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Abstract

We propose SymbolicVision, a physics-
constrained symbolic regression framework that
derives interpretable mathematical expressions
directly from multi-spectral remote sensing
imagery. Unlike black-box deep models, Symbol-
icVision combines a Vision-based image encoder
with a Transformer-based symbolic decoder
to enable cross-modal learning between visual
features and symbolic formulas. A hybrid loss
design ensures both numerical accuracy and
physical plausibility. Evaluated on symbolic
benchmarks (SRBench) and real satellite datasets
(Open-Canopy), SymbolicVision achieves high
predictive accuracy (R2 > 0.99), and robust
performance on geospatial tasks. This work high-
lights the potential of interpretable, physics-aware
models for scientific remote sensing.

1. Introduction and Motivation
Remote sensing imagery captures essential physical and
environmental information across multiple spectral bands,
such as vegetation health, soil moisture, and surface temper-
ature (Zhu et al., 2017; Yu et al., 2024; 2025d; Yu, 2025;
Makke & Chawla, 2024a; Grayeli et al., 2024). However, ex-
tracting physically interpretable expressions from such data
remains a major challenge (AbdusSalam et al., 2025; Makke
& Chawla, 2024b; Merler et al., 2024). Traditional empirical
methods, like the Normalized Difference Vegetation Index
(NDVI) and the Soil-Adjusted Vegetation Index (SAVI),
rely on predefined formulas that require extensive domain
knowledge and verification (Huete et al., 2018; Davis, 2024;
Yu et al., 2025a;e). Machine learning approaches (e.g.,
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Figure 1. Architecture of SymbolicVision. The framework inte-
grates a vision encoder, symbolic decoder, and cross-modal fusion
under physics-based supervision.

Random Forest, UNet, Transformers) improve accuracy
but offer limited interpretability (Chen & Guestrin, 2016;
Zhu et al., 2017; Zhou et al., 2024; Wang et al., 2024; Yu
et al., 2025b). Symbolic regression (SR) offers an inter-
pretable alternative, discovering human-readable formulas
from data (Koza, 1994; Udrescu & Tegmark, 2020; Tash-
toush et al., 2024; Zhang et al., 2024a; Yu et al., 2025c; Tian
et al., 2025; Zhang et al., 2024b). Yet, most SR methods are
built for tabular data and fail on high-dimensional spatial-
spectral imagery. Transformer-based SR (e.g., Symbol-
icGPT (Kamienny et al., 2021), NeSymReS (Biggio et al.,
2021), TPSR (Landajuela et al., 2023)) scales better but
lacks support for image data and physics constraints. Chal-
lenges remain in extracting symbolic knowledge directly
from remote sensing imagery due to complex spatial depen-
dencies and spectral variance (Jiang et al., 2024; Hochmair
et al., 2025; Glazer et al., 2024; Yang et al., 2024; Polydoros
et al., 2025). We propose SymbolicVision, a vision-symbolic
framework combining Swin Transformer encoders and sym-
bolic decoders, with physics-informed constraints. This
enables accurate, interpretable expressions from imagery,
bridging remote sensing and scientific discovery.
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Table 1. Performance comparison of different models. The bold is the best, while the underlined is the second. N denotes the nodes.

Dataset SymbolicVision MMSR TPSR End2End NeSymReS SymbolicGPT
R2↑ N↓ R2↑ N↓ R2↑ N↓ R2↑ N↓ R2↑ N↓ R2↑ N↓

Nguyen 0.9996±0.004 14.5 0.9999±0.001 14.5 0.9948±0.002 16 0.8814±0.004 16.3 0.8568±0.003 18.2 0.6713±0.005 21.6
Keijzer 0.9980±0.004 16.3 0.9983±0.003 16.3 0.9828±0.003 20.6 0.8134±0.005 18.4 0.7992±0.003 21.3 0.6031±0.004 24.5
Korns 0.9979±0.004 19.2 0.9982±0.003 19.2 0.9325±0.004 22.9 0.8715±0.004 23.4 0.8011±0.005 24.1 0.6613±0.005 29.2

Constant 0.9983±0.004 24.5 0.9986±0.002 24.5 0.9319±0.002 35.3 0.8015±0.003 28.3 0.8344±0.003 32.9 0.7024±0.004 38.5
Livermore 0.9815±0.005 29.4 0.9844±0.003 29.4 0.882±0.004 38.2 0.7015±0.004 32.2 0.6836±0.005 36.2 0.5631±0.0005 41.2

Vladislavleva 0.9859±0.004 21.7 0.9862±0.003 21.7 0.9028±0.005 24.6 0.7422±0.005 22.2 0.6892±0.004 27.3 0.5413±0.004 36.6
R 0.9918±0.005 16.4 0.9924±0.004 16.4 0.9422±0.003 16.2 0.8512±0.004 19.5 0.7703±0.005 19.9 0.7042±0.005 25.2

Jin 0.9937±0.004 28.3 0.9943±0.003 28.3 0.9826±0.004 29.5 0.8611±0.004 29.8 0.8327±0.003 32.2 0.7724±0.006 36.9
Neat 0.9969±0.005 17.3 0.9972±0.004 17.3 0.9319±0.002 16.4 0.8044±0.004 19.7 0.7596±0.005 20.6 0.6377±0.005 26.4

Others 0.9985±0.004 20.6 0.9988±0.002 20.6 0.9667±0.002 22.5 0.8415±0.003 22.3 0.8026±0.003 23.5 0.7031±0.004 31.8
Feynman 0.9908±0.005 20.8 0.9913±0.002 20.8 0.8928±0.004 21.3 0.7353±0.004 22 0.7025±0.005 22.4 0.5377±0.005 26.8
Strogatz 0.9789±0.005 21.6 0.9819±0.003 21.6 0.8249±0.002 24.4 0.6626±0.003 25.4 0.6022±0.003 28.1 0.5229±0.004 32.6

Black-box 0.9934±0.005 26.7 0.9937±0.004 26.7 0.8753±0.004 29.3 0.6925±0.004 31.2 0.6525±0.005 33.9 0.5833±0.005 37.4
Average 0.993 21.3 0.9934 21.3 0.9264 24.4 0.7892 23.9 0.7528 26.2 0.6311 32.4

Table 2. Performance of SymbolicVision on multi-tasks.
Input Data Task R2 Nodes

R, Nir NDVI 0.9733 ± 0.0021 29.2
G, Nir GNDVI 0.9733 ± 0.0020 47.3
R, Nir SAVI 0.9675 ± 0.0034 29.1

B, R, Nir EVI 0.9420 ± 0.0041 37.5
G, Nir NDWI 0.9975 ± 0.0003 43.1

H AGB 0.9998 ± 0.0001 33.3
H CS 0.9995 ± 0.0002 21.8

2. Methodology
Overview. SymbolicVision includes a training phase where
image features are used to learn symbolic expressions and
an inference phase that applies learned expressions to new
data. The model is trained with a composite loss.

Symbolic Inference. Let D = {(xi, yi)}Ni=1, where xi

is a feature vector extracted from imagery, yi is the target
value, and N is the total number of training samples. The
goal is to discover an expression f(·) such that yi ≈ f(xi).
Expressions are constructed from a predefined operator set
O, and the search is guided by a Transformer-based decoder.

Encoder Design. We adopt a Swin Transformer (Liu
et al., 2021) as the image encoder to extract multi-scale
spatial-spectral features Fl. These features are aligned
with symbolic regression inputs via a consistency loss
Lcon = 1

N

∑N
i=1 ∥Fi − Ftarget

i ∥22.

Physical Constraints. To ensure physical plausibility, we
introduce a regularization term based on energy conserva-
tion, formulated as Lphy =

∑
k ∥∇ · Ek − ρk∥22, where Ek

represents energy flow and ρk denotes energy density.

Training Losses. The symbolic decoder is trained with two
objectives: a regression loss LMSE = 1

N

∑N
i=1(yi−f(xi))

2

that ensures numerical accuracy, and a cross-entropy loss
LCE = − 1

N

∑N
i=1 S

target
i log(Ŝi) that encourages structural

similarity between generated and reference expressions.

Module Design. The framework consists of four modules:
an image encoder (Swin Transformer) to extract image fea-
tures Fimg; an expression encoder (Transformer) to embed
symbolic expressions as Fexp; a decoder that generates ex-
pressions using cross-attention; and a feature fusion module
that applies multi-head attention to align Fimg and Fexp.

Optimization. The training process consists of three stages.
In the first stage, the Swin encoder is pretrained by minimiz-
ing the contrastive loss Lcon to align multi-spectral features.
In the second stage, the full model is optimized jointly
using a combination of losses: contrastive (Lcon), cross-
entropy (LCE), mean squared error (LMSE), and physics-
based consistency (Lphy). Finally, in the third stage, the
symbolic expressions generated by the model are refined us-
ing BFGS optimization. The overall loss function is defined
as: L = λconLcon + λCELCE + λMSELMSE + λphyLphy.

3. Experiments
We evaluate SymbolicVision on three datasets: SR-
Bench (de Franca et al., 2024), Open-Canopy (Fogel
et al., 2024), and an Expanded Open-Canopy dataset (Ap-
pendix A). For evaluation, we adopt R2, and Nodes to quan-
tify. Experiments are conducted on an NVIDIA A100 GPU.

Comparison with baselines. Table 1 shows the perfor-
mance of SymbolicVision against recent SR baselines in-
cluding MMSR, TPSR, SymbolicGPT, and NeSymReS. Our
method consistently achieves top-2 accuracy while maintain-
ing fewer symbolic nodes, reflecting a favorable trade-off
between interpretability and performance.

Multi-task symbolic regression. Table 2 demonstrates
SymbolicVision’s capability on multi-modal remote sensing
tasks. It achieves R2 above 0.97 on vegetation indices such
as NDVI and GNDVI, and over 0.999 on biomass (AGB)
and carbon stock (CS), verifying strong generalization in
symbolic prediction.
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4. Conclusion and Future Work
SymbolicVision enables symbolic regression directly from
multi-spectral remote sensing imagery by combining Swin-
based feature extraction, a symbolic Transformer decoder,
and physics-aware constraints. It achieves both high ac-
curacy and interpretability across geospatial tasks. Future
work includes extending to hyperspectral data and integrat-
ing uncertainty estimation and symbolic priors.
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A. Constructing Dataset
A.1. Parameter Description

The spectral indices used in this study are derived from SPOT 6/7 data and serve as key indicators for vegetation condition
and ecological structure estimation. All computations are based on four spectral bands: Blue (B1, 450–520 nm), Green (B2,
530–590 nm), Red (B3, 625–695 nm), and Near Infrared (B4, 760–890 nm).

We include five vegetation-related indices: NDVI, GNDVI, SAVI, EVI, and NDWI. Among them, SAVI introduces a soil
adjustment factor L to correct background influence, while EVI incorporates gain and aerosol resistance coefficients G, C1,
and C2 for atmospheric correction. These indices are calculated using standard definitions widely adopted in remote sensing
literature.

In addition to indices, we include three structural variables: canopy height (H), aboveground biomass (AGB), and carbon
stock (CS), which are estimated from regression models using NDVI, SAVI, and LiDAR-derived height information.
Empirical coefficients (a, b, c, CF ) in these models are region-specific and derived from ecological studies on open-canopy
forest systems.

A.2. Spectral Indices

1. Normalized Difference Vegetation Index (NDVI) (Gong et al., 2024)

NDV I =
B4−B3

B4 +B3
(1)

NDVI is widely used to measure vegetation health and biomass productivity. It utilizes the difference between
near-infrared (NIR, B4) and red (B3) reflectance to assess chlorophyll activity in plants.

2. Green Normalized Difference Vegetation Index (GNDVI) (Gitelson & Merzlyak, 1996)

GNDV I =
B4−B2

B4 +B2
(2)

GNDVI is a modification of NDVI that enhances sensitivity to vegetation chlorophyll content by incorporating the
green band (B2) instead of the red band (B3).

3. Soil-Adjusted Vegetation Index (SAVI) (Huete, 1988)

SAV I =
(B4−B3)× (1 + L)

B4 +B3 + L
(3)

where L = 0.5 is the soil adjustment factor, which minimizes soil brightness effects in low-vegetation areas.

4. Enhanced Vegetation Index (EVI) (Huete et al., 2002)

EV I = G× (B4−B3)

B4 + C1 ×B3− C2 ×B1 + L
(4)

where G = 2.5, C1 = 6, C2 = 7.5, and L = 1. EVI improves upon NDVI by reducing atmospheric and background
noise, making it more suitable for dense vegetation monitoring.

5. Normalized Difference Water Index (NDWI) (McFeeters, 1996)

NDWI =
B2−B4

B2 +B4
(5)

NDWI is used to monitor water bodies, distinguishing open water from land features. It leverages the high reflectance
of water in the green band (B2) and the strong absorption in the NIR band (B4).
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A.3. Ecological Structural Variables

1. Canopy Height (H) The canopy height data is directly obtained from the Open-Canopy dataset (Fogel et al., 2024) and
is not derived from NDVI or any regression model.

2. Aboveground Biomass (AGB) (Chave et al., 2014)

AGB = a×Hb (6)

where H represents canopy height obtained from the Open-Canopy dataset, and a, b are empirical constants derived
from literature or site-specific calibration.

For temperate forests in France, typical values from literature suggest that for coniferous forests, the empirical
coefficients are a = 0.118 and b = 2.53; for broadleaf forests, a = 0.052 and b = 2.69; and for mixed forests,
a = 0.067 and b = 2.58 (Raj et al., 2024).

If forest type is unknown, a general model can be used:

AGB = 0.067×H2.58 (7)

which is a widely used allometric equation for estimating biomass in temperate forests.

3. Carbon Stock (CS) (Malerba et al., 2024)
CS = AGB × CF (8)

where CS represents the carbon stock (tC/ha), which is the total amount of carbon stored in aboveground biomass.
AGB refers to the aboveground biomass (t/ha), estimated from canopy height using empirical models. CF = 0.47 is
the carbon fraction factor, indicating that approximately 47% of the total biomass is composed of carbon, as suggested
by IPCC guidelines. This factor may vary depending on tree species and environmental conditions but is commonly
used in temperate and tropical forest studies.
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