
Pruning Adatperfusion with Lottery Ticket Hypothesis

Anonymous ACL submission

Abstract

Pre-trained language models have shown great001
success in multiple downstream tasks. How-002
ever, they are computationally expensive to003
fine-tune. Thus, transfer learning with adapter004
modules has been introduced to alleviate this005
problem, helping to extract knowledge of the006
downstream tasks. And the latest Adapterfu-007
sion model can further merge multiple adapters008
to incorporate knowledge from different tasks.009
However, merging multiple adapters will in-010
evitably cause redundancies, increasing the011
training and inference time massively. There-012
fore, in this paper, we propose an approach013
to identify the influence of each adapter mod-014
ule and a novel way to prune adapters based015
on the prestigious Lottery Ticket Hypothesis.016
Experiments on GLUE datasets show that the017
pruned Adapterfusion model with our scheme018
can achieve state-of-the-art results, reducing019
sizes significantly while keeping performance020
intact.021

1 Introduction022

Transfer learning with transformer-based pre-023

trained language model has become a go-to method024

for solving multiple NLP tasks (Vaswani et al.,025

2017). The language models are pre-trained on026

large amounts of unlabeled text data with methods027

such as masked language modeling (e.g. BERT028

(Devlin et al., 2018), Roberta (Liu et al., 2019), and029

XLNet (Yang et al., 2019)]). Despite they achieved030

state-of-the-art performance for most natural lan-031

guage understanding tasks, they are notoriously032

deep requiring millions or even billions of param-033

eters to gain great results (Kaplan et al., 2020).034

For different tasks, models needs to be fine-tuned035

entirely, which is computationally expensive and036

requires large storage.037

Therefore, adapter modules (Houlsby et al.,038

2019) are introduced to tackle this issue. It’s an039

alternative way of transfer learning that achieves040

comparable performance to full fine-tuning on most041

Prune

Prune

Fusion

Transformers
component

Adapter

Figure 1: Pruning Adapterfusion

NLP tasks, without the need of fine-tuning the 042

whole model for a downstream task. Adapter is a 043

small residual neural network inserted in each layer 044

of the transformer. During training, only the param- 045

eters in adapters are fine-tuned, while the rest of the 046

parameters are frozen. This approach can reduce 047

the number of parameters needed to be trained at 048

the training phase, extract task-specific knowledge 049

in adapters, and enable parameter sharing among 050

tasks. Moreover, recent studies have revealed that 051

the adapter is capable of extracting knowledge 052

from the target task (Rücklé et al., 2020b; Pfeif- 053

fer et al., 2020b), so research attempts have also 054

been made to fuse multiple adapters across multi- 055

ple tasks to incorporate different aspects of knowl- 056

edge (e.g. Adapterfusion (Pfeiffer et al., 2020a), 057

K-adapter Wang et al. (2020)). However, the fusing 058

of adapters in these models can inevitably cause 059

a lot of redundancies. So, Rücklé et al. (2020a) 060

have recently proposed AdapterDrop which aims to 061

1

drop the redundant adapters. They tried to remove062

adapters from lower transformer layers during train-063

ing and inferences, resulting in faster training and064

inference speed with some performance cost. How-065

ever, the utilization of each adapter are not fully066

analysed yet and how to introduce new pruning067

strategies remains to be explored.068

To address these deficits, in this paper, we pro-069

pose an approach to model the utilization of differ-070

ent adapters in the transformer layer, and a novel071

way to prune adapters in the model while keeping072

the loss of the performance to be negligible. The073

contributions are summarized as follows:074

• We propose a new indicator LIA (Layer Influ-075

ence Of Adapter) to quantify the utilization of076

adapters at each layer and identify the most077

influential adapters in the model.078

• We introduce a novel way for pruning adapter079

modules, inspired by the prestigious Lottery080

Ticket Hypothesis (Frankle and Carbin, 2019),081

which states that dense, randomly-initialized,082

feed-forward networks contain subnetworks083

(winning tickets) that can have test accuracy084

comparable to the original network in a simi-085

lar number of iterations when trained in isola-086

tion.087

• We have evaluated the proposed approach on088

the GLUE datasets. For the performance and089

LIAs of the pruned adapters in the latest state-090

of-the-art Adapterfusion model, we can re-091

move more than half of the adapters and re-092

duce computation of the Adapterfusion model093

by nearly 40% with little performance loss.094

2 Adapterfusion pruning095

Adapterfusion model (Pfeiffer et al., 2020a) is to096

merge multiple adapters from different tasks. And097

inference time of the model increases drastically af-098

ter the fusion. However, not all the adapter modules099

in the model are utilized in the downstream task.100

To identify the roles of adapters, we firstly define101

a new indicator LIA (Layer Influence Of Adapter)102

for the adapter module to measure its utilization in103

each layer.104

In a transformer layer, let a⃗ denote the output105

of adapter up projection module, b⃗ be the residual106

connection of the adapter, and c⃗ be the output of107

the adapter. Their connection can be modeled as108

equation 1:109

a⃗+ b⃗ = c⃗ (1) 110

Since the activation of adapters varies between 111

different inputs and different layers, it’s difficult 112

to see the influence of adapter in each layer based 113

on the activation. So we use the projection of a⃗ on 114

adapter output vector c⃗ to represent its influence 115

and normalize the result by the length of c⃗. We 116

name this quantity as Layer Influence Of Adapter 117

(LIA), which is defined as: 118

LIAa⃗ =
|⃗a| × cos θ

|⃗c|
=

a⃗ · c⃗
|⃗c|2

(2) 119

With LIA, we can model the importance of 120

adapters and streamline the model accordingly. Our 121

proposed pruning strategies to remove redundant 122

adapters from Adapterfusion model will be two- 123

stage. First, we prune single task adapters before 124

the fusion using Lottery Ticket Hypothesis (Fran- 125

kle and Carbin, 2019). We then fuse the adapters 126

and prune the less utilized adapters after training 127

the model. The whole framework is presented in 128

Figure 1. 129

2.1 Pruning single task adapter with Lottery 130

Ticket Hypothesis 131

Since not all adapters in the model are created 132

equal, removing some of the adapters does not com- 133

promise the performance too much. We will prune 134

the single task adapter before the Adapterfusion. 135

Inspired by Lottery Ticket Hypothesis (Frankle 136

and Carbin, 2019), we prune the adapter iteratively 137

to find the sub-network (winning ticket) that can 138

reach the same accuracy when trained in isolation. 139

After every pruning, we reinitialize the weights 140

of the adapter to the initial values when the first 141

iteration starts . 142

We explore to find the winning ticket in adapters 143

by training and pruning them iteratively. Since the 144

importance of adapters is different in each layer, 145

we are performing the pruning globally. We train 146

the transformer model with adapters as f (x; θ0;α) 147

with initial parameter in adapters θ = θ0 ∼ Dθ 148

and transformer parameter α = α ∼ Dα. Then the 149

winning ticket can be found by the following steps: 150

1. Randomly initialize adapter parameters in the 151

model f (x; θ0;α). 152

2. Train the adapters for j iterations, arriving at 153

parameters θj . 154

2

3. Prune p% of the adapters in θj .155

4. Reset the remaining parameters in adapters156

to θ0, and go back step 2 to train the model157

f (x; θ0;α) if it is not a winning ticket yet.158

We prune adapters based on their sum of weights.159

Here we do not use LIA yet because it only repre-160

sents the influence of adapter at each layer and it161

can not distinguish the influence between layers.162

Let θt,l be the weights of the adapter at layer163

l at iteration t and ai,j denote the parameters in164

θt,l. The importance of an adapter of size N with165

input size of H is
∑N,H

i,j |ai,j |. Adapters are then166

sorted by the sum of weights in the descending167

order as well, and the p% smallest adapters in list168

R are removed from the model. And the remaining169

adapters step back to their initial weights for the170

re-training. The whole procedure is elaborated in171

Algorithm 1. See Appendix B for more details172

Algorithm 1: Sort the importance of
adapter layers
Result: a list of tuple containing values of

importance and the number of
layers

R is an empty list;
The size of adapter is N ;
Input size of adapter is H ;
Weights of adapter at iteration t as θt;
for layer l in θt do

if layer l not pruned then
Value of importance
Impl =

∑N,H
i,j=0 |ai,j | ;

Append tuple (Impl, l) to list R ;
end

end
Sort list R with Imp

3 Experimental studies173

In this section, we examine the influence of the sin-174

gle task adapter under different downstream tasks,175

and present the results of our proposed pruning176

scheme evaluated on the prestigious GLUE datasets177

(Wang et al., 2018).178

3.1 Experimental settings179

We use the public BERT-Based uncased model180

which has 12 layers and a total of 110M param-181

eters as our base model. And we apply the similar182

approach in (Devlin et al., 2019) to perform a text183

classification task. In each input sequence, the first 184

token is a classification token. Its embedding is 185

then fed into a linear layer to make a prediction. In 186

the training of Adapterfusion, a new linear layer 187

is initialized for classification and Adapterfusion 188

model is inserted in each transformer layer. 189

In the experiment of pruning single task adapters, 190

we set the adapter size to 128 because engineering 191

practices (Bengio et al., 2005) suggest that overpa- 192

rameterized networks are easier to train. We use 193

Adam optimizer to train the single task adapter 194

model and perform hyperparameter search using 195

TPE algorithm (Bergstra et al., 2011). We runs 30 196

trials on learning rate settings in {1 × 10−4, 5 × 197

10−4, 1×10−3}, and number of epochs in {3, 4, 5}. 198

We select the best settings for pruning experiments. 199

We prune 20% of the adapters from the model at 200

each pruning iteration, and use an early-stopping 201

strategy with patient of three to speed up training, 202

and we use the minimum validation loss for early- 203

stopping criterion. 204

In the experiment of pruning Adapterfusion 205

model, we set the learning rate to 5 × 10−5 and 206

use AdamW optimizer as suggested by Pfeiffer 207

et al. (2020a). We run each task with 4 epochs and 208

set the batch size to 32, and each model for each 209

task with five different random seeds. 210

We have evaluated the single adapter with prun- 211

ing, and Adapterfusion on GLUE datasets (Wang 212

et al., 2018), which contain eight sentence or 213

sentence-pair language understanding tasks.1 And 214

we treat MNLI mm and MNLI m equally. And 215

we have reported the test results of the single task 216

adapter through the GLUE submission website.2 217

3.2 LIAs in single task adapter 218

In order to analyse the influence of single task 219

adapter at each layer, we run a test on the stan- 220

dard adapters and analyse the utilization of each of 221

them. 222

In the evaluation step, we store the residual out- 223

put and the output of each adapter to calculate the 224

LIAs at each step. We then average LIAs of each 225

adapter across the datasets. And we run the test 226

from tasks with small datasets to large datasets, 227

whose results are shown in Figure 2. 228

We have found that as the size of dataset gets big- 229

ger, LIAs of adapters also become larger, implying 230

1We omit WNLI because it is not evaluated in BERT (De-
vlin et al., 2018).

2https://gluebenchmark.com

3

https://gluebenchmark.com

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

1.7% 0.4% 0.7% 0.5% 1.6% 1.1% 4.3% 0.8% 0.6% 0.1% 0.6% 0.2% 0.5% 0.6% 0.3% 0.0% 0.2% 0.8% 0.9% 0.6% 2.3% 1.0% 2.0% 2.6%

2.8% -0.1% 3.8% 1.4% 0.8% 2.7% 1.0% 1.2% 1.5% 0.9% 2.7% 0.9% 1.3% 0.7% 15.3% 4.0% 2.4% 2.4% 2.1% 0.8% 1.1% 0.4% 1.1% 5.1%

1.5% 0.6% 2.4% 0.7% 1.0% 2.9% 3.8% 1.1% 2.8% 2.3% 3.7% 1.5% 5.4% 0.9% 2.3% 2.4% 2.0% 3.6% 2.4% 1.7% 1.2% 1.7% 1.1% 3.0%

2.7% 3.9% 2.0% 2.1% 1.0% 1.5% 1.6% 1.5% 1.5% 1.4% 2.1% 1.2% 1.9% 1.2% 0.8% 1.3% 2.9% 2.0% 2.0% 0.9% 3.7% 1.0% 2.8% 1.4%

11.4% 1.0% 18.9%10.9% 7.9% 4.2% 2.7% 9.8% 4.7% 16.8%22.4% 8.6% 6.5% 7.2% 16.0% 7.1% 20.4% 5.7% 45.0%26.7%18.6% 8.5% 4.1% 22.2%

46.5% 2.7% 27.5%29.3% 6.7% 13.3%26.3%15.5%16.6%40.3% 8.0% 24.5%20.9%17.9%42.2%14.3% 4.3% 35.5%34.3%11.9%17.3%20.6% 1.2% 8.3%

43.7%30.0%49.4%29.8%48.9%21.7%34.3%28.8%42.5%25.7%61.2%31.7%58.9%24.8%35.5%22.8%45.4%27.0%39.8%39.5%67.1%53.2%73.5%67.8%

20.6%14.5%58.3%27.3%58.2%16.6%36.0%25.7%41.0%27.9%49.7%44.8%27.9%31.5%18.3%31.2%44.4%41.3%57.5%68.6%73.4%38.3%18.7%60.4%

0

10

20

30

40

50

60

70

LIA [percent/layer]

Figure 2: LIAs of each layer in single task adapter for different tasks. att denotes the adapter after self-attention
layer, out is the adapter after output layer. Darker colors represent higher values of LIA. The target tasks are
arranged in the order of the size of datasets from small to large.

that the size of target task dataset affects the in-231

fluence of the adapters. After training on larger232

datasets, adapters learn more and extract more233

knowledge, and thus become more essential for the234

whole model. This could explain why in Adapter-235

fusion (Pfeiffer et al., 2020a), using adapters from236

large datasets can help improve the performance of237

the task with small datasets.238

For adapters in large dataset task (qqp, qnli,239

mnli), most of them have large LIAs, suggesting240

they are already concise and there are no many241

redundant parameters in them.242

3.3 Pruning single task adapter243

rte mrpc stsb cola sst2 qnli qqp mnli
Tasks

0

10

20

30

40

LI
A

1.0
2.3 2.2 1.9

12.8

20.2

41.8

38.8

4.7

11.2

3.4
4.7

17.0

25.7

43.8

38.0

Adapter LIA
Origin model
Pruned model

Figure 3: LIAs of adapters before and after pruning with
Lottery Ticket Hypothesis

We insert adapters of size 128 into each layer of244

transformers in the BERT-Based model. For differ-245

ent text classification task, we put a task-specific246

classifier at the end of the model. Only the parame-247

ters in the adapters and task-specific classifier are248

fine-tuned, and the rest of the parameters in the249

model are untouched. 250

We iteratively prune the parameters in the 251

adapter by 20% per iteration. We perform 11 itera- 252

tions for layer pruning since there will be less than 253

one adapter left after the 11-th iteration. 254

Results on GLUE test sets are presented in Ta- 255

ble 1. We select the best result in all iterations of 256

pruning. The best model is chosen by metrics of 257

the corresponding task. And we evaluate the re- 258

sult on GLUE testing sever. We can see there is a 259

0.2 percentage performance gap between the full 260

fine-tuning model and the adapter model, and there 261

is a small performance gap between the adapter 262

model and the pruned adapter model. Therefore, 263

we preserve most of the essential adapters while 264

pruning the redundant ones. 265

We evaluate the adapter model on GLUE de- 266

velopment datasets after each iteration of pruning 267

and obtain the average score of three runs, see Fig- 268

ure 4. We discover that there is no major perfor- 269

mance loss before the number of adapters drops 270

below 9 (40%). By contrast, AdapterDrop model 271

(Rücklé et al., 2020a) removed the first 5 layers of 272

adapters and preserve most of the performance with 273

about 60% of the adapters left. We thus can prune 274

adapters 20% further than their work. The speed 275

comparison between the two models is shown in 276

Table 2. We discover that our model is faster than 277

AdapterDrop in most tasks. 278

We further analyse how the adapters are dis- 279

tributed when there is only nine adapters left, see 280

Figure 5. Interestingly, we can see that most of 281

the adapters close to the output layer are pruned. 282

These layers are removed but no harm is done to 283

the performance, and we think that maybe the last 284

4

CoLA SST-2 MRPC STSB QQP MNLI QNLI RTE AVG
Full fine-tuning 52.10 93.50 88.90 85.80 71.20 84.60 90.50 66.40 79.60
Adapter128 51.70 93.10 88.50 85.60 71.50 83.40 90.50 67.30 79.42
Prune layer 49.50 92.60 88.00 83.50 71.50 84.10 90.80 70.60 79.30

Table 1: Test results on GLUE test sets using GLUE server. CoLA is evaluated using Matthew’s Correlation. STS-B
is evaluated using Spearman’s correlation coefficient. MRPC and QQP are evaluated using F1 score. The rest of the
tasks are evaluated by accuracy.

5101520
82

84

86

88

90

92 sst2-91.62
mrpc-90.50

mnli-83.12

qqp-86.74

5101520

84

86

88

90

qnli-91.09

stsb-88.97

5101520

52.5

55.0

57.5

60.0

62.5

65.0

67.5 rte-67.51

cola-57.14

Figure 4: Performance of pruning schemes on GLUE validation sets at every pruning iteration. Horizontal line
represents the performance of adapters before pruning starts. X-axis denotes the number of adapters remains, and
Y-axis denotes the score in corresponding task metrics.

Origin AD LTH Speed up
AD LTH

RTE 208.3 203.9 203.5 2.11% 2.30%
MRPC 227.6 222.7 218.3 2.15% 4.09%
STSB 221.6 216.9 217.8 2.12% 1.71%
COLA 63.5 62.1 61.7 2.20% 2.83%
SST2 127.5 124.7 123.9 2.20% 2.82%
QNLI 41.4. 40.5 40.2 2.17% 2.90%
QQP 85.8 83.9 83.7 2.21% 2.45%
MNLI 42.8 41.9 41.5 2.10% 3.04%

Table 2: Floating points (109) operation origin adapter
(Origin), AdapterDrop (AD) and Pruned adapters
(LTH) in each tasks and percentage change in speed
after using AdapterDrop or Pruned adapters.

few layers are just a redundant extension of classi-285

fication layer.286

We also find that there are more adapters after287

feed-forward layers than self-attention layers, im-288

plying that adapters after feed-forward layers are289

more valuable. Similar phenomena can be found290

in the experiments of ALBERT (Lan et al., 2020),291

where most of the performance drop appears to292

come from sharing the feed-forward layer param-293

eters, while sharing the attention layer parameters294

results in no performance loss.295

Since different tasks require different number of296

adapters, in the following experiments, we use the297

best adapter model of all iterations of pruning in298

each task.299

After using layer pruning with Lottery Ticket300

Hypothesis, the average influence of each adapter301

increases as shown in Figure 3. In most tasks, the302

LIAs increase after the pruning, which means the303

redundant part of the adapters are removed. And 304

we can see a significant LIA boost, mostly in tasks 305

of small datasets, especially in MRPC. However, in 306

larger dataset task like MNLI, pruning the adapters 307

causes a small decrease in LIAs, implying that most 308

of the adapters for large datasets are playing an 309

important role for the task. In summary, we have 310

greatly increased the utilization of each adapter 311

after pruning, because we deleted most of the less 312

essential layers, and the model is thus streamlined 313

to perform better. 314

3.4 Merging pruned adapters to 315

Adapterfusion 316

In this experiment, we fuse eight single task 317

adapters to construct the Adapterfusion model. 318

An extra self-attention layer is inserted in each 319

layer of the model to fuse the results of multiple 320

adapters. Only the parameters in these newly in- 321

serted self-attention layers are fine-tuned, and the 322

rest of the parameters (including adapters) remains 323

unchanged. 324

We run our test on the same eight tasks of GLUE 325

datasets as in the previous experiment. And we 326

compare the fusion of full-size adapters and the 327

pruned adapters with 5 runs each. And we use 328

the best adapter model of all iterations of pruning 329

for the fusion. Then we calculate the mean and 330

variance of each task, whose results are in Table 3. 331

It shows that there is not much difference between 332

the pruned Adaterfusion model and the full-size 333

Adapterfusion model. And there is even a mild 334

5

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of adapters left

Att-0FF-0Att-1FF-1Att-2FF-2Att-3FF-3Att-4FF-4Att-5FF-5Att-6FF-6Att-7FF-7Att-8FF-8Att-9FF-9Att-10FF-10Att-11FF-11

Ad
ap

te
r l

ay
er

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of adapters left

FF-0
FF-1
FF-2
FF-3
FF-4
FF-5
FF-6
FF-7
FF-8
FF-9

FF-10
FF-11

Ad
ap

te
r F

ee
d-

fo
rw

ad
 la

ye
r

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of adapters left

Att-0
Att-1
Att-2
Att-3
Att-4
Att-5
Att-6
Att-7
Att-8
Att-9

Att-10
Att-11

Ad
ap

te
r A

tte
nt

io
n

la
ye

r

Figure 5: Left:Percentage of adapter remaining in each adapter layer when there is only 9 adapters left. Center:
Adapter distribution inserted after Feed-forward layer (Extracted from the Left image).Right: Adapter distribution
inserted after attention layer (Extracted from the Left image)

AF AF w. LTH
CoLA 55.16 ±1.1 55.96 ±2.3
SST-2 91.67±0.7 91.87±0.4
MRPC 91.46 ±1.6 92.16 ±1.5
STSB 89.83±0.33 89.27±0.64
QQP 86.74±0.39 86.88±0.22
MNLI 83.13±0.42 83.16±0.18
QNLI 90.84±0.21 90.73±0.33
RTE 75.90±3.43 73.00±6.68

Table 3: Development score of Adapterfusion and
Adapterfusion pruned with Lottery Ticket Hypothesis
(LTH). CoLA is evaluated using Matthew’s Correlation.
STS-B is evaluated using Spearman’s correlation coef-
ficient. MRPC and QQP are evaluated using F1 score.
The rest of the tasks are evaluated by accuracy.

improvement of performance using the pruned one.335

Therefore, it justifies that the proposed pruning of336

adapters is very effective and we can obtain a small337

and dense version of the general Adapterfusion338

model for GLUE datasets.339

The original Adapterfusion model has 192340

adapters (8tasks × 12layer × 2adapter/layer),341

while after pruning the redundant adapters from the342

model, it only has 89 ones, with more than half of343

the adapters removed. Also layers without adapters344

left will not be inserted a new self-attention layer345

anymore for the fusion, resulting in the reduction346

of depth as well.347

We also have measured the total number of float-348

ing point operations (FLOPs) for each task in the349

evaluation process. We average the FLOPs across350

different tasks, as shown in Table 4 and Table 5.351

And it reveals that after pruning, we reduce the352

computation by about 40%, which is a very signifi-353

cant improvement for the inference speed.354

Moreover, we analyse the LIAs of each adapter355

for different target tasks. LIAs of the original356

Adapterfusion and the pruned Adapterfusion are357

shown in 3D heat map in Figure 63, where X-axis358

3In Appendix A, we present an in-depth visualization of

Num of adapter FLOPs (109) Steps/sec
AF 192 554.8 9.86
AF-LTH 89 332.8 13.86

Table 4: FLOPs of the standard Adapterfusion and
pruned Adapterfusion

AF AF-LTH Saved (%)
RTE 1157.9 703.1 39.23%
MRPC 934.9 565.6 39.50%
STSB 805.9 487.4 39.52%
COLA 221.3 133.6 39.62%
SST2 513.2 310.1 39.57%
QNLI 248.4 150.3 39.49%
QQP 356.1 215.3 39.53%
MNLI 432.2 261.4 39.51%

Table 5: Floating points (109) operation of standard
Adapterfusion and pruned Adapterfusion in each tasks

represents eight different target tasks for the model, 359

y-axis is the source of each fused adapters, z-axis 360

denotes the adapters in different layers ranging 361

from 1 to 24, the odd number layers in z-axis rep- 362

resent the adapter modules inserted after attention 363

layers, and the even number layers in z-axis are the 364

ones inserted after the output layer. 365

Figure 6(a) shows the LIAs of the original 366

Adapterfusion model. And we discover that there 367

are a number of adapters not utilized in the original 368

Aadapterfusion model and most of the essential 369

adapters are at the back of the cube which are the 370

adapters trained on large datasets. As the layers 371

get deeper, more adapters in the model are utilized. 372

Figure 6(b) shows the LIAs of the pruned Adapter- 373

fusion model. Compared to the original Adapter- 374

fusion model, the pruned Adapterfusion model has 375

much fewer adapters. Furthermore, most of the 376

adapter modules have larger LIA values, which 377

implies that most of the adapters become more im- 378

portant for the task. 379

Then, we average the LIAs of adapters in 380

the Adapterfusion with LIAs

6

Task:rteTask:mrpc
Task:sts

b
Task:cola

Task:sst
2

Task:qnli
Task:qqp

Task:mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

60

70

(a) Adapterfusion

Task:rteTask:mrpc
Task:sts

b
Task:colaTask:sst
2

Task:qnli
Task:qqp

Task:mnli

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0

5

10

15

20

0

10

20

30

40

50

60

(b) Adapterfusion with LTH

Figure 6: LIAs of Adapterfusion w/o pruning

Adapterfusion across 12 layers and 5 test runs, as381

shown in Figure 7. We find that for the original382

Adapterfusion model, most of the adapters’ LIAs383

are zeros, which means that most of them are not384

used in the model. And most of the tasks use the385

adapters trained in QQP and MNLI, both of which386

are tasks with large datasets. Moreover, with a387

larger dataset, the model will utilize more of the388

adapters trained from the same task.389

By comparing the original Adapterfusion and390

the pruned Adapterfusion model, we have seen that391

more of the adapters are utilized after the pruning.392

And there are fewer zeros of LIAs in the pruned393

Adapterfusion model, suggesting that remaining394

adapters after pruning have become much more395

influential on average and the model are using more396

adapters from different tasks.397

4 Related work398

Pre-trained language model Language models399

pre-trained on large corpora are widely used in400

multiple NLP tasks to improve performance. How-401

ever, these models are often very large. Recently,402

Transformer-based (Vaswani et al., 2017) models403

have become the most popular pre-trained lan-404

guage models. There is a plenty of model vari-405

ants, such as BERT (Devlin et al., 2018), GPT-3406

(Brown et al., 2020), XLNET (Yang et al., 2019),407

and Roberta (Liu et al., 2019), etc. Transformers408

models are huge models, ranging from 110M pa-409

rameters in BERT-Base to trillions (Fedus et al.,410

2021; Lepikhin et al., 2020) in the largest, best-411

performing models. Due to the resource constraints412

in GPU/TPU memory and computational power,413

it is difficult to run a large model. So Lan et al.414

(2020) propose an approach to reduce the amount 415

of training parameters by sharing weights among 416

all transformer layers. The model named ALBERT 417

can lower the usage of memory and speed up the 418

training process of BERT. By contrast, ALBERT 419

reduces the amount of parameters needed to be 420

trained, while adapters introduce new parameters 421

and deepen the model. 422

Adapters and fine-tuning Since fine-tuning ap- 423

proaches have proven to have better performance 424

than feature-based approaches (Peters et al., 2019), 425

researchers often prefer fine-tuning approaches to 426

feature-based ones. Most of the state-of-the-art re- 427

sults of NLP tasks are achieved by fine-tuning a 428

complex pre-trained model. Fine-tuning does not 429

require a task-specific design beforehand, which is 430

more general across tasks than feature-based ones. 431

However, every time a model is fine-tuned on a 432

new task, a new set of parameters are created and 433

trained, leading to pretty low degree of parameter 434

sharing among tasks. 435

Adapters model is a lightweight fine-tuning ap- 436

proach introduced by Houlsby et al. (2019). They 437

insert a small set of newly initialized neural net- 438

works named adapters in each layer of the trans- 439

formers. At training steps, only parameters of 440

adapters will be updated and the parameters in 441

the pre-trained language model will be unchanged. 442

Therefore it reduces the number of parameters to be 443

trained in the training phase and enables efficient 444

parameter sharing between tasks by combining 445

many task-specific or language-specific adapters. 446

Merging and pruning adapters Adapters have 447

achieved great results in multi-task (Pfeiffer et al., 448

2020a), cross-lingual transfer learning (Pfeiffer 449

7

rte
mrpc stsb cola sst2 qnli qqp mnli

task-rte

task-mrpc

task-stsb

task-cola

task-sst2

task-qnli

task-qqp

task-mnli

0.0% 0.1% 0.0% 0.1% 0.7% 1.2% 6.5% 5.9%

0.0% 1.0% 0.1% 0.0% 0.4% 1.0% 10.6% 4.6%

0.0% 0.1% 0.5% 0.1% 0.4% 0.9% 7.4% 4.8%

0.0% 0.0% 0.1% 0.9% 0.6% 1.2% 9.1% 2.8%

0.0% 0.1% 0.0% 0.0% 9.4% 0.4% 5.5% 2.3%

0.0% 0.0% 0.0% 0.0% 0.2% 18.0% 1.8% 0.7%

0.0% 0.1% 0.1% 0.0% 0.8% 0.2% 39.9% 1.6%

0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.8% 36.2%
5

10

15

20

25

30

35

IM
P [percent/task]

(a) Adapterfusion

rte
mrpc stsb cola sst2 qnli qqp mnli

task-rte

task-mrpc

task-stsb

task-cola

task-sst2

task-qnli

task-qqp

task-mnli

1.2% 0.8% 0.4% 0.4% 0.8% 2.1% 4.1% 4.7%

0.8% 3.7% 0.6% 0.3% 0.8% 2.8% 7.1% 5.0%

1.0% 1.3% 2.2% 0.2% 0.9% 3.8% 6.8% 6.7%

1.0% 0.8% 0.6% 2.7% 0.7% 1.3% 4.2% 2.2%

3.0% 0.1% 0.8% 0.0% 17.5% 0.2% 2.7% 1.2%

0.7% 0.4% 0.5% 0.1% 0.2% 19.8% 0.9% 1.0%

1.6% 0.6% 1.2% 0.0% 0.2% 0.1% 45.3% 0.6%

2.2% 0.6% 1.0% 1.7% 0.1% 0.6% 0.2% 44.4%

10

20

30

40

IM
P [percent/task]

(b) Adapterfusion with LTH

Figure 7: LIAs of Adapterfusion w/o pruning

et al., 2020b) and infusing knowledge (Wang et al.,450

2020). Adapters are capable of extracting knowl-451

edge from different tasks and can be applied to452

fuse knowledge they learned from different tasks453

(Rücklé et al., 2020b; Pfeiffer et al., 2020b; Wang454

et al., 2020). There are plenty of ways to merge455

multiple adapters, including stacking (Pfeiffer et al.,456

2020b), fusing and concatenating adapters (Pfeif-457

fer et al., 2020a). However, adapters are still far458

from being concise, and merging multiple adapters459

from different tasks will introduce redundancies460

and slow down the inference speed of the model.461

Therefore, Rücklé et al. (2020a) have firstly intro-462

duced a way to remove adapters from lower trans-463

former layers. By removing the first few layers of464

the adapters, it effectively speeds up the training465

and inference of the adapter models.466

Neural networks are easily overparameterized467

and carry plenty of redundancies. To tackle this468

problem, distillation (Ba and Caruana, 2014; Hin-469

ton et al., 2015) and pruning (LeCun et al., 1990;470

Han et al., 2015) are introduced to streamline the471

model while perserving good performance. And472

there are several research directions in this field.473

For pruning before training, MobileNets (Howard474

et al., 2017) is designed for image-recognition net-475

works. For pruning after training, LeCun et al.476

(1990) use the second derivatives to truncate the477

neural networks. For pruning during training, Bel-478

lec et al. (2018) reinitialize weights near zeros with479

random number after training the model. More-480

over, we can prune models based on activations481

(Hu et al., 2016), filters (Li et al., 2017; Molchanov482

et al., 2017) or channels (He et al., 2017).483

The most influential theory recently for pruning484

comes from Frankle and Carbin (2019), in which485

they prove that a dense neural network contains sub- 486

networks (winning ticket) that can have the same 487

performance as the original network when trained 488

isolated. And their experiments reveal that not only 489

the structure of the pruned networks matters but 490

also the initial weights of these networks can affect 491

the performance of the model. They also find that 492

a subnetwork extracted from pruning learns faster 493

than the original model and even reaches higher test 494

accuracy. Our pruning approach is inspired by this 495

theory and can prune the original Adapterfusion 496

model to a much more concise one. 497

5 Conclusion and future work 498

In this paper, we propose a new approach to model 499

the utilization of the adapters at each layer by 500

defining a new indicator LIA (Layer Influence Of 501

Adapter) with which we can identify the most in- 502

fluential adapters. Moreover, we introduce a novel 503

way of pruning adapter modules inspired by the 504

prestigious Lottery Ticket Hypothesis. The pro- 505

posed pruning strategy has been extensively evalu- 506

ated on the GLUE datasets, whose results show that 507

we can prune adapters up to 40% of its original size 508

while keeping the performance intact. We further 509

examine the performance and LIAs of the pruned 510

adapters in the latest state-of-the-art Adapterfusion 511

model, and we can remove more than half of the 512

adapters and reduce computation of the Adapterfu- 513

sion model by nearly 40% with little performance 514

loss. 515

This work can be further extended in many ways. 516

For instance, iterative pruning is time-consuming,5 517

we can try to find the redundant adapter before 518

and after the training by introducing new elaborate 519

measurements. 520

8

References521

Jimmy Ba and Rich Caruana. 2014. Do deep nets really522
need to be deep? In Advances in Neural Information523
Processing Systems 27: Annual Conference on Neu-524
ral Information Processing Systems 2014, December525
8-13 2014, Montreal, Quebec, Canada, pages 2654–526
2662.527

Guillaume Bellec, David Kappel, Wolfgang Maass, and528
Robert A. Legenstein. 2018. Deep rewiring: Train-529
ing very sparse deep networks. In 6th International530
Conference on Learning Representations, ICLR 2018,531
Vancouver, BC, Canada, April 30 - May 3, 2018, Con-532
ference Track Proceedings. OpenReview.net.533

Yoshua Bengio, Nicolas Le Roux, Pascal Vincent,534
Olivier Delalleau, and Patrice Marcotte. 2005. Con-535
vex neural networks. In Advances in Neural Infor-536
mation Processing Systems 18 [Neural Information537
Processing Systems, NIPS 2005, December 5-8, 2005,538
Vancouver, British Columbia, Canada], pages 123–539
130.540

James Bergstra, Rémi Bardenet, Yoshua Bengio, and541
Balázs Kégl. 2011. Algorithms for hyper-parameter542
optimization. In Advances in Neural Information543
Processing Systems 24: 25th Annual Conference on544
Neural Information Processing Systems 2011. Pro-545
ceedings of a meeting held 12-14 December 2011,546
Granada, Spain, pages 2546–2554.547

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie548
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind549
Neelakantan, Pranav Shyam, Girish Sastry, Amanda550
Askell, Sandhini Agarwal, Ariel Herbert-Voss,551
Gretchen Krueger, Tom Henighan, Rewon Child,552
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,553
Clemens Winter, Christopher Hesse, Mark Chen, Eric554
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,555
Jack Clark, Christopher Berner, Sam McCandlish,556
Alec Radford, Ilya Sutskever, and Dario Amodei.557
2020. Language models are few-shot learners. In Ad-558
vances in Neural Information Processing Systems 33:559
Annual Conference on Neural Information Process-560
ing Systems 2020, NeurIPS 2020, December 6-12,561
2020, virtual.562

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and563
Kristina Toutanova. 2018. Bert: Pre-training of deep564
bidirectional transformers for language understand-565
ing. arXiv preprint arXiv:1810.04805.566

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and567
Kristina Toutanova. 2019. BERT: Pre-training of568
deep bidirectional transformers for language under-569
standing. In Proceedings of the 2019 Conference of570
the North American Chapter of the Association for571
Computational Linguistics: Human Language Tech-572
nologies, Volume 1 (Long and Short Papers), pages573
4171–4186, Minneapolis, Minnesota. Association for574
Computational Linguistics.575

William Fedus, Barret Zoph, and Noam Shazeer. 2021.576
Switch transformers: Scaling to trillion parameter577

models with simple and efficient sparsity. arXiv 578
preprint arXiv:2101.03961. 579

Jonathan Frankle and Michael Carbin. 2019. The lottery 580
ticket hypothesis: Finding sparse, trainable neural 581
networks. In 7th International Conference on Learn- 582
ing Representations, ICLR 2019, New Orleans, LA, 583
USA, May 6-9, 2019. OpenReview.net. 584

Song Han, Jeff Pool, John Tran, and William Dally. 585
2015. Learning both weights and connections for 586
efficient neural network. In Advances in Neural In- 587
formation Processing Systems, volume 28. Curran 588
Associates, Inc. 589

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel 590
pruning for accelerating very deep neural networks. 591
In IEEE International Conference on Computer Vi- 592
sion, ICCV 2017, Venice, Italy, October 22-29, 2017, 593
pages 1398–1406. IEEE Computer Society. 594

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. 595
Distilling the knowledge in a neural network. In 596
NIPS Deep Learning and Representation Learning 597
Workshop. 598

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 599
Bruna Morrone, Quentin De Laroussilhe, Andrea 600
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 601
Parameter-efficient transfer learning for NLP. In 602
Proceedings of the 36th International Conference 603
on Machine Learning, volume 97 of Proceedings 604
of Machine Learning Research, pages 2790–2799. 605
PMLR. 606

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry 607
Kalenichenko, Weijun Wang, Tobias Weyand, Marco 608
Andreetto, and Hartwig Adam. 2017. Mobilenets: 609
Efficient convolutional neural networks for mobile vi- 610
sion applications. arXiv preprint arXiv:1704.04861. 611

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung 612
Tang. 2016. Network trimming: A data-driven neu- 613
ron pruning approach towards efficient deep architec- 614
tures. arXiv preprint arXiv:1607.03250. 615

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 616
Brown, Benjamin Chess, Rewon Child, Scott Gray, 617
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 618
Scaling laws for neural language models. arXiv 619
preprint arXiv:2001.08361. 620

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, 621
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 622
2020. ALBERT: A lite BERT for self-supervised 623
learning of language representations. In 8th Inter- 624
national Conference on Learning Representations, 625
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 626
2020. OpenReview.net. 627

Yann LeCun, John Denker, and Sara Solla. 1990. Opti- 628
mal brain damage. In Advances in Neural Informa- 629
tion Processing Systems, volume 2, pages 598–605. 630
Morgan-Kaufmann. 631

9

https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://openreview.net/forum?id=BJ_wN01C-
https://openreview.net/forum?id=BJ_wN01C-
https://openreview.net/forum?id=BJ_wN01C-
https://proceedings.neurips.cc/paper/2005/hash/0fc170ecbb8ff1afb2c6de48ea5343e7-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/0fc170ecbb8ff1afb2c6de48ea5343e7-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/0fc170ecbb8ff1afb2c6de48ea5343e7-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
http://arxiv.org/abs/1503.02531
http://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,632
Dehao Chen, Orhan Firat, Yanping Huang, Maxim633
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.634
Gshard: Scaling giant models with conditional com-635
putation and automatic sharding. arXiv preprint636
arXiv:2006.16668.637

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,638
and Hans Peter Graf. 2017. Pruning filters for ef-639
ficient convnets. In 5th International Conference640
on Learning Representations, ICLR 2017, Toulon,641
France, April 24-26, 2017, Conference Track Pro-642
ceedings. OpenReview.net.643

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-644
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,645
Luke Zettlemoyer, and Veselin Stoyanov. 2019.646
Roberta: A robustly optimized bert pretraining ap-647
proach. arXiv preprint arXiv:1907.11692.648

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo649
Aila, and Jan Kautz. 2017. Pruning convolutional650
neural networks for resource efficient inference. In651
5th International Conference on Learning Repre-652
sentations, ICLR 2017, Toulon, France, April 24-653
26, 2017, Conference Track Proceedings. OpenRe-654
view.net.655

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith.656
2019. To tune or not to tune? adapting pretrained657
representations to diverse tasks. In Proceedings of658
the 4th Workshop on Representation Learning for659
NLP (RepL4NLP-2019), pages 7–14, Florence, Italy.660
Association for Computational Linguistics.661

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,662
Kyunghyun Cho, and Iryna Gurevych. 2020a.663
Adapterfusion: Non-destructive task composition for664
transfer learning. arXiv preprint arXiv:2005.00247.665

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-666
bastian Ruder. 2020b. MAD-X: An Adapter-Based667
Framework for Multi-Task Cross-Lingual Transfer.668
In Proceedings of the 2020 Conference on Empirical669
Methods in Natural Language Processing (EMNLP),670
pages 7654–7673, Online. Association for Computa-671
tional Linguistics.672

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman673
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna674
Gurevych. 2020a. Adapterdrop: On the effi-675
ciency of adapters in transformers. arXiv preprint676
arXiv:2010.11918.677

Andreas Rücklé, Jonas Pfeiffer, and Iryna Gurevych.678
2020b. MultiCQA: Zero-shot transfer of self-679
supervised text matching models on a massive scale.680
In Proceedings of the 2020 Conference on Empirical681
Methods in Natural Language Processing (EMNLP),682
pages 2471–2486, Online. Association for Computa-683
tional Linguistics.684

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob685
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz686
Kaiser, and Illia Polosukhin. 2017. Attention is all687

you need. In Advances in Neural Information Pro- 688
cessing Systems, volume 30. Curran Associates, Inc. 689

Alex Wang, Amanpreet Singh, Julian Michael, Felix 690
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: 691
A multi-task benchmark and analysis platform for nat- 692
ural language understanding. In Proceedings of the 693
2018 EMNLP Workshop BlackboxNLP: Analyzing 694
and Interpreting Neural Networks for NLP, pages 695
353–355, Brussels, Belgium. Association for Com- 696
putational Linguistics. 697

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, 698
Xuanjing Huang, Cuihong Cao, Daxin Jiang, Ming 699
Zhou, et al. 2020. K-adapter: Infusing knowledge 700
into pre-trained models with adapters. arXiv preprint 701
arXiv:2002.01808. 702

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car- 703
bonell, Ruslan Salakhutdinov, and Quoc V Le. 704
2019. Xlnet: Generalized autoregressive pretrain- 705
ing for language understanding. arXiv preprint 706
arXiv:1906.08237. 707

10

https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.194
https://doi.org/10.18653/v1/2020.emnlp-main.194
https://doi.org/10.18653/v1/2020.emnlp-main.194
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://arxiv.org/abs/2002.01808
https://arxiv.org/abs/2002.01808
https://arxiv.org/abs/2002.01808

A Detail Results: AdapterFusion model708

LIA709

We calculate the LIA of each adapters in the710

Adapterfusion model. In order to have a better711

insight of the model, we gradually remove adapters712

with small LIA from the 3D heatmap, see Figure713

8. In standard adapters modules, we discover that714

there are a number of adapters not utilized in the715

original Aadapterfusion model and most of the es-716

sential adapters are at the back of the cube which717

are the adapters trained on large datasets. In pruned718

Adapterfusion model, most of the adapters are es-719

sential and most of the adapters become more im-720

portant for the task.721

Figure 9 and Figure 10 shows the LIAs of each722

adapters in Adapterfusion model in each tasks723

which is cross-section of the cube. We find that in724

tasks with small datasets, the model uses adapters725

from different tasks, while in tasks with large726

datasets, the model mainly uses the adapter trained727

from the same task (e.g. QNLI, QQP and MNLI).728

However, after pruning the Adaterfusion model, it729

uses adapters trained on different tasks even when730

the target task is the one with a large dataset.731

B Detail of Pruning Adapters732

The single task adapter model contains 24 adapter733

modules. There are 12 layer of transformers block734

in Bert-base. Each layer with 2 adapter modules.735

We prune 20% of the adapters for each iteration of736

pruning.737

For a better understanding of the pruning algo-738

rithm 1. We summarized the proposed pruning739

strategy and demonstrate the inner structure of740

adapter in Figure 11.741

11

task-rte
task-mrpc

task-stsb
task-cola

task-sst2
task-qnli

task-qqp
task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

(a) Standard Adapterfusion with LIA

task-rte
task-mrpc

task-stsb
task-cola

task-sst2
task-qnli

task-qqp
task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

60

(b) Pruned Adapterfusion with LIA

task-rtetask-mrpc
task-sts

b
task-cola

task-sst
2

task-qnli
task-qqp

task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

(c) Standard Adapterfusion with LIA > 0.1%

task-rtetask-mrpc
task-sts

b
task-cola

task-sst
2

task-qnli
task-qqp

task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

60

(d) Pruned Adapterfusion with LIA > 0.1%

task-rtetask-mrpc
task-sts

b
task-cola

task-sst
2

task-qnli
task-qqp

task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

(e) Standard Adapterfusion with with LIA > 1%

task-rtetask-mrpc
task-sts

b
task-cola

task-sst
2

task-qnli
task-qqp

task-mnli

rte
mrpc

stsb
cola

sst2
qnli

qqp
mnli

0

5

10

15

20

0

10

20

30

40

50

60

(f) Pruned Adapterfusion with LIA > 1%

Figure 8: LIAs of Adapterfusion w/o pruning

12

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% -0.0% -0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1%

-0.0% -0.0% -0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.1% 0.0% 0.0% 0.1% 0.4% 0.1%

0.0% 0.0% -0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% -0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.2% -0.0% 0.3%

0.1% 0.8% -0.1% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.1% -0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0% 0.4%

0.3% 0.0% -0.1% 0.1% -0.0% 0.2% 0.1% -0.0% 0.3% 0.2% 2.0% 0.2% 0.3% 0.2% 0.9% 0.3% 3.1% 0.2% 0.4% 0.3% 2.4% 0.2% 2.1% 2.3%

2.9% 0.6% 1.3% 0.3% 2.1% 0.3% 0.5% 0.2% 3.0% 0.9% 1.3% 0.9% 3.8% 0.4% 2.1% 0.4% 1.0% 0.4% 1.0% 0.3% 0.9% 0.7% 0.9% 2.4%

3.9% 7.0% 0.1% 11.6%21.4% 0.6% 6.5% 0.8% 8.8% 1.0% 4.3% 4.4% 6.4% 0.8% 22.3% 1.1% 9.2% 1.5% 2.3% 1.8% 14.9% 3.0% 16.4% 5.9%

0.9% 2.2% 20.0% 4.2% 7.8% 0.3% 25.2% 1.6% 7.1% 3.3% 5.6% 2.7% 7.3% 1.6% 9.8% 1.8% 10.3% 1.4% 5.4% 1.6% 8.7% 4.3% 3.5% 4.4%

0

5

10

15

20

25

(a) RTE

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%

0.1% -0.0% 0.1% 0.1% -0.0% 0.2% 0.0% 0.1% 0.0% 0.0% 1.5% 0.1% 0.0% 0.1% 14.6% 0.1% 6.8% 0.1% 0.1% 0.0% 0.0% 0.1% 0.0% 0.1%

0.0% -0.0% -0.0% -0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.1% -0.0% 0.1% 0.0% 0.1% 0.0% 0.1% -0.0% 0.0% 0.2% -0.0% 0.3%

0.1% 0.0% -0.0% 0.0% -0.0% 0.1% 0.0% 0.1% 0.0% -0.0% 0.0% 0.0% -0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0% 0.0%

0.3% 0.0% 0.0% 0.2% 0.0% 0.1% 0.2% 0.0% 0.6% 0.2% 1.0% 0.2% 0.5% 0.7% 0.3% 0.4% 1.5% 0.3% 0.9% 0.3% 0.2% 0.3% 1.3% 0.7%

2.5% 0.1% 0.5% 0.6% 0.1% 0.5% 0.3% 0.2% 0.4% 0.9% 1.6% 0.4% 2.3% 0.5% 2.1% 0.7% 0.5% 0.6% 2.6% 0.3% 1.3% 0.6% 1.8% 2.4%

14.3%15.3%15.5% 7.3% 17.6% 0.5% 10.2% 0.9% 7.3% 2.2% 14.6% 1.9% 18.2% 1.0% 9.6% 1.7% 14.8% 1.6% 19.1% 1.1% 25.1% 4.1% 45.6% 4.5%

0.4% 3.6% 14.6% 1.5% 5.4% 0.6% 8.6% 1.3% 1.2% 2.7% 6.8% 4.3% 6.0% 1.0% 1.2% 2.3% 7.3% 1.2% 2.3% 1.7% 13.1% 3.1% 5.2% 15.9%

0

10

20

30

40

(b) MRPC
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% -0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1%

-0.0% -0.0% 0.0% 0.0% 0.0% 0.1% 0.0% -0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.1% 0.1% 0.1% 0.2% 0.1% 0.1% 0.0% 0.2%

0.5% 0.1% 0.9% 0.1% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 2.0% 0.1% 4.9% 0.1% 1.9% -0.0% 0.1% 0.8% 0.2% 0.0% 0.0% 0.4% 0.5% 0.1%

0.0% 0.0% -0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% -0.0% 0.0% 0.1% 0.0% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0% 0.1% 0.8% 0.1%

0.0% 0.1% 0.1% 0.2% 0.0% 0.1% 0.1% 0.0% 0.2% 0.3% 0.7% 0.2% 0.1% 0.1% 0.2% 0.2% 0.3% 0.1% 0.4% 0.3% 0.3% 0.3% 3.3% 2.8%

3.0% 1.5% 0.8% 0.6% 0.5% 0.3% 1.3% 0.2% 2.1% 1.5% 2.4% 0.6% 0.5% 0.4% 0.4% 0.7% 0.8% 0.6% 0.3% 0.3% 0.8% 1.1% 0.3% 0.7%

6.5% 3.6% 2.7% 2.5% 18.5% 0.8% 13.6% 0.9% 1.8% 1.9% 3.1% 12.5% 9.8% 2.3% 18.7% 1.4% 19.6% 1.1% 4.3% 1.8% 15.7% 8.5% 9.0% 17.2%

1.7% 1.6% 6.1% 2.2% 7.3% 0.2% 8.7% 0.6% 10.2% 1.6% 4.5% 1.5% 2.4% 1.2% 3.5% 1.7% 7.7% 1.3% 8.5% 1.8% 13.1% 2.3% 5.8% 20.4%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(c) STSB

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% -0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

-0.0% -0.0% -0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.1% 0.1% 0.2%

0.0% -0.0% -0.0% 0.0% -0.0% -0.0% 0.1% 0.0% 0.0% 0.1% 0.0% 0.1% 0.1% -0.1% 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.2% -0.0% 1.4%

0.2% 2.3% 0.3% 0.0% 0.0% 0.1% 0.0% 0.3% 0.1% 0.2% 0.2% 0.0% 0.0% 1.0% 0.1% 1.0% 13.0% 0.3% 0.6% 0.1% 0.8% 0.1% 0.2% 0.1%

0.1% 0.1% 0.0% 0.3% -0.0% 0.1% 0.1% 0.1% 0.6% 0.3% 0.7% 0.3% 0.7% 0.3% 0.6% 0.4% 0.8% 0.2% 0.8% 0.3% 0.6% 0.2% 5.9% 0.6%

5.9% 0.0% 0.5% 0.5% 0.1% 0.3% 2.2% 0.2% 1.7% 1.0% 3.2% 0.6% 0.6% 0.3% 2.8% 0.5% 0.2% 0.4% 0.7% 0.4% 2.8% 0.7% 1.1% 1.3%

2.0% 0.4% 21.8% 3.9% 20.4% 0.4% 12.7% 0.6% 2.4% 1.4% 3.1% 2.4% 6.9% 1.0% 18.4% 0.9% 7.0% 0.9% 6.9% 1.0% 35.6% 5.1% 54.7% 9.0%

-0.1% 0.2% 4.8% 1.9% 3.4% 0.2% 8.6% 0.8% 6.0% 1.2% 2.3% 0.6% 8.2% 0.4% 7.3% 0.5% 1.6% 0.6% 4.0% 1.4% 4.4% 2.3% 0.9% 6.4%

0

10

20

30

40

50

(d) CoLA
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.1% 0.0% -0.0% 0.0% -0.0% 0.0% -0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

0.0% 0.0% 0.0% 0.0% -0.0% 0.0% -0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 2.9%

0.0% 0.0% -0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% -0.0% 0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% -0.0% 0.2%

0.0% 0.5% -0.0% 0.0% -0.0% 0.0% 0.0% 0.1% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% -0.0% 0.0%

12.9% 0.7% 12.6% 2.5% 0.6% 1.8% 2.8% 1.0% 9.1% 4.5% 16.6% 1.4% 7.6% 3.6% 21.3% 2.2% 34.2% 4.8% 44.3% 3.3% 11.7% 0.6% 5.1% 20.3%

-0.0% 0.0% 0.3% 0.2% 0.1% 0.1% 1.7% 0.0% 0.0% 0.7% 0.0% 0.3% 0.0% 0.2% 2.6% 0.2% 0.8% 0.3% 0.1% 0.3% 1.4% 0.3% 0.0% 0.1%

0.8% 3.4% 6.0% 0.4% 3.8% 0.3% 0.1% 1.1% 0.0% 0.4% 7.2% 0.6% 3.0% 1.3% 0.0% 0.2% 1.2% 7.3% 1.2% 0.9% 12.2% 9.4% 59.9%11.5%

-0.0% 0.0% 5.1% 0.8% 0.2% 0.0% 0.3% 0.2% 0.0% 0.7% 0.2% 0.3% 0.6% 0.3% 2.2% 0.8% 0.4% 0.2% 11.9% 1.3% 18.6% 2.0% 8.3% 0.5%

0

10

20

30

40

50

(e) SST-2

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

-0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%

-0.0% 0.0% 0.0% 0.0% -0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% -0.0% 0.0% 0.3% 0.0% 0.2%

0.0% 0.0% 0.0% 0.0% -0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.1% 0.0% 0.6% -0.0% 0.0%

0.0% 0.0% 0.0% -0.0% -0.0% -0.0% 0.0% 0.1% 0.0% 0.0% 0.0% -0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1%

-0.0% 0.0% -0.0% 0.0% -0.0% 0.0% 0.0% -0.1% 0.0% 0.1% 0.0% 0.2% 0.0% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.2% 1.2% 0.1% 0.4% 1.3%

42.9% 3.1% 24.0%19.1% 3.5% 1.8% 30.4% 3.3% 18.7%17.6%14.9%15.8%30.4%12.2%51.4% 6.2% 16.1%45.6%45.9% 1.5% 19.0% 7.1% 0.1% 1.0%

0.9% 0.2% 0.6% 0.2% 2.1% 0.5% 0.1% 0.4% 0.1% 0.2% 3.0% 3.5% 0.0% 0.3% 0.1% 0.1% 0.1% 0.1% 3.3% 0.6% 0.5% 1.1% 15.3%11.1%

0.0% 0.1% 0.0% 0.4% 0.7% 0.0% 0.1% 0.2% 0.1% 0.3% 0.6% 0.3% 0.0% 0.1% 0.1% 0.7% 0.1% 0.1% 0.0% 1.9% 0.1% 0.5% 5.3% 4.2%

0

10

20

30

40

50

(f) QNLI
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 0.0% 0.1% 0.0% 0.1%

0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 2.0% 0.1%

0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.5% 0.2%

0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6%

0.3% 0.0% 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.1% 0.0% 0.5% 0.0% 0.0% 0.1% 0.1% 0.1% 0.4% 0.2% 7.2% 10.1%

0.0% 0.7% 0.2% 0.1% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.2% 0.0% 0.4% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.9% 1.0% 0.1% 1.5%

41.8%29.3%38.0%32.0%53.6%28.3%42.5%34.5%48.3%34.7%52.7%40.8%44.9%35.5%54.3%36.6%57.2%34.5%38.9%39.0%56.3%40.6%35.5% 9.0%

0.3% 0.2% 0.2% 0.1% 0.2% 0.0% 0.1% 0.1% 0.1% 0.3% 0.3% 0.1% 5.8% 0.0% 0.5% 0.0% 0.2% 0.4% 1.1% 0.2% 3.5% 1.3% 14.3% 9.3%

0

10

20

30

40

50

(g) QQP

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 0.5%

0.0% -0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.6%

0.0% 0.0% 0.1% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% -0.0% 0.2%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3%

0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% -0.0% 0.0% 0.0% 0.8% 0.1% 0.1% 2.2%

0.1% 0.0% 0.1% 0.0% 0.3% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.3% 0.0% 0.1% 0.1% 0.1% 1.6%

1.0% 0.1% 0.1% 0.1% 0.2% 0.0% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.8% 1.0% 5.9% 8.9%

23.1%14.6%51.9%28.6%47.9%24.5%44.3%29.4%32.4%30.2%56.2%32.9%37.8%29.2%45.4%30.7%52.5%36.6%49.7%44.0%53.7%53.7%19.4% 0.5%

0

10

20

30

40

50

(h) MNLI

Figure 9: LIAs of Standard Adapterfusion on different target tasks

13

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.7% 1.0% 0.0% 0.2% 1.7% 0.0% 0.3% 0.1% 6.6% 0.1% 2.5% 0.9% 1.0%

0.2% 0.1% 0.2% 3.3% 0.3%

0.1% 1.8% 0.0% 0.8% 0.2% 0.1% 0.1% 0.0% 0.1% 0.0% 0.3% 0.1% 0.2% 0.3% 0.4% 1.4%

1.8% 0.3% 0.0% 0.1% 0.0% 0.2% 0.0% 0.7% 0.0% 0.5% 0.2%

0.6% 0.1% 0.5% 0.5% 0.2% 0.8% 3.4% 0.4% 0.3% 1.2% 1.0%

4.6% 1.2% 0.7% 0.6% 0.1% 8.1% 3.1% 0.8% 0.8% 1.2% 2.3%

4.4% 0.9% 2.7% 1.0% 2.1% 14.4% 3.0% 3.5% 5.3% 7.6% 1.5% 2.5% 4.0%

4.1% 11.3% 1.7% 2.1% 7.9% 9.2% 0.8% 1.4% 3.3% 2

4

6

8

10

12

14

(a) RTE

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.1% 0.4% 0.0% 0.3% 1.7% 0.1% 0.1% 0.1% 4.3% 0.2% 2.1% 0.9% 0.8%

0.3% 1.0% 1.1% 15.1% 1.0%

0.2% 3.8% 0.1% 1.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1% 0.3% 1.1% 0.5% 1.7%

1.1% 0.0% 0.0% 0.1% 0.2% 0.1% -0.0% 1.4% 0.0% 0.3% 0.3%

3.5% 0.1% 0.6% 0.4% 0.2% 0.5% 1.3% 0.5% 0.3% 1.1% 0.6%

6.8% 0.4% 0.2% 0.5% 0.1% 11.8% 3.5% 1.0% 0.8% 2.9% 2.3%

16.0% 4.1% 6.8% 0.8% 0.8% 17.6% 2.1% 18.7% 3.5% 12.4% 2.2% 3.1% 3.7%

14.9% 3.1% 1.5% 3.0% 6.5% 8.0% 1.8% 2.7% 3.6%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(b) MRPC
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 0.1% 0.1% 0.4% 0.2% 0.0% 0.1% 0.1% 7.3% 0.2% 1.4% 0.8% 2.1%

0.3% 0.2% 0.5% 4.9% 0.4%

0.3% 5.7% 0.2% 2.6% 0.6% 0.5% 0.2% 0.1% 0.7% 0.1% 9.1% 0.1% 0.2% 9.1% 1.9% 4.6%

0.3% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.9% -0.0% 0.3% 0.3%

2.6% 0.3% 0.4% 0.6% 0.3% 0.7% 1.4% 0.4% 0.5% 2.7% 0.5%

22.8% 0.9% 0.7% 0.6% 0.3% 11.4% 0.9% 1.8% 0.9% 0.9% 1.0%

4.8% 5.1% 5.3% 1.9% 1.3% 15.4% 2.7% 25.5% 1.4% 10.3% 2.4% 4.3% 7.8%

9.1% 2.1% 0.7% 2.7% 8.9% 25.7% 2.2% 3.1% 6.0%

0

5

10

15

20

25

(c) STSB

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 0.6% -0.0% 0.2% 1.1% 0.0% 0.3% 0.0% 7.8% 0.1% 0.8% 0.8% 0.9%

0.0% -0.0% 0.3% 2.9% 0.5%

0.0% 2.1% -0.1% 1.1% 0.3% 0.1% 0.1% 0.1% 0.3% 0.0% 0.5% 0.0% 0.2% 1.8% 0.6% 1.7%

11.2% 0.8% 0.2% 0.2% 0.2% 1.7% 0.2% 1.1% 0.7% 3.7% 6.7%

0.1% 0.1% 0.3% 0.5% 0.3% 0.5% 1.1% 0.4% 0.2% 4.4% 0.3%

2.4% 0.0% 0.4% 0.5% 0.1% 0.7% 3.2% 1.1% 0.0% 0.2% 5.6%

0.7% 3.6% 12.0% 0.9% 1.2% 8.5% 1.5% 5.0% 3.0% 10.4% 2.2% 0.9% 3.3%

0.2% 8.2% 0.3% 1.9% 1.5% 6.9% 0.1% 0.9% 2.6%

0

2

4

6

8

10

12

(d) CoLA
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 3.0% 0.1% 0.0% 0.4% 0.1% 0.0% 0.0% 12.9% 0.1% 18.4% 0.5% 4.0%

0.1% -0.0% 0.0% 0.0% 0.3%

0.0% 1.8% -0.1% 0.5% 0.0% 0.6% 0.1% 0.0% 0.9% 0.0% 0.0% 0.0% 0.2% 4.7% 0.8% 3.0%

0.0% 0.0% -0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.1% 0.0%

36.5% 1.7% 4.3% 9.5% 7.6% 7.1% 21.7%21.7% 8.9% 50.7%22.4%

0.0% 0.0% -0.1% 0.0% 0.0% 0.0% 1.6% 0.0% 0.0% 0.1% 1.0%

1.1% 0.0% 3.9% 0.0% 0.1% 11.4% 0.9% 0.0% 0.1% 1.0% 0.5% 0.2% 15.8%

0.8% 0.2% 0.1% 0.4% 0.8% 0.4% 0.1% 0.0% 7.6%

0

10

20

30

40

50

(e) SST-2

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 0.6% 0.0% 1.2% 1.5% 0.0% 0.3% 0.0% 3.5% 0.0% 1.0% 0.8% 0.5%

0.0% 0.0% 0.2% 1.5% 0.3%

0.2% 1.7% 0.0% 0.9% 0.2% 0.0% 0.0% 0.0% 0.7% 0.0% 0.8% 0.1% 0.1% 1.0% 0.5% 1.6%

0.0% 0.0% -0.0% 0.1% 0.1% 0.0% -0.0% 1.0% -0.0% 0.0% 0.3%

-0.0% 0.0% 0.1% 0.1% 0.3% 0.1% 0.5% 0.1% 0.1% 1.0% 0.1%

42.8% 3.8% 3.1% 13.6% 2.0% 57.2%18.4% 20.5% 18.2% 12.2% 25.9%

0.0% 0.5% 2.1% 0.5% 0.4% 0.3% 0.4% 0.5% 0.1% 5.3% 0.2% 0.3% 1.0%

0.3% 0.8% 0.2% 0.6% 0.1% 6.3% 0.1% 0.2% 0.7%

0

10

20

30

40

50

(f) QNLI
att-1

out-1
att-2

out-2
att-3

out-3
att-4

out-4
att-5

out-5
att-6

out-6
att-7

out-7
att-8

out-8
att-9

out-9
att-10

out-10
att-11

out-11
att-12

out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

0.0% 1.6% 0.0% 0.2% 0.3% 0.0% 2.4% -0.0% 7.1% 0.0% 1.2% 2.7% 5.3%

0.0% 0.0% -0.0% 3.0% 0.0%

0.0% 8.3% 0.0% 2.2% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 1.5% 0.0% 0.0% 3.3% 2.3% 1.4%

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% -0.0% 0.0% 0.0%

0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 1.5% 0.0%

0.0% 0.1% 0.2% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 0.1% 0.0%

54.4%36.8% 33.2% 33.6% 35.8%57.9%43.3%51.8%32.5%50.3%47.7% 52.2% 59.0%

0.2% 5.0% 0.2% 0.0% 0.0% 0.1% 0.0% 0.0% 0.1%

0

10

20

30

40

50

(g) QQP

att-1
out-1

att-2
out-2

att-3
out-3

att-4
out-4

att-5
out-5

att-6
out-6

att-7
out-7

att-8
out-8

att-9
out-9

att-10
out-10

att-11
out-11

att-12
out-12

rte

mrpc

stsb

cola

sst2

qnli

qqp

mnli

2.0% 1.5% 0.2% 1.0% 0.0% 0.0% 3.0% 0.0% 8.2% 0.0% 2.3% 8.1% 2.8%

0.1% 0.0% 0.0% 2.9% 0.0%

0.0% 3.8% 0.4% 1.3% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 1.1% 0.0% 0.0% 3.8% 2.2% 2.9%

14.6% 0.2% 0.0% 0.1% 0.0% 3.2% 0.0% 0.9% -0.0% 0.0% 0.0%

0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.8% 0.0% 0.0% 0.1% 0.0%

1.1% 0.0% 0.0% 0.1% 0.0% 5.0% 0.0% 0.0% 0.0% 0.0% 0.1%

0.1% 0.1% 0.9% 0.3% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.1% 0.0%

26.4% 33.3% 46.8% 41.3% 42.4%62.0%34.6% 55.2% 57.7%

0

10

20

30

40

50

60

(h) MNLI

Figure 10: LIAs of Adapterfusion with pruning on different target tasks

14

Multi-Head Attention

FF Up

FF Down

LayerNorm

+

Feed Forward

FF Up

FF Down

LayerNorm

+

FF Up

FF Down

Saved Initial parameters

Adapter 5

Adapter 2

Adapter 3

Adapter 4

Adapter 7

Adapter 6

Rank Sum of weights

Adapter 8

Adapter 1

Adapter 10

Adapter 9

Multi-Head Attention

LayerNorm

Feed Forward

FF Up

FF Down

LayerNorm

+

Back to Training stage, Iterate multiple times

12 X

Prune the last 20%

Train model Reinitial the parameters

Figure 11: The Process of Pruning adapters using Lottery Ticket Hypothesis

15

