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ABSTRACT

We study best-of-N for large language models (LLMs) where the selection is
based on majority voting. In particular, we analyze the limit N → ∞, which
we denote as best-of-∞. While this approach achieves impressive performance in
the limit, it requires an infinite test-time budget. To address this, we propose an
adaptive generation scheme that selects N based on answer agreement, thereby
efficiently allocating inference-time computation. Beyond adaptivity, we extend
the framework to weighted ensembles of multiple LLMs, showing that such mix-
tures can outperform any individual model. The optimal ensemble weighting is
formulated and efficiently computed as a mixed-integer linear program. Extensive
experiments demonstrate the effectiveness of our approach.

1 INTRODUCTION

The last few years have witnessed remarkable advancements in large language models (LLMs),
in their industrial successes including closed models such as Gemini (Gemini Team, 2025), GPT
(OpenAI, 2023), and Claude (Anthropic, 2025) as well as open-weight models such as Llama (Llama
Team, 2024), Deepseek (DeepSeek-AI, 2025), Qwen (Qwen Team, 2025; Ye et al., 2025; Cheng
et al., 2025) and many others including Liu et al. (2023); Almazrouei et al. (2023); Gao et al. (2023);
Jiang et al. (2023a); Biderman et al. (2023); BigScience Workshop (2023); OpenAI (2025); Wang
et al. (2025b); NVIDIA (2025); Abdin et al. (2025); Ji et al. (2025); LG AI Research (2025). One
of the largest interests in the realm of LLMs is on their ability to perform complex reasoning tasks.
A breakthrough in the reasoning of LLMs was the introduction of chain-of-thought prompting (Wei
et al., 2022; Kojima et al., 2023), which allows models to generate intermediate reasoning steps
before arriving at an answer. Instruction-tuned LLMs optimized to generate longer chains of thought
have drastically increased performance in these tasks (Muennighoff et al., 2025).

Spending more computational resources at test time, in particular by generating multiple answers,
leads to more reliable inference (Snell et al., 2025; Brown et al., 2024). A simple yet effective
strategy is the best-of-N (BoN) approach, where we generate N answers and select the best one
based on some criteria. There are several ways to implement the BoN strategy. One common

Figure 1: Accuracy of Best-of-N with majority voting as a function of N (GPT-OSS-20B (Medium))
with four datasets (Maxwell-Jia, 2024; OpenCompass, 2025; Rein et al., 2023; Hendrycks et al.,
2021). Green line indicates the asymptotic accuracy of N → ∞. For each problem, BoN benefits
from increasing N , at least from N = 101 to 102.
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Figure 2: An illustration of adaptive sampling (Algorithm 1). The histogram shows the distribution
of answers generated by an LLM for a single problem. Each answer generation can be viewed as
a sample from the underlying distribution. Blue indicates the most frequent answer, and orange
indicates the others. In the top example, three generations agree, so sampling stops. In the bottom
example, more samples are needed to determine the majority. This maximizes the accuracy under a
given compute budget. Confidence in the majority is based on the Bayes factor.

approach is to use a reward model to select the best answer (Uesato et al., 2022; Rafailov et al.,
2023; Wan et al., 2024; Dong et al., 2024; Liu et al., 2024; Wang et al., 2024; Wu et al., 2025) or
asking LLM to choose a preferable answer (Mahan et al., 2024; Son et al., 2024; Guo et al., 2025;
Chen et al., 2025a). Another approach is majority voting (Wang et al., 2023) in which the most
frequent answer is selected.

Despite its simplicity, majority voting has several advantages. First, it does not require any additional
modeling or further text generation. Second, compared with other methods, majority voting is robust
to reward hacking and benefits from additional generations with minimal risk, unlike reward-based
models where increasing N can lead to overfitting (Huang et al., 2025). Third, for reasoning tasks,
majority vote is reported to be very effective (Chen et al., 2024). Across datasets, majority voting
performance generally increases with N (Figure 1).

While we desire to achieve such Best-of-N performance of N → ∞, which we call best-of-∞ per-
formance, it requires an infinite number of generations (samples), which is infeasible in real-world
scenarios. Yet, for the same test-time budget, we can utilize the available budget more effectively.
As shown in Figure 2, we can generate samples adaptively until we determine the majority with
some confidence level. We introduce a principled method to determine when to stop generating
answers and when to continue using Bayesian modeling (Section 2).

Our scheme can be naturally extended to ensembles of multiple LLMs. Importantly, ensemble ma-
jority voting can naturally benefit from complementarity. For example, in the AIME2025 dataset, the
best-of-∞ performance of GPT-OSS-20B (OpenAI, 2025) and Nemotron-Nano-9B-v2 (NVIDIA,
2025) are 90.0% and 73.0%, respectively, but their ensemble achieves 93.3%. A weak LLM can
contribute to the ensemble if it has complementary strengths.

A key theoretical contribution of this work is the formulation of optimal ensemble weighting as a
tractable optimization problem. We show that finding the optimal weight vector that maximizes
best-of-∞ accuracy can be reduced to a mixed-integer linear program (MILP) (Section 3). This
formulation is enabled by considering the asymptotic limit: while optimizing weights for finite N
requires enumerating an exponentially large number of answer combinations, the best-of-∞ frame-
work yields a polytope structure that allows efficient optimization via standard MILP solvers. To our
knowledge, this is the first work to provide a computationally tractable method for finding provably
optimal ensemble weights in the context of LLM majority voting.

Finally, we evaluate the performance of the proposed method (Section 4). Our experimental results
include 11 instruction-tuned LLMs and four heavy-reasoning problem sets (AIME2024, AIME2025,
GPQA-DIAMOND, MATH500), with at least 80 generations for each LLM–problem set com-
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bination. This represents a significantly larger scale of test-time computation than prior work.
We demonstrate that the MILP-optimized ensemble weights consistently outperform both uniform
weighting and single-model selection across all benchmarks. We release our generation results for
subsequent research. Related work is discussed in Appendix B.

2 BEST-OF-∞ IN FINITE SAMPLES

Algorithm 1 Approximated Best-of-∞: Determining answer for single problem

Require: Maximum samples Nmax, concentration parameter α, Bayes factor threshold B.
1: for n = 1, 2, . . . do
2: if we use LLM Ensemble (Section 3) then
3: Choose LLM with probability {wi}i∈K.
4: end if
5: Ask the LLM for the answer of the problem to obtain answer.
6: if n = Nmax or BF(n) ≥ B then
7: break
8: end if
9: end for

10: return The most frequent answer.

While Best-of-∞ defines an idealized best-of-N ensemble in the limit N → ∞, its literal realization
would require unbounded test-time compute. We now develop a finite-sample procedure that closely
tracks this limit. Our core idea is to adaptively samples (i.e., ask LLM to generate the answers) until
we are sure the population majority vote with a desired confidence level. In other words, we aim to
terminate the answer generation process as soon as sufficient statistical evidence has been obtained
to support the conclusion that the currently most frequent response corresponds to the true majority,
which allows different number of N across problems. A distinctive challenge of this problem lies
in the fact that the support of the answer distribution generated by large language models (LLMs) is
unknown. For instance, in one case an LLM may produce two candidate answers, such as 42 with
probability 70% and 105 with probability 30%, whereas in another case it may yield four distinct
outputs, such as 111 with probability 40%, 1 with probability 25%, 2 with probability 20%, and 702
with probability 15%. Given such uncertainty in the variation of generated responses, a particularly
well-suited approach is to employ nonparametric Bayesian modeling. In particular, we adopt a
Dirichlet process DP(H,α) prior over the answer space that captures the unknown distribution of
answers. Here, H is a base distribution1 over the answer space, and α > 0 is a concentration
parameter that controls the likelihood of generating new answers. Intuitively speaking, α is the
strength of the prior belief in the existence of new answers. Assume that, at round n, we observe
s(n) different answer A1, A2, . . . , As(n) with corresponding counts N1 ≥ N2 ≥ N3 · · · ≥ Ns(n).
Then, the posterior distribution is

DP

(
α

α+ n
H︸ ︷︷ ︸

base distribution

+
1

α+ n

s(n)∑
j=1

NjδAj︸ ︷︷ ︸
empirical distribution

, α+ n

)
. (1)

The first argument of the posterior above states that the posterior is increasingly concentrated around
the observed answers as more data is collected.

We use the Bayes factor (Jeffreys, 1935; Good, 1967; Kass & Raftery, 1995; Lindon & Malek, 2022)
to measure the evidence of true majority.2

1The base distribution can have a possibly infinite support, such as all possible integers. For some tasks,
such as GPQA, the answer is given in a finite domain (e.g., A, B, C, D), and thus the base distribution is of a
finite support. In such cases, Dirichlet process is exactly the same as the Dirichlet distribution. The advantage
of the Dirichlet process is to unify the treatment for both finite and infinite answer spaces, as well as having
some reguralization with a hyperparameter α.

2The use of the Bayes factor for categorical data is not new. Unlike their case, our case starts from an
unknown number of categories, which is handled by the Dirichlet process prior and via some approximation.
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Formally, we define the hypotheses as follows:

H0 : The most frequent answer A1 is not the true majority. (2)
H1 : The most frequent answer A1 is the true majority. (3)

and define the Bayes factor (BF), which quantifies the strength of evidence in the data for H1, as

BF :=
P(D(n)|H1)

P(D(n)|H0)
, (4)

where D(n) is the observed data so far. Here, P(D(n)|H1),P(D(n)|H0) are the evidence (marginal
likelihood) based on the observed data. Then, the Bayes factor of equation 4 can be computed as
follows:

BF(n) :=
P(D(n)|H1)

P(D(n)|H0)
=

P(H1|D(n))

P(H0|D(n))
· P(H0)

P(H1)
(Bayes’ theorem) (5)

≈ s(n)
P(H1|D(n))

P(H0|D(n))
(approximating the prior ratio by uniform prior) (6)

= s(n)
P(H1|D(n))

1− P(H1|D(n))
(H0 ∪H1 is the entire space) (7)

where P(H1|D(n)),P(H0|D(n)) are the corresponding posteriors. Note that, in the second line, we
approximated the DP prior with a uniform prior over the existing answers.

When n is sufficiently large compared with α, P(H1|D(n)) of the DP posterior can approximated
by a Dirichlet distribution as:

P(H1|D(n)) ≈ Pr[X1 ≥ max
i ̸=1

Xi, X ∼ Dirichlet(N1 + 1, N2 + 1, . . . , Ns(n) + 1, α)], (8)

by approximating the probability of A1 appearing in the base distribution H to be zero. The Dirichlet
distribution is a conjugate distribution of the categorical distribution of s(n) + 1 of answers, where
the last dimension corresponds to the unobserved answers. Here, the final component of weight α is
added to account for the base distribution H . While this quantity is not trivial to compute, it can be
estimated using Monte Carlo methods by sampling from the Dirichlet distribution.

The following theorem states that, if we set Nmax and B sufficiently large, the algorithm’s perfor-
mance converges to the best-of-∞ performance. The proof is given in Appendix C.

Theorem 1. (Consistency) Assume that the LLM generates a finite number of answers 1, 2, . . . , s.
For ease of discussion, let pj be the probability of answer j and assume that p1 > p2 ≥ p3 ≥
. . . ≥ ps > 0. Namely, there are no ties for the most frequent answer, and each answer is generated
with a non-zero probability. Then, as Nmax, B → ∞, the algorithm’s performance converges to the
best-of-∞ performance almost surely. Namely, the algorithm returns the true majority answer with
probability 1.

3 LLM ENSEMBLE

Algorithm 1 is naturally extended to use more than one LLM. Let i ∈ K index the LLMs, and let
w = (w1, w2, . . . , wK) be the weight vector, where wi ≥ 0 and

∑
i∈K wi = 1. Algorithm 1 with an

LLM ensemble proceeds as follows: for each generation, we first select an LLM i with probability
wi, and then ask the selected LLM for the answer.

Let us consider the optimal weighting scheme for the BoN inference. Let q ∈ Q be the problem.
Each problem is associated with answer domain Aq .

Example 1 (AIME2025). For AIME2025, Aq ⊆ {1, 2, . . . , 999, U}, where U denotes either an
out-of-range integer, fractional number, or a failure to emit a final answer; U is always incorrect.

Aggarwal et al. (2023) applies Dirichlet distribution to majority voting in the context of LLM consistency, and
approximated the posterior probability with Beta distribution on top-two majority answers. Wang et al. (2025a)
applies frequentist confidence interval for adaptive stopping.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

For each problem, let gq ∈ Aq be the gold answer. Each LLM-problem pair (i, q) is the probability
distribution Piq over Aq . For each problem q, we obtain multiple generations from the LLMs and
take a majority vote to produce aq . The total number of correct answers is

f({aq}) :=
∑
q∈Q

1[aq = gq]. (9)

We aim to maximize it in expectation: E[f({aq})]. Here, the expectation is taken over the random-
ness in the generation of LLMs.

3.1 BEST-OF-ONE

Before going into Best-of-∞, we first consider the best-of-one (Bo1) policy, which first selects an
LLM with probability proportional to w, and then uses the LLM to generate a single answer. An
immediate observation is that the optimal weight is to put all the weight on the best LLM.

Lemma 1. (Optimal Bo1) The accuracy of Eq. equation 9 is maximized when we choose wi∗ = 1
and wj = 0 for all j ̸= i∗, where wi∗ is the weight for the best LLM i∗. Namely, let pqi =
(pqi,1, p

q
i,2, . . . , p

q
i,|Aq|) ∈ ∆Aq be the probability distribution on Aq of the answers that LLM i

generates. Then, pqi,gq be the probability that LLM i generates the gold answer gq for problem q.
The average accuracy of LLM i is

∑
q p

q
i,gq

, and the best LLM, which maximizes this quantity, is
i∗ = argmaxi∈K

∑
q p

q
i,gq

.

Proof. It is easy to see that

f({aq}) :=
∑
i

wi

∑
q∈Q

pqi,gq

 ≤ max
i

∑
q∈Q

pqi,gq

 .

For Bo1, the optimal weight is to put all the weight on the best LLM. However, this is no longer the
case for BoN with N > 1. Put differently, under multi-generation majority voting, appropriately
mixing non-optimal LLMs can be beneficial.

3.2 BEST-OF-∞

As in the Bo1 setting, our design choice is to take a weighted majority vote with w = (w1, . . . , wK).
When we consider the large-sample limit, the answer for problem n is deterministic:3

aq = argmax
j

{∑
i∈K

wipi,j

}
.

Consequently f(aq) is also deterministic:

f({aq}) =
∑
q∈Q

1[aq = gq].

Here, for ease of discussion, we omit the consideration for a tie. Henceforth, since our design choice
is on the weight vector w, we denote it f(w) and use f({an}) and f(w) interchangeably.

Our central question is how to choose a weight vector w that maximizes the accuracy f(w). The
following lemma implies the hardness of optimizing f(w).

Lemma 2. (Non-concavity) f(w) is a non-concave function on the simplex space of w.

Proof. Consider a dataset of just one question with two LLMs, where one LLM correctly answer
the question and the other LLM fails. Namely, f((1, 0)) = 1 and f((0, 1)) = 0. Then the weighted
combination is 0 at somewhere in between, which implies it is non-concave.
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Figure 3: Visualization of the non-concave objective function f(w) over the weight simplex w. The
yellow simplex corresponds to w in the simplex of the weights of the three LLMs. The gray region of
the five polytopes (= five problems) are the region where the weighted majority of the corresponding
weight correctly answer to the problem. The optimal solution is the intersection of four polytopes at
the center, which corresponds to the case where four out of five problems are correctly answered.

While the proof above is an extremely simple case of two LLMs with a single problem, we will
demonstrate the non-concavity in more complex cases.

Although non-concavity implies sub-optimality of gradient-based methods, a combinatorial opti-
mization approach can be adopted for instances of typical scale. The crux in optimizing f(w) is that
the summand in equation 9 takes value one within a polytope.
Lemma 3. (Polytope lemma) Let {pqij}i∈[K],j∈Aq

be the arbitrary distributions of the answers.
Then, the following set, which implies that answer j is the most frequent answer, is a polytope:{

w ∈ ∆K :
∑
i

wip
q
ij > max

j′ ̸=j

∑
i

wip
q
ij′

}
. (10)

Proof. The region of equation 10 is an intersection of the following half-spaces:

w :
∑
i

wip
q
ij >

∑
i

wip
q
ij′

for all j′ ̸= j, which is a polyhedron. Since the desired space is an intersection of a polyhedron and
a simplex ∆Aq

, it is finite. Therefore, it is a polytope.

Lemma 3 states that the maximization on the number of correct answers is equivalent to the max-
imization on the number of polytopes that contain w (Figure 3). By introducing auxiliary variable
yq that indicates the correctness for each answer, this can be formulated as a mixed-integer linear
programming (MILP) problem.
Lemma 4. (MILP formulation) The equation 9 is equivalent to the following MILP problem:

max
w∈∆K ,y∈{0,1}N

∑
q

yq (11)

s.t. wi ≥ 0 ∀i (12)∑
i

wi = 1 (13)

Aqw ≥ −m(1− yq) ∀q (14)

where Aq is a matrix of size R|Aq|×K such that its j, i entry is pqi,gq − pqi,j , and the j-th row corre-
sponds to the fact that the total weight of the gold answer gq is larger than that of a wrong answer
j. The vector m > 0 is chosen sufficiently large, so that Aqw ≥ m is never satisfied when Aqw has
a negative component.

3We use the term deterministic to describe a non-random quantity.
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The size of the problem instance depends on the number of LLMs K, the number of problems
N , and the size of the possible set of answers Aq . General MILP solving is NP-hard; in practice,
however, open-source solvers scale smoothly to K ≈ 101 LLMs and N ≈ 103 problems, where
typical size of Aq is ≈ 101.

Max margin solutions As we illustrated in Figure 3, the objective function f(w) has continuous
region of optimal solutions. While any interior point on these position is optimal in best-of-∞, its
finite-N performance can vary. In this paper, we adopt a “max margin” solution, that is at the most
interior of the solution. Namely, we introduce a margin ξ > 0 and replaces Aqw in equation 14 with
Aqw − ξ. We choose the supremum of the margin ξ such that the objective value

∑
q yq does not

decrease, and adopts the solution on such margin. The optimization of margin can be done a binary
search on the space of ξ ∈ [0,m] where m is a sufficiently large constant. This is a binary search
problem of a monotone objective, which is practically feasible.

4 EXPERIMENTS

This section reports our experimental results. We considered heavy-reasoning tasks on open-weight
LLMs that we can test on our local environment. We set Algorithm 1’s hyperparameter α = 0.3 for
all the experiments. To solve MILPs, we use highspy, an open-source Python interface to the HiGHS
optimization suite (Huangfu & Hall, 2018), which provides state-of-the-art solvers for large-scale
LP, MIP, and MILP. We adopt the max-margin solution described in Section 3.2. Unless specified
otherwise, all results are estimated from 100 independent runs. The Bayes factor is calculated
with 1,000 Monte Carlo samples from the posterior. Due to page limits, we show only several
experimental results in the main text. More results are available in Appendix G.

4.1 TESTED OPEN-WEIGHT LLMS AND DATASETS

We evaluate open-weight LLMs (≤ 32B parameters) across four reasoning benchmarks. We
use the following problem sets: AIME2024 (Maxwell-Jia, 2024), AIME2025 (OpenCompass,
2025), GPQA-DIAMOND (Graduate-Level Google-Proof Q&A Benchmark; Rein et al. 2023), and
MATH500 (Hendrycks et al., 2021). Details of the LLMs and datasets are provided in Appendix D.
These datasets are challenging mathematical and scientific reasoning tasks. We did not test GSM8K
(Cobbe et al., 2021) as it is too easy for the LLMs we tested.

Large-scale generation dataset We generate a set of candidate answers by querying the LLM
with the problem statement. For each pair of (LLM, problem), we generate at least 80 answers—an
order of magnitude greater than the typical 8 generations reported in most LLM technical reports.
We believe the difficulty of the problems as well as the scale of generated tokens are significantly
larger than existing work on test-time computing.4 Table 1 shows the statistics of the datasets used
in our experiments. Base performance (Bo1, best-of-∞) of these LLMs are shown in Appendix
E. Every sample of answer in our subsequent experiments is drawn from this dataset. Best-of-∞
performance is also estimated from these samples. We remove the unparseable answers, which
benefits some of the LLMs with lower performance.

4.2 EXPERIMENTAL RESULTS

Experimental Set 1: Effectiveness of adaptive sampling First, we investigate the impact of
adaptive sampling scheme of Algorithm 1 on the performance of majority voting. We set Nmax =
100 and tested varying Bayes factor B = {2, 3, 5, 7, 10, 30, 100, 300, . . . }. Figure 4 (left) compares
the performance of Algorithm 1 with fixed budget of samples (BoN), where x-axis is the number of
average samples per problem (log-scale), and y-axis is the accuracy. The figure clearly shows that the
blue curve (Algorithm 1) achieves the same accuracy as the red curve (fixed BoN) with substantially
fewer samples. Figure 4 (right) shows the average total number of tokens as a function of accuracy.
The adaptive method again demonstrates a significant reduction in token usage to achieve the same
accuracy level compared to the fixed method, although the gap is smaller than that of the sample

4Also note that, for adaptive sampling scheme, around 80 samples are usually sufficient to achieve accuracy
fairly close to the best-of-∞ performance.

5We do not use chain-of-thought (CoT) in our experiments and thus the file size is small; however, we also
include an updated dataset that contains CoT.
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LLM # of files total generated tokens total file size (MB)
AM-Thinking-v1 4,800 79,438,111 185.95
Datarus-R1-14B-preview 4,800 49,968,613 127.03
EXAONE-Deep-32B 60,640 478,575,594 1,372.35
GPT-OSS-20B 68,605 244,985,253 98.595

LIMO-v2 6,095 77,460,567 219.45
MetaStone-S1-32B 60,757 806,737,009 2,458.48
NVIDIA-Nemotron-Nano-9B-v2 60,640 295,466,626 897.82
Phi-4-reasoning 168,138 558,980,037 1,841.06
Qwen3-4B 20,640 547,170,887 1,704.28
Qwen3-14B 44,800 666,466,780 1,822.13
Qwen3-30B-A3B-Thinking-2507 60,640 436,865,220 1,234.28

Table 1: Statistics of the large-scale generation dataset that we used in our experiments.
Each file corresponds to a single answer. We release it at https://figshare.com/s/
ea10a6bd76bcf41e30bd

Figure 4: Cost-analysis of our proposed method and fixed BoN. GPT-OSS-20B on MATH500.
“Adaptive” Algorithm 1 with average sample size of N̄ = 3 achieves the same accuracy as “fixed”
sample of N = 10, and the algorithm with average sample size N̄ ≈ 10 achieves the same accuracy
as fixed N = 100. Thus, the adaptive sampling in this plot reduced the computation times by 2x-5x
order. Both approach the best-of-∞ performance (green dashed line).

count. This is because the adaptive method tends to stop sampling early for easier problems, which
often require fewer tokens per generation.

Figure 5: Performance comparison of the LLM ensemble of EXAONE-Deep-32B, MetaStone-S1-
32B, Phi-4-reasoning, Qwen3-30B-A3B-Thinking, and GPT-OSS-20B on GPQA-Diamond. The
weight is optimized to w = (0.0176, 0.0346, 0.2690, 0.4145, 0.2644). The LLM ensemble outper-
forms any single LLM with N ≥ 5 and approaches the blue dashed line of best-of-∞ performance.
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Experimental Set 2: Advantage of LLM ensemble over single LLM Second, we investigate the
advantage of LLM ensemble over single LLM. We compare the performance of the single LLM with
the optimal mixture of LLMs. The results in Figure 5 show that the ensemble method achieves higher
accuracy than any single LLM, demonstrating the effectiveness of combining multiple models.

Figure 6: The number of samples to determine the weight (x-axis) as a performance of best-of-∞
(y-axis) on AIME2025. The x-axis indicates the number of problems used to learn the weight and
the y-axis indicates the best-of-∞ performance with all problems. The score is averaged over 100
runs. The optimal weight has achieved the limit accuracy of 93.3%, whereas the best single LLM
has the limit accuracy of 90.0%. Dashed lines indicate the best-of-∞ performance of each LLM.

Experimental Set 3: Learning a good weight Third, we investigate the generalization ability of
our weight optimization method (Section 3). Figure 6 shows the performance of the learned weights
as a function of the number of training problems on AIME2025. With five training problems, the
learned weights approach the best single-LLM performance.

Experimental Set 4: Transfer learning of the optimal weight To assess transferability, we
trained weights on AIME2024 and tested on AIME2025; across 165 three-model combinations,
the ensemble matched or exceeded the strongest individual model in 106 cases (64.2%).

Experimental Set 5: Comparison with other answer-selection methods We finally compared
the majority voting scheme with other selection scheme in the best-of-five (Bo5) test-time inference.
On AIME2025, majority voting outperforms random selection, self-certainty, reward models, and
LLM-as-a-judge; full tables and settings are provided in the appendix (Appendix G.5).

Method Mean ± CI

Omniscient 91.04 ± 1.32
Majority voting 85.42 ± 2.01
LLM-as-a-judge (tournament) 82.92 ± 2.57
LLM-as-a-judge (set) 81.25 ± 2.42
INF-ORM-Llama3.1-70B 79.79 ± 2.54
Skywork-Reward-V2-Llama-3.1-8B 79.79 ± 2.47
Skywork-Reward-V2-Qwen3-8B 80.00 ± 2.51
Self-certainty 75.83 ± 2.47
Random 76.25 ± 2.71

Table 2: The accuracy of several selection methods on the best-of-five (Bo5) setting on the
AIME2025 dataset. Answers are generated by GPT-OSS-20B. The scores are averaged over 16
trials and we report the two-sigma confidence intervals. Omniscient is a hypothetical upper bound
that always selects the correct answer if it is present in the candidate answers, which requires the
gold answer. Random, which selects one of N answers uniformly at random, should match the per-
formance of Bo1. Details of each method are described in Appendix G.5.
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A USAGE OF LLMS

We have used LLMs to write paragraphs as well as to find relevant literature. Programs are written
with the aid of LLMs based on agentic programming tools (i.e., Cursor). However, all the responsi-
bility of the content lies with us. Theorems and proofs are written by us.

B RELATED WORK

This section describes the related work on aggregating multiple answers from different individuals
and LLMs.

B.1 AGGREGATION OF MULTIPLE ANSWERS FROM INDIVIDUALS

Controlling N in majority voting Ensembling multiple predictions is a widely used technique
for improving the accuracy of various machine learning tasks. One of the classic papers by Kolter
& Maloof (2007) considers online ensemble learning, where the system can dynamically add or
remove experts based on their performance. Regarding the optimal control of N , the idea closest
to ours is the Urn model by Soto et al. (2016), which calculates the Bayesian probability that the
empirical majority matches the true majority. However, their model samples without replacement,
whereas LLM generation fits sampling with replacement. Their method also requires candidate
answers and is thus not directly applicable to our setting. Motivated by ensembling methods for deep
image classifiers, Inoue (2019) proposed an adaptive ensemble prediction method that adaptively
aggregates the outputs of multiple probabilistic classifiers.

Opinion aggregation in crowdsourcing A relevant lines of works in pre-LLM era is the opinion
aggregation in crowdsourcing (Sheng et al., 2008; Li et al., 2017). One of the most popular methods
in opinion aggregation is the method by David and Skene (Dawid & Skene, 1979). They introduced
a probabilistic model that estimates the true labels of items by leveraging the agreement among
multiple annotators. It comprises a confusion matrix π, whose jk entry represents the probability
such that each annotator’s label is j when the true label is k. Such a confusion matrix is not directly
applicable to our setting because we cannot generally assume a fixed domain of answers in LLM
generation. For example, in the AIME datasets, building a confusion matrix of 1,000 rows (possible
answers are integers from 0 to 999) is not very practical. The Dawid-Skene model also assumes
that the most frequent answer is the correct one. Subsequent works (Whitehill et al., 2009; Kajino
et al., 2012; Takamatsu et al., 2012) addressed this issue by introducing a difficulty parameter for
each problem. One of the largest difference between crowdsourcing and LLM ensemble is that
the former typically assumes a single answer from each annotator, whereas the latter can generate
multiple answers from the same LLM.

B.2 AGGREGATION OF MULTIPLE ANSWERS FROM LLMS

Our method belong to a large umbrella of LLM Ensemble methods, where the forecaster uses multi-
ple LLMs for a better output. A comprehensive survey on this topic (Chen et al., 2025b) categorizes
ensemble LLM methods into several categories.6 Our method falls into the category of “ensemble
after inference”, where we aggregate the outputs of multiple LLMs after they have generated their
responses.

Within this category, Chen et al. (2025b) classified methods into three sub-categories: (1) selection,
(2) selection-then-regeneration, and (3) cascade. The first directly selects the answer from generated
outputs (our setting). The second selects a subset of LLMs and then merges their outputs using
another LLM or a trained model. The third uses a cascade of LLMs, invoking a stronger model only
when needed to save cost. Methods in (1) and (2) typically assume a fixed number of generations
per LLM and optimize aggregation. In contrast, we primarily consider dynamically controlling the
number of generations. Methods in (3) focus on minimizing total cost of calling LLMs.

6Figure 2 therein.
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(1) Selection Li et al. (2024) proposed AgentForest that aggregates the predictions of multiple
agents by using similarity agreement. Guha et al. (2024) introduced Smoothie, a graphical-model
based method to choose the best LLM for each problem. Si et al. (2023) introduced Mixture of Rea-
soning Experts (MORE) framework that adopts multiple prompting strategy to obtain a mixture of
experts and aggregates them by random forest classifier. Our methods belongs to this sub-category.
Compared with these methods, our method is a simple average while others may use more com-
plex aggregation strategies. Note also that these methods primarily consider a single generation per
each LLM, whereas our paper primarily considers large number of generations per each LLM. A
recent paper by Zhao et al. (2025a) proposes an aggregation method of multiple solutions by using
reinforcement learning from verifiable rewards.

(2) Selection-then-Regeneration Jiang et al. (2023b) introduced LLM-Blender, an ensemble
LLM method that comprises two modules: PAIRRANKER and GENFUSER. PairRanker chooses
K among N LLMs, and GenFuser merges the outputs. Tekin et al. (2024) introduced LLM-TOPLA,
an LLM ensemble method that maximizes the diversity of the answers. Based on the answer dis-
tribution of N LLMs, they choose K subset of LLMs that maximizes the diversity, and then train
an aggregator (like multi-layer perceptron) that minimizes the cross-entropy loss. Lv et al. (2024)
proposed an end-to-end method that integrates the subset selection and regeneration. Most of these
methods are based on the idea of using many LLMs (or same LLM with different prompts) and
single generation per each prompt, whereas our paper primarily considers a relatively small subset
of LLMs for each prompt, and large number of generations per each LLM.

(3) Cascading Varshney & Baral (2022) is one of the earliest work that introduced cascading.
Yue et al. (2024) proposed an aggregation of weak and strong LLMs. In their model, if the weak
LLM and the cascade LLM disagree with the answer, then the strong LLM is invoked. The primal
motivation in cascading is to save the cost of calling strong LLMs, which is orthogonal to our goal
of improving the accuracy of maximizing the accuracy given large amount of computation.

Answer selection based on reward models and LLM-as-a-judge A common approach to aggre-
gate multiple answers from LLMs is to use reward models or LLM-as-a-judge methods. Typically,
reward models are constructed on top of language models. These approaches can be broadly cate-
gorized into two groups: those in which the reward model directly outputs a scalar value (Rafailov
et al., 2023; Liu et al., 2024), and those in which the reward model provides comparative judgments
or rankings over multiple responses (Mahan et al., 2024; Dong et al., 2024; Son et al., 2024; Guo
et al., 2025; Chen et al., 2025a). The methods of the latter category are referred to as generative
reward models, reward reasoning models, or LLM-as-a-judge. Compared to our approach, these
methods incur additional computational cost due to the reliance on reward models. Also, in our
experiments, we did not observe particular advantage of using reward models (see Table 2).

C PROOF OF THEOREM 1

Proof of Theorem 1. Let p̂a(n) = Nj(n)/n be the empirical mean of answer j at round n. Hoeffd-
ing’s inequality implies that

P[|p̂a(n)− pa| ≥ ϵ] ≤ 2 exp(−2nϵ2).

Let ∆ = minj ̸=1(p1 − pj) > 0 be the gap between the most frequent answer and the second most
frequent answer. Then it holds that

P

[ ∞⋂
n=N0

|p̂j(n)− pj | ≥
∆

2

]
≤

∞∑
n=N0

P
[
|p̂j(n)− pj | ≥

∆

2

]
(Union bound)

≤
∞∑

n=N0

2 exp

(
−n

∆2

2

)
(Hoeffding’s inequality)

=
2e−N0∆

2/2

1− e−∆2/2
. (15)
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and by choosing N0 = N0(δ) sufficiently large, the right-hand side can be made no larger than δ/s.
Union bound over all s answers implies that, with probability at least 1− δ, it holds that

p̂1(n)− p̂j(n) ≥ p1 − pj − 2× ∆

2
≥ 0,∀j ̸= 1,∀n ≥ N0(δ).

Namely, at least with probability 1−δ, the empirical most frequent answer is indeed the true majority
answer for all n ≥ N0(δ), and thus, if stopping time is longer than N0(δ), the algorithm returns
the true majority answer. By choosing Nmax ≥ N0(δ) and B sufficiently large7, the algorithm
stops after N0(δ) with probability 1, and thus, the algorithm returns the true majority answer with
probability at least 1 − δ. Since δ > 0 is arbitrary, the algorithm returns the true majority answer
with probability arbitrarily close to 1. Proof of Theorem 1 is complete.

Remark 1. (Frequentist stopping criteria) While Dirichlet posterior naturally fits with our task, we
may consider frequentist stopping criteria based on the observed data. Advantages of the frequen-
tist approach include its closed formula as well as rigorous guarantee in view of a frequentist. A
drawback is that its configuration of the hyperparameter tends to be conservative: the confidence
level that it requires is often higher than what actually is, potentially leading to oversampling. To
bound the error probability, it needs to consider the correction due to adaptive sampling (Kaufmann
& Koolen, 2021), as well as a multiple-testing correction with respect to the size of answer set s(t).
The latter seems particularly problematic, as s(t) is unknown and potentially unbounded. For this
reason, we do not see any existing work that adopts a frequentist approach to testing adaptive ma-
jority voting. For example, existing methods on majority voting, such as Soto et al. (2016), which
we will elaborate in Section B.1, also adopt Bayesian approach. Therefore, we do not pursue this
direction in this paper.

C.1 FINITE-TIME ANALYSIS OF STOPPING TIME

In this section, we conduct a finite-time analysis of the stopping time of Algorithm 1.

Theorem 2. (Finite-time stopping) Algorithm 1 stops within

O

(
1

∆2
log (|A|max(B, 1/δ))

)
rounds with probability at least 1− δ, where ∆ is the gap between the most frequent answer and the
second most frequent answer, and A is the set of possible answers by LLM.

Note that this rate is optimal for δ-correct identification because of the lower bound of the best-arm
identification problem (e.g., Garivier & Kaufmann (2016)) with two arms, which is about identifying
the larger of two Bernoulli distributions with gap ∆, is Ω(log(δ−1)/∆2) as well.

Proof of Theorem 2. Since we focus on a particular problem q we drop q and denote ag be the gold
answer and A be the set of possible answers by LLM.

Let P (n) = Pr[X1 ≥ maxi ̸=1 Xi, X ∼ Dirichlet(N1+1, N2+1, . . . , Ns(n)+1, α)]. Let Pag,a(n)
be the Beta posterior probability such that the parameter of answer ag is larger than that of answer
a. By using the fact that a Dirichlet distribution restricted to two dimensions is a Beta distribution,
it is equivalent to

1− P[X ≥ 1/2], X ∼ Beta(Na, Nag
). (16)

7This is because, the possible combination of answers with the first N0 samples is finite, and thus, the
possible value8 of BF that it can take until the first N0 sample is finite. If we set B larger than that the largest
of such values, then the algorithm never stops before the N0 samples.
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A sufficient condition for stopping at round n is (c.f., Eq. equation 7 and Eq. equation 8) is

{B ≥ g(n)
P (n)

1− P (n))
} ⊇ {B ≥ P (n)

1− P (n))
} (17)

⊇ {2B ≥ 1

1− P (n))
} (for B ≥ 2) (18)

⊇ {P (n) ≥ 1− 1

2B
} (19)

⊇
⋂

a̸=ag

{
Pag,a(n) ≥ 1− 1

2|A|B

}
. (20)

By Hoeffding’s inequality, for any a,

|p̂a(n)− pa| ≤
∆

4
(21)

holds with probability at least 1− exp(−n∆2/8). If we fix n such that

n ≥ 8

∆2
log

(
|A|
δ

)
, (22)

then equation 21 holds for all a ∈ A with probability at least 1− δ. Under equation 21, it holds that

p̂ag
(n)− p̂a(n) ≥ pag

− pa − 2× ∆

4
≥ ∆− ∆

2
=

∆

2
. (23)

for all a ̸= ag . Therefore, by letting µ = p̂a(n)/(p̂ag
(n) + p̂a(n)) < 1/2, we have

Pag,a(n) ≥ 1− 7

1/2− µ
exp(−nd(µ, 1/2)) (by Lemma 5) (24)

If we choose n such that

n ≥ 1

d(µ, 1
2 )

log

(
7|A|B
1
2 − µ

)
, (25)

then
1− 7

1/2− µ
exp(−nd(µ, 1/2)) ≥ 1− 1

2|A|B
. (26)

In summary, if we choose n such that both equation 22 and equation 25 hold, then the algorithm
stops at (or before) n with probability at least 1− δ. Regarding the order of equation 25, we have

n =
1

d(µ, 1
2 )

log

(
7|A|B
1
2 − µ

)
(27)

= O

(
1

∆2
log (|A|B)

)
(Pinsker’s inequality: d(p, q) ≥ 2(p− q)2) (28)

(29)

and thus, n such that both equation 22 and equation 25 hold is

n = O

(
1

∆2
log (|A|max(B, 1/δ))

)
. (30)

Lemma 5 (Beta tail). Let X ∼ Beta(1 + nµ, 1 + n(1 − µ)) be a random variable following the
Beta distribution. Then, for any a > µ, it holds that

P[X ≥ a] ≤ 7

a− µ
exp(−nd(µ, a)).

where d(µ, a) = µ log µ
a+(1−µ) log 1−µ

1−a is the KL divergence between two Bernoulli distributions.
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Proof of Lemma 5. Let B(a, b) and Γ(x) be the Beta function and the gamma function, respectively.

P[X ≥ a] (31)

=
1

B(1 + nµ, 1 + n(1− µ))

∫ 1

a

xnµ(1− x)n(1−µ)dx (32)

=
1

B(1 + nµ, 1 + n(1− µ))


 1

nµ
x − n(1−µ)

(1−x)

· xnµ(1− x)n(1−µ)

1

a

−
∫ 1

a

nµ+ n(1− µ)

(nµx − n(1−µ)
(1−x) )

2
xnµ(1− x)n(1−µ)dx


(33)

(by integration by parts) (34)

≤ 1

B(1 + nµ, 1 + n(1− µ))

1
n(1−µ)
(1−1)

nµ
a

anµ(1− a)n(1−µ) (35)

≤ Γ(2 + n)

Γ(1 + nµ)Γ(1 + n(1− µ))

a(1− a)

n(a− µ)
anµ(1− a)n(1−µ) (36)

(37)

and by Stirling’s formula
√
2π ≤ Γ(z)

zz−1/2e−z ≤
√
2πe1/12, we have

P[X ≥ a] ≤ a(1− a)e1/12

n(a− µ)
√
2π

√
(n+ 2)3

(nµ+ 1)(n(1− µ) + 1)

(n+ 2)n

(nµ)nµ(n(1− µ))n(1−µ)
anµ(1− a)n(1−µ)

(38)

≤ a(1− a)e1/12

n(a− µ)
√
2π

√
27n3

n(1− µ)
e2e−nd(µ,a) (39)

≤ ae25/12

(a− µ)
√
2π

√
27

1− a
exp(−nd(µ, a)) (40)

≤ e25/12

5(a− µ)

√
54

π
e−nd(µ,a) (41)

≤ 7

a− µ
e−nd(µ,a) (42)

and the proof is complete.

D LIST OF LLMS AND PROBLEM SETS

We tested the following LLMs. The model temperature is 0.6 unless otherwise specified. We fol-
low the model recommendation to set the temperature and other hyperparameters. The maximum
model length is min(X,maximum context length of LLM) − 2500 tokens, where X = 100000 all
but GPQA-DIAMOND, whereas X = 50000 for GPQA-DIAMOND. The 2500 token margin is
reserved for the prompt; we believe that this does not matter to MATH500 and GPQA-DIAMOND
at all, and to AIME2024/2025 very slightly.

• Phi-4-reasoning (Abdin et al., 2025) is a 14-billion-parameter (14B) reasoning-oriented
model developed by Microsoft, released in April 2025. It builds on the Phi-4 base model us-
ing supervised fine-tuning on a dataset of chain-of-thought traces and reinforcement learn-
ing. We set temperature to 0.8.

• GPT-OSS-20B (OpenAI, 2025) is the smaller version of the two LLMs released in October
2025 by OpenAI. This model has 21B parameters in total. We set the reasoning effort to be
medium (default setting).

• AM-Thinking-v1 (Ji et al., 2025) is a 32B dense model released in May 2025 by the a-
m-team. It is built upon the pre-trained Qwen 2.5-32B-Base, then enhanced through a
specialized post-training pipeline featuring Supervised Fine-Tuning (SFT) followed by re-
inforcement learning (RL).
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• EXAONE-Deep-32B (LG AI Research, 2025) is a 32B model released in May 2025 by LG
AI Research as part of the EXAONE Deep series. Built with 64 Transformer layers, a 102K
vocabulary, and a 32K-token context window, it is designed to excel in reasoning-intensive
tasks such as mathematics and coding.

• Nemotron-Nano-9B (NVIDIA, 2025) is a 9-billion-parameter hybrid reasoning model by
NVIDIA, released in August 2025. It features a Mamba-2 + Transformer hybrid archi-
tecture, replacing most attention layers with efficient Mamba-2 layers. It was pretrained
from scratch (using a 12B base model over 20 trillion tokens) and then compressed via
distillation. Post-training includes SFT, GRPO, DPO, and RLHF.

• MetaStone-S1-32B (Wang et al., 2025b) is a 32B reflective generative reasoning model,
released around July 2025. It introduces a novel Reflective Generative Form, merging
policy generation and process reward modeling within a single shared backbone, enabled
by a lightweight Self-supervised Process Reward Model (SPRM).

• Qwen3, released in April 2025 by Alibaba Cloud (Qwen Team, 2025), is the third-
generation open-source large language model family featuring hybrid reasoning, long
context support, agentic capabilities, and multilingual fluency. We use three versions of
Qwen3. Namely, Qwen3-4B, Qwen3-14B, and Qwen3-30B-A3B-Thinking-2507.

• LIMO-v2 (Ye et al., 2025) is a 32B Qwen2.5-based reasoning model released in July 2025,
fine-tuned on ∼800 carefully curated samples to achieve top-tier math reasoning with re-
markable data efficiency—embodying the “Less-Is-More” principle.

We tested the following datasets:

• AIME2024 (Maxwell-Jia, 2024) consists of 30 problems that were used American Invi-
tational Mathematics Examination (AIME) held during January 31 and February 1, 2024.
AIME2024 tests mathmatical problem-solving skills in vast field of mathmatical topics.
High-scoring high-school students are invited to participate in the United States of Amer-
ica Mathematics Olympiad (USAMO). All answers are integers between 1–999.

• AIME2025 (OpenCompass, 2025) consists of 30 problems that were used American Invi-
tational Mathematics Examination (AIME) held from February 10 to February 12, 2025.
Its format is identical to AIME2024.

• GPQA-DIAMOND (Graduate-Level Google-Proof Q&A Benchmark, Rein et al. 2023) is
a set of multiple-choice questions crafted by PhD-level experts in biology, physics, and
chemistry. The Diamond is a subset of 198 GPQA problems that distinguishes Ph.D. level
experts from the others. The answers are in multiple-choice format (A–D).

• MATH500 (Hendrycks et al., 2021) is a benchmark derived from the MATH dataset, which
contains challenging competition-level mathematics problems covering algebra, geometry,
number theory, probability, and other advanced topics. The MATH500 subset consists
of 500 carefully selected problems used in recent evaluation studies, and is designed to
test mathematical problem-solving skills beyond high-school level. All problems require
generating detailed reasoning and solutions rather than multiple-choice responses. The
answer format varies, including numeric integers, fractions, complex numbers, and vectors.

Among these datasets, AIME2024/2025 benefits for a long chain of thought (CoT) reasoning, as
the problems are challenging and require multi-step reasoning.9 GPQA-DIAMOND and MATH500
also require long CoT, but the benefit of it is less significant than AIME2024/2025. We did not
include GSM8K (Cobbe et al., 2021) because these problems are relatively easy and finishes with a
short CoT for the tested LLMs, and thus the benefit of ensemble was not significant.

9Regarding the scaling of performance as a function of CoT length, see, e.g., Figure 1 of Muennighoff et al.
(2025) and Figure 7 of Yan et al. (2025).
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LLM AIME2024 AIME2025 GPQA-D MATH500
Bo1 Bo∞ Bo1 Bo∞ Bo1 Bo∞ Bo1 Bo∞

AM-Thinking-v1 0.789 0.900 0.762 0.867 – – – –
Datarus-R1-14B-preview 0.516 0.733 0.370 0.600 – – – –
EXAONE-Deep-32B 0.715 0.867 0.627 0.767 0.661 0.692 0.945 0.962
GPT-OSS-20B 0.780 0.900 0.744 0.900 0.642 0.722 0.928 0.960
LIMO-v2 0.620 0.800 0.527 0.700 – – – –
MetaStone-S1-32B 0.820 0.867 0.747 0.800 0.670 0.707 0.947 0.950
NVIDIA-Nemotron-Nano-9B-v2 0.716 0.867 0.600 0.733 0.584 0.626 0.938 0.956
Phi-4-reasoning 0.729 0.867 0.643 0.833 0.658 0.727 0.878 0.944
Qwen3-4B 0.735 0.800 0.655 0.733 – – – –
Qwen3-14B 0.830 0.867 0.744 0.800 – – 0.946 0.956
Qwen3-30B-A3B-Thinking-2507 0.905 0.933 0.858 0.900 0.720 0.732 0.954 0.960

Table 3: Summary performance per model across datasets. The scores are estimated from at least
80 generation for each model and dataset. GPQA-D is an abbreviation of GPQA-DIAMOND.

E BO1 AND BEST-OF-∞ PERFORMANCE OF EACH MODEL

We list Bo1 (averaged) and best-of-∞ performance of each model in Table 3. We have used the
same prompt (Section E.1) for all models, which might be sub-optimal for some models. The evalu-
ated performance also depends on the answer parser. While we used the consistent and a reasonably
flexible answer parser for all models, we acknowledge some examples10 where the parsing is imper-
fect. We have not specified any tool call option. Also note that GPT-OSS-20B’s reasoning mode is
set to medium (default setting), which is the second best setting. Finally, we clarify our goal is not
to argue superiority of some models over the others, but to give some idea on the performance of
each model that we use for the verification of our methods of adaptive sampling (Algorithm 1).

E.1 PROMPTS FOR ANSWER GENERATION

We send the following request to a LLM that we launched as a vllm process:

{”role”: ”user”, ”content”: prompt}

where the examples of the prompt are given below: The first prompt is from AIME2024, and the
second prompt is from GPQA-DIAMOND.

Let $x,y$ and $z$ be positive real numbers that satisfy the
following system of equations:

\[\log_2\left({x \over yz}\right) = {1 \over 2}\]
\[\log_2\left({y \over xz}\right) = {1 \over 3}\]
\[\log_2\left({z \over xy}\right) = {1 \over 4}\]
Then the value of $\left|\log_2(xˆ4yˆ3zˆ2)\right|$ is $\tfrac{m}{n}$

where $m$ and $n$ are relatively prime positive integers. Find
$m+n$.

Please reason step by step, and put your final answer within \boxed
{}.

Among the following exoplanets, which one has the highest density?

a) An Earth-mass and Earth-radius planet.
b) A planet with 2 Earth masses and a density of approximately 5.5 g

/cmˆ3.

10In particular, MATH500 where the answer format varies.
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c) A planet with the same composition as Earth but 5 times more
massive than Earth.

d) A planet with the same composition as Earth but half the mass of
Earth.

A. d
B. a
C. b
D. c
Please reason step by step, and put your final answer as the letter

choice (A), (B), (C), etc. within \boxed{}.

For NVIDIA Nemotron-Nano-9B, we prepend the recommended system message “/think”.

E.2 PROMPTS FOR LLM-AS-A-JUDGE

The following illustrates a prompt used to instruct an LLM-as-a-judge to select the best answer
among a set of candidates. In this prompt, last part 1, last part 2, . . . denote the final
5000 characters of each answer preceding the </think> tag.

Please evaluate the following 5 answer excerpts for this
mathematical problem and determine which answer you think is the
most correct.

Problem:
Let $x,y$ and $z$ be positive real numbers that satisfy the

following system of equations:
\[\log_2\left({x \over yz}\right) = {1 \over 2}\]
\[\log_2\left({y \over xz}\right) = {1 \over 3}\]
\[\log_2\left({z \over xy}\right) = {1 \over 4}\]
Then the value of $\left|\log_2(xˆ4yˆ3zˆ2)\right|$ is $\tfrac{m}{n}$

where $m$ and $n$ are relatively prime positive integers. Find
$m+n$.

Answer 1 (Last 5000 chars before </think>):
{last_part_1}

Answer 2 (Last 5000 chars before </think>):
{last_part_2}

Answer 3 (Last 5000 chars before </think>):
{last_part_3}

Answer 4 (Last 5000 chars before </think>):
{last_part_4}

Answer 5 (Last 5000 chars before </think>):
{last_part_5}

Among the above 5 answer excerpts (showing the last parts before </
think> tag), which answer do you think is the most correct,
logical, and complete?

Please provide detailed reasoning for your judgment, and then output
the number of the answer you think is correct (1, 2, 3, 4, 5)

enclosed in \boxed{}.

Example: \boxed{1}

Judgment:
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Problem No. Total answers Correct answers Accuracy Gold answer Majority answer
1 160 159 0.994 70 70
2 160 112 0.700 588 588
3 160 154 0.963 16 16
4 160 150 0.938 117 117
5 160 146 0.912 279 279
6 160 158 0.988 504 504
7 160 96 0.600 821 821
8 160 147 0.919 77 77
9 160 134 0.838 62 62
10 160 58 0.362 81 81
11 160 120 0.750 259 259
12 160 137 0.856 510 510
13 160 5 0.031 204 487/3
14 160 5 0.031 60 63
15 160 0 0.000 735 147
16 160 158 0.988 468 468
17 160 157 0.981 49 49
18 160 87 0.544 82 82
19 160 154 0.963 106 106
20 160 114 0.713 336 336
21 160 143 0.894 293 293
22 160 45 0.281 237 60671
23 160 66 0.412 610 610
24 160 77 0.481 149 149
25 160 132 0.825 907 907
26 160 111 0.694 113 113
27 160 136 0.850 19 19
28 160 1 0.006 248 625
29 160 75 0.469 104 104
30 160 48 0.300 240 240
total 4800 3085 0.643 0.833

Table 4: Basic performance for each problem. The final line at column “accuracy” indicates Bo1
performance, and the final line at “majority answer” indicates best-of-∞ performance. LLM=Phi-
4-reasoning, Dataset=AIME2025.

E.3 SOURCE CODE

Our source code is available at https://figshare.com/s/8bd1830a255278e57830.

F COMPLEMENTARITY IN LLM ENSEMBLES FOR AIME 2025

In the AIME2025 dataset, we explored the combination of Phi-4-reasoning (Table 4) and GPT-OSS-
20B (Table 5) to enhance performance on complex reasoning tasks. By leveraging the strengths of
both models, we aimed to achieve better accuracy and robustness in our predictions. In this case,
Phi-4-reasoning can solve Problem 30 that GPT-OSS-20B cannot solve, and can complement the
performance. As a result, its LLM ensemble achieved 0.933 best-of-∞ accuracy, which is higher
than the individual accuracies of Phi-4-reasoning (0.733) and GPT-OSS-20B (0.900). This demon-
strates the effectiveness of combining different models to improve overall performance on challeng-
ing tasks.
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Problem No. Total answers Correct answers Accuracy Gold answer Majority answer
1 85 85 1.000 70 70
2 85 76 0.894 588 588
3 85 85 1.000 16 16
4 85 83 0.976 117 117
5 85 81 0.953 279 279
6 85 85 1.000 504 504
7 85 52 0.612 821 821
8 85 80 0.941 77 77
9 85 75 0.882 62 62
10 85 53 0.624 81 81
11 85 61 0.718 259 259
12 85 56 0.659 510 510
13 85 17 0.200 204 204
14 85 3 0.035 60 74
15 85 0 0.000 735 147
16 85 81 0.953 468 468
17 85 85 1.000 49 49
18 85 62 0.729 82 82
19 85 84 0.988 106 106
20 85 79 0.929 336 336
21 85 72 0.847 293 293
22 85 85 1.000 237 237
23 85 45 0.529 610 610
24 85 58 0.682 149 149
25 85 81 0.953 907 907
26 85 72 0.847 113 113
27 85 81 0.953 19 19
28 85 36 0.424 248 248
29 85 71 0.835 104 104
30 85 14 0.165 240 188
total 2550 1898 0.744 0.900

Table 5: Basic performance for each problem. The final line at column “accuracy” indicates
Bo1 performance, and the final line at “majority answer” indicates best-of-∞ (limit) performance.
LLM=GPT-OSS-20B, Dataset=AIME2025.
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G ADDITIONAL EXPERIMENTS

To verify the robustness of our findings, we conducted similar experiments on other LLMs and
datasets. The results are consistent with the main experiments in the paper, confirming the robustness
of our proposed methods across different settings. As is the main paper, all error bars are standard
two-sigma confidence intervals.

G.1 EXPERIMENTAL SET 1: EFFECTIVENESS OF ADAPTIVE SAMPLING

In the following pages, we present the performance comparison between our proposed adaptive
algorithm (Algorithm 1) and the fixed-sample BoN across various LLMs and datasets (Figures 8–
11). The results consistently demonstrate that our adaptive approach outperforms the fixed-sample-
size method given the same number of generation (= samples) or the same token budget. This is
because our algorithm is adaptive; for easy problems where the model always outputs the same
answer, it uses fewer samples, while for hard problems where the model’s answers vary, it uses
more samples. This adaptivity leads to better overall performance compared to a fixed-sample-size
approach.
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(a) AIME2025

(b) AIME2024

(c) GPQA-Diamond

(d) MATH500

Figure 7: Cost-analysis of our proposed method and fixed BoN for GPT-OSS-20B. The error bars are
standard two-sigma confidence intervals. Green dashed line indicates the best-of-∞ performance.
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(a) AIME2025

(b) AIME2024

(c) GPQA-Diamond

(d) MATH500

Figure 8: Cost-analysis of our proposed method and fixed BoN for Phi-4-reasoning. The error
bars are standard two-sigma confidence intervals. Green dashed line indicates the best-of-∞ perfor-
mance.
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(a) AIME2025

(b) AIME2024

(c) GPQA-Diamond

(d) MATH500

Figure 9: Cost-analysis of our proposed method and fixed BoN for NVIDIA-Nemotron-Nano-9B-
v2. The error bars are standard two-sigma confidence intervals. Green dashed line indicates the
best-of-∞ performance.
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(a) AIME2025

(b) AIME2024

(c) GPQA-Diamond

(d) MATH500

Figure 10: Cost-analysis of our proposed method and fixed BoN for Qwen3-30B-A3B-Thinking-
2507. The error bars are standard two-sigma confidence intervals. Green dashed line indicates the
best-of-∞ performance.
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(a) AIME2025

(b) AIME2024

(c) GPQA-Diamond

(d) MATH500

Figure 11: Cost-analysis of our proposed method and fixed BoN for EXAONE-Deep-32B. The
error bars are standard two-sigma confidence intervals. Green dashed line indicates the best-of-∞
performance.
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G.2 EXPERIMENTAL SET 2: ADVANTAGE OF LLM ENSEMBLE OVER SINGLE LLM

Figure 12 demonstrates several more examples where the ensemble of LLMs outperforms the best
single LLM. The weights are optimized by the MILP introduced in Section 3. We used Algorithm 1
to adaptively select and ask LLM for the answers.

(a) Performance of a two-LLM ensemble. We used GPT-OSS-20B and Phi-4-reasoning on AIME2025. We
tested with weight w = (0.7, 0.3). The best-of-∞ performance of GPT-OSS-20B is 0.900 (90.0%), whereas
the ensemble’s best-of-∞ performance is 0.933 (93.3%).

(b) Performance of two-LLM ensemble. We used LIMO-v2 and Datarus-R1-14B on AIME2024. The weight
was optimized to w = (0.4316, 0.5684).

(c) Performance of four-LLM ensemble (MetaStone-S1-32B, Phi-4-reasoning, Qwen3-30B-A3B-
Thinking-2507, and GPT-OSS-20B) on MATH500. The weight was optimized to w =
(0.0193, 0.0411, 0.3771, 0.5625).

Figure 12: Performance of LLM ensembles compared with single-LLM performance. We used
Algorithm 1 choosing the LLM. Blue dashed line indicates the best-of-∞ performance of the LLM
ensemble.
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G.3 EXPERIMENTAL SET 3: LEARNING A GOOD WEIGHT

Figure 13 shows several additional examples of sample efficiency of learning the optimal weights in
LLM ensembles. Dashed lines are the best-of-∞ performance of the individual LLMs. One can see
that, with a small number of gold answers, the learned weights can outperform the best single LLM.

(a) The mixture of LIMO-v2 and Datarus-R1-14B on AIME2024. Note that the best-of-∞ performance of
the two base LLMs is exactly the same and thus overlaps in the figure.

(b) The mixture of Phi-4-reasoning, Qwen3-30B-A3B-Thinking-2507, and GPT-OSS-20B on GPQA-
Diamond.

(c) The mixture of seven LLMS on MATH500.

Figure 13: The training of weights in an LLM ensemble. We show the number of samples to
determine the weight (x-axis) versus the best-of-∞ performance (y-axis, i.e., performance of best-
of-∞ with the weight). The x-axis indicates the number of problems used to learn the weight and
the y-axis indicates the best-of-∞ performance. The score is averaged over 100 runs.
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G.4 EXPERIMENTAL SET 4: TRANSFER LEARNING OF THE OPTIMAL WEIGHT

We do not have additional experiments for this set of experiments.

G.5 EXPERIMENTAL SET 5: COMPARISON WITH OTHER ANSWER-SELECTION METHODS

This section reports our comparison of majority voting with other aggregation methods. This ap-
pendix section complements Table 2 of main paper by providing additional experimental results on
AIME2025 and other LLMs, as well as more details on the compared methods. The results are
shown in Table 2. The compared methods are as follows:

• Omniscient is the hypothestical selection method that can always select the correct answer
if it is included in the candidates, which is infeasible unless we know the gold answer. By
definition, this is the best possible performance of any selection method.

• Majority voting is the method that selects the most frequent answer among the candidates.
Ties are broken randomly.

• LLM-as-a-judge is the answer selection method that uses the target LLM itself to select the
best answer among the candidates. Since the concatination of the all answers can exceed
the context length, we extracted the last 5,000 characters before the </think> tag of the
answers for each answer.11 To avoid uninterpretable answer, we ask the LLM twice, which
slightly increased the accuracy. There are two variants: (tournament) compares the answers
pairwise and selects the best one, and (set) compares all answers at once and selects the best
one.

• INF-ORM-Llama3.1-70 is one of the state-of-the-art reward model (Minghao Yang, 2024),
which marked the 9th in the RewardBench leaderboard as of September 8 2025.

• Skywork-Reward-V2-Llama-3.1-8B and Skywork-Reward-V2-Qwen3-8B are two of the
state-of-the-art reward model (Liu et al., 2024), which marked the 1st and the 6th in the
RewardBench leaderboard as of September 8 2025.

• Self-certainty is the method that selects the answer with the highest self-certainty score
(Zhao et al., 2025b), which measures intrinsic confidence by how the likelihood differs
from the uniform distribution per token. Note that we used the sequence average of self-
certainty. Very recently, (Fu et al., 2025) introduced a version of self-certainty that weights
more on the latter part of the sequence, which we have not tested and may improve the
performance.

• Random is the model that randomly selects one of the candidates, whose performance
should be close to the accuracy of a Bo1.

We use the same set of answers for comparing these selection methods, which reduces the variance
due to the randomness in answer generation. Table 6, Table 7, and Table 8 show the compari-
son of these methods on GPT-OSS-20B, Phi-4-reasoning, and Qwen3-30B-A3B-Thinking-2507,
respectively. The results are consistent with the main experiments in the paper. All results are Bo5
settings.

11For an answer without </think> tag, we used the final 5,000 characters. We also tested an alternative
method that asks LLM to summarize its own answer before the comparison, which, in our preliminary analysis,
did not outperform the proposed method.
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Method AIME2024 GPQA-Diamond MATH500

Omniscient 91.25 ± 1.03 85.98 ± 1.19 95.56 ± 0.23
Majority voting 88.12 ± 1.49 70.07 ± 2.02 95.31 ± 0.17
LLM-as-a-judge (set) 85.42 ± 1.48 69.14 ± 1.60 94.31 ± 0.28
LLM-as-a-judge (tournament) – 70.22 ± 1.96 –
INF-ORM-Llama3.1-70B 85.42 ± 2.18 68.38 ± 1.84 94.21 ± 0.29
Skywork-Reward-V2-Llama-3.1-8B 85.42 ± 2.10 68.13 ± 1.95 –
Skywork-Reward-V2-Qwen3-8B – 68.42 ± 1.93 –
Self-certainty 81.67 ± 2.98 67.65 ± 1.38 93.50 ± 0.47
Random (≈ Bo1) 79.17 ± 2.89 67.65 ± 1.38 93.91 ± 0.40

Table 6: The accuracy of several selection methods on the best-of-five (Bo5) setting across three
datasets (AIME2024, MATH500, GPQA-Diamond). Answers are generated by GPT-OSS-20B. The
scores are averaged over 16 trials and we report the two-sigma confidence intervals.

Method AIME2025 AIME2024

Omniscient 85.00 ± 1.72 85.21 ± 1.21
Majority voting 76.67 ± 2.58 80.00 ± 1.72
LLM-as-a-judge (set) 72.92 ± 3.10 80.42 ± 1.81
INF-ORM-Llama3.1-70B 70.42 ± 2.78 78.54 ± 2.51
Skywork-Reward-V2-Qwen3-8B 70.62 ± 2.87 77.29 ± 2.60
Self-certainty 63.12 ± 3.36 73.54 ± 2.31
Random (≈ Bo1) 63.96 ± 2.45 73.54 ± 2.31

Table 7: The accuracy of several selection methods on the best-of-five (Bo5) setting on the
AIME2025 and AIME2024 datasets. Answers are generated by Phi-4-reasoning. Scores are av-
eraged over 16 trials and we report the two-sigma confidence intervals.

Method AIME2025 AIME2024

Omniscient 92.71 ± 1.09 93.54 ± 0.74
Majority voting 88.75 ± 1.20 92.92 ± 0.57
LLM-as-a-judge (set) 88.13 ± 1.49 92.29 ± 0.80
LLM-as-a-judge (tournament) 87.50 ± 1.29 91.25 ± 1.48
INF-ORM-Llama3.1-70B 89.38 ± 1.09 92.29 ± 1.00
Skywork-Reward-V2-Qwen3-8B 89.38 ± 1.09 92.71 ± 0.67
Self-certainty 87.50 ± 2.06 91.25 ± 1.20
Random (≈ Bo1) 86.04 ± 2.04 90.00 ± 1.36

Table 8: The accuracy of several selection methods on the best-of-five (Bo5) setting on the
AIME2025 and AIME2024 datasets. Answers are generated by Qwen3-30B-A3B-Thinking-2507.
Scores are averaged over 16 trials and we report the two-sigma confidence intervals.

G.6 COMPARISON WITH BETA STOPPING

In this section, we compare our proposed adaptive sampling algorithm (Algorithm 1) with the Beta
stopping method introduced by Aggarwal et al. (2023), which is a state-of-the-art adaptive sampling
method for best-of-N (BoN) in LLMs. The Beta stopping method uses a Bayesian approach to
determine when to stop sampling based on the posterior distribution of the majority and the second
majority. Such a posterior projected to two-dimensional space follows a Beta distribution, and they
uses the posterior probability such that the second majority exceeds the majority to decide whether
to stop or not. Key findings are twofold. First, our proposed method dominates in the sense that our
method is always as good as the Beta stopping. Second, there are several case where our method
outperforms the Beta stopping. Results for GPT-OSS-20B, Phi-4-reasoning, EXAONE-Deep-32B
are shown in Figure 14, Figure 15, and Figure 16, respectively.
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(a) AIME2025

(b) AIME2024

(c) GPQA-Diamond

(d) MATH500

Figure 14: Cost-analysis of our proposed method (“adaptive”), Beta stopping Aggarwal et al. (2023),
and fixed BoN for GPT-OSS-20B. The error bars are standard two-sigma confidence intervals. Green
dashed line indicates the best-of-∞ performance.
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Figure 15: Cost-analysis of our proposed method (“adaptive”), Beta stopping Aggarwal et al. (2023),
and fixed BoN for Phi-4-reasoning. The error bars are standard two-sigma confidence intervals.
Green dashed line indicates the best-of-∞ performance.
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Figure 16: Cost-analysis of our proposed method (“adaptive”), Beta stopping Aggarwal et al. (2023),
and fixed BoN for EXAONE-Deep-32B. The error bars are standard two-sigma confidence intervals.
Green dashed line indicates the best-of-∞ performance.
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