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Abstract

Achieving excellent results with neural networks requires careful hyperparameter tuning,
which can be automated via hyperparameter optimization algorithms such as Population
Based Training (PBT). PBT stands out for its capability to efficiently optimize hyperparam-
eter schedules in parallel and within the wall-clock time of training a single network. Several
PBT variants have been proposed that improve performance in the experimental settings
considered in the associated publications. However, the experimental settings and tasks
vary across publications, while the best previous PBT variant is not always included in the
comparisons, thus making the relative performance of PBT variants unclear. In this work,
we empirically evaluate five single-objective PBT variants on a set of image classification and
reinforcement learning tasks with different setups (such as increasingly large search spaces).
We find that the Bayesian Optimization (BO) variants of PBT tend to behave greedier than
the non-BO ones, which is beneficial when aggressively pursuing short-term gains improves
long-term performance and harmful otherwise. This is a previously overlooked caveat to the
reported improvements of the BO PBT variants. Examining their theoretical properties,
we find that the returns of BO PBT variants are guaranteed to asymptotically approach
the returns of the greedy hyperparameter schedule (rather than the optimal one, as claimed
in prior work). Together with our empirical results, this leads us to conclude that there is
currently no single best PBT variant capable of outperforming others both when pursuing
short-term gains is helpful in the long term, and when it is harmful.

1 Introduction

Neural network training requires setting values of many hyperparameters, a process that is both crucial for
good performance and time-consuming. Hyperparameter Optimization (HPO) algorithms aim to automate
Hyperparameter (HP) tuning (Bergstra et al., 2011; Feurer & Hutter, 2019).

The Population Based Training (PBT) algorithm (Jaderberg et al., 2017) and its variants (Parker-Holder
et al., 2020; 2021; Wan et al., 2022; Dalibard & Jaderberg, 2021) stand out for several reasons. Firstly, they
are designed to efficiently optimize a schedule of HPs (rather than one set of fixed values), which improves
performance (Loshchilov & Hutter, 2017; Tan & Le, 2021). Unlike other dynamic HPO algorithms (Baydin
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et al., 2018; Badia et al., 2020; Li et al., 2022), PBT is general, i.e., not restricted to a specific HP such as
learning rate, or to a specific setting such as Reinforcement Learning (RL). Secondly, PBT runs within the
wall-clock time of a single training of a network, which is desirable in practice. Thirdly, PBT is convenient
to scale: adding parallel workers improves results without strongly influencing the wall-clock time of the
algorithm. Finally, PBT can directly optimize non-differentiable objectives of interest, such as accuracy of a
classifier, or score of an RL agent.

PBT was built upon in Population Based Bandits (PB2, Parker-Holder et al. (2020)) where Bayesian
Optimization (BO) was introduced for sampling new HP values, PB2-Mix (Parker-Holder et al., 2021) where
the BO setup of PB2 was extended to include discrete HPs, Bayesian Generational PBT (BG-PBT, Wan et al.
(2022)) where a more advanced BO approach was used, and Faster Improvement Rate PBT (FIRE-PBT,
Dalibard & Jaderberg (2021)) where the greedy nature of PBT was addressed. In each publication, the
proposed variant outperformed previous variants included in the experiments, which unfortunately did not
always include the best previous variant. Additionally, each subsequent publication performed evaluations
on different tasks and in different setups (e.g., different implementations of RL tasks, different computation
budgets).

These issues make it difficult to say if one of the PBT variants is substantially better than all others, and
should therefore be preferred in practice. The question of whether there is one superior algorithm is the key
question we aim to answer in this work. Towards that goal, we conduct an impartial empirical evaluation
of the PBT variants in image classification and RL settings, using the FashionMNIST (Xiao et al., 2017),
CIFAR-10/100 (Krizhevsky & Hinton, 2009), and TinyImageNet (Stanford CS231N, 2017) datasets for the
former, and a subset of Brax tasks (Freeman et al., 2021) for the latter. Furthermore, we look into the
theoretical foundations of the BO variants of PBT to better understand the proved guarantees and how they
correspond to the behaviour of the algorithms in practice.

Although there exist extensions of PBT for multi-objective optimization (Dushatskiy et al., 2023) and
architecture search (Franke et al., 2020; Wan et al., 2022; Chebykin et al., 2023), the focus of this article is
on single-objective optimization of HPs only. Furthermore, we do not aim to compare PBT variants (which
we also refer to as PBTs) to other HPO algorithms.

The main contributions of our paper are threefold:

• We investigate whether the more recently introduced PBT variants are always superior to the earlier
ones on a set of image classification and RL tasks.

• We study how the performance and runtime of the PBT variants change when the task setup is varied.

• Theoretical and mechanistic causes for the observed differences in performance are explored.

2 Dynamic HPO

2.1 Problem statement

We formalize the problem setting by building upon the notation of Jaderberg et al. (2017). In the single-
objective setting, the goal is to maximize the final performance of a neural network by optimizing a schedule
of HPs. Let us denote the HP search space as H, the HPs used during training between times t and t + 1 as
ht ∈ H, the maximum time as T + 1, the weight space as W , the weights as θt ∈ W , the objective function as
Q : W → R, and the training procedure as train : W × HT → W . The dynamic HPO optimization problem
can be written as:

{h∗
t }T

t=1 = arg max
{ht}T

t=1

Q(train(θ1|{ht}T
t=1)). (1)

Note that while Eq. 1 formalizes dynamic HPO in that h varies over time, the optimization is written as
static or non-sequential (arg max is applied to the entire schedule) to correspond to the informal problem
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Figure 1: Illustration of concepts relevant to the problem statement (see Section 2.1).

statement of maximizing the final performance. Drawing the distinction between optimizing a schedule
statically (non-sequentially) or dynamically (sequentially) is important for explaining our theoretical results
in Section 4. In Figure 1, panels (a) and (b) illustrate the non-sequential and sequential optimization loops.

For sequential optimization, consider step : W × H → W , a logical (outer) step of a PBT algo-
rithm that corresponds to multiple inner steps (in which the weights are updated via, e.g., gradient
descent). The hyperparameters are updated after each outer step. We can expand train(θ1|{ht}T

t=1) =
step(step(. . . step(θ1|h1) . . . |hT −1)|hT ). If we denote the objective or its proxy after t steps as gt : Ht → R,
dynamic sequential HPO can be written as a sequence of problems:

{h̃t}T
t=1 = {arg max

h1

g1(h1), arg max
h2

g2(h2|h̃1), . . . , arg max
hT

gT (hT |h̃, . . . h̃T −1)}. (2)

The sequential nature of optimization entails that previous choices cannot be altered. Consequently, directly
optimizing Q at each step would make the optimization greedy, while optimizing an alternative gt could lead
to better long-term outcomes (as showcased by FIRE-PBT, see Section 3.1).

Let us further denote by stepinner the number of inner optimization steps taken within each outer step. Since
step is applied T times, the total number of inner optimization steps is totalinner = T · stepinner. Figure 1c
shows an example where each outer step corresponds to stepinner = 3 inner steps. For the visualized two
outer steps, the total number of inner optimization steps totalinner is equal to 6.

2.2 Dynamic HPO algorithms

In this section, we provide an overview of dynamic HPO algorithms that are not PBT variants. While there
are many HPO algorithms that tune static values of HPs (Bergstra et al., 2011; Li et al., 2018; Falkner
et al., 2018; Awad et al., 2021; Tan et al., 2024), few can efficiently tune schedules of HPs (although any
HPO algorithm can learn an HP schedule by introducing separate variables, one for each HP at each time
step, this is unlikely to be efficient). One approach to dynamic HPO is to adjust the HPs via hypergradient
descent (Baydin et al., 2018; Li et al., 2022). While using hypergradients can be efficient, it is also restrictive
of HPs that can be tuned this way: e.g., only learning rate (in (Baydin et al., 2018)) or HPs that are both
continuous and differentiable (in (Zahavy et al., 2020; Li et al., 2022)). Additionally, hypergradient algorithms
introduce HPs of their own that require tuning (Paul et al., 2019; Jin et al., 2021).

Another research direction focuses on dynamic HPO specifically for RL, which can be performed via bandit
optimization (Badia et al., 2020), evolutionary methods (Tang & Choromanski, 2020), hypergradients (Zahavy
et al., 2020), or by estimating HP quality via weighted importance sampling (Paul et al., 2019).

Biedenkapp et al. (2020) use RL for dynamic optimization in the general setting of dynamic algorithm
configuration. While promising, the approach relies on RL that requires a large number of roll-outs to learn,
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thus making it too inefficient for dynamic HPO on time-consuming tasks such as neural network training
(e.g., it required 40,000 training runs in the practical setting of tuning CMA-ES (Adriaensen et al., 2022)).

Unlike the approaches discussed above, the PBT variants are general algorithms that were empirically shown
to be capable of tuning arbitrary HPs on challenging tasks. We further discuss them in Section 3.

3 PBT variants

3.1 Exploration via perturbation (“Perturbation PBTs”)

PBT Jaderberg et al. (2017) introduced the first PBT algorithm for dynamic HPO. In PBT, the training
of N models is interleaved with HPO. A solution pi at (logical) time t is a tuple of model weights and HPs:
(θi

t, hi
t). A population P = {pi}N

i=1 encompasses all solutions. At each time t = 1 . . . T , all models are trained
in parallel1 for stepinner inner steps corresponding to one outer step: θi

t+1 = step(θi
t|hi

t), and evaluated:
qi

t+1 = Q(θi
t+1).

After evaluation has been performed at time t, the exploit procedure is applied. Jaderberg et al. (2017)
experimented with several exploit procedures and found truncation selection to perform best, which was
then used in all the PBT variants we describe. In truncation selection, each of the λ% worst-performing
models is replaced with a copy of one of the λ% best-performing ones (chosen randomly).

Finally, the explore procedure is applied to the copies created by the exploit procedure. In PBT, real-valued
HPs are explored via perturbation: each HP is multiplied by a randomly chosen factor from a predefined set
(e.g., {0.5, 2.0}); categorical HPs are randomly resampled. After the exploit step, the interleaved training
and HPO continues with the updated population (as described above).

FIRE-PBT Dalibard & Jaderberg (2021) observed that PBT can behave too greedily, potentially harming
its long-term performance. This is addressed by splitting the population into hierarchical subpopulations
P1..J and a subpopulation of “evaluators”. All subpopulations P1..J execute the standard PBT algorithm
(in parallel) but optimize different objective functions. P1 directly optimizes the target objective Q. Each
subsequent subpopulation Pj optimizes an Improvement Rate (IR) objective defined relative to Pj−1. Omitting
details, for ( θj i

t, hj i
t) ∈ Pj , IR measures how fast Q improves when the weights θj i

t are trained with the
currently best HPs from Pj−1: hj−1 ∗

t . The “evaluators” enable the computation of IR by performing this
training. Additionally, the weights trained by an evaluator can replace the weights associated with hj−1 ∗

t ,
thus allowing the weights from Pj to propagate to Pj−1. Using IR instead of Q in the subpopulations P2..J

makes optimization less greedy, see Dalibard & Jaderberg (2021) for further details.

3.2 Exploration via Bayesian optimization (“Bayesian PBTs”)

PB2 Parker-Holder et al. (2020) replace the random perturbation explore procedure of PBT with a BO
approach based on Time-Varying Gaussian Process Bandits (TV-GPB) (Bogunovic et al., 2016). At each
time t, changes in performance relative to the previous step are computed: yi

t = qi
t − qi

t−1, and collected in
a dataset: Dt = Dt−1 ∪

{(
yi

t, t, hi
t

)}N

i=1. Afterwards, a Gaussian Process (GP) model is fit to the dataset
and new HPs are selected by optimizing an acquisition function that extends TV-GPB to a parallel setting.
The theoretical guarantees for PB2 (and other Bayesian PBTs) are based on the TV-GPB formalism that is
further discussed in Section 4.

PB2-Mix The BO model in PB2 is defined only for real-valued hyperparameters, while the categorical HPs
are randomly resampled. To include categorical variables into the BO setup of PB2, Parker-Holder et al. (2021)
introduce the TV.EXP3.M multi-armed bandit algorithm for the time-varying setting. TV.EXP3.M is used to
sample the categorical variables, after which a time-varying GP model relying on a joint categorical-continuous
kernel is learned and used to sample the continuous variables.

1Note that we describe a synchronous version of PBT.
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BG-PBT BG-PBT (Wan et al., 2022) builds upon the previous Bayesian PBT variants by explicitly
considering ordinal variables in its extended version of the CASMOPOLITAN algorithm (Wan et al., 2021).
This algorithm was chosen for its suitability to high-dimensional and mixed-input problems thanks to
adaptations such as trust regions. BG-PBT places focus on enabling neural architecture search, which is out
of scope for our article, we therefore omit the related adaptations from our analysis and experiments (which
therefore apply to a variant of BG-PBT without architecture search).

4 Analysis

4.1 The returns of the Bayesian PBTs asymptotically approach the returns of the greediest schedule

Parker-Holder et al. (2020) formalize the problem of dynamic HPO as optimizing a time-varying objective
function Ft(ht). In our notation, it is equivalent to Q(train(θ1|ht, {h̃i}t−1

i=1)): evaluating the weights trained
with a schedule where the HPs before time t are fixed, while the HPs at t can be varied. The stated goal is to
optimize the final performance FT (hT ) with respect to a hyperparameter schedule {ht}T

t=1. The optimization
is sequential: the best choice at each step is defined as h̃t = arg maxht ft(ht), where ft is the improvement in
Ft after one outer step of an algorithm: ft(ht) = Ft(ht) − Ft−1(ht−1). This corresponds to the dynamic
sequential HPO setup in Eq. 2 with gt = ft. The regret is defined as r̃t(ht) = ft(h̃t) − ft(ht). Let us
reproduce Lemma 1 of Parker-Holder et al. (2020):
Lemma 1 (Parker-Holder et al. (2020)). Maximizing the final performance FT of a model with respect to a
given hyperparameter schedule {ht}T

t=1 is equivalent to maximizing the time-varying black-box function ft(ht)
and minimizing the corresponding cumulative regret r̃t(ht):

max FT (hT ) = max
T∑

t=1
ft(ht) = min

T∑
t=1

r̃t(ht).

We find two issues with this lemma. The first is a minor technicality unrelated to our main argument: max
and min should be argmax and argmin. This is due to the proof (Eq. 3) using FT (hT ) − F1(h1) in place of
FT (hT ). Subtracting a constant (as F1(h1) is assumed to be) affects max but not argmax.

Secondly, we find that the lemma is proved in the setting of non-sequential optimization (Eq. 1) rather than
the sequential optimization actually performed by PBTs (Eq. 2). We show that r̃, the regret relative to
the schedule {h̃t}T

t=1, lacks meaning in the non-sequential setting, rendering any conclusions about it moot.
Finally, we show that the lemma does not hold in the sequential setting. Let us start with the original proof:

max [FT (hT ) − F1(h1)] = max
T∑

t=1
[Ft(ht) − Ft−1(ht−1)] = max

T∑
t=1

ft(ht) = min
T∑

t=1
r̃t(ht). (3)

Let us replace max with argmax, specify the arguments, replace F1 with F0 to correct the indexing of the
telescoping sum, and expand the last transition (in accordance to Parker-Holder et al. (2020)):

arg max
{ht}T

t=1

[FT (hT ) − F0(h0)] = arg max
{ht}T

t=1

T∑
t=1

[Ft(ht) − Ft−1(ht−1)]

= arg max
{ht}T

t=1

T∑
t=1

ft(ht)
(4.3)= arg max

{ht}T
t=1

T∑
t=1

[
ft(ht) − ft(h̃t)

]
= arg min

{ht}T
t=1

T∑
t=1

r̃t(ht).

(4)

Observe that due to the dependencies between the summands, the argument of argmax must be the entire
schedule for the transitions in the original proof (Eq. 3) to hold as written. Thus, the lemma is proved in the
non-sequential setting. Let us next consider transition (4.3) in Eq. 4: it holds because for each time t, ft(h̃t)
is a constant (so these values do not influence argmax). However, this holds not just for {h̃t}T

t=1 but for any
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schedule {hA
t }T

t=1 ∈ HT : for each time t, ft(hA
t ) is a constant, and therefore transition (4.3) will hold also

with ft(hA
t ) in place of ft(h̃t) on the right side. Therefore, maximizing ft is equivalent to minimizing the

cumulative regret relative to this arbitrary schedule, rA
t (ht) = ft(hA

t ) − ft(ht).

Thus, we can use the proof of the lemma to conclude that the regret relative to all possible schedules is
minimized, making the original result about the specific regret r̃ lack meaning. The notion of minimizing
regret relative to a schedule is problematic if the final performance is optimized non-sequentially: the optimal
schedule will maximize FT regardless of the schedule used to define the regret, as seen in the transition (4.3).
The lemma ignores the sequential nature of optimization that is fundamental to the design of PBTs and that
is required for a meaningful notion of regret relative to a schedule.

Next, we give a high-level argument that the lemma does not hold in the sequential setting, with details
provided in Appendix A. ft(ht) is defined as Ft(ht) − Ft−1(ht−1), which reduces to Ft(ht) during sequential
optimization because Ft−1(ht−1) is constant at time t. With ft(ht) = Ft(ht), performance at the current
step is maximized rather than the final performance. Due to potential dependencies on the past choices,
greedily optimizing Ft leads to worse final results (unless no dependencies are present, which would make the
greedy solution optimal). Thus, contrary to the statement of Lemma 1, sequentially maximizing ft is not
equivalent to maximizing the final performance FT .

In the theory underlying all Bayesian PBTs, Lemma 1 connects minimizing regret to achieving optimal
final performance. The associated regret bounds still hold, and it is true that the returns of the schedules
discovered by Bayesian PBTs asymptotically approach those of {h̃t}T

t=1, as shown by Parker-Holder et al.
(2020). Our contribution lies in reinterpreting these results: the returns achieved by the Bayesian PBTs
asymptotically approach the returns of the greedy solution (which we find {h̃t}T

t=1 to be) that will only
be optimal if previous hyperparameter choices do not restrict achievable future results (which cannot be
generally expected).

4.2 Limitations of the current theoretical approach

The theoretical asymptotic behavior, while informative, does not completely describe an algorithm’s behaviour
in practice. Since Bayesian PBTs work with a population, a solution that does not lead to the best performance
at the current step may still survive until the next step, where it may actually perform the best. Together
with the search space exploration performed by BO, this enables Bayesian PBTs to discover schedules different
from the greediest one (note that the exploit procedure can also influence the (asymptotic) behavior despite
not being included in the theory of Bayesian PBTs, see Appendix B).

Nonetheless, Bayesian PBTs are solving an optimization problem that is fundamentally not aligned with the
stated goal of optimizing the final performance. The TV-GPB formalization is well-suited for time-varying
problems where previous choices do not affect future results, such as adjusting a thermostat (Bogunovic et al.,
2016). However, dynamic HPO typically does not fit this criterion, as it is a time-linked problem (Bosman,
2005), meaning that previous choices can strongly influence downstream results: e.g., reducing the learning
rate too fast may improve performance in the short term, but in the end leads to premature convergence and
a suboptimal final result.

Note that the standard PBT optimizes the same greedy objective function as Bayesian PBTs, but it does so
less effectively due to its simple exploration via random perturbation (in contrast to BO). However, since the
greedy objective function being optimized does not completely align with the true objective function (the
final performance), the less effective optimization of PBT can lead to better final results.

FIRE-PBT stands out because its higher-order subpopulations greedily optimize not the current performance
but the improvement rate, which encourages better long-term results. Changing the optimization problem is
one way of aligning an online algorithm with the target objective, see Section 6 for further discussion.

4.3 Step size as a mechanistic cause for the greediness of the PBT variants

All PBT variants operate on two levels. As discussed in Sections 2.1 and 3, on the upper level, a PBT
performs T outer steps of HPO, while on the lower level, within each outer step, the underlying models are
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trained for stepinner gradient descent (GD) steps, to the total of totalinner = T · stepinner steps over the entire
run. While the totalinner budget is fixed, the number of outer steps T is a hyperparameter of PBT that can
be set freely by appropriately adjusting stepinner: e.g., if the training budget is 100 epochs, they can be split
into 100 outer steps of 1 epoch, or 10 outer steps of 10 epochs, etc.

PBT variants optimize the objective function after one outer step, which can correspond to an arbitrary
number of inner steps. PBTs are blind to how long the inner optimization is: no matter if the weights are
trained for a single GD step or for many epochs, it is still a single outer step for a PBT. What happens
if we increase the number of outer steps T? Holding totalinner constant, this requires decreasing stepinner.
A PBT will still optimize one outer step ahead but fewer inner steps ahead. In terms of inner steps, the
optimization becomes greedier, as shorter-term improvements are pursued.

Thus, one mechanistic cause for how greedy a specific PBT variant behaves is the number of outer steps T
(or, equivalently, stepinner). It is not clear how T should be set, as none of the PBT publications discuss it,
while effectively using different values: 200 in PBT, 20 in PB2, 50 in PB2-Mix, 150 in BG-PBT.

Decreasing T could decrease greediness, as it is equivalent to increasing stepinner, i.e., how many inner steps
ahead the optimization is done. However, this would also make the schedule less granular and reduce the
amount of exploration an algorithm can do, which could degrade performance in challenging search spaces.

The optimal amount of greediness and thus the optimal value of T (or stepinner) is likely to be task-specific,
and may even vary during the optimization: Wan et al. (2022) empirically observe that their chosen stepinner
leads to excessively greedy behavior on some tasks, and add linear annealing of stepinner for these tasks. We
argue that stepinner is an important hyperparameter which could influence the behavior of PBTs in any task.
We empirically demonstrate in Section 5.4 that varying the number of outer steps can change not only the
final performance but also which PBT variant performs best.

5 Experiments & Results

5.1 General setup

We compare the PBT variants on image classification, RL, and toy problems. In our main classification
experiments, the PBTs optimize hyperparameters of a ResNet-12 (He et al., 2016) on Fashion-MNIST (Xiao
et al., 2017) and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets (see Appendix C for further details).

In main RL experiments, a Proximal Policy Optimization (PPO) (Schulman et al., 2017) agent is trained on
the Hopper and Humanoid tasks from the Brax library (Freeman et al., 2021). These tasks were selected
because Wan et al. (2022) reported that PBTs tended to get stuck in local optima if the step size was small
and we wanted to see if Perturbation PBTs could avoid local optima better than Bayesian PBTs.

By default, only the Learning Rate (LR) is tuned in the classification experiments, i.e., the small search
space is used (see Appendix E for the description of search spaces) but we found that for the Humanoid task
this leads to minimal performance differences between PBTs (see Section 5.5) which motivated using the
large search space in the RL experiments. For classification, the large search space is used in the scaling
experiments (Sections 5.6 and 5.7) so that the scaling of PB2-Mix could be observed. PB2-Mix is equivalent
to PB2 in continuous search spaces and so is excluded from the experiments in the small space.

Unless specified otherwise, the PBTs are run with a population of size 22, see Appendix D for the explanation,
as well as other implementation details of PBTs. Five random seeds were used for the classification and
toy experiments, while seven seeds were used for RL (known to have high variability). We typically plot
Interquartile Mean (IQM) and Interquartile Range (IQR) in order to focus on average tendencies rather than
outliers, similar to previous work (Parker-Holder et al., 2020). Statistical testing is described in Appendix F.

5.2 Toy problems: plain and time-linked

In this section, we describe two toy problems: one where effective greedy optimization leads to better results,
and another where the less greedy optimization is preferable.
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Figure 2: The performance of PBTs on the toy problems. For each problem, on the left, the IQM of the
objective is shown (with IQR shaded), and on the right, the average value of the hyperparameter h (with the
standard deviation shaded).

The problems are created based on the toy problem from Jaderberg et al. (2017), where a quadratic function
Q(θ) = 1.2 − (θ2

0 + θ2
1) is maximized without knowing its formula. Instead, a differentiable surrogate function

is provided Q̂(θ) = 1.2 − (h0θ2
0 + h1θ2

1), with h = [h0, h1] as the hyperparameters to be optimized. The
gradient is ∇θQ̂ = −2hθ, therefore h should be greedily maximized to reach the optimum faster. We slightly
adjust this problem and refer to it as PlainToy. Namely, we make θ one-dimensional, and replace h with 2−h
to prevent h from going to infinity (while allowing it to increase up to 2). The objective is g1(θ) = 1.2 − θ2,
the surrogate is ĝ1(θ) = 1.2 − (2 − h)θ2, the gradient is ∇ĝ1 = −2(2 − h)θ. The initial values are uniformly
randomly sampled from [0.9, 1.1]. This problem is designed so that the greedy behavior of reducing h to 0 as
fast as possible is also the optimal behavior that leads to the best final result. On this problem, the greedier
algorithms are expected to outperform the less-greedy ones.

Our second problem, TimeLinkedToy, is designed so that the greediest solution is optimal in the short-term
but suboptimal in the long-term. It is an extension of the PlainToy with an additional penalty that is
incurred by deviating from a linear decay schedule. As such, 2 − h is replaced with max(2 − h − c · pt−1, 0),
where pt−1 =

∑t−1
i=0 |hi − T −i

T | (hi denotes the historical value of h at time i) and c = 0.2 (a constant to control
the impact of the penalty). The “max” function is added to prevent the surrogate gradient from degrading
the objective when the penalty grows large (making the gradient incorrect). The objective is g2(θ) = 1.2 − θ2,
the surrogate is ĝ2(θ) = 1.2 − max(2 − h − c · pt−1, 0) · θ2, the gradient is ∇ĝ2 = −2 · max(2 − h − c · pt−1, 0) · θ.
With c < 1, rapidly reducing h gives the best results in the first steps but the penalty gradually adds up,
eventually stopping all progress.

5.3 Bayesian PBTs underperform Perturbation PBTs when greedy choices are harmful in the long term

Based on our theoretical analysis in Section 4, Bayesian PBTs should perform worse than Perturbation PBTs
when short-term improvement is detrimental to long-term success (and they should perform better if not).
The goal of the experiments in this section is to empirically validate these claims.

Toy problems We start with the PlainToy problem, where the greediest solution is optimal. Figure 2a
shows that all PBT variants successfully solve PlainToy by reducing the hyperparameter h to zero. Bayesian
PBTs find the optimum faster than PBT, achieving better intermediate results. The less greedy FIRE-PBT
reduces h the slowest, which leads to the slowest improvement (see the inset in Figure 2a (left)).

The results are different for the TimeLinkedToy problem (Figure 2b), where the greediest solution is optimal
in the short but not the long term. Bayesian PBTs again quickly reduce h to zero, which leads to large
penalties downstream due to deviating from the target linear decay schedule. Cumulative penalties eventually
stop all progress of Bayesian PBTs, leading to poor final performance. Standard PBT, which cannot reduce
the LR as quickly, performs better than the Bayesian PBTs, while FIRE-PBT achieves the best result by
successfully addressing time linkage.
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Figure 3: The performance of PBTs on the classification tasks. For each dataset, on the left, the IQM of the
accuracy is shown, and on the right, the median LR of the best solution. The IQRs are shaded.

Classification Figure 3 shows the results of optimizing the LR of an image classifier. For both datasets,
Perturbation PBTs on average outperform Bayesian PBTs in terms of final accuracy. This is due to Bayesian
PBTs decaying the LR too aggressively. It is interesting to see in Figure 3a that the latest PBT variant,
BG-PBT, reduces LR the fastest and on average performs better at the start of the training — only to be
later overtaken by a less recent PB2 that reduces the LR somewhat slower. PB2, in its turn, is overtaken by
PBT that reduces the LR even more gradually. However, by that point, the eventual winner, FIRE-PBT,
already outperforms others despite starting off as the worst. Figure 3b shows similar behaviour.

These results are consistent with our analysis in Section 4. They clearly demonstrate in a practical setting
that more effective Bayesian optimization can, in fact, be greedier optimization, ultimately leading to worse
results. Note, however, that depending on the budget, different algorithms should be considered best: for
Fashion-MNIST, BG-PBT performs best after ≈ 5, 000 steps, whereas PB2 is the best after ≈ 10, 000 steps.
This implies that the properties of the task as well as the budget influence which PBT should be used for
obtaining the best results.

Reinforcement learning Figure 4 shows the scores of the PBTs on RL tasks when either 30 or 100 outer
steps are used. In the latter case, the algorithm with the highest final score on both tasks is a Bayesian
PBT (BG-PBT for Hopper, PB2-Mix for Humanoid), performing well throughout the training. Although
a pattern of rapid improvement followed by stagnation is visible in Figure 4b (similar to the classification
tasks), Perturbation PBTs generally fail to overtake the Bayesian ones like they did in the classification tasks.
When 30 outer steps are used (Figure 4a), Bayesian PBTs again tend to be better, although PBT marginally
outperforms BG-PBT on Hopper (while continuing to perform poorly on Humanoid). We can conclude that
in complex RL tasks and search spaces, the greedier but more effective optimization of Bayesian PBTs can
lead to better results than the less greedy and less effective optimization of Perturbation PBTs.
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Figure 4: The performance (IQM, with IQR shaded) of PBTs on the RL tasks with 30 or 100 outer steps.

9



Published in Transactions on Machine Learning Research (05/2025)

3 10 30 100
Number of steps

94.5

95.0

95.5

Ac
cu

ra
cy

↑

PBT
PB2

BG-PBT
FIRE-PBT

(a) Fashion-MNIST

3 10 30 100
Number of steps

90

92

94

Ac
cu

ra
cy

↑

PBT
PB2

BG-PBT
FIRE-PBT

(b) CIFAR-10

3 10 30 100
Number of steps

1200

1800

2400

Sc
or

e↑

PBT
PB2

PB2-Mix
BG-PBT

FIRE-PBT

(c) Hopper

3 10 30 100
Number of steps

6000

8000

10000

Sc
or

e↑

PBT
PB2

PB2-Mix
BG-PBT

FIRE-PBT

(d) Humanoid

Figure 5: The performance (IQM and IQR) of the PBT variants as the number of outer steps is varied,
while the number of inner steps (Stochastic Gradient Descent (SGD) steps for classification, environment
steps for RL) is kept constant.

5.4 The number of outer steps impacts the greediness and the relative performance of PBT variants

In Section 4.3, we reasoned that increasing the number of outer steps (while keeping the number of inner
steps constant) should make a PBT variant greedier. Let us first examine the results for the classification
tasks in Figure 5 (a, b). Bayesian PBTs perform well when the number of outer steps is very low (3) as
they are able to effectively find good LR values despite having few exploration opportunities, unlike the
less-effective Perturbation PBTs (which consequently perform worse in this setting). However, as the number
of outer steps increases, the performance of Bayesian PBTs tends to worsen, since they start to effectively
optimize the increasingly shorter-term objective.

On the other hand, Perturbation PBTs strongly improve when the number of outer steps goes from 3 to 10,
as they have more opportunities to explore the search space but not enough to arrive at the greedy solution
that optimizes short-term performance improvement. However, as the number of outer steps is further
increased, the Perturbation PBTs become capable of effective greedy optimization, and their performance
deteriorates (at 30 steps for PBT, at 100 steps for FIRE-PBT).

The impact of the number of outer steps on RL scores (Figure 5 (c, d)) does not follow a clear pattern.
PBT peaks at different number of outer steps in different tasks while FIRE-PBT show consistently poor
performance. BG-PBT tends to outperform PB2 and PB2-Mix but as the number of outer steps is increased,
its performance improves on Hopper and deteriorates on Humanoid. As discussed in Section 5.3, greedy
optimization does not appear as detrimental for these tasks as for the classification tasks, explaining absence
of a similar interpretable pattern. Nonetheless, the number of outer steps affects both the absolute and the
relative performance of the PBT variants (in most cases), highlighting the importance of this HP also in
tasks without strong time linkage.

5.5 As the search space size is increased, performance of PBTs tends to improve

We investigated how the relative and absolute performance of PBT variants change when the size of the
search space is varied. Figure 6 shows the performance of PBTs in search spaces of different sizes (note that
search spaces differ between the classification and RL tasks, see Appendix E).

As can be seen in Figure 6 (a, b), for classification, FIRE-PBT tends to perform best in all search spaces,
with performance increasing in larger search spaces (which shows that optimizing additional hyperparameters
is beneficial). The performance of PBT improves when going from the small to the medium search space
but deteriorates in the large space. The latter observation is likely due to inability of PBT to optimize the
increased number of variables. The performance of Bayesian PBTs tends to increase with the search space
size, although without reaching the level of performance of FIRE-PBT.

Figure 6 (c, d) shows that the performance of all PBT variants improves on the RL tasks as more HPs
are optimized in larger search spaces. The relative performance of PBTs varies strongly, with no algorithm
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Figure 6: The performance (IQM and IQR) of the PBT variants as the search space size is increased. Some
IQR marks are invisible due to the IQR being too narrow.

significantly outperforming others or even consistently achieving a higher average rank (see Appendix F).
Interestingly, the difference in performance of the same PBT variant across search spaces can be larger
than the differences between PBTs in the same search space. The disappointing relative performance of
FIRE-PBT in most RL search spaces despite its excellent performance across classification search spaces
serves as evidence that FIRE-PBT is not generally superior to the other PBT variants.

5.6 As the population size is increased, performance of PBTs tends to improve

We investigated the effect of increasing the population size on the performance of the PBT variants. Bayesian
PBTs were designed to work well with a small population (typically 8, although scaling to larger populations
was shown to be beneficial) while Perturbation PBTs tend to use a population size of at least 20.

Consequently, even for the time-linked classification tasks, PBT and FIRE-PBT do not outperform the
Bayesian PBTs if the population size is 8 (see Figure 7 (a, b)). However, as the population size increases,
FIRE-PBT strongly outperforms all the other variants on the classification tasks, with PBT tending to be
second-best as the population size reaches 50.

Figure 7 (c, d) shows that on RL tasks, Perturbation PBTs again perform poorly with a population size of 8.
While they tend to improve with an increasing population size, they typically still underperform Bayesian
PBTs, except for PBT on Hopper. PBT performs well not only with a population size of 22 (as previously
seen in Section 5.3), but with a population size of 50 as well. Which properties of the task lead to these results
is an open question. In general, performance of all PBTs tends to improve as the population size is increased,
consistently with their nature as population-based algorithms. At the same time, the relative positions of
the PBT variants changes across population sizes and tasks, with no algorithm significantly outperforming
others, except for FIRE-PBT on classification tasks with population sizes of 22 and 50 (see Appendix F).
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Figure 7: The performance (IQM and IQR) of the PBT variants as the population size is increased.
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Figure 8: Wall-clock time (mean ± st. dev.) taken by the PBTs on the Hopper task in various setups.

5.7 PBTs scale differently in terms of wall-clock time

An attractive property of PBT variants is their ability to optimize hyperparameters within the wall-clock
time of a single training run, if all N networks in the population are trained in parallel. We would like to add
nuance by considering how much extra time the advanced PBT variants spend, and what they spend it on.

The first source of extra time spending is intermediate evaluations. At the end of each outer step, all networks
need to be evaluated, with more outer steps requiring more evaluations and longer wall-clock time.

All PBT variants except for FIRE-PBT use the same number of evaluations. FIRE-PBT requires an order of
magnitude more intermediate evaluations to compute the IR objective used in the higher-order subpopulations.
As a result, FIRE-PBT tends to take the longest wall-clock time, which is noticeable for RL tasks where
evaluations interrupt efficient Brax-enabled training. Figure 8 (a) shows that increasing the number of steps
increases the total time spent on training and evaluation by all the algorithms but especially by FIRE-PBT.

The second source of extra time spending comes from selecting new hyperparameters in the explore step.
The Bayesian PBTs optimize the hyperparameters of the GP and the acquisition function, while the random
perturbation of PBT is near-instantaneous. FIRE-PBT fits several GPs when computing the IR objective.
The cost of these additional operations could be influenced by the search space and the population size.

As can be seen in Figure 8 (b), increasing the search space size strongly affects only BG-PBT and PB2-Mix.
BG-PBT slows down considerably when going from a continuous search space (small) to a mixed search
space (medium), but does not meaningfully slow down when the number of variables is further increased in
large. PB2-Mix, on the other hand, is slower in the large search space than in the medium search space. This
is consistent with BG-PBT relying on a more efficient BO algorithm. Figure 8 (c) shows that increasing the
population size does not affect per-population-member update times, except for PB2-Mix: a larger population
creates more data for the fitting of a GP, which appears to slow down more than linearly (which would
correspond to a horizontal line). The exploration of FIRE-PBT incurs negligible costs, as does the exploration
of PBT.

5.8 Do our observations generalize to similar settings?

Our computation budget is limited (since each PBT run entails training multiple neural networks, the total
computational cost of the main experiments reach ≈ 900 GPU-days) but we would still like to know whether
changes in the experimental setup would substantially alter the results. For this purpose, we run additional
experiments in selected settings.

Classification CIFAR-100 (Krizhevsky & Hinton, 2009) is a step-up in complexity from CIFAR-10 in
number of classes. Tiny ImageNet (Stanford CS231N, 2017) is larger still in number of classes, number
of samples, and resolution (which we upsample to 2242). This motivates training a larger architecture
(ConvNeXt-T (Liu et al., 2022)) for 3 times more steps. We use the large search space, and 100 outer steps,
further details are provided in Appendix C.

Figure 9a shows that FIRE-PBT performs best on CIFAR-100, as expected. The standard PBT does not
outperform the Bayesian PBTs, likely due to the search space being large, which is consistent with our
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Figure 9: The performance (IQM, with IQR shaded) of PBTs on additional tasks.

findings presented in Section 5.5. On Tiny ImageNet, however, FIRE-PBT manages only to catch up to other
PBTs but is not able to overtake them. The combination of increased difficulty of the underlying task and the
large search space may strain the simple exploration procedure of FIRE-PBT that nonetheless performs best
in the small space, as expected (see Appendix G). These results highlight the difficulty in choosing the PBT
variant that would perform best for a specific task, search space, and budget, as discussed in Section 5.3.

Reinforcement learning We chose to evaluate on Brax Pusher and Walker tasks because they were
not previously optimized by any PBT variant. Figure 9 shows that the algorithm that achieves the best
final result, PB2-Mix, tends to perform well throughout optimization, with no issues caused by greediness
(similarly to what we observed on Hopper and Humanoid). PB2-Mix outperforming BG-PBT on both tasks
is consistent with our previous results, where PB2-Mix was also found to be better than BG-PBT in some
settings. On the other hand, in some previously considered settings, BG-PBT tended to perform better,
preventing the conclusion that one of the two algorithms is superior.

6 Discussion & Conclusion

In this work, we compared five single-objective PBT variants on image classification and RL tasks, and found
no single best algorithm that is capable of outperforming others in all (or even most) considered settings. This
is partially explained by different PBT variants exhibiting (and different tasks requiring) different degrees of
greediness. If good long-term results are achieved by optimizing short-term performance gains, then effective
optimization of Bayesian PBTs is beneficial. If, however, effectively optimizing short-term gains compromises
long term results, then even the standard PBT can outperform Bayesian PBTs, with FIRE-PBT performing
even better. In our experiments, optimizing RL hyperparameters fell into the first category, while optimizing
the LR of an image classifier typically fell into the second one.

From a theoretical perspective (as discussed in Sections 4.1 and 4.2), the underwhelming results of BO in
time-linked settings stem from effectively solving an optimization problem that is not fully aligned with
the desired goal of maximizing final performance. Is there an alternative to formalizing dynamic HPO as
optimization of a time-varying function? In Eq. 1, we defined as optimum the schedule optimized over all
steps simultaneously, which is incompatible with the efficiency brought by the sequential optimization of
PBTs. Nonetheless, greedy optimization could be improved upon, e.g., by using an estimate of the future
performance as the objective (Bosman, 2005), or, as in FIRE-PBT, by letting a subset of the population
optimize an alternative objective directed at long-term performance.

The objective of all PBT variants except FIRE-PBT is to optimize performance after one outer step of the
algorithm. We observe that by changing how much inner optimization (e.g., via gradient descent) is performed
within an outer step, we can influence how greedily an algorithm behaves on time-linked tasks (although it
is not the only effect, as discussed in Section 4.3). Varying the step size can substantially affect both the
absolute and the relative performance of the PBT variants in all settings, with no single best value across
algorithms and settings. Potentially having to try several values reduces the benefits of PBTs: efficiency and
running within the wall-clock time of a single training. In order for a more complete picture of the upsides
and downsides of different approaches to dynamic HPO to emerge, alternative dynamic HPO algorithms
should be studied and compared both to PBTs and to each other.
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PBT variants typically do not add much wall-clock time to the training of the underlying model (if it is large
enough), with the exception of FIRE-PBT. Its success in optimizing time-linked problems comes at a cost of
an order of magnitude higher number of evaluations, which can be ignored if the evaluations are fast but adds
up if they are not (as in our RL experiments). Future work could investigate the possibility of performing
fewer intermediate evaluations or formulating a more efficient alternative to the improvement rate objective.

While we separately varied the number of steps of PBTs, their population sizes, and the search-space sizes,
we did not tune them jointly, nor have we fully explored all PBT hyperparameters (e.g., we varied λ of the
truncation selection only in a few settings, as reported in Appendix I; the perturbation factor of FIRE-PBT
was also varied in a limited number of settings, see Appendix J). Arguably, efficient HPO algorithms should
perform well without requiring tuning of their HPs, as this only shifts the HPO problem to a higher level.
While the untuned hyperparameters is a limitation of our work, we believe that our conclusions on the
interplay of the greediness and performance of the PBT variants in time-linked settings are general, given
their theoretical underpinnings that align with empirical results. Deeper investigation of the interaction
between the hyperparameters, the performance, and the behaviour of PBTs is a potentially interesting subject
for future work.

Although our theoretical and empirical results can explain behaviour of PBT variants optimizing the LR
of a classifier, they are far from a complete explanation of behaviour of PBTs on arbitrary tasks. Further
understanding why a PBT variant performs poorly or well on a specific underlying task is an intriguing
avenue of future research.
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A Detailed reasoning on Lemma 1 in sequential setting

Here we show that Lemma 1 does not hold in the sequential setting: specifically, that sequential maximization
of ft does not generally result in optimal FT . Parker-Holder et al. (2020) consider as optimal the schedule
{h̃t}T

t=1 = {arg maxh1 f1(h1), arg maxh2 f2(h2), . . . , arg maxhT
fT (hT )}. Recall that ft(ht) is defined as

Ft(ht) − Ft−1(ht−1). For sequential optimization, Ft−1(ht−1) is constant at time t. Therefore, it does not
influence the optimization of ft(ht), allowing us to replace arg maxht

ft(ht) with arg maxht
Ft(ht), revealing

that {h̃t}T
t=1 is simply the greedy schedule {arg maxh1 F1(h1), arg maxh2 F2(h2), . . . , arg maxhT

FT (hT )}.
Consequently, sequentially maximizing ft is equivalent to greedily maximizing Ft at each t (in other words,
optimizing a proxy ft (rather than the objective itself, Ft) makes no difference in the outcome).

Such greedy maximization does not, in general, maximize the final performance. Although we and Parker-
Holder et al. (2020) write Ft as a function of only ht, this is not correct in the context of dynamic
HPO. Previous hyperparameter choices can influence future results via the weights inherited from the
previous step (e.g., too high a learning rate can lead to divergence that cannot be recovered from). Thus,
performance at step t is not generally independent of the previous steps, which can be made explicit:
Ft(ht|h1 . . . ht−1) = Q(train(θ1|{hi}t

i=1)).

Due to potential dependencies on the past choices, greedily optimizing Ft leads to worse results (unless no
dependencies are present, which would make the greedy solution optimal):
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max
{ht}T

t=1

FT (hT |h1 . . . hT −1) ≥ FT (h̃T |h̃1 . . . h̃T −1)

where {h̃t}T
t=1 = {arg max

h1
F1(h1), arg max

h2
F2(h2|h̃1), . . . , arg max

hT

FT (hT |h̃, . . . h̃T −1)}.

To sum up, in the sequential setting, contrary to the statement of Lemma 1, maximizing ft is not equivalent
to maximizing the final performance FT (even though it is equivalent to minimizing regret r̃t).

B Theoretical consequences of the exploit procedure: an example

One can imagine a variant of the truncation selection where only the best solution in the population survives,
and all others are replaced, with the weights copied from this solution, and hyperparameters explored via BO.
Asymptotically, as population size goes to infinity, the best greedy solution maximizing current performance
will be discovered at each step t. Only the weights from this solution will be present in the population of the
next step, thus making sure that all schedules discovered in the future have the “greedy” hyperparameters
at the time t. The final schedule will have the “greedy” hyperparameters at each step, i.e., it will be the
greediest schedule.

On the other hand, if truncation selection with λ < 50% is used, the population size going to infinity allows
for many suboptimal-in-the-short-term weights to be preserved at each step, likely preventing the dominance
of the greediest solution.

This is only an illustrative example of the potential influence of the exploit procedure on the results that can
occur despite the BO component remaining constant. We hope to encourage a deeper theoretical treatment
of the exploit procedure in future research.

C Task implementation details

Classification The default training hyperparameters are: 50, 000 SGD steps with a batch size of 128, a
learning rate of 0.1, weight decay set to 0.0005, and the use of RandAugment (Cubuk et al., 2020) with 1
augmentation of magnitude 10.

The CIFAR-10/100 (Krizhevsky & Hinton, 2009) datasets contain 50,000 training and 10,000 testing samples
each, we further separate 10,000 images from the training set to use as the validation set. The Fashion-
MNIST (Xiao et al., 2017) contains 60,000 training and 10,000 testing samples, we further separate 10,000
images from the training set to use as the validation set. The Tiny ImageNet (Stanford CS231N, 2017)
dataset contains 100,000 training, 10,000 validation, and 10,000 test samples. The labels for the test set are
not available, therefore we treat the original validation set as the test set and separate 10,000 images from
the training set to use as the validation set.

For each dataset, the validation set is used during the search to estimate the quality of a solution. The results
in the main text are reported on the validation set so that the algorithms would be compared in terms of the
objective they were optimizing. It also allows us to compare the intermediate performance. The final models
are also evaluated on the test set. We observe that the results are similar to those on the validation set, see
Figures 12-14 (Appendix H).

RL For the RL tasks, we follow the setup of Wan et al. (2022) where hyperparameters of a PPO (Schulman
et al., 2017) agent are tuned for 150 million environment interactions on the tasks from the Brax library (Free-
man et al., 2021). To avoid overfitting to a single seed, a different random seed is set in each outer step of
a PBT. The test performance is evaluated on a previously unseen seed. Both the validation and the test
rewards are averages over 256 parallel rollouts. The test results are presented in Figures 12-14 (Appendix H).
We would like to highlight that the validation and test performance on the RL tasks is almost identical. The
common RL issue of the train-test performance gap (Eimer et al., 2023) was avoided by using a different
random seed in each outer step of a PBT algorithm.
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For further implementation details, see our codebase: https://github.com/AwesomeLemon/PBT-Zoo. The
codebase includes configuration files for all experiments, as well as code for plotting and statistical testing.

D PBT variants implementation details

Population sizes are set based on the requirements of FIRE-PBT: while the other PBTs have a single population,
we use FIRE-PBT with two hierarchical subpopulations and an evaluator subpopulation. To avoid the
evaluators staying idle, their number should be equal to (100 − λ)% of the second subpopulation, where λ is
the hyperparameter of the truncation selection (25% by default). We follow Dalibard & Jaderberg (2021) in
using population sizes of 22 (two subpopulations of size 8, and 6 evaluators) and 50 (two subpopulations of
size 18, and 14 evaluators). We additionally consider the smaller population size of 8, which is typically used
by the Bayesian PBTs. In this setting, FIRE-PBT has two subpopulations of size 3, and 2 evaluators. The λ
for FIRE-PBT is appropriately increased to 34% from the default 25%.

In Perturbation PBTs, we use {0.5, 2.0} as factors for perturbation. For some hyperparameters with narrow
ranges, a perturbation can only flip between the maximum and minimum values, preventing reasonable
exploration. To address this, in our implementation, we check if the variable range is narrow like this, and if
so, normalize the range to [0.0, 1.0], perform random perturbation in the normalized range, and renormalize
the resulting value back to the original range.

We implemented FIRE-PBT from scratch, as no implementation was available. PBT was also implemented
from scratch. As to PB2, PB2-Mix, and BG-PBT, we built upon the official implementations and adapted
implementations of PB2-Mix and BG-PBT to be task-agnostic. Furthermore, we have fixed several issues
with the gradients of PB2 and PB2-Mix that were present in these implementations (the issues were confirmed
by the original authors in private communication). Specifically:

• PB2: The gradient of variance should not square the length scale, as it is not squared in the forward
path of the kernel (https://github.com/jparkerholder/PB2/blob/master/kernel.py, lines 31,
47). Alternatively, the length scale could be squared in both places.

• PB2: The gradient of variance should be multiplied by the value of the time kernel, which is
independent of it and is multiplied by it in the forward path (https://github.com/jparkerholder/
PB2/blob/master/kernel.py, lines 33, 47).

• PB2: The gradient of the length scale has an erroneous additional factor of “-2”, which can be
confirmed by taking the gradient of the kernel with respect to the length scale (https://github.
com/jparkerholder/PB2/blob/master/kernel.py, line 48).

• PB2-Mix: The gradient of the length scale has an erroneous minus sign, which is absent in the
gradient formula in the PB2-Mix publication itself (https://github.com/jparkerholder/procgen_
autorl/blob/main/pb2_utils.py, line 248).

Based on our preliminary experiments, these changes did not impact the final results achieved by the
algorithms but substantially improved their exploration speed. This happened because the errors led to some
gradients having signs opposite to the correct ones, which deteriorated the performance of L-BFGS that
relied on these analytical gradients to optimize the hyperparameters of the kernel.

E Search spaces

In classification tasks, the small search space corresponds to searching just the learning rate. In the medium
space, the number of augmentations in RandAugment and the augmentation strength are additionally
considered. The large space also includes weight decay and momentum. See Table 1.

In RL tasks, our search space is based on that of Wan et al. (2022), with architecture-related hyperparameters
omitted. We also narrow the ranges of the “batch size” and “number updates per epoch” hyperparameters in
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Hyperparameter Type Exponent base Range
learning rate real 10 [-6, 0]
number of augmentations integer ✗ [1, 4]
augmentation strength integer ✗ [1, 30]
weight decay real 10 [-8, -2]
momentum real ✗ [0.5, 0.999]

Table 1: Hyperparameter tuning ranges for the classification tasks. All variables above the first and the
second dashed lines are included in the small and medium search spaces accordingly, while the full table
corresponds to the large search space.

order to reduce the computational burden of the experiments. We refer to the resulting search space as large.
The medium space is its subset that contains only “learning rate”, “entropy coefficient”, and “batch size”.
The small space contains “learning rate” only. See Table 2.

Hyperparameter Type Exponent base Range
learning rate real 10 [-4, -3]
entropy coefficient real 10 [-6, -1]
batch size integer 2 [8, 10]
discount factor real ✗ [0.9, 0.9999]
unroll length integer ✗ [5, 15]
reward scaling real ✗ [0.05, 20]
number of updates per epoch integer ✗ [2, 16]
GAE parameter real ✗ [0.9, 1]
clipping parameter real ✗ [0.1, 0.4]

Table 2: Hyperparameter tuning ranges for the RL tasks. All variables above the first and the second dashed
lines are included in the small and medium search spaces accordingly, while the full table corresponds to the
large search space.

F Statistical analysis

Due to high computational costs and the large number of settings considered in this article, we were able to
run each algorithm with only a few random seeds in each setting: 5 seeds for the classification tasks, 7 seeds
for the RL tasks. To partially counteract the lack of data, the results of the classification tasks were pulled
together (so that each of the algorithm had 10 data points), and the results of the RL tasks were pulled
together (so that each algorithm had 14 data points).

The tests were performed independently in each setting, with the target p-value of 0.05. Firstly, a Friedman
test (Friedman, 1937) was performed to determine if any algorithm achieved results statistically different to
those of the others. If so, pairwise signed Wilcoxon rank tests (Wilcoxon, 1992) with Holm correction (Holm,
1979) were performed. The results are presented in Figure 10 and referenced in the main text. We would like
to additionally speculate that repeating experiments more times could lead to more significant differences
found in some cases with large differences in average ranks (e.g., between PB2 and FIRE-PBT in Figure 10
(a) with 3 steps).

G Additional results on Tiny ImageNet

In Section 5.8, we unexpectedly found that FIRE-PBT does not outperform other PBTs on Tiny ImageNet
in the setting where it did so for all other datasets (Fashion-MNIST, CIFAR-10/100): large search space,
100 outer steps. We hypothesized that this could be due to the increased difficulty of the underlying task
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Figure 10: Critical difference diagrams for PBTs. Algorithms within a bracket were not found to be statistically
significantly different from each other. Each row in each subfigure corresponds to one experimental setting
that was analyzed independently of all others.

in combination with the large search space. To test the impact of the search space, we ran an additional
experiment in the small search space. Figure 11 shows that in this setting FIRE-PBT outperforms other
variants, as expected.
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Figure 11: The performance (IQM, with IQR shaded) of PBTs on Tiny ImageNet in the small search space.
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H Results on the test split

3 10 30 100
Number of steps

93.5

94.0

94.5

95.0

Ac
cu

ra
cy

↑

PBT
PB2

BG-PBT
FIRE-PBT

(a) Fashion-MNIST

3 10 30 100
Number of steps

88

90

92

Ac
cu

ra
cy

↑

PBT
PB2

BG-PBT
FIRE-PBT

(b) CIFAR-10

3 10 30 100
Number of steps

1200

1800

2400

Sc
or

e↑

PBT
PB2

PB2-Mix
BG-PBT

FIRE-PBT

(c) Hopper

3 10 30 100
Number of steps

6000

8000

10000

Sc
or

e↑

PBT
PB2

PB2-Mix
BG-PBT

FIRE-PBT

(d) Humanoid

Figure 12: Test performance (IQM and IQR) of the PBT variants as the number of outer steps is varied,
while the number of inner steps (SGD steps for classification, environment steps for RL) is kept constant.
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Figure 13: Test performance (IQM and IQR) of the PBT variants as the search space size is increased. Some
IQR marks are invisible due to IQRs being too narrow.
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Figure 14: Test performance (IQM and IQR) of the PBT variants as the population size is increased.
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Figure 15: Differences in IQMs of the performance of the PBT variants when changing the value of λ of
truncation selection from 25% to 12.5%.

I Impact of λ on performance of the PBT variants

To evaluate the impact of the truncation selection parameter λ on the performance of PBTs, we repeat a
subset of experiments from Figure 5 (specifically, those with CIFAR-10 and Humanoid) with the value of λ of
truncation selection changed from the default 25% to 12.5%.

Figure 15 shows the difference in IQM that arise from such a change of λ. It can be generally observed
that decreasing lambda improves results for some combinations of (algorithm, number of steps) but leads to
worse results in others. Therefore, we cannot conclude that one of the considered values of lambda should be
generally preferred.

Interestingly, all algorithms seem to benefit from the decreased lambda when the number of steps is 100. Since
smaller λ corresponds to lower selection pressure and slower evolution, reducing it could be especially helpful
in reducing short-term focus of optimization in this setting of many steps. We leave further investigation of
the interaction between the hyperparameters and the performance of PBTs for future research.

J Impact of the perturbation factor on performance of FIRE-PBT in challenging
search spaces

In order to evaluate the potential impact of the perturbation factor hyperparameter of FIRE-PBT on its
performance in larger and more challenging search spaces, we have run FIRE-PBT with the perturbation
factor of 1.25 instead of 2.0 in the large search space on two RL tasks, Hopper and Humanoid. As can be seen
in Figure 16, the smaller perturbation factor leads to a decreased score on Hopper and an increased score
on Humanoid. This indicates that the perturbation-based search procedure is sensitive to the perturbation
factor, which may need to be tuned per task to achieve optimal performance.
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Figure 16: The performance (IQM and IQR) of FIRE-PBT when the perturbation factor is reduced from 2.0
to 1.25. The large search space is used.
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