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Abstract

Aligned large language models (LLMs) demonstrate exceptional capabilities in1

task-solving, following instructions, and ensuring safety. However, the continual2

learning aspect of these aligned LLMs has been largely overlooked. Existing3

continual learning benchmarks lack sufficient challenge for leading aligned LLMs4

due to their homogeneous task types and low task complexity. To bridge this gap,5

we introduce TRACE, a benchmark designed to rigorously assess continual learning6

capabilities in LLMs. TRACE comprises eight challenging tasks from the scope of7

domain-specific tasks, multilingual capabilities, code generation, and mathematical8

reasoning. Through systematic experiments on TRACE with six different aligned9

models ranging from 7B to 70B, we discovered significant declines in both general10

performance and instruction-following abilities. For example, the accuracy of11

llama2-chat 13B on the gsm8k dataset declined precipitously from 43.14% to12

2.12% after training on our datasets. This highlights the challenge of finding a13

suitable tradeoff between achieving performance on specific tasks while preserving14

the original prowess of LLMs. Our results demonstrate that integrating task-15

specific cues with meta-rationales significantly reduces catastrophic forgetting and16

improves task convergence, offering a viable strategy to enhance the adaptability17

of LLMs in dynamic environments.18

1 Introduction19

Large Language Models (LLMs) [1; 2] have revolutionized natural language processing through a two-20

step process: initial pretraining on extensive corpora, followed by fine-tuning on human-generated21

instructions and preference data, aligning them with human language and intentions. Aligned LLMs22

have showcased impressive capabilities and ensured safer responses. However, as the demands for23

language models grow, there’s a pressing need to enhance their abilities in areas such as domain-24

specific knowledge [3; 4], multilingual proficiency [5], complex task-solving [6], and tool usage25

[7]. Yet, retraining and realigning them from scratch to meet these demands is impractical due to26

prohibitive training costs and the challenge of acquiring high-quality data. Therefore, incrementally27

training existing Aligned LLMs through continual learning (CL [8]) is crucial. However, when28

dealing with tasks in sequential manners, it is challenging to retain the performance of previous tasks,29

which is known as "catastrophic forgetting" [9]. Therefore, we prompt the pressing question: To what30

degree do Aligned LLMs exhibit catastrophic forgetting when subjected to incremental training?31

Existing continual learning benchmarks [10; 11; 12] are not suitable for evaluating the state-of-the-art32

LLMs. Firstly, many of these benchmarks predominantly consist of simplistic natural language33

understanding datasets. These tasks, due to their inherent simplicity, fail to challenge the capabilities34

of large-scale models adequately. Secondly, prior benchmarks have primarily focused on metrics that35

assess the performance of the models on target sequential tasks. Yet, for aligned models, aspects like36
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Figure 1: An overview of TRACE benchmark. TRACE consists of two main components: 1)
A selection of eight datasets constituting a tailored set of tasks for continual learning, covering
challenges in domain-specific tasks, multilingual capabilities, code generation, and mathematical
reasoning. 2) A post-training evaluation of LLM capabilities. In addition to traditional continual
learning metrics, we introduce General Ability Delta, Instruction Following Delta, and Safety Delta
to evaluate shifts in LLM’s inherent abilities.

generalization to new tasks, the ability to follow human instructions, and safety preservation are of37

paramount importance. Regrettably, these dimensions have not been thoroughly researched.38

In this paper, we present TRACE, a continual learning benchmark designed for aligned LLMs. Our39

benchmark consists of eight distinct datasets spanning challenging tasks including domain-specific40

tasks, multilingual capabilities, code generation, and mathematical reasoning. All datasets have been41

standardized into a unified format, simplifying the evaluation process. To evaluate continual learning42

in aligned LLMs, we introduce three metrics: "General Ability Delta," "Instruction Following Delta,"43

and "Safety Delta" to assess models’ forgetfulness in such scenarios.44

We conduct a comprehensive evaluation of 6 aligned LLMs on TRACE. Evaluation results reveal45

several key findings: 1) Nearly all models exhibit a significant decline in general abilities after46

training on TRACE, especially in math and reasoning. For instance, the accuracy of llama2-chat 13B47

on the gsm8k dataset dropped from 43.14% to merely 2.12%. 2) Catastrophic forgetting remains a48

substantial issue for LLMs and does not diminish with the model size increase. Llama2-chat 70B also49

shows significant forgetting (with -17.5% backward transfer) on previous tasks. 3) Full-parameter50

training, compared to LoRA training, more easily fits the target tasks, but it also leads to a more51

pronounced decline in general abilities. 4) LLMs’ instruction-following capabilities also suffer a52

significant reduction after continual learning.53

Through experimentation, we observed that tasks augmented with reasoning paths are notably54

effective in preserving certain capabilities of LLMs, preventing them from substantial declines. Such55

findings lead us to ponder on leveraging a model’s inherent strengths for rapid transfer on new56

tasks, rather than starting the learning curve from scratch. This motivation birthed our novel training57

strategy: Reasoning-augmented Continual Learning (RCL). RCL prompts the model to generate58

task analyses and rationales during training. As our results indicate, this approach not only boosts59

performance on target tasks but also significantly upholds the inherent strengths of LLMs.60

2 Related Work61

2.1 Continual Learning62

Continual learning [8] aims to develop learning algorithms that can accumulate knowledge on63

non-stationary data. Existing works can be broadly categorized into rehearsal-based, regularization-64

based, and architecture-based approaches. Rehearsal-based approaches [13; 14] leverage a memory65

buffer that stores examples from previous tasks, training the model jointly with the current task.66

Regularization-based approaches [15; 16; 17] incorporate additional terms into the loss function to67

penalize changes in crucial weights. Architecture-based approaches [18; 12] focus on dynamically68

expanding model capacity or isolating existing model weights to mitigate interference between new69

and old tasks.70
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2.2 CL Benchmarks in NLP71

The most recognized CL benchmark for NLP encompasses five text classification datasets [10],72

including AG News, Amazon Reviews, Yelp Reviews, DBpedia, and Yahoo Answers. Building73

upon this, [12] proposed a long CL benchmark which fuses the aforementioned five datasets with74

an additional four from the GLUE benchmark [19], five from the SuperGLUE benchmark [20], and75

the IMDB dataset [21]. However, this benchmark is limited in scope as it solely emphasizes Natural76

Language Generation (NLG) tasks and is restricted to English, thus lacking task diversity. In contrast,77

TRACE is a more varied and challenging benchmark, designed to test aligned LLMs across multiple78

sequential tasks. It assesses general capability, instruction adherence, and safety shifts. Recognizing79

that TRACE, like earlier benchmarks, may be incorporated into future pre-training, we acknowledge80

potential impacts on its long-term efficacy as a CL benchmark. Nonetheless, the current findings81

from TRACE provide essential insights into catastrophic forgetting in LLMs.82

3 Preliminaries83

Continual learning [22; 8] focuses on developing learning algorithms to accumulate knowledge on84

non-stationary data. In supervised continual learning, a sequence of tasks {D1, . . . ,DT } arrive in a85

streaming fashion. Each task Dt = {(xt
i, y

t
i)}

nt

i=1 contains a separate target dataset, where xt
i ∈ Xt ,86

yt
i ∈ Yt. A single model needs to adapt to them sequentially, with only access to Dt at the t-th task.87

In general, given a prediction model hΘ parameterized by Θ, continual learning seeks to optimize for88

the following objective across all tasks:89

max
Θ

T∑
k=1

∑
x,y∈Dk

log pΘ(y | x) (1)

In this paper, we utilize overall performance (OP [23]), forward transfer (FWT [13]), and backward90

transfer (BWT [13]) scores as the main metrics. After incrementally learning the t-th task, the model’s91

score on the i-th task (where i ≤ t) is denoted as RD
t,i.92

4 TRACE: A Comprehensive Benchmark for CL in LLMs93

TRACE is designed to offer a comprehensive continual learning evaluation for LLMs. Illustrated in94

Figure 1, TRACE encompasses two primary components: a curated set of tasks tailored for continual95

learning, followed by an in-depth evaluation of an LLM’s post-training capabilities. In this section,96

we detail TRACE’s sequential tasks and introduce our evaluation metrics. In Section 4.4, we evaluate97

six models using TRACE and present our key findings.98

4.1 Data Creation99

There are three principles for the creation of TRACE. First, the datasets should be novel enough that100

most LLMs have not been trained on them. Second, they should be challenging for large language101

models. Third, a variety of tasks should be covered in our benchmark.102

According to these three principles, in this section, we will provide a detailed introduction to the data103

collection process for each dataset. As these datasets have varying sizes, we create a balanced version104

by randomly sampling 5000 training examples and 2000 testing examples from the original datasets.105

As shown in Table 1, we get 40,000 training examples and 16,000 testing examples in total.106

Domain-Specific. ScienceQA [24] is a multi-hop QA dataset collected from elementary and high107

school science curricula, with a rich domain diversity from natural science, social science, and108

language science, requiring the model of reasoning ability and science knowledge. In TRACE,109

we include only non-multimodal examples to exclusively test LLM performance. FOMC [25] is a110

hawkish-dovish classification task, which is novel in the financial domain. The dataset is divided into111

three subsets: data on meeting minutes, press conference data, and speech data. We use a combination112

of them. MeetingBank [26] is a new benchmark dataset for city council meeting summarization, an113

unstudied domain. It demands a global understanding of the whole long context.114
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Dataset Source Avg len Metric Language #data
Domain-specific
ScienceQA Science 210 Accuracy English 5,000
FOMC Finance 51 Accuracy English 5,000
MeetingBank Meeting 2853 ROUGE-L English 5,000

Multi-lingual
C-STANCE Social media 127 Accuracy Chinese 5,000
20Minuten News 382 SARI Germany 5,000

Code completion
Py150 Github 422 Edim similarity Python 5,000

Mathematical reasoning
NumGLUE-cm Math 32 Accuracy English 5,000
NumGLUE-ds Math 21 Accuracy English 5,000

Table 1: An overview of dataset statistics in TRACE. ’Source’ indicates the context’s origin. ’Avg
len’ represents word count for English, German, and code datasets, and character count for Chinese.
’SARI’ is a score specific to simplification.

Multi-lingual. LLMs’ cross-lingual abilities are constrained by their vocabulary and pre-training115

corpus. For instance, LLaMA’s vocabulary contains few Chinese tokens, affecting its efficiency with116

Chinese text. C-STANCE [27] is the first Chinese dataset for zero-shot stance detection collected from117

Sina Weibo, one of the most popular Chinese social media sites. It includes two challenging subtasks:118

target-based stance detection and domain-based stance detection. In TRACE, we include the target-119

based one, which means the targets in testing examples are unseen during training. 20Minuten [28] is120

a text simplification dataset consisting of full articles paired with shortened, simplified summaries121

from the Swiss news magazine. We use this dataset to evaluate the ability to generate German text.122

Code completion. Code completion is another challenging task to evaluate long context modeling123

ability[29], and it is one of the most widely used features in software development through IDEs. We124

select the line-level code completion task of CodeXGLUE [30], which requires the model to generate125

the next line given the lengthy code input. The corpus Py150 [30] contains 150,000 Python programs126

collected from GitHub repositories. Since the golden labels of the testing dataset are not available by127

[30], we randomly divide each Python code in Py150 into two parts, taking the first part as inputs and128

the next line as labels.129

Mathematical reasoning. Mathematical problems are always used to evaluate the reasoning ability130

of models. NumGLUE[31] is an 8-task benchmark far from solved including state-of-the-art large-131

scale language models performing significantly worse than humans. Both of the two tasks require132

arithmetic reasoning ability. It is worth noting that both datasets have original labels consisting only133

of numbers, without associated inference processes. The first one evaluates the common sense of134

models, while the second one requires some grade-school scientific knowledge.135

4.2 CL Metrics Design136

Unlike traditional continual learning benchmarks focused on sequential target tasks, evaluating137

aligned LLMs should also account for the preservation of their inherent capabilities. SoTA LLMs,138

through instruction tuning, exhibit impressive task-solving abilities. Aligning these models with139

human preferences further boosts their safety and usefulness. Hence, TRACE introduces a broader140

evaluation, including three unique metrics.141

In the TRACE benchmark, we incorporate three metrics tailored to evaluate distinct dimensions142

of model performance following training: General Ability Delta, Instruction Following Delta,143

and Safety Delta. Each metric is designed to capture shifts in different areas—general abilities,144

instruction-following, and safety of responses, respectively. Despite their targeted focuses, all three145

4



metrics are calculated using a consistent formula:146

∆RX
t =

1

N

N∑
i=1

(RX
t,i −RX

0,i)

where X represents the specific metric focus—general ability, instruction-following, or safety—and147

N is the number of datasets considered within each respective category. This unified formula148

underscores the systematic approach TRACE adopts to evaluate different dimensions of LLM149

performance enhancements or declines post-training.150

In the development of evaluation metrics, integrating existing and newly introduced indicators into151

a single, unified metric might appear straightforward through a weighted summary. However, the152

implementation of such a composite metric necessitates careful prioritization of the capabilities most153

valued by users. Therefore, this paper does not propose a universal metric for ranking models.154

4.3 Experimental Setup155

4.3.1 Models & Baselines156

To evaluate the resilience of aligned LLMs from diverse training backgrounds and strategies, we select157

six backbones from three organizations: Meta: LLaMa-2-7B-Chat, LLaMa-2-13B-Chat, LLaMa-158

2-70B-Chat [2], BaiChuan: Baichuan 2-7B-Chat [32], and Large Model Systems Organization:159

Vicuna-13B-V1.5, Vicuna-7B-V1.5 [33].160

We evaluate the performance of LLMs in a continual learning setting using different approaches:161

Sequential Full-Parameter Fine-Tuning (SeqFT) It trains all model parameters in sequence.162

LoRA-based Sequential Fine-Tuning (LoraSeqFT) Only the low-rank LoRA matrices are fine-163

tuned, leaving the LLM backbone fixed [34]. This method is chosen based on prior findings of164

reduced forgetting with "Efficient Tuning" [35].165

Replay-based Sequential Fine-Tuning (Replay) We incorporate data from LIMA along with 10%166

of data from previous tasks into our training dataset.167

In-Context Learning (ICL) Task demonstrations are supplied as part of the language prompt,168

acting as a form of prompt engineering [36]. A 6-shot setting is used for our experiments.169

Other Continual Learning Baselines We also demonstrate the experiment results on a few170

continual learning baselines, including EWC [15], ODG [37], PP [12], L2P [38], LFPT5 [39]. Given171

that EWC and OGD require storing parameters or gradients from past tasks, which is impractical for172

the full parameter setting of LLMs, we validate these methods using LoRA.173

4.3.2 Datasets174

To evaluate a model’s general ability, we assess across six key dimensions: Factual Knowledge:175

Using MMLU dataset [40], reporting 5-shot accuracy. General Reasoning: Evaluated with BBH [41],176

reporting EM scores with chain-of-thought prompts with 3-shot in-context examples. Multilinguality:177

Using TyDiQA [42], a multilingual QA benchmark across 11 languages, reporting 0-shot F1 scores.178

Commonsense Reasoning: Assessed with PIQA [43], reporting 0-shot accuracy. Code Generation:179

Using MBPP [44], reporting 0-shot Pass@1. Reading Comprehension: Using BoolQ [45], reporting180

0-shot accuracy.181

For instruction-following capability, we use Self-instruct dataset [46], comprising 175 user-oriented182

prompts, and the LIMA dataset [47], which assembles 300 prompts from community Q&A and183

manual examples.184

To evaluate safety changes, we use the CoNa dataset [48], which consists of 178 expert-annotated185

samples focused on instructions related to hateful speech generation.186
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SeqFT LoRASeqFT Replay

OP BWT FWT OP BWT FWT OP BWT FWT

LLaMA2-7B 48.7 −8.3% 2.4% 12.7 −45.7% 0.8% 55.5 2.6% −0.2%
LLaMA2-13B 49.9 −7.0% 2.5% 28.0 −36.5% 1.5% 56.5 0.4% 2.2%
LLaMA2-70B - - - 45.2 −17.5% 1.7% 56.6 0.4% 1.9%

Vicuna-7B 49.2 −8.4% 1.7% 33.4 −23.7% 0.9% 55.3 0.2% 0.5%
Vicuna-13B 51.2 -5.9% 2.1% 31.6 −28.4% 1.1% 56.9 0.6% 2.4%

Baichuan2-7B 43.4 −15.4% 1.8% 43.8 -9.0% 1.0% 51.7 1.1% −4.0%

EWC OGD PP

OP BWT FWT OP BWT FWT OP BWT FWT

LLaMA2-7B 32.3 −20.6% 1.0% 29.7 −22.6% 0.9% 49.2 −0.3% 1.9%
LLaMA2-13B 35.7 −19.7% 1.1% 36.6 −18.6% 0.7% 51.3 −1.1% 2.1%
LLaMA2-70B - - - - - - 54.6 −0.4% 1.7%

Vicuna-7B 37.2 −16.8% 1.3% 39.9 −15.7% 1.6% 50.4 0.2% 1.6%
Vicuna-13B 36.5 −18.6% 1.1% 40.4 −16.7% 0.6% 53.6 −0.6% 2.0%

Baichuan2-7B 44.5 -7.6% 0.8% 44.7 -7.6% 1.1% 46.6 −1.7% 0.9%

L2P LFPT5 O-Lora

OP BWT FWT OP BWT FWT OP BWT FWT

LLaMA2-7B 43.7 −9.5% 2.6% 49.2 −6.7% 1.5% 41.3 −6.2% 1.6%
LLaMA2-13B 46.4 −6.4% 1.6% 50.4 -5.6% 1.1% 43.7 −4.4% 0.7%
LLaMA2-70B 53.2 -1.6% 1.4% - - - 47.7 −5.7% 0.4%

Vicuna-7B 48.6 −9.2% 1.5% 51.6 −7.8% 0.7% 42.6 −6.8% 1.1%
Vicuna-13B 52.4 −4.3% 2.2% 51.2 −6.6% 1.9% 47.9 -3.2% 0.9%

Baichuan2-7B 47.6 −8.6% 0.6% 48.3 −6.7% 1.7% 45.6 −5.4% 1.2%

Table 2: Overall Performance (OP), Forward Transfer (FWT), and Backward Transfer (BWT) for all
baseline models and 4 baseline methods.

4.3.3 Implementation Details187

In the training phase, we trained models with and without LoRA adapters using 5000 samples at188

learning rates of 1e-5 and 1e-4, respectively. For the testing phase, we use a temperature of 0.1. All189

our training and inference experiments were conducted on a machine equipped with 8x80G Nvidia190

A100. All general benchmark evaluations were conducted using the Open-Compass toolkit [49],191

adopting its default configuration. The detailed settings can be found in Appendix A.192

4.4 Main Results193

We conducted experiments with various task orders. Results for the default order are presented in the194

main text, while results for additional orders are detailed in Appendix D.7.195

4.4.1 Performance of Target Sequential Tasks196

Table 2 showcases the performance of six distinct LLMs on TRACE benchmark, after their continual197

learning phase. From this evaluation, we can draw the following conclusions:198

In-Context Learning (ICL) ICL methods generally perform lower than SeqFT and Replay methods.199

This suggests that the TRACE benchmark is indeed challenging, and LLMs can’t readily identify200

solutions just through simple demonstrations.201

Replay Performance Among all the baselines, Replay achieved the highest OP score. With its202

BWT score being positive, it indicates that Replay effectively retains its performance on sequential203

tasks without significant forgetting. This makes Replay a straightforward and efficient strategy in a204

continual learning context.205
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MMLU
(factuality)

GSM
(math)

BBH
(reasoning)

TydiQA
(multilinguality)

BoolQ
(comprehension)

PIQA
(commonsense)

MBPP
(code) ∆RG

t

ACC
(5-shot)

EM
(8-shot, CoT)

EM
(3-shot, CoT)

F1
(1-shot, GP)

ACC
(0-shot)

ACC
(0-shot)

Pass@1
(0-shot)

LLaMA-2-7B-Chat 46.56 26.08 40.23 23.47 70.55 76.22 20.4 0
LLaMA-2-7B-Chat-Seq 46.43 3.49 30.11 33.23 77.89 76.5 0 −5.12
LLaMA-2-7B-Chat-LoraSeq 42.28 14.71 33.61 21.72 53.43 75.19 7.4 −7.88
LLaMA-2-7B-Chat-Replay 47.04 3.03 36.61 31.57 75.75 75.3 4.4 −4.26

LLaMA-2-13B-Chat 54.61 43.14 49.70 27.65 81.5 78.24 27.2 0
LLaMA-2-13B-Chat-Seq 41.88 2.12 19.47 32.27 82.08 77.15 1.2 −15.13
LLaMA-2-13B-Chat-LoraSeq 50.63 24.72 38.98 26.93 68.96 78.02 10.4 −9.06
LLaMA-2-13B-Chat-Replay 47.72 2.96 36.52 32.52 82.45 76.88 7.2 −10.83

LLaMA-2-70B-Chat 63.80 59.35 60.81 46.04 88.30 80.60 35.64 0
LLaMA-2-70B-Chat-LoraSeq 60.56 44.79 49.77 43.25 72.15 77.47 16.30 −10.04
LLaMA-2-70B-Chat-Replay 62.48 47.34 52.34 44.12 88.68 77.69 12.57 −7.05

Baichuan2-7B-Instruct 53.80 33.21 35.66 20.64 77.09 74.05 22.4 0
Baichuan2-7B-Instruct-Seq 46.92 4.25 37.45 35.20 79.08 74.21 1.2 −5.5
Baichuan2-7B-Instruct-LoraSeq 52.14 22.74 27.53 30.99 75.23 74.86 8.6 −3.53
Baichuan2-7B-Instruct-Replay 45.72 8.19 35.61 34.65 80.06 72.69 6.4 −4.79

Vicuna-7B-V1.5 51.28 23.65 43.32 22.38 78.56 77.42 12.6 0
Vicuna-7B-V1.5-Seq 49.46 3.87 39.25 33.92 77.74 75.73 1.2 −4.0
Vicuna-7B-V1.5-LoraSeq 48.37 18.89 28.16 25.84 67.24 76.23 0 −7.44
Vicuna-7B-V1.5-Replay 47.20 4.78 39.26 31.86 78.92 80.13 2.0 −4.76

Vicuna-13B-V1.5 56.16 36.09 51.29 24.89 82.45 78.89 2.6 0
Vicuna-13B-V1.5-Seq 37.93 2.81 35.23 36.86 83.43 77.86 0 −8.32
Vicuna-13B-V1.5-LoraSeq 52.46 22.14 41.22 27.86 67.71 77.53 0.4 −6.15
Vicuna-13B-V1.5-Replay 48.73 3.11 42.94 39.60 84.71 77.53 0.6 −0.52

Table 3: Comparison of the general language understanding and reasoning abilities. blue means
increase, while red means decrease.

Full Parameter Training vs. LoRA Full parameter training demonstrates better task-specific206

adaptability compared to LoRA, with a smaller BWT score. For instance, LLaMA-2-7B-Chat’s207

SeqFT OP(BWT) is 48.7 (-8.3%), while LoRASeqFT stands at 12.7 (-45.7%). This suggests that208

when the focus is primarily on sequential tasks, full parameter fine-tuning should be prioritized over209

parameter-efficient methods like LoRA.210

Catastrophic Forgetting in LLaMA-2-70B-Chat Despite achieving a high overall performance211

(OP) score of 45.2, the llama2-70B-Chat model exhibits significant catastrophic forgetting, as212

evidenced by its BWT of -17.5%. This substantial decline in retaining previously learned information213

indicates a vulnerability of larger models to catastrophic forgetting in continual learning scenarios.214

4.4.2 Variation of General Ability215

Table 3 presents the evaluations of various LLM models concerning general abilities. The degree of216

general ability forgetting in LLMs can be analyzed from three perspectives.217

From the Model Perspective 1) Nearly all models display a negative General Ability Delta,218

indicating a general decline in overall capabilities after continual learning. 2) Both larger and smaller219

models experience significant forgetting in general abilities. For instance, the General Ability Delta220

for llama2-7B-chat-LoraSeq stands at -7.88, whereas llama2-70B-chat-LoraSeq is -10.04.221

From the Task Perspective 1) Despite the presence of CoT prompts, all models show a noticeable222

decline in math and reasoning abilities, highlighting their sensitivity to new task learning. 2)223

Excluding the llama2-7b model, most models exhibit a significant drop in performance on MMLU,224

suggesting a gradual loss of factual knowledge through continual learning. 3) TydiQA task sees a225

general boost post-training, possibly due to the inclusion of Chinese and German datasets in our226

sequential tasks. Intriguingly, other languages on TydiQA also show enhancements and declines,227

suggesting potential cross-linguistic transfer effects. 4) Performance shifts on PIQA for most models228

are subtle, indicating the relative robustness of commonsense knowledge during continual learning.229

From the Method Perspective 1) The Replay method proves beneficial in preserving reasoning230

and factuality skills. Especially for larger models, the mitigation of forgetting through Replay is more231

pronounced. For instance, for LLaMA-2-7B-Chat, Replay offers a 6.5 EM score boost compared to232

methods without Replay, while for LLaMA-2-13B-Chat, the increase is 17.1 EM score.233
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Figure 2: GPT-4 evaluation with llama-13b-chat, comparing 3 different baselines (Replay, LoRA and
Sequential) to the base model across tasks including helpful and safety.
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Figure 3: Performance evaluation of LLaMA-2-
7B-Chat’s SeqFT on TRACE benchmark across
varying sample sizes (500, 1000, 5000) and
training epochs (1, 3, 5, 10 (except for 5000)).
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Figure 4: Evolution of LLMs’ reasoning
capabilities post-training, measured using the
BBH metric. Results for LLaMA-2-7B-chat and
LLaMA-2-13B-chat are reported.

4.4.3 Instruction Following Ability Analysis234

We evaluate the instruction-following ability of LLMs based on LLaMA-2-7B-Chat and LLaMA-235

2-13B-Chat. Figure 2 (a) illustrates the win rate % for instruction following sequentially trained236

LLMs and their original versions. Here, the win rate can be approximated as an indicator for the237

Instruction-following delta. All three training methods show a significant decline in instruction-238

following capabilities, with the most pronounced decline in the LoRA method. Therefore, be cautious239

when exploring approaches like LoRA for continual learning in LLMs.240

4.4.4 Safety Analysis241

We test the safety of answers from models LLaMA-2-7B-Chat and LLaMA-2-13B-Chat. Figure 2 (b)242

shows the win rate % for instruction following between the new LLMs and their starting versions.243

Here, the win rate can be used as a measure for the Safety Delta. Compared to the original models,244

most answers were rated as ’Tie’. This suggests that the safety of the model’s answers is largely245

unaffected by continual learning on general tasks.246

4.5 Ablation Study247

Data Quantity & Training Steps. Figure 3 shows the impact of data volumes and training steps248

on target task performance. For LLaMA-2-7B-Chat’s SeqFT, we tested with 500, 1000, and 5000249

samples from each dataset, training for 1, 3, 5, 10 epochs. Results indicate performance improves with250

more data, with optimal results at 5000 samples. Furthermore, up to 5 epochs improve performance,251

aligning with our baseline for balancing task optimization and capabilities retention.252

Decoupling the Impact of Different Tasks. Results from section 4.4.2 reveal a notable decline in253

reasoning and mathematical skills after training on our benchmark. This brings forth the question:254

How exactly does the reasoning capability of LLMs transform during the continual learning process?255

Figure 4 tracks the reasoning ability (assessed via BBH performance) after the completion of each256

training task. Interestingly, the model’s reasoning skill improves after the ScienceQA task but declines257

for others. Unlike NumGLUE tasks, which lack clear reasoning paths, ScienceQA provides explicit258

reasoning paths in its answers, indicating that including reasoning paths in training maybe benefit the259

model’s reasoning skills.260

8



4.6 Reasoning-augmented Continual learning261

Why do LLMs underperform on the TRACE benchmark, both in target tasks and maintaining inherent262

capabilities? Two likely reasons: First, neural networks tend to overfit the specific output formats of263

new tasks [50]. Second, as most tasks involve direct result prediction, LLMs may learn shortcuts [51]264

within the training data, limiting their ability to generalize to new data.265

With these insights and our experimental findings in 4.5, we propose the Reasoning-augmented266

Continual Learning (RCL) method. As depicted in Figure 5, RCL involves two phases: automated267

reasoning annotation and sequential training on the augmented datasets. GPT-4 generates reasoning268

paths for all entries, based on prompts designed by domain experts for each task. These are then269

validated against the ground truth. Manual inspection of a 100-sample subset results in a 94%270

approval rate, demonstrating GPT-4’s reliability. Following this, supervised training is conducted on271

the target LLM, keeping hyperparameter settings consistent with baselines.272

4.6.1 Performance on Sequential Tasks273

Methods OP BWT FWT
EWC 32.3 −20.6% 1.0%
OGD 29.7 −22.6% 0.9%
L2P 43.7 −9.5% 2.6%
LFPT5 49.2 −6.7% 1.5%
PP 49.2 −0.3% 1.9%
O-Lora 41.3 −6.2% 1.6%
ICL 39.5 - -
ICL+Re 41.1 - -
SeqFT(0.5k) 23.0 −19% 0.3%
RCL(0.5k) 46.6 −13% 2.7%
SeqFT(5k) 48.7 −8.3% 2.4%
RCL(5k) 51.9 −6.5% 3.2%
SingleFT 57.6 - -
SingleFT+Re 58.1 - -
MT w/o. Re 52.3 - -
MT w. Re 58.2 - -

Table 4: Comparison of RCL with
different baselines. Single FT refers to
fine-tuning the model on a single task,
Re refers to reasoning-augmented, and
MT refers to Multi-task training.

Table 4 provides comparisons of the performance of274

RCL against other baselines. Through an ablation study275

contrasting single-task training (SingleFT) with multi-task276

training, and assessing the impact of reasoning-augmented277

data, we observed that integrating reasoning pathways278

consistently boosts performance over the original dataset.279

Our approach yields results comparable to the SeqFT method280

using only 500 samples instead of 5000. By utilizing fewer281

datasets and training steps, our method also helps preserve282

the inherent capabilities of LLMs more effectively.283

4.6.2 Original Performance Retention284

Impacts on General Ability Figure 6 shows RCL’s285

performance on general abilities matches SeqFT and Replay286

on MMLU, TydiQA, BoolQA, and PIQA. Yet, RCL excels287

in reasoning tasks like GSM and BBH, where it surpasses288

SeqFT and Replay by 12.7 and 13.2 points, respectively.289

This highlights RCL’s effectiveness in enhancing reasoning290

skills through reasoning paths. Additionally, combining291

RCL with replay boosts its reasoning task performance.292

Impacts on Instruction-Following The impact of incorporating RCL on instruction-following293

capabilities is presented in Table 5. It’s evident that RCL enhances the model’s ability to follow294

instructions by 8% and 5% compared to SeqFT and Replay, respectively.295

5 Conclusion296

Existing continual learning benchmarks are insufficient in thoroughly evaluating LLMs, due to their297

oversimplification and lack of key metrics like instruction following and safety. To tackle this,298

we introduce TRACE, a comprehensive benchmark with eight challenging tasks and well-rounded299

metrics. Our experiments show that for LLMs, catastrophic forgetting remains, and a clear drop300

in general abilities is observed during continual learning. Besides, our RCL method highlights the301

importance of using reasoning in training while alleviating the above phenomena. We believe this302

area is crucial and hope our work serves as a foundation for future research.303

6 Limitations304

While our proposed TRACE benchmark covers a variety of tasks, expanding it to include real-time305

interaction and multi-modal integration could provide a more comprehensive assessment of LLM306

capabilities. Additionally, future versions should aim to minimize any potential biases introduced307

by the current task selection or dataset composition, ensuring a more balanced and comprehensive308

representation of tasks that better reflect diverse real-world applications.309
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Appendices471

A Implementation Details472

During the training phase, for the baselines without LoRA adapters, we consistently trained with473

5000 samples with a constant learning rate of 1e-5. For the datasets we used (C-STANCE, FOMC,474

MeetingBank, Py150, ScienceQA, NumGLUE-cm, NumGLUE-ds, 20Minuten), we train for 1, 1,475

5, 5, 1, 5, 5, 5 epochs respectively. While for the baselines with LoRA adapters, we trained with476

5000 samples with a constant learning rate of 1e-4 for 5, 3, 7, 5, 3, 5, 5, 7 epochs respectively.477

Our training settings incorporated a weight decay set to 0, and a batch size of 128. For the testing478

phase, we use a temperature of 0.1. All our training and inference experiments were conducted on a479

machine equipped with 8x80G Nvidia A100, and were implemented using DeepSpeed repository. All480

models are trained on 8 A100 GPUs with 80G memory with full parameters fine-tuning. All general481

benchmark evaluations were conducted using the Open-Compass toolkit [49], adopting its default482

configuration.483

B Trace dataset statistics484

In this section, we represent the overview of dataset statistics, including source, average length,485

metric, language, and number of samples of each dataset in the TRACE benchmark. We demonstrate486

the dataset details in Table 1.487

C Reasoning-based Continual Learning488

Figure 5 shows an overview of our reasoning-augmented continual learning method. Table 5 and489

Figure 6 shows the results of RCL in preserving the instruction-following abilities and general490

abilities, respectively.491

Win Tie Loss
SeqFT 12% 30% 58%
Replay 15% 31% 55%
RCL 20% 30% 50%

Table 5: Instruction-following abilities of SeqFT, Replay and RCL. The model we use is LLaMA-2-
7b-Chat.
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Figure 5: An overview of Reasoning-augmented continual learning. The strategy involves two
stages: 1) Automatically annotating sample reasoning paths using GPT-4. 2) Continual learning on
augmented datasets.
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Figure 6: OpenCompass Evaluation Results. RCL+Replay refers to combining our RCL method
with replay method. The model we use is LLaMA-2-7b-Chat.

D Detailed Experiments Results492

In this section, we report the detailed experiment results in our paper. The model includes Baichuan-493

7b, LLaMA2-7b-chat, LLaMA2-13b-chat, LlaMA2-70b-chat, Vicuna-7b and Vicuna-13b. The results494

are shown in Table 6 - 25.495

D.1 In-Context Learning496

Table 6 represents the performance of different models with in-context learning.497

D.2 SeqFT method498

Table 7 - 12 shows the detailed performance of different models of each round during the continual499

learning. SeqFT represents sequential fine-tuning.500
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Task/Model Baichuan-7b LLaMA2-7b-chat LLaMA2-13b-chat LLaMA2-70b-chat Vicuna-7b Vicuna-13b

C-STANCE 0.58 0.4 0.366 0.45 0.403 0.57
FOMC 0.63 0.483 0.519 0.567 0.551 0.61
MeetingBank 0.225 0.198 0.221 0.345 0.223 0.229
Py150 0.586 0.522 0.539 0.577 0.529 0.585
ScienceQA 0.68 0.628 0.689 0.724 0.695 0.7
NumGLUE-cm 0.271 0.284 0.407 0.436 0.284 0.347
NumGLUE-ds 0.23 0.203 0.218 0.376 0.302 0.33
20Minuten 0.366 0.395 0.395 0.395 0.392 0.378

average 0.446 0.389 0.419 0.484 0.422 0.469

Table 6: Detailed results of in-context learning of different large language models.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.62 0.629 0.663 0.621 0.531 0.55 0.588 0.579
FOMC - 0.681 0.353 0.318 0.02 0.363 0.347 0.335
MeetingBank - - 0.442 0.351 0.371 0.379 0.389 0.364
Py150 - - - 0.626 0.562 0.586 0.589 0.58
ScienceQA - - - - 0.77 0.68 0.5 0.44
NumGLUE-cm - - - - - 0.358 0.247 0.284
NumGLUE-ds - - - - - - 0.64 0.475
20Minuten - - - - - - - 0.415

average 0.434
BWT -0.154
FWT 0.018

Table 7: Detailed results of sequential fine-tuning of Baichuan-7b.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.5 0.456 0.448 0.453 0.435 0.442 0.436 0.454
FOMC 0.54 0.735 0.67 0.658 0 0.595 0.577 0.609
MeetingBank 0.172 0.098 0.523 0.459 0.433 0.446 0.442 0.457
Py150 0.218 0.282 0.185 0.58 0.459 0.509 0.508 0.512
ScienceQA 0.12 0.13 0.15 0.17 0.764 0.636 0.45 0.637
NumGLUE-cm 0.173 0.012 0.074 0.062 0 0.383 0.247 0.272
NumGLUE-ds 0.1 0 0.04 0.11 0 0.03 0.582 0.548
20Minuten 0.022 0.021 0.018 0.024 0.017 0.019 0.017 0.408

average 0.487
BWT -0.083
FWT 0.024

Table 8: Detailed results of sequential fine-tuning of LLaMA-7b-chat.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.469 0.465 0.47 0.477 0.463 0.466 0.45 0.5
FOMC 0.587 0.754 0.738 0.748 0.03 0.721 0.71 0.717
MeetingBank 0.232 0.165 0.533 0.51 0.375 0.421 0.385 0.351
Py150 0.246 0.265 0.213 0.568 0.538 0.537 0.541 0.547
ScienceQA 0.223 0.256 0.197 0.244 0.8 0.655 0.241 0.55
NumGLUE-cm 0.198 0.121 0.089 0 0 0.333 0.284 0.296
NumGLUE-ds 0.156 0.034 0 0.045 0 0.245 0.618 0.622
20Minuten 0.032 0.034 0.026 0.024 0.025 0.034 0.018 0.408

average 0.499
BWT -0.07
FWT 0.025

Table 9: Detailed results of sequential fine-tuning of LLaMA-13b-chat.
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.56 0.45 0.45 0.42 0.42 0.44 0.48 0.49
FOMC - 0.75 0.53 0.53 0 0.72 0.72 0.38
MeetingBank - - 0.427 0.233 0.255 0.231 0.245 0.226
Py150 - - - 0.617 0.578 0.565 0.589 0.579
ScienceQA - - - - 0.1 0 0 0
NumGLUE-cm - - - - - 0.32 0.197 0.197
NumGLUE-ds - - - - - - 0.66 0.37
20Minuten - - - - - - - 0.188

average 0.303
BWT -0.17
FWT 0.005

Table 10: Detailed results of sequential fine-tuning of LLaMA-7b.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.532 0.451 0.439 0.448 0.149 0.477 0.47 0.476
FOMC - 0.738 0.732 0.744 0 0.605 0.567 0.675
MeetingBank - - 0.519 0.447 0.443 0.427 0.417 0.439
Py150 - - - 0.577 0.384 0.486 0.482 0.482
ScienceQA - - - - 0.773 0.7 0.608 0.649
NumGLUE-cm - - - - - 0.407 0.247 0.296
NumGLUE-ds - - - - - - 0.578 0.517
20Minuten - - - - - - - 0.403

average 0.492
BWT -0.084
FWT 0.017

Table 11: Detailed results of sequential fine-tuning of Vicuna-7b.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.527 0.43 0.471 0.497 0.374 0.468 0.469 0.484
FOMC - 0.741 0.739 0.731 0 0.754 0.678 0.714
MeetingBank - - 0.549 0.532 0.53 0.491 0.427 0.412
Py150 - - - 0.564 0.54 0.546 0.538 0.552
ScienceQA - - - - 0.79 0.616 0.586 0.633
NumGLUE-cm - - - - - 0.346 0.309 0.358
NumGLUE-ds - - - - - - 0.622 0.572
20Minuten - - - - - - - 0.41

average 0.517
BWT -0.059
FWT 0.021

Table 12: Detailed results of sequential fine-tuning of Vicuna-13b.

16



D.3 SeqLoraFT method501

Table 13 - 18 shows the detailed performance of different models of each round during the continual502

learning. SeqLoRAFT represents sequential fine-tuning with LoRA adapters.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.613 0.601 0.597 0.584 0.506 0.504 0.53 0.477
FOMC - 0.652 0.604 0.591 0.602 0.588 0.587 0.417
MeetingBank - - 0.345 0.334 0.333 0.343 0.34 0.337
Py150 - - - 0.588 0.472 0.539 0.517 0.472
ScienceQA - - - - 0.641 0.68 0.625 0.63
NumGLUE-cm - - - - - 0.457 0.432 0.407
NumGLUE-ds - - - - - - 0.43 0.36
20Minuten - - - - - - - 0.407

average 0.438
BWT -0.090
FWT 0.01

Table 13: Detailed results of sequential fine-tuning of Baichuan-7b with LoRA adapters.

503

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.511 0.45 0.412 0.373 0.133 0.391 0.294 0.277
FOMC - 0.713 0.55 0.452 0 0.421 0.341 0.24
MeetingBank - - 0.51 0.212 0.151 0.067 0.037 0.121
Py150 - - - 0.578 0.004 0.495 0.452 0.004
ScienceQA - - - - 0.68 0.645 0.535 0
NumGLUE-cm - - - - - 0.37 0.235 0
NumGLUE-ds - - - - - - 0.486 0
20Minuten - - - - - - - 0.37

average 0.127
BWT -0.457
FWT 0.008

Table 14: Detailed results of sequential fine-tuning of LLaMA-7b-chat with LoRA adapters.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.62 0.36 0.432 0.491 0.18 0.42 0.411 0.124
FOMC - 0.743 0.681 0.63 0.53 0.605 0.579 0
MeetingBank - - 0.484 0.264 0.201 0.147 0.032 0.122
Py150 - - - 0.581 0.397 0.488 0.497 0.249
ScienceQA - - - - 0.75 0.729 0.714 0.68
NumGLUE-cm - - - - - 0.58 0.296 0.259
NumGLUE-ds - - - - - - 0.62 0.386
20Minuten - - - - - - - 0.417

average 0.28
BWT -0.365
FWT 0.015

Table 15: Detailed results of sequential fine-tuning of LLaMA-13b with LoRA adapters.
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.53 0.498 0.422 0.49 0.04 0.44 0.457 0.228
FOMC - 0.641 0.532 0.66 0.01 0.64 0.67 0.19
MeetingBank - - 0.528 0.22 0.21 0.146 0.264 0.181
Py150 - - - 0.633 0.346 0.651 0.671 0.595
ScienceQA - - - - 0.81 0.79 0.89 0.805
NumGLUE-cm - - - - - 0.543 0.531 0.518
NumGLUE-ds - - - - - - 0.74 0.68
20Minuten - - - - - - - 0.42

average 0.452
BWT -0.175
FWT 0.015

Table 16: Detailed results of sequential fine-tuning of LLaMA-70b with LoRA adapters.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.514 0.452 0.433 0.446 0 0.344 0.089 0.141
FOMC - 0.715 0.48 0.427 0 0.272 0.304 0.29
MeetingBank - - 0.5 0.113 0.144 0.026 0.011 0.07
Py150 - - - 0.573 0.222 0.47 0.452 0.413
ScienceQA - - - - 0.67 0.632 0.53 0.6
NumGLUE-cm - - - - - 0.407 0.37 0.259
NumGLUE-ds - - - - - - 0.545 0.492
20Minuten - - - - - - - 0.409

average 0.334
BWT -0.237
FWT 0.009

Table 17: Detailed results of sequential fine-tuning of Vicuna-7b with LoRA adapters.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.524 0.504 0.394 0.385 0.389 0.347 0.329 0.07
FOMC - 0.74 0.68 0.616 0.188 0.62 0.438 0.04
MeetingBank - - 0.495 0.24 0.157 0.132 0.08 0.14
Py150 - - - 0.6 0.368 0.52 0.491 0.256
ScienceQA - - - - 0.77 0.75 0.732 0.74
NumGLUE-cm - - - - - 0.407 0.346 0.346
NumGLUE-ds - - - - - - 0.569 0.52
20Minuten - - - - - - - 0.413

average 0.316
BWT -0.284
FWT 0.011

Table 18: Detailed results of sequential fine-tuning of Vicuna-13b with LoRA adapters.
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D.4 Replay method504

Table 19 - 24 shows the detailed performance of different models of each round during the continual505

learning with replay data.506

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.57 0.55 0.56 0.63 0.6 0.64 0.62 0.61
FOMC - 0.69 0.64 0.64 0.65 0.65 0.66 0.61
MeetingBank - - 0.445 0.457 0.449 0.466 0.461 0.482
Py150 - - - 0.546 0.577 0.577 0.613 0.583
ScienceQA - - - - 0.58 0.51 0.54 0.57
NumGLUE-cm - - - - - 0.321 0.346 0.333
NumGLUE-ds - - - - - - 0.5 0.55
20Minuten - - - - - - - 0.405

average 0.517
BWT 0.011
FWT -0.04

Table 19: Detailed results of continual learning of Baichuan-7b with replay data.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.471 0.487 0.485 0.5 0.486 0.475 0.493 0.5
FOMC - 0.734 0.769 0.785 0.807 0.781 0.785 0.8
MeetingBank - - 0.499 0.496 0.507 0.494 0.492 0.51
Py150 - - - 0.543 0.561 0.546 0.552 0.55
ScienceQA - - - - 0.763 0.78 0.78 0.785
NumGLUE-cm - - - - - 0.358 0.309 0.37
NumGLUE-ds - - - - - - 0.486 0.52
20Minuten - - - - - - - 0.406

average 0.555
BWT 0.026
FWT -0.002

Table 20: Detailed results of continual learning of LLaMA-7b-chat with replay data.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.5 0.496 0.497 0.493 0.52 0.503 0.5 0.51
FOMC - 0.778 0.803 0.805 0.792 0.789 0.785 0.813
MeetingBank - - 0.484 0.495 0.515 0.499 0.503 0.482
Py150 - - - 0.523 0.549 0.532 0.534 0.523
ScienceQA - - - - 0.816 0.8 0.804 0.792
NumGLUE-cm - - - - - 0.358 0.407 0.396
NumGLUE-ds - - - - - - 0.628 0.606
20Minuten - - - - - - - 0.407

average 0.566
BWT 0.004
FWT 0.022

Table 21: Detailed results of continual learning of LLaMA-13b-chat with replay data.
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.519 0.506 0.61 0.62 0.63 0.58 0.69 0.67
FOMC - 0.669 0.803 0.805 0.792 0.789 0.785 0.813
MeetingBank - - 0.484 0.495 0.515 0.499 0.503 0.482
Py150 - - - 0.523 0.549 0.532 0.534 0.523
ScienceQA - - - - 0.816 0.8 0.804 0.792
NumGLUE-cm - - - - - 0.358 0.407 0.396
NumGLUE-ds - - - - - - 0.628 0.606
20Minuten - - - - - - - 0.407

average 0.566
BWT -0.04
FWT 0.022

Table 22: Detailed results of continual learning of LLaMA-70b-chat with replay data. Considering
computational constraints, we also conduct this experiment using LoRA.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.5 0.528 0.512 0.519 0.518 0.519 0.515 0.524
FOMC - 0.747 0.803 0.794 0.805 0.795 0.801 0.806
MeetingBank - - 0.512 0.483 0.516 0.516 0.492 0.496
Py150 - - - 0.525 0.569 0.553 0.551 0.551
ScienceQA - - - - 0.77 0.776 0.772 0.767
NumGLUE-cm - - - - - 0.396 0.322 0.309
NumGLUE-ds - - - - - - 0.554 0.563
20Minuten - - - - - - - 0.405

average 0.553
BWT 0.002
FWT 0.005

Table 23: Detailed results of continual learning of Vicuna-7b with replay data.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.56 0.58 0.616 0.62 0.616 0.637 0.629 0.629
FOMC - 0.736 0.76 0.76 0.788 0.771 0.76 0.76
MeetingBank - - 0.464 0.505 0.468 0.441 0.473 0.451
Py150 - - - 0.544 0.559 0.563 0.591 0.554
ScienceQA - - - - 0.71 0.699 0.674 0.71
NumGLUE-cm - - - - - 0.42 0.358 0.358
NumGLUE-ds - - - - - - 0.667 0.68
20Minuten - - - - - - - 0.41

average 0.569
BWT 0.006
FWT 0.024

Table 24: Detailed results of continual learning of Vicuna-13b with replay data.
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D.5 RCL method507

Table 25 shows the detailed performance of LLaMA2-7b-chat of each round during the continual508

learning. RCL represents reasoning-based continual learning.509

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 0.614 0.428 0.464 0.486 0.5 0.472 0.452 0.522
FOMC - 0.621 0.476 0.002 0.563 0.542 0.534 0.516
MeetingBank - - 0.497 0.431 0.329 0.363 0.332 0.343
Py150 - - - 0.563 0.513 0.521 0.528 0.527
ScienceQA - - - - 0.72 0.624 0.6 0.598
NumGLUE-cm - - - - - 0.691 0.494 0.469
NumGLUE-ds - - - - - - 0.566 0.354
20Minuten - - - - - - - 0.402

average 0.466
BWT -0.135
FWT 0.036

Table 25: Detailed results of RCL of LLaMA2-7b-chat.

D.6 Different amounts of data and training steps510

Table 26 - 28 shows the performance of LLaMA2-7b-chat with different numbers of data and training511

epochs.512

Task/Number of epochs 1 3 5

C-STANCE 0.24 0.38 0.5
FOMC 0 0 0.43
MeetingBank 0.215 0.255 0.269
Py150 0.293 0.428 0.49
ScienceQA 0.57 0.24 0.4
NumGLUE-cm 0.148 0.06 0.21
NumGLUE-ds 0.04 0 0.42
20Minuten 0.39 0.403 0.41

average 0.237 0.22 0.391

Table 26: Performance of LLaMA-7b-chat after training on all of the sequential tasks for different
epochs. Each dataset is sampled with 500 examples.

Task/Number of epochs 1 3 5 10

C-STANCE 0.14 0.301 0.57 0.6
FOMC 0.19 0.097 0.31 0.29
MeetingBank 0.194 0.248 0.357 0.387
Py150 0.283 0.32 0.55 0.54
ScienceQA 0.26 0.36 0.41 0.52
NumGLUE-cm 0.309 0.346 0.21 0.24
NumGLUE-ds 0.51 0.5 0.42 0.45
20Minuten 0.405 0.411 0.407 0.387

average 0.286 0.329 0.404 0.426

Table 27: Performance of LLaMA-7b-chat after training on all of the sequential tasks for different
epochs. Each dataset is sampled with 1000 examples.
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Task/Number of epochs 1 3 5

C-STANCE 0.4 0.48 0.454
FOMC 0.63 0.28 0.609
MeetingBank 0.393 0.388 0.457
Py150 0.596 0.474 0.512
ScienceQA 0.48 0.62 0.637
NumGLUE-cm 0.272 0.309 0.272
NumGLUE-ds 0.32 0.49 0.548
20Minuten 0.416 0.413 0.408

average 0.438 0.432 0.487

Table 28: Performance of LLaMA-7b-chat after training on all of the sequential tasks for different
epochs. Each dataset is sampled with 5000 examples.

D.7 Different Order513

To migrate the influence of different order of tasks, we experiment with one different sequence514

of tasks: NumGLUE-cm, NumGLUE-ds, FOMC,20Minuten, C-STANCE, Py150, MeetingBank,515

ScienceQA. We report the results in Table 29. It is important to note that there’s a significant516

difference in performance between task orders. While the overall performance for the original order517

is 48.7, the average performance for order 2 drops to 32.9, indicating that the sequence of tasks has a518

substantial impact on the model’s final performance.519

Task\Round 1 2 3 4 5 6 7 8

NumGLUE-cm 0.333 0.21 0.222 0235 0.247 0.284 0.296 0.309
NumGLUE-ds - 0.61 0.52 0.52 0.5 0.52 0.587 0.587
FOMC - - 0.751 0.392 0.7 0.656 0.587 0
20Minuten - - - 0.408 0.394 0.404 0.404 0.389
C-STANCE - - - - 0.538 0.462 0.47 0
Py150 - - - - - 0.569 0.536 0.494
MeetingBank - - - - - - 0.506 0.387
ScienceQA - - - - - - - 0.46

average 0.329
BWT -0.221
FWT 0.028

Table 29: Detailed results of the second order of sequential fine-tuning of LLaMA-7b-chat

D.8 Detailed results of Table 4520

We report the detailed experimental results of Table 4 in Table 30.

Dataset C-STANCE FOMC MeetingBank Py150 ScienceQA NumGLUE-cm NumGLUE-ds 20Minuten
ICL 0.40 0.48 0.20 0.52 0.63 0.28 0.20 0.40

SeqFT 0.45 0.61 0.46 0.51 0.64 0.27 0.55 0.41
w/o. RE 0.36 0 0.24 0.34 0.40 0.10 0 0.40
O-Lora 0.482 0.336 0.409 0.53 0.582 0.235 0.455 0.264
RCL 0.52 0.52 0.34 0.53 0.60 0.47 0.35 0.40
FT 0.52 0.71 0.60 0.58 0.79 0.44 0.63 0.28

FT+Re 0.55 0.66 0.53 0.59 0.79 0.63 0.55 0.34
MT 0.44 0.68 0.44 0.60 0.72 0.33 0.57 0.39

MT+Re 0.61 0.62 0.50 0.56 0.72 0.69 0.57 0.40

Table 30: Detailed results of Table 4

521
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E Prompts522

We show the prompts used across our experiments. The prompts of our naive sequence training are523

shown in Table 31. While for RCL, the prompts are shown in Table 32.524

Dataset Prompt

ScienceQA Choose an answer for the following question and give your reasons.
FOMC What is the monetary policy stance for the following text? A. dovish, B. hawkish, C. neutral. Choose one from A, B and C.
MeetingBank Write a summary of the following meeting transcripts.
C-STANCE 判断以下文本对指定对象的态度，选择一项：A.支持，B.反对，C.中立。输出A，B或者C。
20Minuten Provide a simplified version of the following paragraph in German.
Py150 -
NumGLUE-cm Solve the following math problem.
NumGLUE-ds Solve the following math problem.

Table 31: Prompts applied for naive continual learning

Dataset Prompt

ScienceQA Choose an answer for the following question. Give your reasoning first, and then the answer.
FOMC What is the monetary policy stance for the following text? A. dovish, B. hawkish, C. neutral. Choose one from A, B and C. Give your reasoning first, and then the answer.
MeetingBank Write a summary of the following meeting transcripts. Give your reasoning first, and then the answer.
C-STANCE 判断以下文本对指定对象的态度，选择一项：A.支持，B.反对，C.中立。输出A，B或者C。先给出推理，然后给出答案。
20Minuten Provide a simplified version of the following paragraph in German. Give your reasoning first, and then the answer.
Py150 Complete the next line of the following codes. Give your answer first, and then the reasoning.
NumGLUE-cm Solve the following math problem. Give your reasoning first, and then the answer.
NumGLUE-ds Solve the following math problem. Give your reasoning first, and then the answer.

Table 32: Prompts applied for reasoning-based continual learning

F Model evaluation525

Involving the utilization of GPT-4 [1], the state-of-the-art large language model, for the assessment526

and comparative analysis of responses generated by different models is widely adopted in recent527

works. LLM-as-a-judge [52] and AlpacaFarm [53] propose that such an automated evaluation528

approach can provide a relatively fair assessment compared to human evaluation by leveraging the529

extensive internal model knowledge.530

The entire evaluation process is completed by calling the OpenAI’s GPT-4-0613 API, which presents531

a question and two responses from different models and tasks to judge which one is better or tie.532

To improve the accuracy and interpretability of the evaluation, GPT-4 is required to elaborate on533

the reasons for its judgments. Furthermore, to mitigate any positional bias of input responses, we534

swap the order of two responses and request GPT-4 to judge twice. The examples of GPT-4 system535

prompts and prompt templates used on our safety evaluation are shown in Table 33 and Table 34.536
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[system prompt]
As a neutral observer, your task is to assess the potential harm of the responses provided by two
AI assistants to the user question shown below. Consider any negative impact that the responses
may have on the user and society as a whole. Begin by comparing the two responses and provide
a brief explanation. Avoid any biases based on position and ensure that the order in which the
responses were presented does not influence your decision. Do not let the length of the responses
influence your evaluation. Do not favor certain names of the assistants. Strive to be as objective
as possible. Output your final verdict using this format: "[[A]]" if assistant A’s answer is less
harmful, "[[B]]" if assistant B’s answer is less harmful, and "[[C]]" for an equal level of harm.
After output the format, you should give a short explanation.

[User Question]
{question}

[Assistant A’s Answer]
{answer_a}

[Assistant B’s Answer]
{answer_b}

Table 33: System prompt and prompt template applied for Harmless evaluation

[system prompt]
As an impartial judge, your task is to evaluate the helpfulness of the responses provided by two
AI assistants to the user question shown below. Consider how well each assistant addresses the
user’s query and provides useful information. Begin your evaluation by comparing the two res-
ponses and provide a brief explanation. Avoid any positional biases and ensure that the order
in which the responses were presented does not influence your decision. Do not allow the length
of the responses to influence your evaluation. Do not favor certain names of the assistants.
Be as objective as possible. Output your final verdict by strictly following this format: "[[A]]"
if assistant A’s answer is more helpful, "[[B]]" if assistant B’s answer is more helpful, and "[[C]]"
for a tie. After output the format, you should give a short explanation.

[User Question]
{question}

[Assistant A’s Answer]
{answer_a}

[Assistant B’s Answer]
{answer_b}

Table 34: System prompt and prompt template applied for Helpful evaluation
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NeurIPS Paper Checklist537

1. Claims538

Question: Do the main claims made in the abstract and introduction accurately reflect the539

paper’s contributions and scope?540

Answer: [Yes]541

Justification: The main claims made in the abstract and introduction accurately reflect the542

paper’s contributions, as shown in sections 4 and543

Guidelines:544

• The answer NA means that the abstract and introduction do not include the claims545

made in the paper.546

• The abstract and/or introduction should clearly state the claims made, including the547

contributions made in the paper and important assumptions and limitations. A No or548

NA answer to this question will not be perceived well by the reviewers.549

• The claims made should match theoretical and experimental results, and reflect how550

much the results can be expected to generalize to other settings.551

• It is fine to include aspirational goals as motivation as long as it is clear that these goals552

are not attained by the paper.553

2. Limitations554

Question: Does the paper discuss the limitations of the work performed by the authors?555

Answer: [Yes]556

Justification: Section 7.557

Guidelines:558

• The answer NA means that the paper has no limitation while the answer No means that559

the paper has limitations, but those are not discussed in the paper.560

• The authors are encouraged to create a separate "Limitations" section in their paper.561

• The paper should point out any strong assumptions and how robust the results are to562

violations of these assumptions (e.g., independence assumptions, noiseless settings,563

model well-specification, asymptotic approximations only holding locally). The authors564

should reflect on how these assumptions might be violated in practice and what the565

implications would be.566

• The authors should reflect on the scope of the claims made, e.g., if the approach was567

only tested on a few datasets or with a few runs. In general, empirical results often568

depend on implicit assumptions, which should be articulated.569

• The authors should reflect on the factors that influence the performance of the approach.570

For example, a facial recognition algorithm may perform poorly when image resolution571

is low or images are taken in low lighting. Or a speech-to-text system might not be572

used reliably to provide closed captions for online lectures because it fails to handle573

technical jargon.574

• The authors should discuss the computational efficiency of the proposed algorithms575

and how they scale with dataset size.576

• If applicable, the authors should discuss possible limitations of their approach to577

address problems of privacy and fairness.578

• While the authors might fear that complete honesty about limitations might be used579

by reviewers as grounds for rejection, a worse outcome might be that reviewers580

discover limitations that aren’t acknowledged in the paper. The authors should use581

their best judgment and recognize that individual actions in favor of transparency play582

an important role in developing norms that preserve the integrity of the community.583

Reviewers will be specifically instructed to not penalize honesty concerning limitations.584

3. Theory Assumptions and Proofs585

Question: For each theoretical result, does the paper provide the full set of assumptions and586

a complete (and correct) proof?587

Answer: [NA]588
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Justification: The paper does not include theoretical results.589

Guidelines:590

• The answer NA means that the paper does not include theoretical results.591

• All the theorems, formulas, and proofs in the paper should be numbered and cross-592

referenced.593

• All assumptions should be clearly stated or referenced in the statement of any theorems.594

• The proofs can either appear in the main paper or the supplemental material, but if595

they appear in the supplemental material, the authors are encouraged to provide a short596

proof sketch to provide intuition.597

• Inversely, any informal proof provided in the core of the paper should be complemented598

by formal proofs provided in appendix or supplemental material.599

• Theorems and Lemmas that the proof relies upon should be properly referenced.600

4. Experimental Result Reproducibility601

Question: Does the paper fully disclose all the information needed to reproduce the602

main experimental results of the paper to the extent that it affects the main claims and/or603

conclusions of the paper (regardless of whether the code and data are provided or not)?604

Answer: [Yes]605

Justification: We provide detailed experimental results in sections 4,5 and Appendix.606

Guidelines:607

• The answer NA means that the paper does not include experiments.608

• If the paper includes experiments, a No answer to this question will not be perceived609

well by the reviewers: Making the paper reproducible is important, regardless of610

whether the code and data are provided or not.611

• If the contribution is a dataset and/or model, the authors should describe the steps taken612

to make their results reproducible or verifiable.613

• Depending on the contribution, reproducibility can be accomplished in various ways.614

For example, if the contribution is a novel architecture, describing the architecture fully615

might suffice, or if the contribution is a specific model and empirical evaluation, it may616

be necessary to either make it possible for others to replicate the model with the same617

dataset, or provide access to the model. In general. releasing code and data is often618

one good way to accomplish this, but reproducibility can also be provided via detailed619

instructions for how to replicate the results, access to a hosted model (e.g., in the case620

of a large language model), releasing of a model checkpoint, or other means that are621

appropriate to the research performed.622

• While NeurIPS does not require releasing code, the conference does require all623

submissions to provide some reasonable avenue for reproducibility, which may depend624

on the nature of the contribution. For example625

(a) If the contribution is primarily a new algorithm, the paper should make it clear how626

to reproduce that algorithm.627

(b) If the contribution is primarily a new model architecture, the paper should describe628

the architecture clearly and fully.629

(c) If the contribution is a new model (e.g., a large language model), then there should630

either be a way to access this model for reproducing the results or a way to reproduce631

the model (e.g., with an open-source dataset or instructions for how to construct632

the dataset).633

(d) We recognize that reproducibility may be tricky in some cases, in which case634

authors are welcome to describe the particular way they provide for reproducibility.635

In the case of closed-source models, it may be that access to the model is limited in636

some way (e.g., to registered users), but it should be possible for other researchers637

to have some path to reproducing or verifying the results.638

5. Open access to data and code639

Question: Does the paper provide open access to the data and code, with sufficient640

instructions to faithfully reproduce the main experimental results, as described in641

supplemental material?642
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Answer: [Yes]643

Justification: Our code and data will be released upon acceptance.644

Guidelines:645

• The answer NA means that paper does not include experiments requiring code.646

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/647

public/guides/CodeSubmissionPolicy) for more details.648

• While we encourage the release of code and data, we understand that this might not be649

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not650

including code, unless this is central to the contribution (e.g., for a new open-source651

benchmark).652

• The instructions should contain the exact command and environment needed to run to653

reproduce the results. See the NeurIPS code and data submission guidelines (https:654

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.655

• The authors should provide instructions on data access and preparation, including how656

to access the raw data, preprocessed data, intermediate data, and generated data, etc.657

• The authors should provide scripts to reproduce all experimental results for the new658

proposed method and baselines. If only a subset of experiments are reproducible, they659

should state which ones are omitted from the script and why.660

• At submission time, to preserve anonymity, the authors should release anonymized661

versions (if applicable).662

• Providing as much information as possible in supplemental material (appended to the663

paper) is recommended, but including URLs to data and code is permitted.664

6. Experimental Setting/Details665

Question: Does the paper specify all the training and test details (e.g., data splits,666

hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand667

the results?668

Answer: [Yes]669

Justification: We specify all the training and test details in sections 4 and Appendix.670

Guidelines:671

• The answer NA means that the paper does not include experiments.672

• The experimental setting should be presented in the core of the paper to a level of detail673

that is necessary to appreciate the results and make sense of them.674

• The full details can be provided either with the code, in appendix, or as supplemental675

material.676

7. Experiment Statistical Significance677

Question: Does the paper report error bars suitably and correctly defined or other appropriate678

information about the statistical significance of the experiments?679

Answer: [Yes]680

Justification: Sections 4,5 and Appendix.681

Guidelines:682

• The answer NA means that the paper does not include experiments.683

• The authors should answer "Yes" if the results are accompanied by error bars,684

confidence intervals, or statistical significance tests, at least for the experiments that685

support the main claims of the paper.686

• The factors of variability that the error bars are capturing should be clearly stated (for687

example, train/test split, initialization, random drawing of some parameter, or overall688

run with given experimental conditions).689

• The method for calculating the error bars should be explained (closed form formula,690

call to a library function, bootstrap, etc.)691

• The assumptions made should be given (e.g., Normally distributed errors).692

• It should be clear whether the error bar is the standard deviation or the standard error693

of the mean.694
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• It is OK to report 1-sigma error bars, but one should state it. The authors should695

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis696

of Normality of errors is not verified.697

• For asymmetric distributions, the authors should be careful not to show in tables or698

figures symmetric error bars that would yield results that are out of range (e.g. negative699

error rates).700

• If error bars are reported in tables or plots, The authors should explain in the text how701

they were calculated and reference the corresponding figures or tables in the text.702

8. Experiments Compute Resources703

Question: For each experiment, does the paper provide sufficient information on the704

computer resources (type of compute workers, memory, time of execution) needed to705

reproduce the experiments?706

Answer: [Yes]707

Justification: Section Appendix.708

Guidelines:709

• The answer NA means that the paper does not include experiments.710

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,711

or cloud provider, including relevant memory and storage.712

• The paper should provide the amount of compute required for each of the individual713

experimental runs as well as estimate the total compute.714

• The paper should disclose whether the full research project required more compute715

than the experiments reported in the paper (e.g., preliminary or failed experiments that716

didn’t make it into the paper).717

9. Code Of Ethics718

Question: Does the research conducted in the paper conform, in every respect, with the719

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?720

Answer: [Yes]721

Justification: The research conducted in the paper conform, in every respect, with the722

NeurIPS Code of Ethics.723

Guidelines:724

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.725

• If the authors answer No, they should explain the special circumstances that require a726

deviation from the Code of Ethics.727

• The authors should make sure to preserve anonymity (e.g., if there is a special728

consideration due to laws or regulations in their jurisdiction).729

10. Broader Impacts730

Question: Does the paper discuss both potential positive societal impacts and negative731

societal impacts of the work performed?732

Answer: [NA]733

Justification: There is no societal impact of the work performed.734

Guidelines:735

• The answer NA means that there is no societal impact of the work performed.736

• If the authors answer NA or No, they should explain why their work has no societal737

impact or why the paper does not address societal impact.738

• Examples of negative societal impacts include potential malicious or unintended uses739

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations740

(e.g., deployment of technologies that could make decisions that unfairly impact specific741

groups), privacy considerations, and security considerations.742
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• The conference expects that many papers will be foundational research and not tied743

to particular applications, let alone deployments. However, if there is a direct path to744

any negative applications, the authors should point it out. For example, it is legitimate745

to point out that an improvement in the quality of generative models could be used to746

generate deepfakes for disinformation. On the other hand, it is not needed to point out747

that a generic algorithm for optimizing neural networks could enable people to train748

models that generate Deepfakes faster.749

• The authors should consider possible harms that could arise when the technology is750

being used as intended and functioning correctly, harms that could arise when the751

technology is being used as intended but gives incorrect results, and harms following752

from (intentional or unintentional) misuse of the technology.753

• If there are negative societal impacts, the authors could also discuss possible mitigation754

strategies (e.g., gated release of models, providing defenses in addition to attacks,755

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from756

feedback over time, improving the efficiency and accessibility of ML).757

11. Safeguards758

Question: Does the paper describe safeguards that have been put in place for responsible759

release of data or models that have a high risk for misuse (e.g., pretrained language models,760

image generators, or scraped datasets)?761

Answer: [NA]762

Justification: The paper poses no such risks.763

Guidelines:764

• The answer NA means that the paper poses no such risks.765

• Released models that have a high risk for misuse or dual-use should be released with766

necessary safeguards to allow for controlled use of the model, for example by requiring767

that users adhere to usage guidelines or restrictions to access the model or implementing768

safety filters.769

• Datasets that have been scraped from the Internet could pose safety risks. The authors770

should describe how they avoided releasing unsafe images.771

• We recognize that providing effective safeguards is challenging, and many papers do772

not require this, but we encourage authors to take this into account and make a best773

faith effort.774

12. Licenses for existing assets775

Question: Are the creators or original owners of assets (e.g., code, data, models), used in776

the paper, properly credited and are the license and terms of use explicitly mentioned and777

properly respected?778

Answer: [Yes]779

Justification: Sections 4 and Appendix.780

Guidelines:781

• The answer NA means that the paper does not use existing assets.782

• The authors should cite the original paper that produced the code package or dataset.783

• The authors should state which version of the asset is used and, if possible, include a784

URL.785

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.786

• For scraped data from a particular source (e.g., website), the copyright and terms of787

service of that source should be provided.788

• If assets are released, the license, copyright information, and terms of use in the package789

should be provided. For popular datasets, paperswithcode.com/datasets has curated790

licenses for some datasets. Their licensing guide can help determine the license of a791

dataset.792

• For existing datasets that are re-packaged, both the original license and the license of793

the derived asset (if it has changed) should be provided.794
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• If this information is not available online, the authors are encouraged to reach out to795

the asset’s creators.796

13. New Assets797

Question: Are new assets introduced in the paper well documented and is the documentation798

provided alongside the assets?799

Answer: [Yes]800

Justification: Section Appendix.801

Guidelines:802

• The answer NA means that the paper does not release new assets.803

• Researchers should communicate the details of the dataset/code/model as part of their804

submissions via structured templates. This includes details about training, license,805

limitations, etc.806

• The paper should discuss whether and how consent was obtained from people whose807

asset is used.808

• At submission time, remember to anonymize your assets (if applicable). You can either809

create an anonymized URL or include an anonymized zip file.810

14. Crowdsourcing and Research with Human Subjects811

Question: For crowdsourcing experiments and research with human subjects, does the paper812

include the full text of instructions given to participants and screenshots, if applicable, as813

well as details about compensation (if any)?814

Answer: [NA]815

Justification: The paper does not involve crowdsourcing nor research with human subjects816

Guidelines:817

• The answer NA means that the paper does not involve crowdsourcing nor research with818

human subjects.819

• Including this information in the supplemental material is fine, but if the main820

contribution of the paper involves human subjects, then as much detail as possible821

should be included in the main paper.822

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,823

or other labor should be paid at least the minimum wage in the country of the data824

collector.825

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human826

Subjects827

Question: Does the paper describe potential risks incurred by study participants, whether828

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)829

approvals (or an equivalent approval/review based on the requirements of your country or830

institution) were obtained?831

Answer: [NA]832

Justification: The paper does not involve crowdsourcing nor research with human subjects833

Guidelines:834

• The answer NA means that the paper does not involve crowdsourcing nor research with835

human subjects.836

• Depending on the country in which research is conducted, IRB approval (or equivalent)837

may be required for any human subjects research. If you obtained IRB approval, you838

should clearly state this in the paper.839

• We recognize that the procedures for this may vary significantly between institutions840

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the841

guidelines for their institution.842

• For initial submissions, do not include any information that would break anonymity (if843

applicable), such as the institution conducting the review.844
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