Best-of- ∞ – Asymptotic Performance of Test-Time Compute

Anonymous authors

Paper under double-blind review

ABSTRACT

We study best-of-N for large language models (LLMs) where the selection is based on majority voting. In particular, we analyze the limit $N \to \infty$, which we denote as best-of- ∞ . While this approach achieves impressive performance in the limit, it requires an infinite test-time budget. To address this, we propose an adaptive generation scheme that selects N based on answer agreement, thereby efficiently allocating inference-time computation. Beyond adaptivity, we extend the framework to weighted ensembles of multiple LLMs, showing that such mixtures can outperform any individual model. The optimal ensemble weighting is formulated and efficiently computed as a mixed-integer linear program. Extensive experiments demonstrate the effectiveness of our approach.

1 Introduction

The last few years have witnessed remarkable advancements in large language models (LLMs), in their industrial successes including closed models such as Gemini (Gemini Team, 2025), GPT (OpenAI, 2023), and Claude (Anthropic, 2025) as well as open-weight models such as Llama (Llama Team, 2024), Deepseek (DeepSeek-AI, 2025), Qwen (Qwen Team, 2025; Ye et al., 2025; Cheng et al., 2025) and many others including Liu et al. (2023); Almazrouei et al. (2023); Gao et al. (2023); Jiang et al. (2023a); Biderman et al. (2023); BigScience Workshop (2023); OpenAI (2025); Wang et al. (2025); NVIDIA (2025); Abdin et al. (2025); Ji et al. (2025); LG AI Research (2025). One of the largest interests in the realm of LLMs is on their ability to perform complex reasoning tasks. A breakthrough in the reasoning of LLMs was the introduction of chain-of-thought prompting (Wei et al., 2022; Kojima et al., 2023), which allows models to generate intermediate reasoning steps before arriving at an answer. Instruction-tuned LLMs optimized to generate longer chains of thought have drastically increased performance in these tasks (Muennighoff et al., 2025).

Spending more computational resources at test time, in particular by generating multiple answers, leads to more reliable inference (Snell et al., 2025). A simple yet effective strategy is the best-of-N (BoN) approach, where we generate N answers and select the best one based on some criteria. There are several ways to implement the BoN strategy. One common approach is to use a reward model to

Figure 1: Accuracy of Best-of-N with majority voting as a function of N (GPT-OSS-20B (Medium)) with four datasets (Maxwell-Jia, 2024; OpenCompass, 2025; Rein et al., 2023; Hendrycks et al., 2021). Green line indicates the asymptotic accuracy of $N \to \infty$. For each problem, BoN benefits from increasing N, at least from $N = 10^1$ to 10^2 .

Figure 2: An illustration of adaptive sampling (Algorithm 1). The histogram shows the distribution of answers generated by an LLM for a single problem. Each answer generation can be viewed as a sample from the underlying distribution. Blue indicates the most frequent answer, and orange indicates the others. In the top example, three generations agree, so sampling stops. In the bottom example, more samples are needed to determine the majority. This maximizes the accuracy under a given compute budget. Confidence in the majority is based on the Bayes factor.

select the best answer (Uesato et al., 2022; Rafailov et al., 2023; Wan et al., 2024; Dong et al., 2024; Liu et al., 2024; Wang et al., 2024) or asking LLM to choose a preferable answer (Mahan et al., 2024; Son et al., 2024; Guo et al., 2025; Chen et al., 2025a). Another approach is majority voting (Wang et al., 2023) in which the most frequent answer is selected.

Despite its simplicity, majority voting has several advantages. First, it does not require any additional modeling or further text generation. Second, compared with other methods, majority voting is robust to reward hacking and benefits from additional generations with minimal risk, unlike reward-based models where increasing N can lead to overfitting (Huang et al., 2025). Across datasets, majority voting performance generally increases with N (Figure 1).

While we desire to achieve such Best-of-N performance of $N \to \infty$, which we call best-of- ∞ performance, it requires an infinite number of generations (samples), which is infeasible in real-world scenarios. Yet, for the same test-time budget, we can utilize the available budget more effectively. As shown in Figure 2, we can generate samples adaptively until we determine the majority with some confidence level. We introduce a principled method to determine when to stop generating answers and when to continue using Bayesian modeling (Section 2).

Our scheme can be naturally extended to ensembles of multiple LLMs. Importantly, ensemble majority voting can naturally benefit from complementarity. For example, in the AIME2025 dataset, the best-of- ∞ performance of GPT-OSS-20B (OpenAI, 2025) and Nemotron-Nano-9B-v2 (NVIDIA, 2025) are 90.0% and 73.0%, respectively, but their ensemble achieves 93.3%. A weak LLM can contribute to the ensemble if it has complementary strengths 1 . In this paper, we introduce the optimally weighted LLM ensemble for the asymptotic scheme and show that its optimization reduces to a mixed-integer linear program (Section 3). This is a notable advantage of considering best-of- ∞ performance, as opposed to optimizing the weights for finite N: for moderate N, optimization has to consider a very large number of combinations, which is infeasible.

Finally, we evaluate the performance of the proposed method (Section 4). Our experimental results include 11 instruction-tuned LLMs and four heavy-reasoning problem sets (AIME2024, AIME2025, GPQA-DIAMOND, MATH500), with at least 80 generations for each LLM-problem set combination. This represents a significantly larger scale of test-time computation than prior work. We release our generation results for subsequent research. A brief discussion concludes the paper (Section 5). Related work are discussed in Appendix B.

¹See more information in Appendix F.

Algorithm 1 Approximated Best-of-∞: Determining answer for single problem

```
Require: Maximum samples N_{\max}, concentration parameter \alpha, Bayes factor threshold B.

1: for n=1,2,\ldots do

2: if we use LLM Ensemble (Section 3) then

3: Choose LLM with probability \{w_i\}_{i\in\mathcal{K}}.

4: end if

5: Ask the LLM for the answer of the problem to obtain answer.

6: if n=N_{\max} or \mathrm{BF}(n)\geq B then

7: break

8: end if

9: end for

10: return The most frequent answer.
```

While Best-of- ∞ defines an idealized best-of-N ensemble in the limit $N \to \infty$, its literal realization would require unbounded test-time compute. We now develop a finite-sample procedure that closely tracks this limit. Our core idea is to adaptively samples (i.e., ask LLM to generate the answers) until we are sure the population majority vote with a desired confidence level. In other words, we aim to terminate the answer generation process as soon as sufficient statistical evidence has been obtained to support the conclusion that the currently most frequent response corresponds to the true majority, which allows different number of N across problems. A distinctive challenge of this problem lies in the fact that the support of the answer distribution generated by large language models (LLMs) is unknown. For instance, in one case an LLM may produce two candidate answers, such as 42 with probability 70% and 105 with probability 30%, whereas in another case it may yield four distinct outputs, such as 111 with probability 40%, 1 with probability 25%, 2 with probability 20%, and 702 with probability 15%. Given such uncertainty in the variation of generated responses, a particularly well-suited approach is to employ nonparametric Bayesian modeling. In particular, we adopt a Dirichlet process $DP(H, \alpha)$ prior over the answer space that captures the unknown distribution of answers. Here, H is a base distribution² over the answer space, and $\alpha > 0$ is a concentration parameter that controls the likelihood of generating new answers. Intuitively speaking, α is the strength of the prior belief in the existence of new answers. Assume that, at round n, we observe s(n) different answer $A_1, A_2, \ldots, A_{s(n)}$ with corresponding counts $N_1 \geq N_2 \geq N_3 \cdots \geq N_{s(n)}$. Then, the posterior distribution is

$$DP\left(\underbrace{\frac{\alpha}{\alpha+n}H}_{\text{base distribution}} + \underbrace{\frac{1}{\alpha+n}\sum_{j=1}^{s(n)}N_{j}\delta_{A_{j}}, \, \alpha+n}_{\text{empirical distribution}}\right). \tag{1}$$

The first argument of the posterior above states that the posterior is increasingly concentrated around the observed answers as more data is collected.

We use the Bayes factor (Jeffreys, 1935; Good, 1967; Kass & Raftery, 1995; Lindon & Malek, 2022) to measure the evidence of true majority.³ Formally, we define the hypotheses as follows:

$$H_0$$
: The most frequent answer A_1 is not the true majority. (2)

$$H_1$$
: The most frequent answer A_1 is the true majority. (3)

and define the Bayes factor (BF), which quantifies the strength of evidence in the data for H_1 , as

$$BF := \frac{\mathbb{P}(\mathcal{D}(n)|H_1)}{\mathbb{P}(\mathcal{D}(n)|H_0)},\tag{4}$$

 $^{^2}$ The base distribution can have a possibly infinite support, such as all possible integers. For some tasks, such as GPQA, the answer is given in a finite domain (e.g., A, B, C, D), and thus the base distribution is of a finite support. In such cases, Dirichlet process is exactly the same as the Dirichlet distribution. The advantage of the Dirichlet process is to unify the treatment for both finite and infinite answer spaces, as well as having some reguralization with a hyperparameter α .

³The use of the Bayes factor for categorical data is not new. See Lindon & Malek (2022) for a recent application to A/B testing. Unlike their case, our case starts from an unknown number of categories, which is handled by the Dirichlet process prior and via some approximation.

where $\mathcal{D}(n)$ is the observed data so far. Here, $\mathbb{P}(\mathcal{D}(n)|H_1)$, $\mathbb{P}(\mathcal{D}(n)|H_0)$ are the evidence (marginal likelihood) based on the observed data. Then, the Bayes factor of equation 4 can be computed as follows:

$$\mathrm{BF}(n) := \frac{\mathbb{P}(\mathcal{D}(n)|H_1)}{\mathbb{P}(\mathcal{D}(n)|H_0)} = \frac{\mathbb{P}(H_1|\mathcal{D}(n))}{\mathbb{P}(H_0|\mathcal{D}(n))} \cdot \frac{\mathbb{P}(H_0)}{\mathbb{P}(H_1)} \quad \text{(Bayes' theorem)}$$
 (5)

$$\approx s(n) \frac{\mathbb{P}(H_1 | \mathcal{D}(n))}{\mathbb{P}(H_0 | \mathcal{D}(n))} \quad \text{(approximating the prior ratio by uniform prior)} \tag{6}$$

$$= s(n) \frac{\mathbb{P}(H_1 | \mathcal{D}(n))}{1 - \mathbb{P}(H_1 | \mathcal{D}(n))} \quad (H_0 \cup H_1 \text{ is the entire space})$$
 (7)

where $\mathbb{P}(H_1|\mathcal{D}(n)), \mathbb{P}(H_0|\mathcal{D}(n))$ are the corresponding posteriors. Note that, in the second line, we approximated the DP prior with a uniform prior over the existing answers.

When n is sufficiently large compared with α , $\mathbb{P}(H_1|\mathcal{D}(n))$ of the DP posterior can approximated by a Dirichlet distribution as:

$$\mathbb{P}(H_1|\mathcal{D}(n)) \approx \Pr[X_1 \ge \max_{i \ne 1} X_i, X \sim \text{Dirichlet}(N_1 + 1, N_2 + 1, \dots, N_{s(n)} + 1, \alpha)],$$

by approximating the probability of A_1 appearing in the base distribution H to be zero. The Dirichlet distribution is a conjugate distribution of the categorical distribution of s(n)+1 of answers, where the last dimension corresponds to the unobserved answers. Here, the final component of weight α is added to account for the base distribution H. While this quantity is not trivial to compute, it can be estimated using Monte Carlo methods by sampling from the Dirichlet distribution.

The following theorem states that, if we set N_{max} and B sufficiently large, the algorithm's performance converges to the best-of- ∞ performance. The proof is given in Appendix C.

Theorem 1. (Consistency) Assume that the LLM generates a finite number of answers $1, 2, \ldots, s$. For ease of discussion, let p_j be the probability of answer j and assume that $p_1 > p_2 \ge p_3 \ge \ldots \ge p_s > 0$. Namely, there are no ties for the most frequent answer, and each answer is generated with a non-zero probability. Then, as N_{\max} , $B \to \infty$, the algorithm's performance converges to the best-of- ∞ performance almost surely. Namely, the algorithm returns the true majority answer with probability 1.

3 LLM Ensemble

Algorithm 1 is naturally extended to use more than one LLM. Let $i \in \mathcal{K}$ index the LLMs, and let $w = (w_1, w_2, \ldots, w_K)$ be the weight vector, where $w_i \geq 0$ and $\sum_{i \in \mathcal{K}} w_i = 1$. Algorithm 1 with an LLM ensemble proceeds as follows: for each generation, we first select an LLM i with probability w_i , and then ask the selected LLM for the answer.

Let us consider the optimal weighting scheme for the BoN inference. Let $q \in \mathcal{Q}$ be the problem. Each problem is associated with answer domain \mathcal{A}_q .

Example 1 (AIME2025). For AIME2025, $A_q \subseteq \{1, 2, ..., 999, U\}$, where U denotes either an out-of-range integer, fractional number, or a failure to emit a final answer; U is always incorrect.

For each problem, let $g_q \in \mathcal{A}_q$ be the gold answer. Each LLM-problem pair (i,q) is the probability distribution \mathcal{P}_{iq} over \mathcal{A}_q . For each problem q, we obtain multiple generations from the LLMs and take a majority vote to produce a_q . The total number of correct answers is

$$f(\{a_q\}) := \sum_{q \in \mathcal{Q}} \mathbf{1}[a_q = g_q].$$
 (8)

We aim to maximize it in expectation: $\mathbb{E}[f(\{a_q\})]$. Here, the expectation is taken over the randomness in the generation of LLMs.

3.1 Best-of-one

Before going into Best-of- ∞ , we first consider the best-of-one (Bo1) policy, which first selects an LLM with probability proportional to w, and then uses the LLM to generate a single answer. An immediate observation is that the optimal weight is to put all the weight on the best LLM.

Lemma 1. (Optimal Bo1) The accuracy of Eq. equation 8 is maximized when we choose $w_{i^*}=1$ and $w_j=0$ for all $j\neq i^*$, where w_{i^*} is the weight for the best LLM i^* . Namely, let $p_i^q=(p_{i,1}^q,p_{i,2}^q,\ldots,p_{i,|\mathcal{A}_q}^q)\in\Delta_{\mathcal{A}_q}$ be the probability distribution on \mathcal{A}_q of the answers that LLM i generates. Then, p_{i,g_q}^q be the probability that LLM i generates the gold answer g_q for problem q. The average accuracy of LLM i is $\sum_q p_{i,g_q}^q$, and the best LLM, which maximizes this quantity, is $i^*=\arg\max_{i\in\mathcal{K}}\sum_q p_{i,g_q}^q$.

Proof. It is easy to see that

$$f(\{a_q\}) := \sum_i w_i \left(\sum_{q \in \mathcal{Q}} p_{i,g_q}^q \right) \le \max_i \left(\sum_{q \in \mathcal{Q}} p_{i,g_q}^q \right).$$

For Bo1, the optimal weight is to put all the weight on the best LLM. However, this is no longer the case for BoN with N>1. Put differently, under multi-generation majority voting, appropriately mixing non-optimal LLMs can be beneficial.

3.2 Best-of-∞

As in the Bo1 setting, our design choice is to take a weighted majority vote with $w = (w_1, \dots, w_K)$. When we consider the large-sample limit, the answer for problem n is deterministic:⁴

$$a_q = \underset{j}{\operatorname{arg max}} \left\{ \sum_{i \in \mathcal{K}} w_i p_{i,j} \right\}.$$

Consequently $f(a_q)$ is also deterministic:

$$f(\{a_q\}) = \sum_{q \in \mathcal{Q}} \mathbf{1}[a_q = g_q].$$

Here, for ease of discussion, we omit the consideration for a tie. Henceforth, since our design choice is on the weight vector w, we denote it f(w) and use $f(\{a_n\})$ and f(w) interchangeably.

Our central question is how to choose a weight vector w that maximizes the accuracy f(w). The following lemma implies the hardness of optimizing f(w).

Lemma 2. (Non-concavity) f(w) is a non-concave function on the simplex space of w.

Proof. Consider a dataset of just one question with two LLMs, where one LLM correctly answer the question and the other LLM fails. Namely, f((1,0)) = 1 and f((0,1)) = 0. Then the weighted combination is 0 at somewhere in between, which implies it is non-concave.

While the proof above is an extremely simple case of two LLMs with a single problem, we will demonstrate the non-concavity in more complex cases.

Although non-concavity implies sub-optimality of gradient-based methods, a combinatorial optimization approach can be adopted for instances of typical scale. The crux in optimizing f(w) is that the summand in equation 8 takes value one within a polytope.

Lemma 3. (Polytope lemma) Let $\{p_{ij}^q\}_{i\in[K],j\in\mathcal{A}_q}$ be the arbitrary distributions of the answers. Then, the following set, which implies that answer j is the most frequent answer, is a polytope:

$$\left\{ w \in \Delta_K : \sum_i w_i p_{ij}^q > \max_{j' \neq j} \sum_i w_i p_{ij'}^q \right\}. \tag{9}$$

⁴We use the term deterministic to describe a non-random quantity.

Figure 3: Visualization of the non-concave objective function f(w) over the weight simplex w. The yellow simplex corresponds to w in the simplex of the weights of the three LLMs. The gray region of the five polytopes (= five problems) are the region where the weighted majority of the corresponding weight correctly answer to the problem. The optimal solution is the intersection of four polytopes at the center, which corresponds to the case where four out of five problems are correctly answered.

Proof. The region of equation 9 is an intersection of the following half-spaces:

$$w: \sum_{i} w_{i} p_{ij}^{q} > \sum_{i} w_{i} p_{ij'}^{q}$$

for all $j' \neq j$, which is a polyhedron. Since the desired space is an intersection of a polyhedron and a simplex $\Delta_{\mathcal{A}_a}$, it is finite. Therefore, it is a polytope.

Lemma 3 states that the maximization on the number of correct answers is equivalent to the maximization on the number of polytopes that contain w (Figure 3). By introducing auxiliary variable y_a that indicates the correctness for each answer, this can be formulated as a mixed-integer linear programming (MILP) problem.

Lemma 4. (MILP formulation) The equation 8 is equivalent to the following MILP problem:

$$\max_{w \in \Delta^K, y \in \{0,1\}^N} \sum_{q} y_q \tag{10}$$

s.t.
$$w_i > 0 \,\forall_i$$
 (11)

$$\sum_{i} w_{i} = 1$$

$$A_{q}w \ge -m(1 - y_{q}) \,\forall q$$
(12)

$$A_q w \ge -m(1 - y_q) \,\forall q \tag{13}$$

where A_q is a matrix of size $\mathbb{R}^{|A_q| \times K}$ such that its j,i entry is $p_{i,g_q}^q - p_{i,j}^q$, and the j-th row corresponds to the fact that the total weight of the gold answer g_q is larger than that of a wrong answer j. The vector m>0 is chosen sufficiently large, so that $A_aw\geq m$ is never satisfied when A_aw has a negative component.

The size of the problem instance depends on the number of LLMs K, the number of problems N, and the size of the possible set of answers A_q . General MILP solving is NP-hard; in practice, however, open-source solvers scale smoothly to $K \approx 10^1$ LLMs and $N \approx 10^3$ problems, where typical size of A_q is $\approx 10^1$.

Max margin solutions As we illustrated in Figure 3, the objective function f(w) has continuous region of optimal solutions. While any interior point on these position is optimal in best-of- ∞ , its finite-N performance can vary. In this paper, we adopt a "max margin" solution, that is at the most interior of the solution. Namely, we introduce a margin $\xi > 0$ and replaces $A_q w$ in equation 13 with $A_q w - \xi$. We choose the supremum of the margin ξ such that the objective value $\sum_q y_q$ does not decrease, and adopts the solution on such margin. The optimization of margin can be done a binary search on the space of $\xi \in [0, m]$ where m is a sufficiently large constant. This is a binary search problem of a monotone objective, which is practically feasible.

LLM	# of files	total generated tokens	total file size (MB)
AM-Thinking-v1	4,800	79,438,111	185.95
Datarus-R1-14B-preview	4,800	49,968,613	127.03
EXAONE-Deep-32B	60,640	478,575,594	1,372.35
GPT-OSS-20B	68,605	244,985,253	98.59 ⁶
LIMO-v2	6,095	77,460,567	219.45
MetaStone-S1-32B	60,757	806,737,009	2,458.48
NVIDIA-Nemotron-Nano-9B-v2	60,640	295,466,626	897.82
Phi-4-reasoning	168,138	558,980,037	1,841.06
Qwen3-4B	20,640	547,170,887	1,704.28
Qwen3-14B	44,800	666,466,780	1,822.13
Qwen3-30B-A3B-Thinking-2507	60,640	436,865,220	1,234.28

Table 1: Statistics of the large-scale generation dataset that we used in our experiments. Each file corresponds to a single answer. We release it at https://figshare.com/s/ea10a6bd76bcf41e30bd

4 EXPERIMENTS

This section reports our experimental results. We considered heavy-reasoning tasks on open-weight LLMs that we can test on our local environment. We set Algorithm 1's hyperparameter $\alpha=0.3$ for all the experiments. To solve MILPs, we use highspy, an open-source Python interface to the HiGHS optimization suite (Huangfu & Hall, 2018), which provides state-of-the-art solvers for large-scale LP, MIP, and MILP. We adopt the max-margin solution described in Section 3.2. Unless specified otherwise, all results are estimated from 100 independent runs. The Bayes factor is calculated with 1,000 Monte Carlo samples from the posterior. Due to page limits, we show only several experimental results in the main text. More results are available in Appendix G.

4.1 TESTED OPEN-WEIGHT LLMS AND DATASETS

We evaluate open-weight LLMs (≤ 32B parameters) across four reasoning benchmarks. We use the following problem sets: AIME2024 (Maxwell-Jia, 2024), AIME2025 (OpenCompass, 2025), GPQA-DIAMOND (Graduate-Level Google-Proof Q&A Benchmark; Rein et al. 2023), and MATH500 (Hendrycks et al., 2021). Details of the LLMs and datasets are provided in Appendix D. These datasets are challenging mathematical and scientific reasoning tasks. We did not test GSM8K (Cobbe et al., 2021) as it is too easy for the LLMs we tested.

Large-scale generation dataset We generate a set of candidate answers by querying the LLM with the problem statement. For each pair of (LLM, problem), we generate at least 80 answers—an order of magnitude greater than the typical 8 generations reported in most LLM technical reports. We believe the difficulty of the problems as well as the scale of generated tokens are significantly larger than existing work on test-time computing. Table 1 shows the statistics of the datasets used in our experiments. Base performance (Bo1, best-of- ∞) of these LLMs are shown in Appendix E. Every sample of answer in our subsequent experiments is drawn from this dataset. Best-of- ∞ performance is also estimated from these samples. We remove the unparseable answers, which benefits some of the LLMs with lower performance.

4.2 EXPERIMENTAL RESULTS

Experimental Set 1: Effectiveness of adaptive sampling First, we investigate the impact of adaptive sampling scheme of Algorithm 1 on the performance of majority voting. We set $N_{\rm max}=100$ and tested varying Bayes factor $B=\{2,3,5,7,10,30,100,300,\dots\}$. Figure 4 (left) compares the performance of Algorithm 1 with fixed budget of samples (BoN), where x-axis is the number of

 $^{^5}$ Also note that, for adaptive sampling scheme, around 80 samples are usually sufficient to achieve accuracy fairly close to the best-of- ∞ performance.

⁶We do not use chain-of-thought (CoT) in our experiments and thus the file size is small; however, we also include an updated dataset that contains CoT.

Figure 4: Cost-analysis of our proposed method and fixed BoN. GPT-OSS-20B on MATH500. "Adaptive" Algorithm 1 with average sample size of $\bar{N}=3$ achieves the same accuracy as "fixed" sample of N=10, and the algorithm with average sample size $\bar{N}\approx 10$ achieves the same accuracy as fixed N=100. Thus, the adaptive sampling in this plot reduced the computation times by 2x-5x order. Both approach the best-of- ∞ performance (green dashed line).

average samples per problem (log-scale), and y-axis is the accuracy. The figure clearly shows that the blue curve (Algorithm 1) achieves the same accuracy as the red curve (fixed BoN) with substantially fewer samples. Figure 4 (right) shows the average total number of tokens as a function of accuracy. The adaptive method again demonstrates a significant reduction in token usage to achieve the same accuracy level compared to the fixed method, although the gap is smaller than that of the sample count. This is because the adaptive method tends to stop sampling early for easier problems, which often require fewer tokens per generation.

Figure 5: Performance comparison of the LLM ensemble of EXAONE-Deep-32B, MetaStone-S1-32B, Phi-4-reasoning, Qwen3-30B-A3B-Thinking, and GPT-OSS-20B on GPQA-Diamond. The weight is optimized to w=(0.0176,0.0346,0.2690,0.4145,0.2644). The LLM ensemble outperforms any single LLM with $N\geq 5$ and approaches the blue dashed line of best-of- ∞ performance.

Experimental Set 2: Advantage of LLM ensemble over single LLM Second, we investigate the advantage of LLM ensemble over single LLM. We compare the performance of the single LLM with the optimal mixture of LLMs. The results in Figure 5 show that the ensemble method achieves higher accuracy than any single LLM, demonstrating the effectiveness of combining multiple models.

Experimental Set 3: Learning a good weight Third, we investigate the generalization ability of our weight optimization method (Section 3). Figure 6 shows the performance of the learned weights as a function of the number of training problems on AIME2025. With five training problems, the learned weights approach the best single-LLM performance.

Experimental Set 4: Transfer learning of the optimal weight To assess transferability, we trained weights on AIME2024 and tested on AIME2025; across 165 three-model combinations, the ensemble matched or exceeded the strongest individual model in 106 cases (64.2%).

Figure 6: The number of samples to determine the weight (x-axis) as a performance of best-of- ∞ (y-axis) on AIME2025. The x-axis indicates the number of problems used to learn the weight and the y-axis indicates the best-of- ∞ performance with all problems. The score is averaged over 100 runs. The optimal weight has achieved the limit accuracy of 93.3%, whereas the best single LLM has the limit accuracy of 90.0%. Dashed lines indicate the best-of- ∞ performance of each LLM.

Experimental Set 5: Comparison with other answer-selection methods We finally compared the majority voting scheme with other selection scheme in the best-of-five (Bo5) test-time inference. On AIME2025, majority voting outperforms random selection, self-certainty, reward models, and LLM-as-a-judge; full tables and settings are provided in the appendix (Appendix G.5).

Method	Mean \pm CI
Omniscient	91.04 ± 1.32
Majority voting	85.42 ± 2.01
LLM-as-a-judge (tournament)	82.92 ± 2.57
LLM-as-a-judge (set)	81.25 ± 2.42
INF-ORM-Llama3.1-70B	79.79 ± 2.54
Skywork-Reward-V2-Llama-3.1-8B	79.79 ± 2.47
Skywork-Reward-V2-Qwen3-8B	80.00 ± 2.51
Self-certainty	75.83 ± 2.47
Random	76.25 ± 2.71

Table 2: The accuracy of several selection methods on the best-of-five (Bo5) setting on the AIME2025 dataset. Answers are generated by GPT-OSS-20B. The scores are averaged over 16 trials and we report the two-sigma confidence intervals. Omniscient is a hypothetical upper bound that always selects the correct answer if it is present in the candidate answers, which requires the gold answer. Random, which selects one of N answers uniformly at random, should match the performance of Bo1. Details of each method are described in Appendix G.5.

5 CONCLUSION

 In this paper, we view the best-of-N strategy with majority voting as sampling from the underlying answer distribution, with its best-of- ∞ performance naturally defined. To approximate this limit with a finite number of samples, we introduce an adaptive sampling method based on the Bayes factor. We also study the problem of aggregating responses from multiple LLMs and propose a majority voting that effectively leverages the strengths of individual models. The best-of- ∞ performance has advantage because the weights of LLM ensembles can be optimized by solving a mixed-integer linear programming problem. Through extensive experiments on challenging reasoning tasks, we have verified robust across LLMs and problem sets. The scale of our generated answers is substantially larger than in existing work, and we release these generations for future research.

ETHICS STATEMENT

We acknowledge the potential ethical concerns surrounding the use of large language models (LLMs) in our research. Our work aims to improve the performance of LLMs in reasoning tasks, which may have implications for their deployment in real-world applications. Since we do not ask for LLM to work on any sensitive or harmful tasks, we believe that our work does not directly contribute to the generation of harmful content. We are committed to ensuring that our research is conducted responsibly and that the benefits of our work are shared broadly.

REPRODUCIBILITY STATEMENT

We release the code and the generated answers used in our experiments to facilitate reproducibility. Detailed descriptions of the datasets, models, and experimental setups are provided in the Appendix.

REFERENCES

- Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, Piero Kauffmann, Yash Lara, Caio César Teodoro Mendes, Arindam Mitra, Besmira Nushi, Dimitris Papailiopoulos, Olli Saarikivi, Shital Shah, Vaishnavi Shrivastava, Vibhav Vineet, Yue Wu, Safoora Yousefi, and Guoqing Zheng. Phi-4-reasoning technical report, 2025. URL https://arxiv.org/abs/2504.21318.
- Ebtesam Almazrouei, Hamza Alobeidli, Abdulla Alshamsi, Alessandro Cappelli, Ruxandra Cojocaru, Sultan Alneyadi, Matteo Maggioni, and ... The falcon series of open language models. *arXiv* preprint arXiv:2311.16867, 2023. URL https://arxiv.org/abs/2311.16867.
- Anthropic. Claude opus 4 & claude sonnet 4 system card. System card, May 2025, 2025. Includes model descriptions, safety testing, hybrid reasoning modes.
- Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.
- BigScience Workshop. Bloom: A 176b-parameter open-access multilingual language model, 2023. URL https://arxiv.org/abs/2211.05100.
- Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang, Denghui Zhang, Tong Zhang, Hanghang Tong, and Heng Ji. Rm-r1: Reward modeling as reasoning, 2025a. URL https://arxiv.org/abs/2505.02387.
- Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren Mao, Dingqi Yang, Hailong Sun, and Philip S. Yu. Harnessing multiple large language models: A survey on llm ensemble, 2025b. URL https://arxiv.org/abs/2502.18036.
- Zhoujun Cheng, Richard Fan, Shibo Hao, Taylor W. Killian, Haonan Li, Suqi Sun, Hector Ren, Alexander Moreno, Daqian Zhang, Tianjun Zhong, Yuxin Xiong, Yuanzhe Hu, Yutao Xie, Xudong Han, Yuqi Wang, Varad Pimpalkhute, Yonghao Zhuang, Aaryamonvikram Singh, Xuezhi Liang, Anze Xie, Jianshu She, Desai Fan, Chengqian Gao, Liqun Ma, Mikhail Yurochkin, John Maggs, Xuezhe Ma, Guowei He, Zhiting Hu, Zhengzhong Liu, and Eric P. Xing. K2-think: A parameter-efficient reasoning system, 2025. URL https://arxiv.org/abs/2509.07604.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

```
A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates using the em algorithm. Applied Statistics, 28(1):20–28, 1979. URL /brokenurl#http://links.jstor.org/sici?sici=0035-9254%281979%2928%3A1%3C20%3AMLEOOE%3E2.0.CO%3B2-0.
```

- DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.
- Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo, Caiming Xiong, and Tong Zhang. RLHF workflow: From reward modeling to online RLHF. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=a13aYUU9eU.
- Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025. URL https://arxiv.org/abs/2508.15260.
- Leo Gao, Sid Black, Phil Wang, and et al. Cerebras-gpt: A family of open, compute-efficient, large language models. *arXiv preprint arXiv:2304.03208*, 2023. URL https://arxiv.org/abs/2304.03208.
- Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv* preprint arXiv:2507.06261, 2025. Submitted July 7, 2025; revised July 22, 2025.
- Irving John Good. A bayesian significance test for multinomial distributions. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 29(3):399–418, 1967.
- Neel Guha, Mayee F Chen, Trevor Chow, Ishan S. Khare, and Christopher Re. Smoothie: Label free language model routing. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=pPSWHsgqRp.
- Jiaxin Guo, Zewen Chi, Li Dong, Qingxiu Dong, Xun Wu, Shaohan Huang, and Furu Wei. Reward reasoning model, 2025. URL https://arxiv.org/abs/2505.14674.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*, 2021.
- Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Akshay Krishnamurthy, and Dylan J. Foster. Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment, 2025. URL https://arxiv.org/abs/2503.21878.
- Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method. *Mathematical Programming Computation*, 10(1):119–142, March 2018. ISSN 1867-2957. doi: 10.1007/s12532-017-0130-5. URL https://doi.org/10.1007/s12532-017-0130-5.
- Hiroshi Inoue. Adaptive ensemble prediction for deep neural networks based on confidence level. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pp. 1284–1293. PMLR, 16–18 Apr 2019. URL https://proceedings.mlr.press/v89/inoue19a.html.
- Harold Jeffreys. Some tests of significance, treated by the theory of probability. *Mathematical Proceedings of the Cambridge Philosophical Society*, 31(2):203–222, 1935. doi: 10.1017/S030500410001330X.
- Yunjie Ji, Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting Chen, Yiping Peng, Han Zhao, and Xiangang Li. Am-thinking-v1: Advancing the frontier of reasoning at 32b scale, 2025. URL https://arxiv.org/abs/2505.08311.
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023a. URL https://arxiv.org/abs/2310.06825.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-blender: Ensembling large language models with pairwise ranking and generative fusion. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14165–14178, Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.792. URL https://aclanthology.org/2023.acl-long.792/.

- Hiroshi Kajino, Yuta Tsuboi, and Hisashi Kashima. A convex formulation for learning from crowds. In Jörg Hoffmann and Bart Selman (eds.), *Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada*, pp. 73–79. AAAI Press, 2012. doi: 10.1609/AAAI.V26I1.8105. URL https://doi.org/10.1609/aaai.v26i1.8105.
- Robert E. Kass and Adrian E. Raftery. Bayes factors. *Journal of the American Statistical Association*, 90(430):773–795, 1995. doi: 10.1080/01621459.1995.10476572.
- Emilie Kaufmann and Wouter M. Koolen. Mixture martingales revisited with applications to sequential tests and confidence intervals. *J. Mach. Learn. Res.*, 22(1), January 2021. ISSN 1532-4435.
- Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205.11916.
- J. Zico Kolter and Marcus A. Maloof. Dynamic weighted majority: An ensemble method for drifting concepts. *Journal of Machine Learning Research*, 8(91):2755–2790, 2007. URL http://jmlr.org/papers/v8/kolter07a.html.
- LG AI Research. Exaone deep: Reasoning enhanced language models. *arXiv preprint* arXiv:2503.12524, 2025.
- Jiyi Li, Yukino Baba, and Hisashi Kashima. Hyper questions: Unsupervised targeting of a few experts in crowdsourcing. In *Proceedings of the 2017 ACM on Conference on Information and Knowledge Management*, CIKM '17, pp. 1069–1078, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349185. doi: 10.1145/3132847.3132971. URL https://doi.org/10.1145/3132847.3132971.
- Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=bqzUSZ8aeq.
- Michael Lindon and Alan Malek. Anytime-valid inference for multinomial count data. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
- Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. *arXiv* preprint *arXiv*:2410.18451, 2024.
- Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P. Xing. Llm360: Towards fully transparent open-source llms, 2023. URL https://arxiv.org/abs/2312.06550.
- Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. Released July 23, 2024.
- Bo Lv, Chen Tang, Yanan Zhang, Xin Liu, Ping Luo, and Yue Yu. URG: A unified ranking and generation method for ensembling language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 4421–4434, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.261. URL https://aclanthology.org/2024.findings-acl.261/.

```
Dakota Mahan, Duy Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato, Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. CoRR, abs/2410.12832, 2024. doi: 10.48550/ARXIV.2410.12832. URL https://doi.org/10.48550/arXiv.2410.12832.
```

- Maxwell-Jia. Aime 2024 dataset. https://huggingface.co/datasets/Maxwell-Jia/AIME 2024, 2024. Accessed: 2025-09-07.
- Xiaoyu Tan Minghao Yang, Chao Qu. Inf-orm-llama3.1-70b, 2024. URL [https://huggingface.co/infly/INF-ORM-Llama3.1-70B] (https://huggingface.co/infly/INF-ORM-Llama3.1-70B).
- Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling, 2025. URL https://arxiv.org/abs/2501.19393.
- NVIDIA. Nvidia nemotron nano 2: An accurate and efficient hybrid mamba-transformer reasoning model, 2025. URL https://arxiv.org/abs/2508.14444.
- OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.org/abs/2303.08774.
- OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/2508.10925.
- OpenCompass. Aime 2025 dataset. https://huggingface.co/datasets/opencompass/AIME2025, 2025. Accessed: 2025-09-07.
- Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.
- David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark, 2023. URL https://arxiv.org/abs/2311.12022.
- Victor S. Sheng, Foster Provost, and Panagiotis G. Ipeirotis. Get another label? improving data quality and data mining using multiple, noisy labelers. In *Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '08, pp. 614–622, New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605581934. doi: 10.1145/1401890.1401965. URL https://doi.org/10.1145/1401890.1401965.
- Chenglei Si, Weijia Shi, Chen Zhao, Luke Zettlemoyer, and Jordan Lee Boyd-Graber. Getting moRE out of mixture of language model reasoning experts. In *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023. URL https://openreview.net/forum?id=UMywlqrW3n.
- Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=4FWAwZtd2n.
- Guijin Son, Hyunwoo Ko, Hoyoung Lee, Yewon Kim, and Seunghyeok Hong. Llm-as-a-judge and reward model: What they can and cannot do, 2024. URL https://arxiv.org/abs/2409.11239.

Victor Soto, Alberto Suárez, and Gonzalo Martínez-Muñoz. An urn model for majority voting in classification ensembles. In *Proceedings of the 30th International Conference on Neural Information Processing Systems*, NIPS'16, pp. 4437–4445, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

- Shingo Takamatsu, Issei Sato, and Hiroshi Nakagawa. Reducing wrong labels in distant supervision for relation extraction. In Haizhou Li, Chin-Yew Lin, Miles Osborne, Gary Geunbae Lee, and Jong C. Park (eds.), *Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 721–729, Jeju Island, Korea, July 2012. Association for Computational Linguistics. URL https://aclanthology.org/P12-1076/.
- Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, and Ling Liu. LLM-TOPLA: Efficient LLM ensemble by maximising diversity. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 11951–11966, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.698. URL https://aclanthology.org/2024.findings-emnlp.698/.
- Jonathan Uesato, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Y. Siegel, Lisa Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and outcome-based feedback. *CoRR*, abs/2211.14275, 2022. doi: 10.48550/ARXIV.2211.14275. URL https://doi.org/10.48550/arXiv.2211.14275.
- Neeraj Varshney and Chitta Baral. Model cascading: Towards jointly improving efficiency and accuracy of nlp systems, 2022. URL https://arxiv.org/abs/2210.05528.
- Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.* OpenReview.net, 2024. URL https://openreview.net/forum?id=C4OpREezgj.
- Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin, Enyu Zhou, Chenyu Shi, Songyang Gao, Nuo Xu, Yuhao Zhou, Xiaoran Fan, Zhiheng Xi, Jun Zhao, Xiao Wang, Tao Ji, Hang Yan, Lixing Shen, Zhan Chen, Tao Gui, Qi Zhang, Xipeng Qiu, Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. Secrets of RLHF in large language models part II: reward modeling. *CoRR*, abs/2401.06080, 2024. doi: 10.48550/ARXIV.2401.06080. URL https://doi.org/10.48550/arXiv.2401.06080.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=1PL1NIMMrw.
- Zixiao Wang, Yuxin Wang, Xiaorui Wang, Mengting Xing, Jie Gao, Jianjun Xu, Guangcan Liu, Chenhui Jin, Zhuo Wang, Shengzhuo Zhang, and Hongtao Xie. Test-time scaling with reflective generative model, 2025. URL https://arxiv.org/abs/2507.01951.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022. URL https://arxiv.org/abs/2201.11903.
- Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier Movellan, and Paul Ruvolo. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 22. Curran Associates, Inc., 2009. URL https://proceedings.neurips.cc/paper_files/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf.
- Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang. Inftythink: Breaking the length limits of long-context reasoning in large language models, 2025. URL https://arxiv.org/abs/2503.06692.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for reasoning, 2025. URL https://arxiv.org/abs/2502.03387.

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. Large language model cascades with mixture of thought representations for cost-efficient reasoning. In *ICLR*, 2024. URL https://openreview.net/forum?id=6okaSfANzh.

Wenting Zhao, Pranjal Aggarwal, Swarnadeep Saha, Asli Celikyilmaz, Jason Weston, and Ilia Kulikov. The majority is not always right: Rl training for solution aggregation, 2025a. URL https://arxiv.org/abs/2509.06870.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason without external rewards, 2025b. URL https://arxiv.org/abs/2505.19590.

A USAGE OF LLMS

 We have used LLMs to write paragraphs as well as to find relevant literature. Programs are written with the aid of LLMs based on agentic programming tools (i.e., Cursor). However, all the responsibility of the content lies with us. Theorems and proofs are written by us.

B RELATED WORK

This section describes the related work on aggregating multiple answers from different individuals and LLMs.

B.1 AGGREGATION OF MULTIPLE ANSWERS FROM INDIVIDUALS

Controlling N in majority voting Ensembling multiple predictions is a widely used technique for improving the accuracy of various machine learning tasks. One of the classic papers by Kolter & Maloof (2007) considers online ensemble learning, where the system can dynamically add or remove experts based on their performance. Regarding the optimal control of N, the idea closest to ours is the Urn model by Soto et al. (2016), which calculates the Bayesian probability that the empirical majority matches the true majority. However, their model samples without replacement, whereas LLM generation fits sampling with replacement. Their method also requires candidate answers and is thus not directly applicable to our setting. Motivated by ensembling methods for deep image classifiers, Inoue (2019) proposed an adaptive ensemble prediction method that adaptively aggregates the outputs of multiple probabilistic classifiers.

Opinion aggregation in crowdsourcing A relevant lines of works in pre-LLM era is the opinion aggregation in crowdsourcing (Sheng et al., 2008; Li et al., 2017). One of the most popular methods in opinion aggregation is the method by David and Skene (Dawid & Skene, 1979). They introduced a probabilistic model that estimates the true labels of items by leveraging the agreement among multiple annotators. It comprises a confusion matrix π , whose jk entry represents the probability such that each annotator's label is j when the true label is k. Such a confusion matrix is not directly applicable to our setting because we cannot generally assume a fixed domain of answers in LLM generation. For example, in the AIME datasets, building a confusion matrix of 1,000 rows (possible answers are integers from 0 to 999) is not very practical. The Dawid-Skene model also assumes that the most frequent answer is the correct one. Subsequent works (Whitehill et al., 2009; Kajino et al., 2012; Takamatsu et al., 2012) addressed this issue by introducing a difficulty parameter for each problem. One of the largest difference between crowdsourcing and LLM ensemble is that the former typically assumes a single answer from each annotator, whereas the latter can generate multiple answers from the same LLM.

B.2 AGGREGATION OF MULTIPLE ANSWERS FROM LLMS

Our method belong to a large umbrella of LLM Ensemble methods, where the forecaster uses multiple LLMs for a better output. A comprehensive survey on this topic (Chen et al., 2025b) categorizes ensemble LLM methods into several categories. Our method falls into the category of "ensemble after inference", where we aggregate the outputs of multiple LLMs after they have generated their responses.

Within this category, Chen et al. (2025b) classified methods into three sub-categories: (1) selection, (2) selection-then-regeneration, and (3) cascade. The first directly selects the answer from generated outputs (our setting). The second selects a subset of LLMs and then merges their outputs using another LLM or a trained model. The third uses a cascade of LLMs, invoking a stronger model only when needed to save cost. Methods in (1) and (2) typically assume a fixed number of generations per LLM and optimize aggregation. In contrast, we primarily consider dynamically controlling the number of generations. Methods in (3) focus on minimizing total cost of calling LLMs.

⁷Figure 2 therein.

- (1) Selection Li et al. (2024) proposed AgentForest that aggregates the predictions of multiple agents by using similarity agreement. Guha et al. (2024) introduced Smoothie, a graphical-model based method to choose the best LLM for each problem. Si et al. (2023) introduced Mixture of Reasoning Experts (MORE) framework that adopts multiple prompting strategy to obtain a mixture of experts and aggregates them by random forest classifier. Our methods belongs to this sub-category. Compared with these methods, our method is a simple average while others may use more complex aggregation strategies. Note also that these methods primarily consider a single generation per each LLM, whereas our paper primarily considers large number of generations per each LLM. A recent paper by Zhao et al. (2025a) proposes an aggregation method of multiple solutions by using reinforcement learning from verifiable rewards.
- (2) Selection-then-Regeneration Jiang et al. (2023b) introduced LLM-Blender, an ensemble LLM method that comprises two modules: PAIRRANKER and GENFUSER. PairRanker chooses K among N LLMs, and GenFuser merges the outputs. Tekin et al. (2024) introduced LLM-TOPLA, an LLM ensemble method that maximizes the diversity of the answers. Based on the answer distribution of N LLMs, they choose K subset of LLMs that maximizes the diversity, and then train an aggregator (like multi-layer perceptron) that minimizes the cross-entropy loss. Lv et al. (2024) proposed an end-to-end method that integrates the subset selection and regeneration. Most of these methods are based on the idea of using many LLMs (or same LLM with different prompts) and single generation per each prompt, whereas our paper primarily considers a relatively small subset of LLMs for each prompt, and large number of generations per each LLM.
- (3) Cascading Varshney & Baral (2022) is one of the earliest work that introduced cascading. Yue et al. (2024) proposed an aggregation of weak and strong LLMs. In their model, if the weak LLM and the cascade LLM disagree with the answer, then the strong LLM is invoked. The primal motivation in cascading is to save the cost of calling strong LLMs, which is orthogonal to our goal of improving the accuracy of maximizing the accuracy given large amount of computation.

Answer selection based on reward models and LLM-as-a-judge A common approach to aggregate multiple answers from LLMs is to use reward models or LLM-as-a-judge methods. Typically, reward models are constructed on top of language models. These approaches can be broadly categorized into two groups: those in which the reward model directly outputs a scalar value (Rafailov et al., 2023; Liu et al., 2024), and those in which the reward model provides comparative judgments or rankings over multiple responses (Mahan et al., 2024; Dong et al., 2024; Son et al., 2024; Guo et al., 2025; Chen et al., 2025a). The methods of the latter category are referred to as generative reward models, reward reasoning models, or LLM-as-a-judge. Compared to our approach, these methods incur additional computational cost due to the reliance on reward models. Also, in our experiments, we did not observe particular advantage of using reward models (see Table 2).

C Proof of Theorem 1

 Proof of Theorem 1. Let $\hat{p}_a(n) = N_j(n)/n$ be the empirical mean of answer j at round n. Hoeffding's inequality implies that

$$\mathbb{P}[|\hat{p}_a(n) - p_a| \ge \epsilon] \le 2 \exp(-2n\epsilon^2).$$

Let $\Delta = \min_{j \neq 1} (p_1 - p_j) > 0$ be the gap between the most frequent answer and the second most frequent answer. Then it holds that

$$\mathbb{P}\left[\bigcap_{n=N_0}^{\infty} |\hat{p}_j(n) - p_j| \ge \frac{\Delta}{2}\right] \le \sum_{n=N_0}^{\infty} \mathbb{P}\left[|\hat{p}_j(n) - p_j| \ge \frac{\Delta}{2}\right] \qquad \text{(Union bound)}$$

$$\le \sum_{n=N_0}^{\infty} 2 \exp\left(-n\frac{\Delta^2}{2}\right) \qquad \text{(Hoeffding's inequality)}$$

$$= \frac{2e^{-N_0\Delta^2/2}}{1 - e^{-\Delta^2/2}}.$$
(14)

and by choosing $N_0 = N_0(\delta)$ sufficiently large, the right-hand side can be made no larger than δ/s . Union bound over all s answers implies that, with probability at least $1 - \delta$, it holds that

$$\hat{p}_1(n) - \hat{p}_j(n) \ge p_1 - p_j - 2 \times \frac{\Delta}{2} \ge 0, \forall j \ne 1, \forall n \ge N_0(\delta).$$

Namely, at least with probability $1-\delta$, the empirical most frequent answer is indeed the true majority answer for all $n \geq N_0(\delta)$, and thus, if stopping time is longer than $N_0(\delta)$, the algorithm returns the true majority answer. By choosing $N_{\max} \geq N_0(\delta)$ and B sufficiently large⁸, the algorithm stops after $N_0(\delta)$ with probability 1, and thus, the algorithm returns the true majority answer with probability at least $1-\delta$. Since $\delta>0$ is arbitrary, the algorithm returns the true majority answer with probability arbitrarily close to 1. Proof of Theorem 1 is complete.

Remark 1. (Frequentist stopping criteria) While Dirichlet posterior naturally fits with our task, we may consider frequentist stopping criteria based on the observed data. Advantages of the frequentist approach include its closed formula as well as rigorous guarantee in view of a frequentist. A drawback is that its configuration of the hyperparameter tends to be conservative: the confidence level that it requires is often higher than what actually is, potentially leading to oversampling. To bound the error probability, it needs to consider the correction due to adaptive sampling (Kaufmann & Koolen, 2021), as well as a multiple-testing correction with respect to the size of answer set s(t). The latter seems particularly problematic, as s(t) is unknown and potentially unbounded. For this reason, we do not see any existing work that adopts a frequentist approach to testing adaptive majority voting. For example, existing methods on majority voting, such as Soto et al. (2016), which we will elaborate in Section B.1, also adopt Bayesian approach. Therefore, we do not pursue this direction in this paper.

D LIST OF LLMS AND PROBLEM SETS

We tested the following LLMs. The model temperature is 0.6 unless otherwise specified. We follow the model recommendation to set the temperature and other hyperparameters. The maximum model length is $\min(X, \max \text{maximum context length of LLM}) - 2500$ tokens, where X = 100000 all but GPQA-DIAMOND, whereas X = 50000 for GPQA-DIAMOND. The 2500 token margin is reserved for the prompt; we believe that this does not matter to MATH500 and GPQA-DIAMOND at all, and to AIME2024/2025 very slightly.

- Phi-4-reasoning (Abdin et al., 2025) is a 14-billion-parameter (14B) reasoning-oriented model developed by Microsoft, released in April 2025. It builds on the Phi-4 base model using supervised fine-tuning on a dataset of chain-of-thought traces and reinforcement learning. We set temperature to 0.8.
- GPT-OSS-20B (OpenAI, 2025) is the smaller version of the two LLMs released in October 2025 by OpenAI. This model has 21B parameters in total. We set the reasoning effort to be medium (default setting).
- AM-Thinking-v1 (Ji et al., 2025) is a 32B dense model released in May 2025 by the am-team. It is built upon the pre-trained Qwen 2.5-32B-Base, then enhanced through a specialized post-training pipeline featuring Supervised Fine-Tuning (SFT) followed by reinforcement learning (RL).
- EXAONE-Deep-32B (LG AI Research, 2025) is a 32B model released in May 2025 by LG AI Research as part of the EXAONE Deep series. Built with 64 Transformer layers, a 102K vocabulary, and a 32K-token context window, it is designed to excel in reasoning-intensive tasks such as mathematics and coding.
- Nemotron-Nano-9B (NVIDIA, 2025) is a 9-billion-parameter hybrid reasoning model by NVIDIA, released in August 2025. It features a Mamba-2 + Transformer hybrid architecture, replacing most attention layers with efficient Mamba-2 layers. It was pretrained from scratch (using a 12B base model over 20 trillion tokens) and then compressed via distillation. Post-training includes SFT, GRPO, DPO, and RLHF.

⁸This is because, the possible combination of answers with the first N_0 samples is finite, and thus, the possible value⁹ of BF that it can take until the first N_0 sample is finite. If we set B larger than that the largest of such values, then the algorithm never stops before the N_0 samples.

- MetaStone-S1-32B (Wang et al., 2025) is a 32B reflective generative reasoning model, released around July 2025. It introduces a novel Reflective Generative Form, merging policy generation and process reward modeling within a single shared backbone, enabled by a lightweight Self-supervised Process Reward Model (SPRM).
- Qwen3, released in April 2025 by Alibaba Cloud (Qwen Team, 2025), is the third-generation open-source large language model family featuring hybrid reasoning, long context support, agentic capabilities, and multilingual fluency. We use three versions of Qwen3. Namely, Qwen3-4B, Qwen3-14B, and Qwen3-30B-A3B-Thinking-2507.
- LIMO-v2 (Ye et al., 2025) is a 32B Qwen2.5-based reasoning model released in July 2025, fine-tuned on ~800 carefully curated samples to achieve top-tier math reasoning with remarkable data efficiency—embodying the "Less-Is-More" principle.

We tested the following datasets:

- AIME2024 (Maxwell-Jia, 2024) consists of 30 problems that were used American Invitational Mathematics Examination (AIME) held during January 31 and February 1, 2024.
 AIME2024 tests mathmatical problem-solving skills in vast field of mathmatical topics.
 High-scoring high-school students are invited to participate in the United States of America Mathematics Olympiad (USAMO). All answers are integers between 1–999.
- AIME2025 (OpenCompass, 2025) consists of 30 problems that were used American Invitational Mathematics Examination (AIME) held from February 10 to February 12, 2025. Its format is identical to AIME2024.
- GPQA-DIAMOND (Graduate-Level Google-Proof Q&A Benchmark, Rein et al. 2023) is a set of multiple-choice questions crafted by PhD-level experts in biology, physics, and chemistry. The Diamond is a subset of 198 GPQA problems that distinguishes Ph.D. level experts from the others. The answers are in multiple-choice format (A–D).
- MATH500 (Hendrycks et al., 2021) is a benchmark derived from the MATH dataset, which
 contains challenging competition-level mathematics problems covering algebra, geometry,
 number theory, probability, and other advanced topics. The MATH500 subset consists
 of 500 carefully selected problems used in recent evaluation studies, and is designed to
 test mathematical problem-solving skills beyond high-school level. All problems require
 generating detailed reasoning and solutions rather than multiple-choice responses. The
 answer format varies, including numeric integers, fractions, complex numbers, and vectors.

Among these datasets, AIME2024/2025 benefits for a long chain of thought (CoT) reasoning, as the problems are challenging and require multi-step reasoning. GPQA-DIAMOND and MATH500 also require long CoT, but the benefit of it is less significant than AIME2024/2025. We did not include GSM8K (Cobbe et al., 2021) because these problems are relatively easy and finishes with a short CoT for the tested LLMs, and thus the benefit of ensemble was not significant.

¹⁰Regarding the scaling of performance as a function of CoT length, see, e.g., Figure 1 of Muennighoff et al. (2025) and Figure 7 of Yan et al. (2025).

LLM	AIMI	AIME2024 AIME2025		GPQA-D		MATH500		
	Bo1	$Bo\infty$	Bo1	$Bo\infty$	Bo1	$\mathrm{Bo}\infty$	Bo1	$Bo\infty$
AM-Thinking-v1	0.789	0.900	0.762	0.867	_	_	_	_
Datarus-R1-14B-preview	0.516	0.733	0.370	0.600	_	_	_	_
EXAONE-Deep-32B	0.715	0.867	0.627	0.767	0.661	0.692	0.945	0.962
GPT-OSS-20B	0.780	0.900	0.744	0.900	0.642	0.722	0.928	0.960
LIMO-v2	0.620	0.800	0.527	0.700	_	_	_	_
MetaStone-S1-32B	0.820	0.867	0.747	0.800	0.670	0.707	0.947	0.950
NVIDIA-Nemotron-Nano-9B-v2	0.716	0.867	0.600	0.733	0.584	0.626	0.938	0.956
Phi-4-reasoning	0.729	0.867	0.643	0.833	0.658	0.727	0.878	0.944
Qwen3-4B	0.735	0.800	0.655	0.733	_	_	_	_
Qwen3-14B	0.830	0.867	0.744	0.800	_	_	0.946	0.956
Qwen3-30B-A3B-Thinking-2507	0.905	0.933	0.858	0.900	0.720	0.732	0.954	0.960

Table 3: Summary performance per model across datasets. The scores are estimated from at least 80 generation for each model and dataset. GPQA-D is an abbreviation of GPQA-DIAMOND.

E Bo1 and Best-of-∞ performance of each model

We list Bo1 (averaged) and best-of-∞ performance of each model in Table 3. We have used the same prompt (Section E.1) for all models, which might be sub-optimal for some models. The evaluated performance also depends on the answer parser. While we used the consistent and a reasonably flexible answer parser for all models, we acknowledge some examples¹¹ where the parsing is imperfect. We have not specified any tool call option. Also note that GPT-OSS-20B's reasoning mode is set to medium (default setting), which is the second best setting. Finally, we clarify our goal is not to argue superiority of some models over the others, but to give some idea on the performance of each model that we use for the verification of our methods of adaptive sampling (Algorithm 1).

E.1 Prompts for answer generation

 We send the following request to a LLM that we launched as a vllm process:

```
{"role": "user", "content": prompt}
```

where the examples of the prompt are given below: The first prompt is from AIME2024, and the second prompt is from GPQA-DIAMOND.

```
Let $x,y$ and $z$ be positive real numbers that satisfy the
   following system of equations:
\[\log_2\left({x \over yz}\right) = {1 \over 2}\]
\[\log_2\left({y \over xz}\right) = {1 \over 3}\]
\[\log_2\left({z \over xy}\right) = {1 \over 4}\]
Then the value of $\left|\log_2(x^4y^3z^2)\right|$ is $\tfrac{m}{n}$
   where $m$ and $n$ are relatively prime positive integers. Find
   $m+n$.
Please reason step by step, and put your final answer within \boxed
   {}.
```

Among the following exoplanets, which one has the highest density?

- a) An Earth-mass and Earth-radius planet.
- b) A planet with 2 Earth masses and a density of approximately 5.5 g /cm³.

¹¹In particular, MATH500 where the answer format varies.

```
1080
         c) A planet with the same composition as Earth but 5 times more
1081
             massive than Earth.
1082
         d) A planet with the same composition as Earth but half the mass of
1083
             Earth.
1084
1085
         A. d
         В. а
1086
         C. b
1087
         D. c
1088
          Please reason step by step, and put your final answer as the letter
1089
                choice (A), (B), (C), etc. within \boxed{}.
1090
1091
```

For NVIDIA Nemotron-Nano-9B, we prepend the recommended system message "/think".

E.2 PROMPTS FOR LLM-AS-A-JUDGE

1092 1093 1094

1095

1096

1097

1098

The following illustrates a prompt used to instruct an LLM-as-a-judge to select the best answer among a set of candidates. In this prompt, last_part_1, last_part_2, ... denote the final 5000 characters of each answer preceding the </think> tag.

```
1099
1100
          Please evaluate the following 5 answer excerpts for this
             mathematical problem and determine which answer you think is the
1101
              most correct.
1102
1103
          Problem:
1104
          Let x,y and z be positive real numbers that satisfy the
1105
              following system of equations:
          \left[\log_2\left(x \cdot yz\right)\right] = \{1 \cdot yz\}
1106
          \left[\log_2\left(\{y \mid xz\}\right] = \{1 \mid 3\}\right]
1107
          \left[\log_2\left(z \cdot xy\right)\right] = \{1 \cdot y\}
1108
          Then the value of \left(x^4y^3z^2\right)\right\ is \left(x^4y^3z^2\right)\right
1109
               where $m$ and $n$ are relatively prime positive integers. Find
1110
              m+n.
1111
          Answer 1 (Last 5000 chars before </think>):
1112
          {last_part_1}
1113
1114
         Answer 2 (Last 5000 chars before </think>):
1115
          {last_part_2}
1116
         Answer 3 (Last 5000 chars before </think>):
1117
          {last_part_3}
1118
1119
          Answer 4 (Last 5000 chars before </think>):
1120
          {last_part_4}
1121
         Answer 5 (Last 5000 chars before </think>):
1122
          {last_part_5}
1123
1124
          Among the above 5 answer excerpts (showing the last parts before </
1125
              think> tag), which answer do you think is the most correct,
              logical, and complete?
1126
1127
          Please provide detailed reasoning for your judgment, and then output
1128
              the number of the answer you think is correct (1, 2, 3, 4, 5)
1129
              enclosed in \boxed{}.
1130
          Example: \boxed{1}
1131
1132
          Judgment:
1133
```

1134	Problem No.	Total answers	Correct answers	Accuracy	Gold answer	Majority answer
1135	1	160	159	0.994	70	70
1136	2	160	112	0.700	588	588
1137	3	160	154	0.963	16	16
1138	4	160	150	0.938	117	117
1139	5	160	146	0.912	279	279
1140	6	160	158	0.988	504	504
1141	7	160	96	0.600	821	821
	8	160	147	0.919	77	77
1142	9	160	134	0.838	62	62
1143	10	160	58	0.362	81	81
1144	11	160	120	0.750	259	259
1145	12	160	137	0.856	510	510
1146	13	160	5	0.031	204	487/3
1147	14	160	5	0.031	60	63
1148	15	160	0	0.000	735	147
1149	16	160	158	0.988	468	468
1150	17	160	157	0.981	49	49
1151	18	160	87	0.544	82	82
1152	19	160	154	0.963	106	106
1153	20	160	114	0.713	336	336
	21	160	143	0.894	293	293
1154	22	160	45	0.281	237	60671
1155	23	160	66	0.412	610	610
1156	24	160	77	0.481	149	149
1157	25	160	132	0.825	907	907
1158	26	160	111	0.694	113	113
1159	27	160	136	0.850	19	19
1160	28	160	1	0.006	248	625
1161	29	160	75	0.469	104	104
1162	30	160	48	0.300	240	240
1163	total	4800	3085	0.643		0.833

Table 4: Basic performance for each problem. The final line at column "accuracy" indicates Bo1 performance, and the final line at "majority answer" indicates best-of-∞ performance. LLM=Phi-4-reasoning, Dataset=AIME2025.

E.3 SOURCE CODE

Our source code is available at https://figshare.com/s/8bd1830a255278e57830.

F COMPLEMENTARITY IN LLM ENSEMBLES FOR AIME 2025

In the AIME2025 dataset, we explored the combination of Phi-4-reasoning (Table 4) and GPT-OSS-20B (Table 5) to enhance performance on complex reasoning tasks. By leveraging the strengths of both models, we aimed to achieve better accuracy and robustness in our predictions. In this case, Phi-4-reasoning can solve Problem 30 that GPT-OSS-20B cannot solve, and can complement the performance. As a result, its LLM ensemble achieved 0.933 best-of- ∞ accuracy, which is higher than the individual accuracies of Phi-4-reasoning (0.733) and GPT-OSS-20B (0.900). This demonstrates the effectiveness of combining different models to improve overall performance on challenging tasks.

Problem No.	Total answers	Correct answers	Accuracy	Gold answer	Majority answer
1	85	85	1.000	70	70
2 3	85	76	0.894	588	588
3	85	85	1.000	16	16
4	85	83	0.976	117	117
5	85	81	0.953	279	279
6	85	85	1.000	504	504
7	85	52	0.612	821	821
8	85	80	0.941	77	77
9	85	75	0.882	62	62
10	85	53	0.624	81	81
11	85	61	0.718	259	259
12	85	56	0.659	510	510
13	85	17	0.200	204	204
14	85	3	0.035	60	74
15	85	0	0.000	735	147
16	85	81	0.953	468	468
17	85	85	1.000	49	49
18	85	62	0.729	82	82
19	85	84	0.988	106	106
20	85	79	0.929	336	336
21	85	72	0.847	293	293
22	85	85	1.000	237	237
23	85	45	0.529	610	610
24	85	58	0.682	149	149
25	85	81	0.953	907	907
26	85	72	0.847	113	113
27	85	81	0.953	19	19
28	85	36	0.424	248	248
29	85	71	0.835	104	104
30	85	14	0.165	240	188
total	2550	1898	0.744		0.900

Table 5: Basic performance for each problem. The final line at column "accuracy" indicates Bo1 performance, and the final line at "majority answer" indicates best-of- ∞ (limit) performance. LLM=GPT-OSS-20B, Dataset=AIME2025.

G ADDITIONAL EXPERIMENTS

To verify the robustness of our findings, we conducted similar experiments on other LLMs and datasets. The results are consistent with the main experiments in the paper, confirming the robustness of our proposed methods across different settings. As is the main paper, all error bars are standard two-sigma confidence intervals.

G.1 EXPERIMENTAL SET 1: EFFECTIVENESS OF ADAPTIVE SAMPLING

In the following pages, we present the performance comparison between our proposed adaptive algorithm (Algorithm 1) and the fixed-sample BoN across various LLMs and datasets (Figures 8–11). The results consistently demonstrate that our adaptive approach outperforms the fixed-sample-size method given the same number of generation (= samples) or the same token budget. This is because our algorithm is adaptive; for easy problems where the model always outputs the same answer, it uses fewer samples, while for hard problems where the model's answers vary, it uses more samples. This adaptivity leads to better overall performance compared to a fixed-sample-size approach.

Figure 7: Cost-analysis of our proposed method and fixed BoN for GPT-OSS-20B. The error bars are standard two-sigma confidence intervals. Green dashed line indicates the best-of- ∞ performance.

Figure 8: Cost-analysis of our proposed method and fixed BoN for Phi-4-reasoning. The error bars are standard two-sigma confidence intervals. Green dashed line indicates the best-of- ∞ performance.

Figure 9: Cost-analysis of our proposed method and fixed BoN for NVIDIA-Nemotron-Nano-9B-v2. The error bars are standard two-sigma confidence intervals. Green dashed line indicates the best-of- ∞ performance.

Figure 10: Cost-analysis of our proposed method and fixed BoN for Qwen3-30B-A3B-Thinking-2507. The error bars are standard two-sigma confidence intervals. Green dashed line indicates the best-of-∞ performance.

Figure 11: Cost-analysis of our proposed method and fixed BoN for EXAONE-Deep-32B. The error bars are standard two-sigma confidence intervals. Green dashed line indicates the best-of- ∞ performance.

G.2 EXPERIMENTAL SET 2: ADVANTAGE OF LLM ENSEMBLE OVER SINGLE LLM

Figure 12 demonstrates several more examples where the ensemble of LLMs outperforms the best single LLM. The weights are optimized by the MILP introduced in Section 3. We used Algorithm 1 to adaptively select and ask LLM for the answers.

(a) Performance of a two-LLM ensemble. We used GPT-OSS-20B and Phi-4-reasoning on AIME2025. We tested with weight w=(0.7,0.3). The best-of- ∞ performance of GPT-OSS-20B is 0.900 (90.0%), whereas the ensemble's best-of- ∞ performance is 0.933 (93.3%).

(b) Performance of two-LLM ensemble. We used LIMO-v2 and Datarus-R1-14B on AIME2024. The weight was optimized to w=(0.4316,0.5684).

(c) Performance of four-LLM ensemble (MetaStone-S1-32B, Phi-4-reasoning, Qwen3-30B-A3B-Thinking-2507, and GPT-OSS-20B) on MATH500. The weight was optimized to w=(0.0193,0.0411,0.3771,0.5625).

Figure 12: Performance of LLM ensembles compared with single-LLM performance. We used Algorithm 1 choosing the LLM. Blue dashed line indicates the best-of- ∞ performance of the LLM ensemble.

G.3 EXPERIMENTAL SET 3: LEARNING A GOOD WEIGHT

Figure 13 shows several additional examples of sample efficiency of learning the optimal weights in LLM ensembles. Dashed lines are the best-of- ∞ performance of the individual LLMs. One can see that, with a small number of gold answers, the learned weights can outperform the best single LLM.

(a) The mixture of LIMO-v2 and Datarus-R1-14B on AIME2024. Note that the best-of-∞ performance of the two base LLMs is exactly the same and thus overlaps in the figure.

(b) The mixture of Phi-4-reasoning, Qwen3-30B-A3B-Thinking-2507, and GPT-OSS-20B on GPQA-Diamond.

(c) The mixture of seven LLMS on MATH500.

Figure 13: The training of weights in an LLM ensemble. We show the number of samples to determine the weight (x-axis) versus the best-of- ∞ performance (y-axis, i.e., performance of best-of- ∞ with the weight). The x-axis indicates the number of problems used to learn the weight and the y-axis indicates the best-of- ∞ performance. The score is averaged over 100 runs.

G.4 EXPERIMENTAL SET 4: TRANSFER LEARNING OF THE OPTIMAL WEIGHT

We do not have additional experiments for this set of experiments.

G.5 EXPERIMENTAL SET 5: COMPARISON WITH OTHER ANSWER-SELECTION METHODS

This section reports our comparison of majority voting with other aggregation methods. This appendix section complements Table 2 of main paper by providing additional experimental results on AIME2025 and other LLMs, as well as more details on the compared methods. The results are shown in Table 2. The compared methods are as follows:

- Omniscient is the hypothestical selection method that can always select the correct answer
 if it is included in the candidates, which is infeasible unless we know the gold answer. By
 definition, this is the best possible performance of any selection method.
- Majority voting is the method that selects the most frequent answer among the candidates.
 Ties are broken randomly.
- LLM-as-a-judge is the answer selection method that uses the target LLM itself to select the best answer among the candidates. Since the concatination of the all answers can exceed the context length, we extracted the last 5,000 characters before the
 think> tag of the answers for each answer. To avoid uninterpretable answer, we ask the LLM twice, which slightly increased the accuracy. There are two variants: (tournament) compares the answers pairwise and selects the best one, and (set) compares all answers at once and selects the best one.
- INF-ORM-Llama3.1-70 is one of the state-of-the-art reward model (Minghao Yang, 2024), which marked the 9th in the RewardBench leaderboard as of September 8 2025.
- Skywork-Reward-V2-Llama-3.1-8B and Skywork-Reward-V2-Qwen3-8B are two of the state-of-the-art reward model (Liu et al., 2024), which marked the 1st and the 6th in the RewardBench leaderboard as of September 8 2025.
- Self-certainty is the method that selects the answer with the highest self-certainty score (Zhao et al., 2025b), which measures intrinsic confidence by how the likelihood differs from the uniform distribution per token. Note that we used the sequence average of selfcertainty. Very recently, (Fu et al., 2025) introduced a version of self-certainty that weights more on the latter part of the sequence, which we have not tested and may improve the performance.
- Random is the model that randomly selects one of the candidates, whose performance should be close to the accuracy of a Bo1.

We use the same set of answers for comparing these selection methods, which reduces the variance due to the randomness in answer generation. Table 6, Table 7, and Table 8 show the comparison of these methods on GPT-OSS-20B, Phi-4-reasoning, and Qwen3-30B-A3B-Thinking-2507, respectively. The results are consistent with the main experiments in the paper. All results are Bo5 settings.

 $^{^{12}}$ For an answer without </think> tag, we used the final 5,000 characters. We also tested an alternative method that asks LLM to summarize its own answer before the comparison, which, in our preliminary analysis, did not outperform the proposed method.

Method	AIME2024	GPQA-Diamond	MATH500
Omniscient	91.25 ± 1.03	85.98 ± 1.19	95.56 ± 0.23
Majority voting	88.12 ± 1.49	70.07 ± 2.02	95.31 ± 0.17
LLM-as-a-judge (set)	85.42 ± 1.48	69.14 ± 1.60	94.31 ± 0.28
LLM-as-a-judge (tournament)	_	70.22 ± 1.96	_
INF-ORM-Llama3.1-70B	85.42 ± 2.18	68.38 ± 1.84	94.21 ± 0.29
Skywork-Reward-V2-Llama-3.1-8B	85.42 ± 2.10	68.13 ± 1.95	_
Skywork-Reward-V2-Qwen3-8B	_	68.42 ± 1.93	_
Self-certainty	81.67 ± 2.98	67.65 ± 1.38	93.50 ± 0.47
Random (\approx Bo1)	79.17 ± 2.89	67.65 ± 1.38	93.91 ± 0.40

Table 6: The accuracy of several selection methods on the best-of-five (Bo5) setting across three datasets (AIME2024, MATH500, GPQA-Diamond). Answers are generated by GPT-OSS-20B. The scores are averaged over 16 trials and we report the two-sigma confidence intervals.

Method	AIME2025	AIME2024
Omniscient	85.00 ± 1.72	85.21 ± 1.21
Majority voting	76.67 ± 2.58	80.00 ± 1.72
LLM-as-a-judge (set)	72.92 ± 3.10	80.42 ± 1.81
INF-ORM-Llama3.1-70B	70.42 ± 2.78	78.54 ± 2.51
Skywork-Reward-V2-Qwen3-8B	70.62 ± 2.87	77.29 ± 2.60
Self-certainty	63.12 ± 3.36	73.54 ± 2.31
Random (\approx Bo1)	63.96 ± 2.45	73.54 ± 2.31

Table 7: The accuracy of several selection methods on the best-of-five (Bo5) setting on the AIME2025 and AIME2024 datasets. Answers are generated by Phi-4-reasoning. Scores are averaged over 16 trials and we report the two-sigma confidence intervals.

Method	AIME2025	AIME2024
Omniscient	92.71 ± 1.09	93.54 ± 0.74
Majority voting	88.75 ± 1.20	92.92 ± 0.57
LLM-as-a-judge (set)	88.13 ± 1.49	92.29 ± 0.80
LLM-as-a-judge (tournament)	87.50 ± 1.29	91.25 ± 1.48
INF-ORM-Llama3.1-70B	89.38 ± 1.09	92.29 ± 1.00
Skywork-Reward-V2-Qwen3-8B	89.38 ± 1.09	92.71 ± 0.67
Self-certainty	87.50 ± 2.06	91.25 ± 1.20
Random (\approx Bo1)	86.04 ± 2.04	90.00 ± 1.36

Table 8: The accuracy of several selection methods on the best-of-five (Bo5) setting on the AIME2025 and AIME2024 datasets. Answers are generated by Qwen3-30B-A3B-Thinking-2507. Scores are averaged over 16 trials and we report the two-sigma confidence intervals.