LrcSSMs offer a formal gradient-stability guaran-
tee that other input-varying systems such as Liquid-S4 and
Mamba do not provide. Lastly, because LrcSSM forward
and backward passes cost Θ(T DL) FLOPs, where L is
the network depth of the LrcSSM architecture, for its low
sequential depth and parameter count Θ(DL), the model
follows the compute-optimal scaling law regime (β ≈ 0.42)
recently observed for Mamba, outperforming quadratic-
attention Transformers at equal compute while avoiding
the memory overhead of FFT-based long convolutions.

The full proof of all these properties is given in Appendix A,
due to obvious space limitations. In particular we provide
all details about LrcSSMs stability in A.1 and scalability
in A.2.
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Table 1. Test accuracy comparison of different models across long-horizon datasets (> 1, 500). The performance of the models marked
by † is reported from (Rusch & Rus, 2024). Results are averaged over 5 seeds.

EthanolConcentration MotorImagery EigenWorms
Sequence length 1,751 3,000 17,984
Input size 2 63 6
#Classes 4 2 5

NRDE† 31.4 ± 4.5 54.0 ± 7.8 77.2 ± 7.1
NCDE† 22.0 ± 1.0 51.6 ± 6.2 62.2 ± 2.2
Log-NCDE† 35.9 ± 6.1 57.2 ± 5.6 82.8 ± 2.7
LRU† 23.8 ± 2.8 51.9 ± 8.6 85.0 ± 6.2
S5† 25.6 ± 3.5 53.0 ± 3.9 83.9 ± 4.1
Mamba† 27.9 ± 4.5 47.7 ± 4.5 70.9 ± 15.8
S6† 26.4 ± 6.4 51.3 ± 4.7 85.0 ± 16.1
LinOSS-IMEX† 29.9 ± 1.0 57.9 ± 5.3 80.0 ± 2.7
LinOSS-IM† 29.9 ± 0.6 60.0 ± 7.5 95.0 ± 4.4

LrcSSM (Ours) 36.9 ± 5.3 58.6 ± 3.1 90.6 ± 1.4

4. Experiments
We compare LrcSSMs against nine models representing
the state of the art for a range of long-sequence tasks.
These include the Neural Controlled Differential Equa-
tions (NCDE) (Kidger et al., 2020), Neural Rough Dif-
ferential Equations (NRDE) (Morrill et al., 2021) and
Log-NCDE (Walker et al., 2024), Linear Recurrent Unit
(LRU) (Orvieto et al., 2023), S5 (Smith et al., 2023),
MAMBA (Gu & Dao, 2023), S6 (Gu & Dao, 2023), Lin-
ear Oscillatory State-Space models with implicit-explicit
time integration (LinOSS-IMEX (Rusch & Rus, 2024)) and
with implicit time integration (LINOSS-IM (Rusch & Rus,
2024)).

Long-Horizon Sequence Tasks. We focus on the tasks
from the UEA Multivariate Time Series Classification
Archive that require learning long-range interactions, es-
pecially those with a sequence length above 1,500, up
to 18,000. These include the EthanolConcentration
dataset (Large et al., 2018), which contains spectroscopic
recordings of solutions, the MotorImagery dataset, which
captures data from the motor cortex, and the Eigen-
Worms (Yemini et al., 2013) dataset of postural dynamics
of the worm C. elegans.

As shown in Table 4, our LrcSSM model outperforms all
other state-of-the-art methods on the EthanolConcentration
task and achieves second-best performance on the MotorIm-
agery and EigenWorms datasets.

Further experiments and details on them are presented in
Appendix E and G. While ablation studies are reported in
Appendix H.

5. Conclusion
In this work, we revisited the potential of nonlinear RNNs
in the era of efficient, scalable LSSMs. While LSSMs have
seen remarkable success due to their parallelizable struc-
ture and computational efficiency, nonlinear RNNs have
largely been sidelined due to their inherently sequential na-
ture. However, recent advances, particularly the DEER and
ELK methods, have opened the door to parallelizing nonlin-
ear RNNs, thus challenging their long-standing scalability
limitation.

Building on these developments, we introduced the liquid-
resistance liquid-capacitance nonlinear state-space model
(LrcSSM), a novel NSSM architecture that combines the
expressive power of bioinspired nonlinear RNNs with the
scalability of modern LSSMs. By adapting the ELK method
and carefully redesigning the internal structure of LRCs, we
enable efficient parallel computation by inherently learn-
ing diagonal Jacobian matrices, while still preserving the
dynamic richness of nonlinear state updates in biological
neurons. Our design allows for exact ELK updates, rather
than relying on quasi-approximations. Our results suggest
that nonlinear-RNN-based SSMs are a promising direction
for future research in sequence modeling.

Our experiments demonstrate that LrcSSM not only matches
but often exceeds the performance of leading LSSMs such
as LRU, S5, S6, and Mamba, particularly in long-horizon se-
quence modeling tasks. These results suggest that nonlinear-
RNN-based SSMs are not only a feasible solution but can
also be competitive, offering a promising direction for future
research in sequence modeling.
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conv: Efficient convolutions for long sequences with ten-
sor cores. arXiv preprint arXiv:2311.05908, 2023.

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M.,
Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B.,
Peng, C.-K., and Stanley, H. E. Physiobank, physiotoolkit,
and physionet: components of a new research resource
for complex physiologic signals. circulation, 101(23):
e215–e220, 2000.

Gonzalez, X., Warrington, A., Smith, J., and Linderman,
S. Towards scalable and stable parallelization of non-
linear rnns. Advances in Neural Information Processing
Systems, 37:5817–5849, 2024.

Grazzi, R., Siems, J., Zela, A., Franke, J. K. H., Hutter,
F., and Pontil, M. Unlocking state-tracking in linear
rnns through negative eigenvalues, 2025. URL https:
//arxiv.org/abs/2411.12537.

Gu, A. and Dao, T. Mamba: Linear-time se-
quence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.
doi:10.48550/arXiv.2312.00752.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo:
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Technical Appendices and Supplementary
Material

A. Theoretical Insights
A.1. Stability

We analyze a single hidden dimension— because every
recurrence is diagonal, all dimensions behave independently
and identically. Recall the discrete-time update:

xt+1 = λt xt + bt, 0 < λt ≤ ρ < 1, (10)

where ρ is a user–chosen radius (typically 0.9 −
0.99) enforced by either the tanh-clamp or the nega-
tive–softplus–exponential parametrisation.

One step is contractive.
Lemma A.1 (ρ–contraction). For any x, y ∈ RD we have
∥xt+1 − yt+1∥2 = ∥λt(x− y)∥2 ≤ ρ ∥x− y∥2.

Proof. λt is diagonal with all entries≤ ρ, hence its operator
(spectral) norm is ≤ ρ; multiplying by it can only shrink
Euclidean distances.

Forward states stay bounded. Iterating Lemma A.1 t
times yields

∥xt∥2 ≤ ρ t∥x0∥2 +
1− ρ t

1− ρ
B, B := max

s≤t
∥bs∥2.

(11)
Therefore the hidden state can never blow up, irrespective
of sequence length.

Back-propagated gradients never explode.
Theorem A.2 (Gradient stability). Let a loss L depend only
on the final state xT . Then for any 0 ≤ τ < T∥∥∇xτ

L
∥∥
2
≤ ρT−τ

∥∥∇xT
L
∥∥
2
,

hence the Jacobian product norm is≤ 1 and cannot explode.

Proof. The Jacobian of one step is Jt = λt, so ∥Jt∥2 ≤
ρ. Back-propagation multiplies T − τ such Jacobians:
∇xτ

L = J⊤
τ · · · J⊤

T−1∇xT
L. Sub-multiplicativity of the

spectral norm gives the result.

Controlled vanishing. Because ρ is tunable, gradients
decay at most geometrically: choosing ρ ≈ 0.99 keeps
long-range signals alive; smaller values add regularisation.

Deep stacks. For L stacked layers with radii ρℓ the bound
becomes∥∥∇(layer L)

xτ L
∥∥
2
≤

(∏L
ℓ=1 ρ

T−τ
ℓ

)
∥∇xT

L∥2. Keeping every
ρℓ close to 1 therefore preserves stability in depth.

How other models handle forward/gradient stability.
S4/S6 keep Re(A) < 0 and collapse the recurrence into a
single convolution kernel. In this setting, forward activations
are bounded and back-propagated Jacobians never appear.
Mamba re-introduces recurrence via a gate σ(·)∈ [0, 1]; if
that gate is clipped the same ρ-Lipschitz bound as ours holds,
but no proof is given. LinOSS discretizes a non-negative
diagonal ODE with a symplectic IMEX step, proving both
state and gradient norms stay ≤ 1. Liquid-S4 adds an in-
put term B ut without clamping the spectrum, so stability
relies on empirical eigenvalue clipping. Thus, among truly
recurrent models, only LrcSSM (and LinOSS under its spe-
cific integrator) enjoy a formal guarantee that both forward
trajectories and full Jacobian chains remain inside the unit
ball.

LrcSSM has a stronger guarantee than Liquid-S4 or Mamba,
and—unlike S4-type convolutions, can propagate gradients
through actual recurrent steps while remaining provably safe
from explosion. This makes training deep, long-sequence
stacks straightforward: set ρ ≈ 1, forget about gradient
clipping, and tune ρ itself as a single parameter to trade off
memory length versus regularization.

A.2. Scalability

Let T denote the input sequence length and D the state
dimension. Sequential methods inherently cannot be paral-
lelized, requiring O(D) memory complexity and O(TD2)
computational work. Compared to this, the DEER (Lim
et al., 2024) method is parallel but it comes with a major
drawback, it requires O(TD2) memory complexity and
O(TD3) computational cost.

The ELK technique introduced in (Gonzalez et al., 2024)
achieves fast and stable parallelization by incorporating
diagonal Jacobian computation for scalability. This reduces
both memory and computational complexity significantly
to O(TD). Our approach achieves the same complexity —
O(TD) for both memory and computation, thanks to the
use of inherently diagonal Jacobians.

Now let’s assess formal complexity and compute–optimal
scaling laws for LrcSSM:

Compute, throughput, and memory. Let FLOPs ≈
cf B T DL , be the dominant training cost, where B is
the batch size, T the sequence length, D the hidden width,
L the network depth, and cf an architecture–specific con-
stant we define (lower for SSMs and higher for Transform-
ers). The single-GPU throughput (tokens s−1 GPU−1) is
throughput ≈ TB

wall-clock time The memory footprint is the
sum of peak activations and model parameters.

Scaling-law (Kaplan et al., 2020b; Hoffmann et al., 2022).
A scaling law is any asymptotic or empirical relation of the
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form

Loss(C) = AC−β+E, C = compute (FLOPs), β > 0,
(12)

or a closed-form complexity identity such as FLOPs ∝
T D.

Recent large-scale studies like (Poli et al., 2024) show that
β depends on the operator’s per-token cost: Dense atten-
tion: β ≈ 0.48–0.50 (Kaplan et al., 2020b). Linear-time
RNN/SSM (Mamba, Hyena): β ≈ 0.42–0.45 in 70 M–7 B
runs (Gu & Dao, 2023; Poli et al., 2023). Hybrid (recur-
rence + sparse attention): β can reach 0.41 (MAD pipeline)
(Poli et al., 2024).

Table 2 summarizes the per–layer cost of the main
long-sequence architectures in terms of forward/backward
FLOPs, peak activation memory, and parallel depth over
the sequence length T . Because LrcSSM shares the same
O(TD) compute curve as Mamba but with a smaller con-
stant cf (no low-rank gate, no FFT), we expect it to sit
at—or slightly below—the 0.42–0.45 band. The claim is
compatible with existing data: Mamba-3B matches a 6-B
Transformer at the same FLOPs (Gu & Dao, 2023), and
LinOSS shows 2× lower NLL than Mamba on 50 k-token
sequences at equal compute (Rusch & Rus, 2024). Hence,
β ≈ 0.42 is a defensible prior for LrcSSM; a hybrid Lrc-
SSM + local-attention block could plausibly move β toward
0.41.

Sequence-length scaling. For single–GPU throughput
K(T ), LrcSSM inherits the near-perfect linear behaviour
K(T )∝T of the scan primitive, with practical speed-ups
obtainable through width-w windowing and double buffer-
ing that saturate L2 cache bandwidth. Liquid-S4 degrades
linearly in latency because it remains sequential, whereas
FFT-based S4/Hyena layers incur O(T log T ) compute and
become memory-bound beyond T ≈64k tokens. Hence, for
contexts up to 64k, LrcSSM (and Mamba) are the compute
winners; at larger T the FFT models may overtake them in
raw FLOPs but pay a significant activation cost.

Sequence-length scaling. Let K(T ) be the wall-clock
time for a single forward pass of length T on one GPU. Lrc-

SSM: K(T )≈ c

SMs
T (linear) but can drop to ≈ c

SMs

T

w
with a width-w scan and double-buffering—near-perfect
L2-cache reuse, where SM is the number of CUDA Stream-
ing Multiprocessors on the GPU, and c a hardware-and-
kernel–dependent constant (e.g., time per token per SM).
Mamba (Gu & Dao, 2023): same asymptotic, but the fused
CUDA kernel shows ≈ 5× higher throughput than a Trans-
former on 4 k tokens; on shorter sequences the constant cost
of its scan kernel dominates. S4/Hyena (FFT): O(T log T );
cross-over with linear methods occurs around T ≈ 8–16 k
on A100s—FlashFFTConv reduces the constant 4×–8×

(Fu et al., 2023). Liquid-S4 (Hasani et al., 2022): remains
sequential; throughput degrades linearly without remedy.

Thus, for T ≤64 k, LrcSSM and Mamba are compute win-
ners; beyond 64 k, Hyena/S4 win in pure flops but can be
memory-bound.

B. Parallelizing Non-linear RNNs

Algorithm 1 ELK (Gonzalez et al., 2024)
1: procedure ELK(f, s0, init guess, tol,method, quasi)
2: diff←∞
3: states← init guess
4: while diff > tol do
5: shifted states← [s0, states[: −1]]
6: fs ← f(shifted states)
7: Js ← GETJACOBIANS(f, shifted states)
8: Js ← DIAG(Js)
9: bs ← fs − Js · shifted states

10: new states ←
PARALLELKALMANFILTER(Js, bs, states, s0)

11: diff← ∥ states− new states∥∞
12: states← new states
13: end while
14: return states
15: end procedure

C. Comparison to Other Techniques
C.1. Comparison to Linear State Space Models

State-of-the-art time-invariant LSSMs typically take the
following general form:

ẋ = Ax+Bu (13)
y = Cx+Du (14)

The main differences between LrcSSM and time-invariant
LSSMs are the following:

• There is no non-linearity in the recurrent and input up-
date (A and B, respectively) in time-invariant LSSMs,
which allows them to be parallelized over the time
dimension. Here, we investigate non-linear recurrent
update and non-linear input update too.

• There are two key aspects of the matrices that state-of-
the-art LSSMs usually follow:

(1) First, matrix A is generally time-invariant (con-
stant), although recent work has introduced an
input-dependent variant A(u) (Hasani et al.,
2022; Gu & Dao, 2023). In our model how-
ever, this matrix is both state-and-input dependent,
A(x,u). Second, instead of using a traditional

8
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Table 2. Per–layer asymptotic complexity (sequence length T , width D).
Architecture F/B FLOPs Memory Parallel depth

Mamba(Gu & Dao, 2023) O(TD) O(D) O(log T )
LinOSS(Rusch & Rus, 2024) O(TD) O(D) O(log T )
Liquid-S4(Hasani et al., 2022) O(TD) O(D) O(T )
S4/Hyena(Gu et al., 2022b; Poli et al., 2023) O(T log T D) O(T ) O(log T )
Transformer(Kaplan et al., 2020a) O(T 2D) O(T 2 + TD) O(1)
LrcSSM (ours) O(TD) O(D) O(log T )

B matrix that is simply multiplied by the input
u, we adopt the form b(x,u), allowing the input
to have a more embedded influence on the state
update.

(2) Modern LSSMs typically require a special initial-
ization, such as diagonal plus-low rank parame-
terization of the transition matrix of the LSSMs
via higher-order polynomial projection (HiPPO)
matrix (Gu et al., 2020) or only diagonal transi-
tion matrices with specific parameterization (Gu
et al., 2022a; Orvieto et al., 2023). In our case,
we calculate the entries of A and b from biology-
grounded equations of (9).

C.2. Comparison to Liquid-Resistance
Liquid-Capacitance Networks (LRCs)

In summary, our approach of LrcSSM differs from
LRCs (Farsang et al., 2024) in the following ways:

• Learning in LRCs, like in traditional NSSMs (or non-
linerar RNN models), is inherently sequential. In con-
trast, we aim for an efficient, parallelizable version in
LrcSSMs.

• We modified entries of A and b to only depend on
the self states, rather than on all other states, while
still allowing them to depend on the full input. This
change yields diagonal Jacobians, exact solutions, and
improved efficiency in the update computations.

• While the original LRCs use a single computation layer
(a single computation block), we have restructured the
LRC architecture into a block-wise design in LrcSSMs,
similar to the LSSM-styled models such as LRU and
S5. This design is illustrated in Figure 1.

D. Related work
Linear Structural State-Space Models (LSSMs). Since
the introduction of S4 (Gu et al., 2022b), LSSMs rapidly
evolved in sequence modeling. S4 used FFT to efficiently
solve linear recurrences, and inspired several variants, in-
cluding S5 (Smith et al., 2023), which replaced FFT with
parallel scans. Liquid-S4 (Hasani et al., 2022) introduced

input-dependent state-transition matrices, moving beyond
the static structure but relied on FFT. Recent work, such as
S6 and Mamba (Gu & Dao, 2023), adapted the concept of
input-dependency and continued to push LSSMs to more
efficient computation with a hardware-aware parallel algo-
rithm.

Parallelizing Non-linear State Space Models (NSSMs).
While traditional nonlinear RNNs have been favored for
their memory efficiency, their major limitation lies in the
lack of parallelizability over the sequence length. This has
led to the development of parallelizable alternatives, such
as (Martin & Cundy, 2017; Orvieto et al., 2023; Movahedi
et al., 2025; Grazzi et al., 2025). One notable example
is the Linear Recurrent Unit (LRU) (Orvieto et al., 2023),
which uses complex diagonal state-transition matrices with
stable exponential parameterization, achieving comparable
performance with LSSMs. While LRUs argue that linear
recurrence is sufficient, in this work we show that incorpo-
rating non-linearity in the transition dynamics can offer sig-
nificant advantages. Importantly, these approaches achieve
parallelism through entirely new architectures, without ad-
dressing how to parallelize existing NSSMs. Techniques
like DEER (Lim et al., 2024) and ELK (Gonzalez et al.,
2024) fill this gap by enabling parallel training and infer-
ence for arbitrary non-linear recurrent models.

Positioning LrcSSM in Recent Advances. Our LrcSSM
aligns with the structured state-space duality (SSD) frame-
work introduced by (Dao & Gu, 2024), as its main focus
is on designing an RNN that behaves almost like an SSM
(diagonalizable and parallelizable). In addition, recent work
on parallel state-free inference (Parnichkun et al., 2024) can
be also combined with LrcSSMs to further enhance their
efficiency.

E. Experiments
We follow the same classification evaluation benchmark
proposed in (Walker et al., 2024) and then used by (Rusch
& Rus, 2024). These tasks are part of the UEA Multivari-
ate Time Series Classification Archive (UEA-MTSCA). All
of these datasets consist of biologically or physiologically
grounded time-series data, derived from real-world measure-
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ments of dynamic systems, which can be human, animal,
or chemical. They capture continuous temporal signals
such as neural activity, bodily movements, or spectroscopic
readings, making them very well-suited for benchmarking
models that need to learn complex temporal dependencies.
We followed the exact same hyperparameter-tuning proto-
col, using a grid search over the validation accuracy. More
details on these experiments are given in the Appendix G.2.
After fixing the hyperparameters, we compare the average
test set accuracy over five different random splits of the
data. As we are reporting the results of the other models
from Rusch et. al (Rusch & Rus, 2024), we also used the
exact same seeds for the dataset splitting as well. When
presenting the results, we highlight the top three performing
models.

Short-Horizon Sequence Tasks. In Table 3, we report re-
sults on datasets with sequence lengths shorter than 1,500 el-
ements. These datasets include the Heartbeat dataset (Gold-
berger et al., 2000), which contains heart sound record-
ings, as well as SelfRegulationSCP1 and SelfRegulation-
SCP2 (Birbaumer et al., 1999), which include data on corti-
cal potentials. We report the test accuracy results. We found
that our LrcSSM model performed average on these tasks,
and we suspect that they lack interesing input correlations.

Long-Horizon Sequence Tasks. Here, we present the
table again for better readability and flow purposes, with the
sequence length, input size and number of classes included.

Average Performance Across Datasets. In Table 5, we
report the average accuracy across all six datasets consid-
ered from the UEA-MTSCA archive. LrcSSM achieved
an accuracy of 66.3%, placing it at the forefront alongside
the LinOSS-IM model, outperforming all other state-of-the-
art models, including LRU, S5, S6, Mamba, and LinOSS-
IMEX. The implicit integration scheme of the LinOSS-IM
model, seems to have played an important role, and we plan
to investigate a similar integration scheme for LrcSSM, too.
Our current scheme is just a simple explicit Euler.

F. Discussion

Competitive Long-Horizon Performance. Our experi-
mental evaluations show that the LrcSSM model performs
moderately well on short-horizon datasets, as seen in Ta-
ble 3, while demonstrating highly competitive performance
on datasets with long input sequences, as shown in Table 4.
In those long-sequence tasks, LrcSSMs outperform LRUs,
Mamba, and S6, and also achieve better average perfor-

mance across all datasets, as presented in Table 5.

The only model that LrcSSMs generally does not outper-
form is the LinOSS-IM model, except on the EthanolCon-
centration dataset (for both LinOSS-IMEX and LinOSS-IM
versions), and on MotorImagery and EigenWorms (in the
case of LinOSS-IMEX). This may be attributed to the fact
that LinOSS is based on forced linear second-order ODEs,
whereas LrcSSMs are built upon LRCs, which are nonlin-
ear first-order ODEs. Another possible reason lies in the
integration technique: while we were able to outperform
the implicit-explicit (IMEX) integration scheme, we did not
surpass the fully implicit one (IM) in average test accuracy.
This suggests that more sophisticated integration schemes
for LrcSSMs (which currently use explicit Euler) may be
worth investigating.

Biological Inspirations in Sequence Modeling. We find
it particularly interesting that the LinOSS model also ex-
hibits biological relevance, as it models cortical dynam-
ics through harmonic oscillations. In contrast, our ap-
proach models information transmission through chemi-
cal synapses, which is a different biological phenomenon.
The strong performance of both approaches, despite being
grounded in different aspects of neuroscience, highlights
the significant potential of biologically inspired models as a
foundation for future research in sequence modeling.

Efficient Sequence Modeling with Diagonalized Jaco-
bians. In this paper, we focused on the biologically in-
spired non-linear LRC model, and demonstrated how this
model can be made more efficient for long-sequence mod-
eling, by redesigning its underlying state-transition matrix
A and its input-transition vector b, such that the resulting
Jacobian is a diagonal matrix, for the state-update iterations.
This matrix can then be directly used in the parallelizable
ELK method, which gives an exact ELK update, and not
an approximation. We believe this approach can also be
applied to many other non-linear RNNs of interest.

Limitations. As pointed out in Section A.2, this is par-
allelized version holds a good promise towards efficient
non-linear RNNs compared to sequential computation costs.
Linear SSMs have also the same costs. However, we also
have to take into account that LRCs solved by ELK need
more Newton steps to converge at each iteration, which lin-
ear SSMs do not require. The number of iterations depends
on the convergence of the state updates, which stops once
the difference between the consecutive state updates gets
below a defined threshold (see Line 4 of Algorithm 1).
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Table 3. Test accuracy comparison of different models across relatively short-horizon datasets (< 1, 500). The performance of the models
marked by † is reported from (Rusch & Rus, 2024). The same hyperparameter tuning protocol and dataset splitting over the same 5 seeds
were used.

Heartbeat SelfRegulationSCP1 SelfRegulationSCP2
Sequence length 405 896 1,152
Input size 61 6 7
#Classes 2 2 2

NRDE† 73.9 ± 2.6 76.7 ± 5.6 48.1 ± 11.4
NCDE† 68.1 ± 5.8 80.0 ± 2.0 49.1 ± 6.2
Log-NCDE† 74.2 ± 2.0 82.1 ± 1.4 54.0 ± 2.6
LRU† 78.1 ± 7.6 84.5 ± 4.6 47.4 ± 4.0
S5† 73.9 ± 3.1 87.1 ± 2.1 55.1 ± 3.3
Mamba† 76.2 ± 3.8 80.7 ± 1.4 48.2 ± 3.9
S6† 76.5 ± 8.3 82.8 ± 2.7 49.9 ± 9.4
LinOSS-IMEX† 75.5 ± 4.3 87.5 ± 4.0 58.9 ± 8.1
LinOSS-IM† 75.8 ± 3.7 87.8 ± 2.6 58.2 ± 6.9

LrcSSM (Ours) 72.7 ± 5.7 85.2 ± 2.1 53.9 ± 7.2

G. Experimental Details
G.1. Training Setup

We used A100 GPUs with 80 GB of memory. Training
time ranged from less than 1 up to 2-3 hours per data split,
depending on the dataset and model. Early stopping was
used to prevent overfitting, which varies the training time.

G.2. Hyperparameters

We performed a grid search over the following set of
hyperparameters:

Using the grid shown in Table 6, we selected the best con-
figuration for each dataset based on the average validation
accuracy across five data splits. The splits were generated
using the same random seeds as in (Rusch & Rus, 2024) to
ensure full comparability. The final hyperparameters used
to report the test accuracies are listed in Table 7.

We found that, in general, LrcSSMs benefit from higher
learning rates and are not particularly sensitive to the hidden
dimension of the encoded input. However, a lower state-
space dimension and fewer layers tend to be advantageous.

G.3. Dataset sources

The datasets can be downloaded from the following links:

• Short-horizon tasks:

– Heartbeat

– SelfRegulationSCP1

– SelfRegulationSCP2

• Long-horizon tasks:

– EthanolConcentration
– MotorImagery
– EigenWorms

G.4. Additional Remarks on the Datasets

We used the datasets as they were publicly available (i.e.,
without an additional time dimension). However, this aspect
is treated as an additional hyperparameter in the models
reported by (Rusch & Rus, 2024). We hypothesize that in-
corporating this dimension could help our model learn even
better dependencies, which might be worth investigating in
the future.

G.5. Additional Remarks on the Model Design

Integration Scheme. As pointed out in Section F, we
used the explicit Euler integration scheme. This is a simple
and straightforward solution, but it might be worth investi-
gating more sophisticated and computationally expensive
integration methods. In fact, we conducted some prelimi-
nary experiments with a hybrid explicit-implicit solver but
did not observe any performance improvement, although
we did not explore it across the full hyperparameter grid.

Integration Timestep. For the integration step, we used
a timestep of ∆t = 1 in all our experiments. As (Rusch
& Rus, 2024) investigated different ∆t values across the
datasets and observed no substantial gain in performance,
they also continued with ∆t = 1 for all their experiments.
However, it might still be worth investigating this in our
case as well.
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Table 4. Test accuracy comparison of different models across long-horizon datasets (> 1, 500). The performance of the models marked
by † is reported from (Rusch & Rus, 2024). Results are averaged over 5 seeds.

EthanolConcentration MotorImagery EigenWorms
Sequence length 1,751 3,000 17,984
Input size 2 63 6
#Classes 4 2 5

NRDE† 31.4 ± 4.5 54.0 ± 7.8 77.2 ± 7.1
NCDE† 22.0 ± 1.0 51.6 ± 6.2 62.2 ± 2.2
Log-NCDE† 35.9 ± 6.1 57.2 ± 5.6 82.8 ± 2.7
LRU† 23.8 ± 2.8 51.9 ± 8.6 85.0 ± 6.2
S5† 25.6 ± 3.5 53.0 ± 3.9 83.9 ± 4.1
Mamba† 27.9 ± 4.5 47.7 ± 4.5 70.9 ± 15.8
S6† 26.4 ± 6.4 51.3 ± 4.7 85.0 ± 16.1
LinOSS-IMEX† 29.9 ± 1.0 57.9 ± 5.3 80.0 ± 2.7
LinOSS-IM† 29.9 ± 0.6 60.0 ± 7.5 95.0 ± 4.4

LrcSSM (Ours) 36.9 ± 5.3 58.6 ± 3.1 90.6 ± 1.4

Table 5. Average test accuracy (%) across all datasets. As before,
the performance of the models marked by † is reported from (Rusch
& Rus, 2024). Results are averaged over 5 seeds.

Average Test Accuracy

NRDE† 60.2 ± 17.1
NCDE† 55.5 ± 18.2
Log-NCDE† 64.4 ± 16.9
LRU† 61.8 ± 22.6
S5† 63.1 ± 21.2
Mamba† 58.6 ± 18.8
S6† 62.0 ± 21.2
LinOSS-IMEX† 65.0 ± 19.0
LinOSS-IM† 67.8 ± 21.6

LrcSSM (Ours) 66.3 ± 18.6

H. Ablation Studies
Input- and State-dependency. We conducted ablation
studies to assess the importance of incorporating state-
dependency in the state-transition matrix A and input-
transition vector b. Given the extensive hyperparameter
search required, we fixed the architecture to 6 layers of
SSM blocks, each with 64 states, an input encoding dimen-
sion of 64, and a learning rate of 10−4. As shown in Table 8,
the average results indicate that learning both input- and
state-dependent transitions yields better performance. We
also suggest that future work could treat these dependencies
as tunable hyperparameters, as some datasets may benefit
from both forms of dependency, while others may perform
well with input-dependency alone.

Please note that results reported here for LrcSSM, do not

Table 6. Hyperparameter grid. Same values as in (Walker et al.,
2024; Rusch & Rus, 2024).

Parameter name Value

learning rate 10−5, 10−4, 10−3

hidden dimension 16, 64, 128
state-space dimension 16, 64, 256
number of blocks (#blocks) 2, 4, 6

match the results of the previous tables because we used
a fix setup without hyperparameter tuning, to only focus
on the importance of state-dependency and changed the
underlying matrix A and b of ẋ = A(x, u)x + b(x, u).
This results in having even better test accuracies reported
here for Heartbeat and SelfRegulationSCP2.

Complex-valued State-Transition Matrix and Input-
Transition Vector. We also experimented with complex-
valued learnable parameters, focusing on those interacting
directly with the state x. In particular,we experimented with
the parameters gmax,x

i of f∗
i (xi, u) and kmax,x

i of z∗i (xi, u)
as defined in Eq.(5) and (6), respectively, as well as their
shared sigmoidal channel parameters axi and bxi . These were
gradually converted to complex values, and experiments
were conducted using a fixed configuration of 6 SSM blocks,
each with 64 state dimensions and 64-dimensional encoded
input, and a learning rate of 10−4. As shown in Table 9,
we found no significant performance gains on average from
using complex-valued parameters. As a result, we opted
to use real-valued learnable parameters in our main exper-
iments. Nevertheless, we also evaluated the tuned models
with their complex-valued counterparts. The only notable
improvement occurred on the MotorImagery dataset, where
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Table 7. Hyperparameters used for LrcSSM per dataset.

lr hidden dim. state-space dim. #blocks

Heartbeat 10−3 64 64 4
SelfRegulationSCP1 10−3 64 16 2
SelfRegulationSCP2 10−3 128 64 2
EthanolConcentration 10−4 128 16 2
MotorImagery 10−4 16 16 4
EigenWorms 10−4 16 16 4

Table 8. Experimentation with different input and state-dependent matrices. Here, we use a fixed configuration with input encoding of 64
and 6 blocks of SSMs with 64 units. We found that excluding state dependency from A and then from b too, downgrades performance on
average.

LrcSSM LrcSSM LrcSSM
(default)

A dependence A(x,u) A(u) A(u)
b dependence b(x,u) b(x,u) b(u)

Heartbeat 75.0 ± 2.6 75.0 ± 1.8 73.0 ± 2.7
SelfRegulationSCP1 84.8 ± 2.8 85.0 ± 2.9 83.1 ± 1.4
SelfRegulationSCP2 55.4 ± 7.7 49.6 ± 5.5 51.4 ± 2.9
EthanolConcentration 36.1 ± 1.1 37.6 ± 3.9 34.2 ± 2.9
MotorImagery 55.7 ± 4.1 57.9 ± 2.9 54.3 ± 6.0
EigenWorms 85.6 ± 5.4 85.0 ± 5.5 86.7 ± 5.4

Average 65.4 ± 17.9 65.0 ± 18.0 63.8 ± 18.7

Table 9. Experimentation with complex valued parameters. Here, we use a fixed configuration with input encoding of 64 and 6 blocks of
SSMs with 64 units. We found very similar average performance between real-valued and complex-valued parameters.

LrcSSM LrcSSM LrcSSM LrcSSM
(default) with with with

gmax,x
i ∈ R ∈ C ∈ C ∈ C
kmax,x
i ∈ R ∈ C ∈ C ∈ C

axi ∈ R ∈ R ∈ C ∈ C
bxi ∈ R ∈ R ∈ R ∈ C

Heartbeat 75.0 ± 2.6 74.3 ± 5.2 73.75 ± 3.2 73.0 ± 4.0
SelfRegulationSCP1 84.8 ± 2.8 82.9 ± 2.7 83.1 ± 4.2 84.8 ± 2.2
SelfRegulationSCP2 55.4 ± 7.7 50.4 ± 4.4 53.6 ± 3.6 58.6 ± 3.5
EthanolConcentration 36.1 ± 1.1 41.8 ± 2.1 40.0 ± 4.5 42.1 ± 3.6
MotorImagery 55.7 ± 4.1 53.2 ± 2.6 53.9 ± 3.5 52.5 ± 4.3
EigenWorms 85.6 ± 5.4 85.0 ± 6.5 88.3 ± 5.7 86.1 ± 6.3

Average 65.4 ± 17.9 64.6 ± 16.8 65.4 ± 17.4 66.2 ± 16.4

accuracy increased from 54.3± 3.1 to 58.6± 3.1. Substitut-
ing this result into the average accuracy reported in Table 5
would yield 65.6 ± 18.9, which still ranks our model as the
second-best overall.
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