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Abstract
We study abstraction in an emergent communi-001
cation paradigm. In emergent communication,002
two artificial neural network agents develop a003
language while solving a communicative task.004
In this study, the agents play a concept-level005
reference game. This means that the speaker006
agent has to describe a concept to a listener007
agent, who has to pick the correct target objects008
that satisfy the concept. Concepts consist of009
multiple objects and can be either more specific,010
i.e. the target objects share many attributes,011
or more generic, i.e. the target objects share012
fewer attributes. We test two directions of zero-013
shot generalization to novel levels of abstrac-014
tion: When generalizing from more generic to015
very specific concepts, agents utilize a com-016
positional strategy. When generalizing from017
more specific to very generic concepts, agents018
utilize a more flexible linguistic strategy that019
involves reusing many messages from training.020
Our results provide evidence that neural net-021
work agents can learn robust concepts based022
on which they can generalize using adaptive023
linguistic strategies. We discuss how this re-024
search provides new hypotheses on abstraction025
and informs linguistic theories on efficient com-026
munication.027

1 Introduction028

One of the most fundamental goals of Artificial029

Intelligence (AI) and Natural Language Processing030

(NLP) research is to build models which can gener-031

alize well to unseen data. This is, after all, one of032

the crucial abilities observed in human intelligence.033

Importantly, there can be no generalization with-034

out abstraction, i.e. without first abstracting the035

knowledge that is needed for making generaliza-036

tions (Yee, 2019). This means that generalization037

and abstraction are intricately linked and that for038

achieving the goal of well-generalizing models, we039

need to understand abstraction.040

Humans naturally use abstraction to solve com-041

plex tasks and to communicate about strategies042

and solutions. Well-designed AI and NLP systems 043

cannot only benefit from good abstraction abilities 044

in, for example, reasoning and solving complex 045

tasks (e.g. Ho et al., 2019; Zheng et al., 2024), 046

but interactive systems should also be able to deal 047

with human language inputs which involve abstrac- 048

tions (e.g. Lachmy et al., 2022). Many researchers 049

studying human abstraction argue for a role of lan- 050

guage therein (see e.g., Yee, 2019; Sloutsky and 051

Deng, 2019; Gentner and Asmuth, 2019; Lupyan 052

and Lewis, 2019). The main idea of these accounts 053

is that the lexicalization of concepts, i.e. having a 054

label for a concept, helps to acquire and structure in- 055

formation we obtain about an entity and to observe 056

commonalities within members of a concept in the 057

first place. The role of language in abstraction can 058

also be tested in computational systems. The goals 059

of the current research are to inform the improve- 060

ment of AI and NLP systems towards achieving 061

human-like abstraction abilities and to use com- 062

putational modeling to understand abstraction in 063

humans better. 064

Starting from the assumption that language is 065

useful for abstraction, we study abstraction in a 066

communicative setting and investigate how abstrac- 067

tion is achieved with the help of linguistic strategies 068

such as the reuse of previous messages. To gain 069

insights into the principled mechanisms of abstrac- 070

tion and the role of language for abstraction, we 071

use a language emergence scenario. In language 072

emergence research, the idea is to define a set of 073

assumptions and then observe how these assump- 074

tions change a language-like system that emerges 075

during interaction (see e.g. Lazaridou et al., 2017; 076

Galke et al., 2022; Rodríguez Luna et al., 2020; 077

Chaabouni et al., 2020). In our model, two artifi- 078

cial neural network agents solve a reference game, 079

where a speaker agent has to communicate a target 080

concept to a listener agent who needs to select the 081

correct target concept in a context. We operational- 082

ize a concept as a set of target objects following 083
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previous work (Kobrock et al., 2024a,b; Mu and084

Goodman, 2021). Our target concepts are designed085

in a hierarchical fashion, ranging from very specific086

concepts consisting of objects where all attributes087

(e.g., size, color and shape) are fixed to a certain088

value, e.g. ‘small blue circle’, to very generic con-089

cepts consisting of objects where only one attribute090

is fixed, e.g. ‘circle’. We can study abstraction091

by making use of this abstraction hierarchy. Here,092

we are interested in a specific kind of abstraction,093

namely the zero-shot generalization to concepts at094

novel levels of the concept hierarchy, or, to con-095

cepts at novel levels of abstraction (following the096

terminology of seminal research from Cognitive097

Psychology by Rosch et al., 1976). We will not098

only look at the generalization performance of the099

trained models, but also at the linguistic strategies100

the agents employ. Specifically, we investigate the101

properties of the emergent protocol and the use of102

novel vs. established messages during abstraction.103

While previous work in emergent communica-104

tion has highlighted the role of compositionality for105

generalization (see e.g. Hazra et al., 2021; Kottur106

et al., 2017; Lazaridou et al., 2018), in our experi-107

ments we disentangle two directions of generaliza-108

tion and propose that they require different linguis-109

tic strategies. We find that agents use a composi-110

tional strategy only when generalizing to specific111

concepts, but not when generalizing to generic con-112

cepts. These results highlight that compositionality113

is not the only way to achieve generalization, which114

is in line with recent findings from Chaabouni et al.115

(2020) and Kharitonov and Baroni (2020).116

2 Method117

2.1 General Setup118

We use an emergent communication paradigm (e.g.119

Lazaridou et al., 2018; Chaabouni et al., 2019) and120

build on the concept-level reference game devel-121

oped in previous work (Mu and Goodman, 2021;122

Kobrock et al., 2024a). We train two artificial123

neural network agents, one speaker and one lis-124

tener agent. Over several iterations, these agents125

develop a communication system by solving the126

following task: The speaker agent S has to com-127

municate a concept, i.e. a set of target objects128

T = {t1, ..., Tg}, to the listener agent L whose129

task is to identify the correct targets among a set130

of distractors D = {d1, ..., dg}. We call the set of131

target objects the concept and the set of distractor132

objects the context. The listener’s task is to identify133

the target concept in a certain context given a mes- 134

sage generated by the speaker. The message is a 135

vector of symbols generated by the speaker neural 136

network which does not have a pre-specified mean- 137

ing. Rather, the meaning of a message emerges 138

over several interactions between the agents and 139

is defined by its usage (see e.g. Lazaridou et al., 140

2017). Concepts can range from being specific, 141

where all attributes are shared among the target 142

objects, to being generic, where only one attribute 143

is shared among the targets. Contexts can range 144

from being fine, where all but one attributes are 145

shared between targets and distractors, to being 146

coarse, where no attribute is shared between targets 147

and distractors. Both agent networks are trained 148

in a Reinforcement Learning paradigm with the 149

Gumbel-Softmax relaxation (Jang et al., 2017) on 150

a joint loss that depends on whether the listener 151

correctly identifies the targets and distractors given 152

the speaker-generated message. 153

2.2 Zero-shot Conditions and Hypotheses 154

We test the zero-shot generalization abilities of 155

the trained networks in two conditions (see Fig- 156

ure 1): The first condition, “to specific”, tests 157

whether agents are able to generalize to the most 158

specific concepts when having seen more generic 159

concepts during training. In this condition, we 160

expect the emerging communication system to en- 161

code more generic concepts (such as “blue” or “cir- 162

cle”). For a successful zero-shot generalization, 163

these more generic concepts would need to be com- 164

bined to describe a specific concept (such as “blue 165

circle”). Here, agents will need to combine previ- 166

ously learned attributes compositionally to describe 167

a more specific concept. The second condition, “to 168

generic”, tests whether agents are able to gener- 169

alize to the most generic concepts when having 170

seen more specific concepts during training. In this 171

condition, we expect the emerging communication 172

system to encode more specific concepts (such as 173

“blue circle” or “orange circle”). For a successful 174

zero-shot generalization, agents will need to ab- 175

stract away from contextually irrelevant features 176

and find the common attribute that all targets share 177

(e.g. “circle”). 178

2.3 Dataset 179

The agents are trained on six symbolic datasets de- 180

veloped in previous work (Kobrock et al., 2024a). 181

These datasets contain all possible concepts, rang- 182

ing from specific to generic, and contexts, ranging 183
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2) to generic:

Figure 1: Examples for speaker inputs for training and testing in the two zero-shot test conditions “to specific” and
“to generic”. Each input consists of targets (i.e., concepts) in the green bounding box and distractors (i.e., context).

from fine to coarse, for a given number of attributes184

and values. For example, dataset D(3,4) contains185

all possible concepts and contexts given that ob-186

jects in this dataset have three attributes and each at-187

tribute can take four different values. If we think of188

the three attributes as shape, color and size, an ex-189

ample for a specific concept would be “small blue190

circle” and an example for a generic concept would191

be “square”. In a fine context, objects belonging to192

the concept “small blue circle” would need to be193

discriminated against objects that are also small and194

blue. In a coarse context, distractor objects do not195

share any attributes with the target concept. This196

also means that there are more possible contexts197

for specific concepts than for generic concepts and198

the datasets reflect this relationship. We use a scal-199

ing factor of 10 to construct the datasets, i.e. each200

concept is included in a dataset 10 times.1 This201

ensures that the datasets contain enough training202

data.203

For the zero-shot dataset generation, we manip-204

ulate the training, validation and test splits of the205

data. In the “to specific” condition, the test split206

contains all most specific concepts available, i.e.207

those where all attributes are shared among the208

targets. The training and validation splits are com-209

posed of the remaining concepts which are more210

generic with 75% of the data used for training and211

25% of the data used for validation. In the “to212

generic” condition, the test split contains all most213

generic concepts available, i.e. those where only214

one attribute is shared among the targets. The train-215

1We use this scaling factor only to construct the train and
validation dataset splits. The zero-shot test is performed on a
test split that contains the novel concepts only once.

ing and validation sets contain the remaining more 216

specific concepts with 75% of the data used for 217

training and 25% of the data used for validation. 218

Dataset sizes can be inspected in Tables 10 and 219

11 in Appendix D and are comparable between 220

zero-shot conditions. 221

2.4 Architecture and Training 222

A communication game between a speaker S and 223

a listener L is defined as G = (TS , DS , TL, DL), 224

where TS = {tS1 , ..., tSg } and DS = {dS1 , ..., dSg } 225

are the inputs to the speaker, i.e. sets of game size 226

g targets and distractors, and TL and DL are the 227

analogously defined inputs to the listener. For these 228

inputs, TS ̸= TL and DS ̸= DL hold, i.e. the tar- 229

gets and distractors presented to the speaker differ 230

from the targets and distractors presented to the 231

listener to ensure communication of higher-level 232

concepts (Mu and Goodman, 2021; Kobrock et al., 233

2024a). In each round of the game, S generates 234

a message m = (sj)j≤M , where sj is a symbol 235

from vocabulary V and M is the maximal mes- 236

sage length2, based on the inputs TS and DS . L in 237

turn, receives m and an input XL = {xL1 , ..., xLi }, 238

where i = 2 · g which contains the targets TL and 239

distractors DL shuffled. L then predicts a label 240

yLi ∈ {0, 1} (0: distractor, 1: target) for each ob- 241

ject xLi in its input (see e.g. Mu and Goodman, 242

2021; Kobrock et al., 2024a; Ohmer et al., 2022). 243

We visualize the setup in Figure 2. 244

For the implementation3, we use the EGG 245

2The end-of-sequence symbol 0 can be used to terminate a
message before M is reached.

3All code and analysis scripts are avail-
able at https://anonymous.4open.science/r/
zero-shot-abstraction-5EBD/
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Speaker 
neural network 

(GRU)

Listener 
neural network 

(GRU)

message 
[4,11,7,0]

prediction and training

Figure 2: Architecture: Speaker and listener neural
networks receive separate inputs where target objects
satisfy the same target concept (here “blue”) and dis-
tractor objects (i.e., the context) share the same number
of attributes with the target concept (here 0). They are
trained on successful communication, i.e. when the
listener identifies the correct target objects.

framework for emergent communication games246

(Kharitonov et al., 2019, MIT license). Both agents247

are implemented in a similar fashion: Feed-forward248

layers with 64 units serve as embedding layers for249

the input objects. The speaker targets and distrac-250

tors are embedded separately and then concate-251

nated into a joint embedding. The listener input252

objects are processed by just one embedding layer.253

For message encoding and decoding, both speaker254

and listener networks use single-layer Gated Recur-255

rent Units (GRU, Cho et al., 2014) with a hidden256

layer size of 128 that can deal with sequential in-257

puts of varying lengths. A speaker-listener pair is258

trained with binary cross entropy loss259

LBCE(S,L,G) = −
∑
i

log pL(yLi |xLi , m̂), (1)260

where m̂ ∼ pS(m|TS , DS) and pL(yLi |xLi , m̂) =261

σ4(GRUL(m̂) · embed(xLi )) maximizing the prob-262

ability that the listener correctly identifies targets263

and distractors with a label yi ∈ {0, 1} (0: dis-264

tractor, 1: target) for each object xi. To ensure265

differentiability for backpropagation, we use the266

straight-through Gumbel-Softmax trick (Jang et al.,267

2017) with temperature τ = 2 and a decay rate of268

0.99. These and other hyperparameters were de-269

termined in a grid search that we conducted for all270

parameters over the different dataset sizes aiming271

for maximal validation accuracy. We train with272

4We use a ReLu activation function.

batch size 32 and learning rate 0.001. For our sim- 273

ulations, we use game size 10, i.e. 10 target objects 274

form a concept and 10 distractor objects form the 275

context. The maximum message length M is de- 276

fined as the total number of attributes in a dataset 277

plus the End of Sequence (EOS) symbol 0. The 278

vocabulary size for each dataset corresponds to the 279

total number of attribute values present. We estab- 280

lish a minimal vocabulary size for each dataset as 281

the sum of the number of attribute values plus one 282

additional symbol. This minimal vocabulary size 283

is then scaled by a factor of f = 3, as suggested by 284

Ohmer et al. (2022) to ensure a sufficiently large 285

communication channel (Chaabouni et al., 2020). 286

3 Results 287

We trained the models on six symbolic datasets 288

with varying numbers of attributes and values. In 289

a dataset D(n, k), objects have n attributes which 290

each can take k different values. For all metrics, 291

we report means and standard deviations over five 292

individual runs per dataset. 293

3.1 Generalization Performance 294

We evaluate the agents’ performance on the test 295

datasets to assess their zero-shot generalization 296

abilities.5 (see Tables 4 and 5 in Appendix A). 297

Accuracies are calculated as a percentage over the 298

objects that the listener classifies as targets or dis- 299

tractors. An accuracy of 0.9 means that 90% of 300

the objects, i.e. 18 objects with a game size of 10, 301

have been classified correctly as targets or distrac- 302

tors. Or, in other words, two objects have been 303

misclassified. 304

Table 1 summarizes the mean test accuracies 305

over the five runs conducted on each dataset for 306

both conditions. All zero-shot test accuracies are 307

>=0.63 indicating that the listeners correctly iden- 308

tify more than 60% of the 20 objects as targets or 309

distractors. This corresponds to a number of 12 310

correctly identified objects. Agents achieve higher 311

performance in the “to specific” condition com- 312

pared to the “to generic” condition in all datasets. 313

Comparing test accuracies between datasets, gen- 314

eralization performance is better for datasets with 315

more attributes. Specifically, on datasets with at 316

least four attributes, agents achieve generalization 317

5Training and validation accuracies for both conditions
are >=0.97 indicating that the agents have learned the task
and achieved high performance on both the training and the
validation data splits - a necessary prerequisite for a valid
interpretation of the zero-shot test accuracies
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to specific to generic

D(3,4) 0.92 ± 0.02 0.71 ± 0.04
D(3,8) 0.85 ± 0.01 0.68 ± 0.07
D(3,16) 0.82 ± 0.03 0.63 ± 0.03
D(4,4) 0.95 ± 0.00 0.82 ± 0.02
D(4,8) 0.95 ± 0.01 0.82 ± 0.07
D(5,4) 0.96 ± 0.01 0.84 ± 0.06

Table 1: Zero-shot test accuracies for both conditions.

accuracies of 0.82 or higher in both conditions.318

This means that speakers choose expressions to319

describe the held-out concepts at novel levels of320

abstraction that enable listeners to classify at least321

16 of the 20 objects correctly.322

3.2 Concept reference323

We investigate the emergent mappings between324

concepts and messages during training with the325

Normalized Mutual Information (NMI) score cal-326

culated over messages M and concepts C:327

NMI(C,M) =
H(M)−H(M |C)

0.5 · (H(C) +H(M))
, (2)328

The NMI score is maximal (i.e., 1.0) if for all mes-329

sages and concepts seen during training, every mes-330

sage maps to exactly one concept and vice versa.331

In other words, a maximal score indicates that the332

agents developed a protocol that includes only one-333

to-one mappings between messages and concepts,334

i.e. no ambiguity. We expect high but not maximal335

NMI scores which would indicate that the agents336

have learned a structured but not unambiguous map-337

ping between concepts and messages. The mean338

NMI scores calculated for messages and concepts339

during training in five runs range between 0.84 and340

0.95 in the “to specific” condition, i.e. when trained341

on more generic concepts, and between 0.77 and342

0.87 in the “to generic” condition, i.e. when trained343

on more specific concepts (see Table 2). This indi-344

cates that a structured communication protocol has345

emerged in both conditions, while more ambiguity346

arises when training the agents on more specific347

concepts in the “to generic” condition.348

3.3 Generalization strategies349

When agents generalize to novel concepts in the350

zero-shot test, there are two conceivable strategies.351

Firstly, agents might reuse messages that have been352

successfully used during training also on the test353

to specific to generic

D(3,4) 0.93 ± 0.03 0.87 ± 0.04
D(3,8) 0.95 ± 0.01 0.82 ± 0.02
D(3,16) 0.87 ± 0.01 0.77 ± 0.02
D(4,4) 0.94 ± 0.01 0.87 ± 0.05
D(4,8) 0.84 ± 0.03 0.83 ± 0.03
D(5,4) 0.87 ± 0.02 0.83 ± 0.04

Table 2: NMI scores for both conditions.

dataset. Secondly, agents might invent novel mes- 354

sages to describe the novel concepts in the test 355

dataset. We define reuse rates and novelty rates, re- 356

spectively, to investigate the use of these strategies 357

in our simulations. Next, we lay out our predictions 358

for the reuse and novelty rates of agents trained in 359

the “to specific” and “to generic” conditions. 360

In the “to specific” condition, we expect a high 361

novelty rate and a lower reuse rate. However, we 362

hypothesize that this strategy can only be effec- 363

tive if the agents use compositionality to combine 364

learned meanings into novel messages.6 An alter- 365

native strategy would be that the agents mainly 366

reuse messages that have been uttered during train- 367

ing and do not produce many novel messages (i.e., 368

high reuse rate and low novelty rate). But we hy- 369

pothesize that this strategy leads to the production 370

of underinformative messages in certain contexts, 371

i.e. messages that do not provide enough infor- 372

mation for the listener to unambiguously identify 373

the target concept (e.g. Engelhardt et al., 2006; 374

Deutsch and Pechmann, 1982; Grice, 1975). For 375

example, a message that has been used to refer to 376

the concept “blue circle” during training might be 377

used to refer to a “small blue circle” during testing. 378

In some contexts, e.g. when all blue circles are 379

small blue circles, this is efficient. In other con- 380

texts, however, e.g. when small blue circles need 381

to be discriminated from large blue circles, this 382

strategy is underinformative and not effective. 383

In the “to generic” condition, we expect a low 384

novelty rate and a higher reuse rate. If the speaker 385

agents produce novel messages to refer to novel 386

concepts, they might come up with a highly effi- 387

cient mapping, but they also run into the risk that 388

the listener might not work out what the novel mes- 389

sage refers to. This is due to the fact that the agents 390

cannot draw on a compositional strategy when com- 391

6See section 3.4 for an investigation of the messages’ com-
positionality.
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municating only a single relevant attribute. How-392

ever, if the speaker agents reuse messages from393

training, this will result in overinformative mes-394

sages, i.e. messages that provide more information395

than necessarily required for the listener to unam-396

biguously identify the target concept in certain con-397

texts, e.g. when producing “small blue circle” in398

reference to a CIRCLE that needs to be discrimi-399

nated against other shapes (e.g. Grice, 1975; De-400

gen et al., 2020; Rubio-Fernandez, 2021). In other401

contexts, however, reused messages are highly ef-402

ficient: As concepts are presented in a variety of403

contexts during training, there are communicative404

situations (namely coarse contexts) in which the405

speaker agent can choose to communicate only a406

single relevant attribute and rely on context to re-407

solve ambiguity. This might lead to the emergence408

of messages that encode the meaning of generic409

concepts such as CIRCLE already during training,410

even though they are never explicitly presented.411

Reusing these messages during testing will thus be412

highly efficient.413

To test these predictions, we look at the mes-414

sages generated during testing on the novel con-415

cepts. First, we define the set of test concepts Ctest416

and the set of test messages Mtest. These are the417

messages produced and the concepts described dur-418

ing interactions on the test data split. Next, we419

define a message-concept ratio as the ratio between420

the number of test messages and the number of421

test concepts Mtest/Ctest. The resulting ratio is422

1.0 if the number of messages is equal to the num-423

ber of novel concepts, or, in other words, if for424

each novel concept, the agents produce one mes-425

sage during testing. Scores lower than 1.0 indicate426

that the agents produce fewer distinct messages427

than there are novel concepts. We calculate the428

ratios to ensure comparability between the “to spe-429

cific” and “to generic” conditions because the test430

sets contain different amounts of novel concepts431

(see Tables 6 and 7 in Appendix B). We define the432

reuse and novelty rates by looking at the overlap433

between messages used during training and valida-434

tion Mtrainval and messages used when generaliz-435

ing to the test data split Mtest.7 We define novel436

messages as those messages that have been pro-437

duced during testing but have not been produced438

during training and validation, i.e. the set differ-439

ence Mtest −Mtrainval. We calculate the novelty440

rate as the ratio between the number of novel mes-441

7Both sets contain only unique message counts.

sages and the total number of unique messages used 442

during testing |Mtest −Mtrainval|/|Mtest|. We de- 443

fine reused messages as those messages that have 444

been used in training and validation and then reused 445

in testing, i.e. the intersection of the two sets of 446

messages Mtrainval∩Mtest and calculate the reuse 447

rate |Mtrainval ∩Mtest|/|Mtest|. If reuse rate and 448

novelty rate are balanced, this means that agents 449

invent equally many new messages as they reuse 450

old messages from training. If the percentages shift 451

to one or the other extreme, this means that agents 452

reuse more old messages than they invent new ones 453

or vice versa. 454

In the “to specific” condition, we find that ratios 455

between distinct messages and novel concepts in 456

the test set range between 0.23 and 0.92 (see Ta- 457

ble 3). The dataset with the highest ratio close to 458

1.0 is D(4,4) with a score of 0.92, where almost 459

for each novel concept, a distinct message is pro- 460

duced. Strikingly, there are many datasets with 461

a low message-concept ratio, which suggests that 462

one message is used to refer to many concepts. As 463

test accuracies are generally high (see Table 1), this 464

probably reflects the emergence of a very efficient 465

language, where many concepts can be described 466

with a small set of messages. As accuracies are 467

not maximal, though, this efficient strategy might 468

come at the loss of some objects being misclassi- 469

fied by the listener. One reason for high message- 470

concept ratios might be that the emerging language 471

is very structured. A structured language allows the 472

agents to use previously established meanings and 473

combine them in a compositional fashion to novel 474

meanings. As the novel meanings are generated 475

on the fly, the agents might vary which previously 476

established meanings they use, how they combine 477

them and in which order, leading to a large amount 478

of novel messages. Indeed, when looking at the 479

reuse and novelty rates, we find that agents trained 480

in the “to specific” condition, invent at least 34% 481

new messages during testing (see Table 3). For half 482

of the datasets, the novelty rate even exceeds the 483

reuse rate, suggesting that the agents come up with 484

more new messages than they reuse old messages. 485

In the “to generic” condition, we observe 486

message-concept ratios of distinct test messages 487

to novel concepts that are very close to 1.0, indi- 488

cating that the agents produce almost exactly one 489

message for each novel concept. These agents also 490

reuse more messages than invent new ones (see 491

Table 3). If these messages have encoded all rele- 492

vant attributes of a target concept during training, 493
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to specific to generic
Mtest/Ctest reuse rate novelty rate Mtest/Ctest reuse rate novelty rate

D(3,4) 0.84 ± 0.06 0.54 ± 0.07 0.46 ± 0.07 0.98 ± 0.03 0.80 ± 0.19 0.20 ± 0.19
D(3,8) 0.68 ± 0.06 0.45 ± 0.07 0.55 ± 0.07 0.93 ± 0.02 0.83 ± 0.07 0.17 ± 0.07
D(3,16) 0.23 ± 0.03 0.45 ± 0.07 0.55 ± 0.07 0.93 ± 0.02 0.75 ± 0.06 0.25 ± 0.06
D(4,4) 0.92 ± 0.04 0.44 ± 0.08 0.56 ± 0.08 0.97 ± 0.05 0.74 ± 0.14 0.26 ± 0.14
D(4,8) 0.58 ± 0.11 0.66 ± 0.12 0.34 ± 0.12 0.90 ± 0.10 0.93 ± 0.06 0.07 ± 0.06
D(5,4) 0.89 ± 0.03 0.65 ± 0.09 0.35 ± 0.09 0.98 ± 0.02 1.00 ± 0.00 0.00 ± 0.00

Table 3: The ratio of messages and concepts for the test data split Mtest/Ctest. Percentage of reused and novel
messages from the total set of unique messages Mtest.

then these messages are necessarily overinforma-494

tive when produced during testing, but might still495

lead to high communicative success. Another pos-496

sibility is that some of these messages have not497

encoded all relevant attributes during training, but498

that they were underinformative during training and499

required the context to resolve ambiguity (see Ko-500

brock et al., 2024a). These messages might be just501

on the appropriate level of reference during test-502

ing. This might explain the highly efficient reuse503

of messages in the “to generic” condition.504

3.4 Compositionality505

In the previous section, we hypothesized that506

agents in the “to specific” condition use a com-507

positional strategy, whereas agents trained in the508

“to generic” condition do not rely on composition509

but rather reuse messages from training to describe510

novel concepts. To test the compositionality in the511

emerging languages, we use topographic similarity512

(also called “topographic ρ”, Brighton and Kirby,513

2006). The idea behind this metric is that emerging514

languages should exhibit structure. Specifically,515

regarding the mapping between meanings (in our516

case concepts) and messages, messages which are517

highly similar to each other should refer to concepts518

which are also highly similar to each other. This519

relationship can be measured with the topographic520

similarity metric (e.g., Ohmer et al., 2022; Lazari-521

dou et al., 2018; Brighton and Kirby, 2006; Mu522

and Goodman, 2021). We calculate topographic523

similarity between messages and concepts by first524

calculating two distance vectors: one containing525

the pairwise Hausdorff distances between concepts526

and one containing the pairwise Edit, specifically527

Levenshtein, distances between messages (as in528

Mu and Goodman, 2021). Then we correlate these529

two distance vectors by using Spearman correlation530

to obtain the topographic similarity score between531

Figure 3: To specific: Topographic similarity scores
calculated on messages from the train and test splits.

Figure 4: To generic: Topographic similarity scores
calculated on messages from the train and test splits.

0 and 1.0. The higher the score, the more composi- 532

tional are the messages. 533

We find that the mean compositionality scores 534

over five runs for concepts and messages seen dur- 535

ing training range between 0.06 and 0.49 for the 536

“to specific” condition, and that they range between 537

0.19 and 0.44 for the “to generic” condition. When 538

looking at the topographic similarity scores calcu- 539

lated on the sets of messages and concepts from the 540

test data split, we see a diverging picture: For the 541

“to specific” condition, compositionality scores are 542

higher during testing, suggesting that the agents use 543

a highly compositional strategy when describing 544

very specific concepts. In Appendix C, we present a 545

qualitative analysis of the messages that shows that 546
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agents use established symbol-attribute mappings547

and compositionally combine these symbols into548

novel messages. For the “to generic” condition, on549

the other hand, we observe a drop of composition-550

ality scores almost towards zero. This means that551

agents do not use a compositional strategy when552

being tested on the most generic concepts.553

4 Discussion554

In this study, we set out to investigate the linguistic555

strategies agents use to generalize to concepts at556

novel levels of abstraction. Our main finding is that557

the abstraction abilities and linguistic strategies dif-558

fer depending on the direction of zero-shot general-559

ization: When the agents generalize to very specific560

concepts, they make use of a compositional strategy561

and invent novel messages by combining symbols562

in new ways. When they generalize to very generic563

concepts, the agents’ strategy is mostly character-564

ized by reusing already established messages that565

might have been ambiguous during training and are566

sufficiently informative during testing.567

We observe lower performance when testing568

zero-shot generalization to very generic concepts569

than zero-shot generalization to very specific con-570

cepts. An intuitive reason for this might be that571

combining learned symbols for attributes like “cir-572

cle” or “blue” into a message “blue circle” is easier573

to achieve with a finite lexicon than abstracting to574

novel generic concepts. If a language does not en-575

code specific concepts, novel meanings can always576

be generated by combining established meanings.577

However, if a language does not encode generic578

concepts, a compositional strategy is not an option.579

Novel meanings, however, cannot be established580

in a zero-shot generalization, so the only chance581

the agents have is to recur to already established582

meanings. But previously learned words that en-583

code specific meanings are only useful to a certain584

extent, making the “to generic” direction of zero-585

shot generalization a harder task for our trained586

agent models which is reflected in the accuracies.587

This idea is supported by evidence we obtained588

from an in-depth analysis of the emerging protocols.589

First, we have shown that NMI scores are high but590

not maximal in both conditions, suggesting a large591

number of one-to-one mappings in the emergent592

mapping between concepts and messages. We have593

observed that more ambiguity emerges when train-594

ing the agents in the “to generic” condition. This595

ambiguity likely is what enables the agents to per-596

form fairly well on the generalization task, where 597

we observe that they mostly reuse messages from 598

the training phase to refer to novel concepts. Ambi- 599

guity and the use of messages that rely on context 600

to resolve ambiguities that remain after interpret- 601

ing a message can lead to an efficient strategy that 602

agents rely on mainly in coarse context conditions 603

(see Kobrock et al., 2024a). 604

Second, we have shown that agents employ dif- 605

ferent strategies for generalizing to the most spe- 606

cific than to the most generic concepts. Specifically, 607

agents come up with more novel messages that are 608

produced by compositionally combining symbols 609

that have been associated with a fixed meaning (or 610

attribute) during training, when being tested on the 611

most specific concepts. Agents trained in the “to 612

generic” condition, on the other hand, mostly reuse 613

messages the meanings of which have been estab- 614

lished during training. These agents thus make use 615

of the ambiguity of concept-message mappings that 616

has emerged during training, accepting that these 617

messages may be overinformative when describ- 618

ing the most generic concepts. Our findings are in 619

line with results from Chaabouni et al. (2020) who 620

found that compositionality is a sufficient but not a 621

necessary condition for generalization. 622

In summary, we have shown that the success- 623

ful linguistic strategy for generalization depends 624

on whether agents have to generalize from generic 625

(low information) concepts to specific (high infor- 626

mation) concepts or vice versa. Our results add 627

to existing evidence that language in the form of 628

labels is important for abstraction in humans. Our 629

findings go beyond this research indicating a role 630

of compositional messages and novel vs. estab- 631

lished labels depending on the abstraction process. 632

This work has important ramifications for linguistic 633

theories on the role of compositionality and ambi- 634

guity in efficient communication. While previous 635

work has highlighted the role of compositionality 636

in generalization, we have shown that abstraction 637

to more generic concepts does not benefit from a 638

compositional strategy. Instead, our results in the 639

“to generic” condition are in line with two linguis- 640

tic phenomena: First, the widening of meanings 641

in diachronic language change where previously 642

specific meanings are used for more generic con- 643

cepts (see e.g. Wood, 2009; Díaz-Vera, 2022), and 644

second the overgeneralization of familiar labels to 645

unfamiliar objects of the same category in language 646

acquisition (see e.g. Gershkoff-Stowe et al., 2006; 647

Gelman et al., 1998). 648
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Limitations649

The experiments presented here have been con-650

ducted as a proof-of-concept on symbolic data. On651

the one hand, these datasets are an ideal testbed652

for our hypotheses because they have been de-653

signed and constructed specifically for the purpose654

of studying concepts at different levels of abstrac-655

tion. Using symbolic data has the advantage of656

total control over the manipulation and data with-657

out noise. On the other hand, we acknowledge that658

this is also a crucial limitation of our work. Fu-659

ture research needs to show whether the linguistic660

strategies we identify and the differences between661

generalizing to more specific or more generic con-662

cepts via compositionality or abstraction hold also663

for more naturalistic data. A validation on a more664

natural dataset is planned for future work and is665

expected to improve the generalizability of these666

results.667

A fruitful direction for research building on our668

results might be to further investigate especially669

the non-compositional strategy in abstraction to670

more generic concepts. This might be done by re-671

lating our results in the “to generic” condition to672

the phenomenon of overgeneralization in children673

acquiring language. Overgeneralization, or overex-674

tension, happens when a child uses a familiar label,675

for example “boot” to refer to an unfamiliar ob-676

ject, like SANDAL (see e.g. Gelman et al., 1998;677

Rescorla, 1980; Ferreira Pinto and Yang, 2021).678

This is similar to what our agents do when they679

use familiar messages to refer to novel concepts in680

the “to generic” condition. Future research could681

benefit from integrating both lines of research to682

develop new hypotheses on children’s acquisition683

of concepts and overgeneralization as a pragmatic684

strategy for successful and efficient communica-685

tion even if the correct label is not known (see e.g.686

Gershkoff-Stowe et al., 2006).687

Another direction for future research is to inves-688

tigate specifically the role of communicative pres-689

sures during the emergent communication in our690

setting. Recent research in the field is dedicated to691

understanding better how efficient emergent com-692

munication systems emerge as a function of infor-693

mativeness and utility, and highlights the role of694

communicative pressures for the emergence of an695

efficient solution that generalizes well (e.g. Gual-696

doni and Boleda, 2024; Tucker et al., 2022b,a). In697

our study, we do not use any communicative pres-698

sures except for keeping the maximum message699

length quite small (corresponding to the number of 700

attributes in a dataset). Future work would benefit 701

from aligning these two lines of work and inves- 702

tigate the role of communicative pressures in our 703

setup. Specifically, as also brought up by one of 704

our reviewers, it would be very interesting to see 705

whether in the “to generic” condition, where we 706

observe that agents mostly reuse messages from 707

training that might be overinformative during test- 708

ing on the most generic concepts, a communicative 709

pressure such as a cost on the message length or 710

an informativeness pressures as in Tucker et al. 711

(2022b) might lead to shorter and less overinforma- 712

tive messages. 713

Related to both research directions outlined 714

above, another fruitful avenue will be to investi- 715

gate specifically the pragmatic processes involved 716

in selecting an efficient message for an unfamiliar 717

referent and investigate whether, for example, rea- 718

soning about the listener’s likely interpretation of 719

a message helps speakers to identify a well-suited 720

message, improving the agents’ performance in the 721

zero-shot test (see Zarrieß and Schlangen, 2019, 722

for a related approach). 723
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training validation

D(3,4) 1.00 ± 0.00 0.98 ± 0.01
D(3,8) 0.99 ± 0.00 0.98 ± 0.01
D(3,16) 0.97 ± 0.00 0.96 ± 0.01
D(4,4) 1.00 ± 0.00 1.00 ± 0.00
D(4,8) 0.98 ± 0.01 0.97 ± 0.01
D(5,4) 0.99 ± 0.00 0.99 ± 0.00

Table 4: To specific: Training and validation accuracies.

training validation

D(3,4) 0.98 ± 0.01 0.97 ± 0.02
D(3,8) 0.97 ± 0.00 0.97 ± 0.00
D(3,16) 0.96 ± 0.01 0.96 ± 0.01
D(4,4) 0.99 ± 0.01 0.98 ± 0.01
D(4,8) 0.97 ± 0.01 0.97 ± 0.02
D(5,4) 0.98 ± 0.01 0.98 ± 0.01

Table 5: To generic: Training and validation accuracies.

A Training and validation accuracies 912

We present the training and validation accuracies 913

for the “to specific” and “to generic” conditions 914

in Table 4 and Table 5, respectively. For the in- 915

terpretation of the zero-shot test accuracies, it is 916

important that we achieve high training and valida- 917

tion accuracies in both conditions. 918

B Number of test concepts and messages 919

The zero-shot test datasets differ between condi- 920

tions in the number of concepts presented due to 921

there being more specific concepts than generic 922

concepts in our datasets. In Table 6 and Table 923

7, we present the numbers of concepts in the test 924

data splits Ctest, as well as the number of unique 925

messages used during testing Mtest, for the “to 926

specific” and “to generic” condition, respectively. 927

From these two values, we calculate the message- 928

concept ratio Mtest/Ctest reported in the main pa- 929

per. 930

C Example protocols and qualitative 931

analysis 932

In this section, we show examples of the messages 933

the agents used to refer to concepts during test- 934

ing for both conditions. We also conduct a short 935

qualitative analysis. 936

In Table 8 and Table 9, we show for each dataset 937

one randomly picked example of a concept that 938
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Ctest Mtest Mtest/Ctest

D(3,4) 64 54.0 ± 3.6 0.84 ± 0.06
D(3,8) 512 348.8 ± 28.5 0.68 ± 0.06
D(3,16) 4096 948.6 ± 123.7 0.23 ± 0.03
D(4,4) 256 236.2 ± 9.6 0.92 ± 0.04
D(4,8) 4096 2380.8 ± 437.7 0.58 ± 0.11
D(5,4) 1024 911.0 ± 34.9 0.89 ± 0.03

Table 6: To specific: Number of concepts and messages
for the test split and their ratio.

Ctest Mtest Mtest/Ctest

D(3,4) 12 11.8 ± 0.4 0.98 ± 0.03
D(3,8) 24 22.2 ± 0.4 0.93 ± 0.02
D(3,16) 48 44.4 ± 0.8 0.93 ± 0.02
D(4,4) 16 15.6 ± 0.8 0.97 ± 0.05
D(4,8) 32 28.8 ± 3.1 0.90 ± 0.10
D(5,4) 20 19.6 ± 0.5 0.98 ± 0.02

Table 7: To generic: Number of concepts and messages
for the test split and their ratio.

the agents have seen during testing. The concept939

is a specific concept in the “to specific” test case.940

This means that all attributes are fixed to a specific941

value, e.g. (1,1,2) for D(3,4). These concepts are942

presented in a randomly sampled context condition.943

We define the context condition as the number of944

shared attributes between target concept and ob-945

jects in the context, i.e. distractors. For example946

for D(3,4), there is one shared attribute between tar-947

get concept and objects in the context. This means948

that the higher the context condition, the closer949

the context is to the target concept, i.e. the more950

specific a message has to be to be sufficiently dis-951

criminative in a certain context. The messages end952

with the EOS symbol that terminates the message,953

i.e. “0”. These are examples from the interactions954

that have been gathered during testing.955

Our goal for the qualitative analysis was to check956

whether specific symbols have been associated with957

a specific attribute during training. For this purpose,958

we constructed a mapping between fixed attributes959

and symbols uttered during training based on the960

mutual information score defined in section 3.2.961

This mapping is position-sensitive, i.e. we find the962

symbol with the highest mutual information for an963

attribute at a certain position in the concept. The964

two rightmost columns show the symbols which965

have been associated with a specific attribute in a966

specific position as well as the respective mutual 967

information score. For example for D(3,4), the 968

symbol associated with a value 1 in the first posi- 969

tion of the target concept is “4”. This symbol is 970

not communicated in the message from this exam- 971

ple. The symbols associated with values 1 and 2 in 972

the second and third position of the target concept, 973

however, are encoded in the messages, i.e. “14” 974

and “11”. 975

In the to specific condition, we generally observe 976

quite high mutual information scores for symbols 977

being associated with certain attributes. In addition, 978

we observe a high tendency of these symbols being 979

included in the speaker agents’ actual messages. 980

In the “to generic” condition, the test dataset 981

contains only generic concepts, i.e. concepts with 982

only one fixed attribute. Attributes which are not 983

fixed and thus irrelevant to the target concept are 984

represented as _ in Table 9. By definition, generic 985

concepts can only appear in coarse contexts, i.e. 986

when 0 attributes are shared between the target 987

concept and the objects in the context. Again, we 988

randomly selected one example from the test inter- 989

actions. We conducted the same qualitative analy- 990

sis as for the “to specific” condition. However, as 991

we have seen in the quantitative analyses presented 992

in the main paper that in the “to generic” condition, 993

agents mostly reuse messages from training, we 994

do not expect to see the same pattern as in the “to 995

specific” condition. Indeed, the mutual informa- 996

tion between single symbols and attributes is rather 997

small with the highest value being 0.31. In line 998

with this observation, we do not find a consistent 999

position-sensitive attribute-symbol mapping for the 1000

“to generic” condition. And the symbols with the 1001

highest mutual information are not consistently in- 1002

cluded in the messages. 1003

These qualitative findings support the main con- 1004

clusion from the quantitative analyses, namely that 1005

agents use different strategies for generalizing “to 1006

specific” or “to generic” concepts. In the “to spe- 1007

cific” condition, position-sensitive symbol-attribute 1008

mappings emerge during training and are success- 1009

fully used for generalizing via composition. 1010

D Dataset sizes 1011

Tables 10 and 11 show the sizes of the datasets. 1012

E Computational Budget 1013

We ran the experiments reported in this paper on 1014

a High-Performance-Computing Cluster (HPC3) 1015
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fixed indices fixed values context
condition

message symbol symbol MI

D(3,4) (1,1,1) (1,1,2) 1 [11,14,14,0] 4 0.7340
14 1
11 0.7465

D(3,8) (1,1,1) (3,0,4) 1 [18,14,8,0] 13 0.4077
15 0.5491
18 0.3100

D(3,16) (1,1,1) (0,14,13) 2 [31,40,20,0] 27 0.0724
40 0.1166
13 0.0471

D(4,4) (1,1,1,1) (0,0,2,0) 0 [2,13,9,14,0] 14 0.6409
9 0.3386
13 0.3141
2 0.8785

D(4,8) (1,1,1,1) (3,7,0,5) 1 [22,10,7,19,0] 22 0.4357
10 0.4502
12 0.1765
19 0.6663

D(5,4) (1,1,1,1,1) (3,2,1,2,1) 4 [10,15,4,12,14,0] 15 0.3144
14 0.3086
10 0.9573
12 0.2455
4 0.1043

Table 8: To specific: One random example for a specific concept from the test data per dataset, the context condition
in which it was presented (in number of shared attributes) and the message that was used to refer to the concept.
The two rightmost columns present the results of a qualitative analysis where we sampled symbols that have been
associated with attributes of the target concept during training.

on a single gpu core, using up to 400GB memory.1016

We estimate the computing time for reproducing1017

all results reported here, including generating the1018

datasets and training the models on the six datasets1019

for five runs at <72h with comparable resources.1020
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fixed indices fixed values context
condition

message symbol symbol MI

D(3,4) (1,0,0) (1,_,_) 0 [14,14,2,0] 14 0.3181
D(3,8) (1,0,0) (1,_,_) 0 [12,1,13,0] 8 0.2446
D(3,16) (0,0,1) (_,_,2) 0 [18,13,28,0] 18 0.0665
D(4,4) (0,1,0,0) (_,1,_,_) 0 [13,13,6,6,0] 9 0.0002
D(4,8) (0,0,1,0) (_,_,3,_) 0 [24,10,8,8,0] 25 0.0918
D(5,4) (0,0,0,1,0) (_,_,_,0,_) 0 [7,7,9,14,14,0] 2 0.0143

Table 9: To generic: One random example for a generic concept from the test data per dataset, the context condition
in which it was presented (in number of shared attributes) and the message that was used to refer to the concept.
The two rightmost columns present the results of a qualitative analysis where we sampled symbols that have been
associated with attributes of the target concept during training.

training validation test total

D(3,4) 810 270 64 1144
D(3,8) 3060 992 512 4564
D(3,16) 11880 3936 4096 19912
D(4,4) 7320 2432 256 10008
D(4,8) 52080 17344 4096 73520
D(5,4) 55350 18432 1024 74806

Table 10: To specific: Number of unique concepts in
each dataset for each dataset split.

training validation test total

D(3,4) 780 308 12 1036
D(3,8) 3435 1429 24 4376
D(3,16) 15606 7945 48 19504
D(4,4) 7429 2683 16 9871
D(4,8) 55972 21339 32 73248
D(5,4) 56140 19507 20 74643

Table 11: To generic: Number of unique concepts in
each dataset for each dataset split.
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