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ABSTRACT

Visual object tracking plays a critical role in visual-based autonomous systems, as
it aims to estimate the position and size of the object of interest within a live video.
Despite significant progress made in this field, state-of-the-art (SOTA) trackers of-
ten fail when faced with adversarial perturbations in the incoming frames. This
can lead to significant robustness and security issues when these trackers are de-
ployed in the real world. To achieve high accuracy on both clean and adversarial
data, we propose building a spatial-temporal implicit representation using the se-
mantic text guidance of the object of interest extracted from the language-image
model (i.e., CLIP). This novel representation enables us to reconstruct incoming
frames to maintain semantics and appearance consistent with the object of interest
and its clean counterparts. As a result, our proposed method successfully de-
fends against different SOTA adversarial tracking attacks while maintaining high
accuracy on clean data. In particular, our method significantly increases track-
ing accuracy under adversarial attacks with around 90% relative improvement on
UAV123, which is close to the accuracy on clean data. We have built a benchmark
and released our code in https://github.com/tsingqguo/robustOT.

1 INTRODUCTION

Visual object tracking is a crucial technique in the field of vision intelligence, predicting the posi-
tion and size of targeted objects in real-time video. It has found applications in various autonomous
systems, including self-driving cars, unmanned aircraft, and robotics Over the years, significant ad-
vancements have been made in visual object tracking. State-of-the-art tracking methods now achieve
high accuracy on challenging datasets by utilizing fully trained deep neural networks (DNNs). How-
ever, similar to the vulnerability of DNNs in image classification (Goodfellow et al., 2014; Carlini
& Wagner, 2017; Guo et al., 2020a), deep tracking methods also face similar challenges (Wiyatno &
Xu, 2019; Jia et al., 2021; Yan et al., 2020; Liang et al., 2020; Yin et al., 2022). Adversarial attacks
can exploit this vulnerability by adding imperceptible perturbations to incoming frames, leading to
incorrect predictions of the object’s position by the deployed trackers. Such attacks pose security
risks when deep trackers are integrated into automatic systems. These attacks could cause security
issues when we embed deep trackers into the automatic systems. Therefore, it is crucial to enhance
the robustness of deep trackers against adversarial tracking attacks.

There are two primary approaches to enhancing adversarial robustness in the context of image clas-
sification tasks. These include adversarial training (Kurakin et al., 2016; Tramèr et al., 2017; Re-
buffi et al., 2021) and image preprocessing (Yuan & He, 2020; Nie et al., 2022; Ho & Vasconcelos,
2022). However, directly applying these methods to defend against adversarial tracking attacks is
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Figure 1: (a) shows the main idea of this work: we propose the language-driven resamplable
continuous representation (LRR) that takes the template’s text term and historical frames as inputs
to reconstruct the incoming frame. (b) shows the results on VOT2019 (Kristan et al., 2019) with and
without LRR under clean data and different attacks.

not straightforward. Adversarial training involves retraining deep models using a min-max opti-
mization strategy, where the DNNs are exposed to more adversarial examples during the training
process. However, this approach has certain limitations, such as a potential sacrifice in accuracy on
clean data and increased time costs for training. Existing image preprocessing methods neglect the
video sequence’s temporal and the object template’s semantic information, inadequately addressing
the challenges of adversarial tracking attacks.

In this study, our focus is on a preprocessing-based solution to defend against tracking attacks.
Specifically, we reconstruct the incoming frames and provide them to the deployed trackers to
enhance adversarial robustness (See Figure 1 (a)). We argue that an effective preprocessing de-
fense against tracking attacks should fulfill two criteria: (1) it should fully leverage the spatial and
temporal contexts, which offer complementary appearance information, and (2) it should maintain
semantic consistency with the object of interest as indicated by the initial frame, known as the
object template. To achieve these objectives, we propose an approach based on the implicit rep-
resentation (Chen et al., 2021), which effectively models the appearance of pixels based on their
neighboring pixels. While existing implicit representation methods have shown promising results
in image restoration, we propose a novel language-driven resamplable continuous representation
(LRR) consisting of two key modules. First, we introduce the spatial-temporal implicit representa-
tion (STIR), enabling the reconstruction of any pixel at continuous spatial and temporal coordinates.
This capability allows for the effective removal of adversarial perturbations and the achievement of
appearance consistency with clean frames. Second, we propose a language-driven resample network
(LResampleNet) that leverages the STIR. This network generates a new frame by feeding resampled
continuous coordinates to the STIR, guided by the text from the object template. By aligning the
resampled frame with the semantic information provided by the object template, we achieve seman-
tic consistency. We conducted extensive experiments on three public datasets, demonstrating that
our method significantly enhances the adversarial robustness of object trackers against four state-of-
the-art adversarial attacks. Moreover, our approach maintains high accuracy on clean data, with the
adversarial accuracy even matching or surpassing the clean accuracy. For instance, in the VOT 2019
results shown in Figure 1 (b), SiamRPN++ with LRR achieves an EAO of 0.283 under the SPARK
attack, outperforming the 0.079 EAO achieved by SiamRPN++ without LRR and even surpassing
the results on clean data.

2 BACKGROUND AND RELATED WORKS

Visual object tracking. Siamese trackers have become the current trend in visual object tracking
tasks since they strike a great balance between tracking accuracy and efficiency (Li et al., 2018;
Zhang & Peng, 2019; Fu et al., 2021; Cao et al., 2021). The SiamRPN (Li et al., 2018) algorithm
approaches VOT as a one-shot detection problem and was the first to introduce a region proposal
network (RPN (Ren et al., 2015)) into the tracking arena. By incorporating RPN, SiamRPN mitigates
the need for heavy multi-scale correlation operations, resulting in high-speed and accurate tracking
performance. SiamRPN+ (Zhang & Peng, 2019) and SiamRPN++ (Li et al., 2019) propose the
incorporation of a cropping residual unit and a spatial-aware sampling strategy, enabling the Siamese
RPN framework to benefit from modern backbones and significantly enhance the performance of
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the Siamese tracker. In this work, we evaluate the effectiveness of our defense mechanism on two
trackers from the SiamRPN++ family that are popular within adversarial research. In recent years,
transformer-based trackers (Ye et al., 2022; Lin et al., 2022; Cui et al., 2022; Mayer et al., 2022) have
demonstrated remarkable tracking accuracy. Our initial results indicate that our method remains
effective for transformer-based trackers.

Adversarial tracking attacks. In recent years, the broad applications of visual object tracking have
prompted a wide range of studies on the robustness of visual object trackers (Wiyatno & Xu, 2019;
Guo et al., 2019). AD2Atk (Fu et al., 2022) focuses on generating adversarial examples during
the resampling of the search path image. EfficientAdv (Liang et al., 2020) presents an end-to-end
network that employs a novel drift loss in conjunction with the embedded feature loss to attack the
tracker. DIMBA (Yin et al., 2022) proposes a black-box attack that uses reinforcement learning to
localize crucial frames accurately. CSA (Yan et al., 2020) employs a well-crafted cooling-shrinking
loss to train an efficient adversarial perturbation generator. RTAA (Jia et al., 2020) conducts a
frame-by-frame attack, introducing temporal perturbation into the original video sequences and sig-
nificantly reducing the tracking performance. SPARK (Guo et al., 2020b) is designed to attack online
trackers by imposing a Lp constraint on perturbations while calculating them incrementally based
on previous attacks. IoU (Jia et al., 2021) creates perturbations by utilizing temporally correlated
information and incrementally adding noise from the initial frame to subsequent frames.

These advanced attackers exploit the unique characteristics of VOT, thereby making defense meth-
ods, originally adapted from the image classification domain, difficult to apply effectively. In re-
sponse to this, our approach seeks to use spatial-temporal representation to leverage the information
concealed within inter-frame relationships.

Adversarial robustness enhancement Approaches for enhancing robustness typically fall into two
main categories: adversarial training and input preprocessing during testing time. The adversar-
ial training approach introduces adversarial perturbations during training (Goodfellow et al., 2014;
Kurakin et al., 2016; Madry et al., 2017; Tramèr et al., 2017; Athalye et al., 2018; Rebuffi et al.,
2021), which are usually computationally expensive. The input preprocessing methods (Yuan & He,
2020; Nie et al., 2022; Ho & Vasconcelos, 2022) are employed to remove the adversarial pertur-
bations, and thus enhance the robustness. However, these methods are mainly designed for image
classification tasks and cannot be used to defend against adversarial tracking attacks directly. For
example, DiffPure (Nie et al., 2022) utilizes diffusion models for adversarial purification. While it
exhibits promising results in image classification tasks, its intensive computational demands make
it infeasible for video tasks. The purification process for a single image of 256 × 256 pixels re-
quires approximately 26 seconds, which equates to a processing speed of 0.04 fps for video frame
processing. We provide an empirical study in A.7 by using the DiffPure for tracking defense. Un-
like previous enhancement approaches, our method leverages historical information from the object
template to build a novel defense pipeline against video-specific adversarial attacks.

Implicit representation. Implicit representation has been extensively employed in the modeling
of 3D object shapes and structures, where a 3D object is typically represented by a multilayer per-
ceptron (MLP) that maps coordinates to signals. Inspired by its success in 3D tasks, recent studies
have proposed the application of implicit representation in 2D tasks. (Chen et al., 2021) proposed
the Local Implicit Image Function (LIIF), which generates a continuous representation for super-
resolution. Lee & Jin (2022) improves LIIF by adding high-frequency information in Fourier space.
(Ho & Vasconcelos, 2022) emerged with an adversarial defense method that eliminates adversar-
ial perturbations by utilizing local implicit functions. Both DISCO and LIIF perform their tasks
based on local implicit image representation. Contrastingly, our work proposes a novel approach
that extends local implicit representation into spatial-temporal implicit representation.

3 LANGUAGE-DRIVEN RESAMPLABLE CONTINUOUS REPRESENTATION

3.1 OVERVIEW

Given a live video, an object tracker aims to predict the position and size of the object of interest,
which is indicated by an object template T cropped from the first frame. Adversarial tracking attacks
usually inject adversarial perturbations into incoming frames, leading to incorrect tracking results. In
this section, we propose the language-driven resamplable continuous representation (LRR) against
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Figure 2: Pipeline of proposed language-driven resamplable continuous representation (LRR) that
contains two key parts, i.e., spatial-temporal implicit representation (STIR) and language-driven
ResampleNet (LResampleNet). STIR takes continuous spatial and temporal coordinates as inputs
(See point center at the blue rectangle) and estimates the corresponding color value.

adversarial tracking attacks. The intuitive idea is that we try to reconstruct an incoming frame to
remove the penitential adversarial perturbations while maintaining its semantic consistency to the
object template indicated in the first frame. Given an incoming frame It that may be corrupted
by adversarial perturbation, we try to reconstruct it and get a new counterpart Ît. The objective
contains two components: the first one is to remove the adversarial perturbations and encourage the
reconstructed frame to have the same appearance as its clean counterpart. The second component is
to make the semantic information of the reconstructed frame and the object template be consistent.

We have the following challenges when addressing the two objectives: First, as we are handling a
live video, the historical frames should provide complementary spatial and temporal information,
that is, a perturbed pixel usually has a similar appearance to its spatial and temporal neighboring
pixels that can be used to reconstruct the perturbed pixels. The key problem is how to build a bridge
between the spatial & temporal axes and pixel appearances, which should have a high generalization
to adapt to different pixel intensities or colors. Second, in terms of semantic consistency, a straight-
forward solution is to extract the deep features (e.g., VGG features) of the incoming frame and the
object template, respectively, and then encourage the two features to be similar. However, such a
solution could only approach deep feature consistency instead of semantic consistency. There are
two reasons preventing this solution: (1) the deep features are not exactly aligned with the semantic
space. (2) the deep features themselves are still vulnerable to adversarial perturbations.

To address the first challenge, we propose to build a spatial-temporal implicit representation (See
STIR in Section 3.2) that enables the reconstruction of any pixels at continuous spatial and tempo-
ral coordinates, which can remove the adversarial perturbations effectively and achieve appearance
consistency to the clean counterpart (Chen et al., 2021; Ho & Vasconcelos, 2022). Regarding the sec-
ond challenge, we propose a language-driven resample network (i.e., LResampleNet in Section 3.3)
based on the built spatial-temporal implicit representation, which is able to generate a new frame by
feeding resampled continuous coordinates to the STIR under the guidance of the text from the ob-
ject template. Such a module makes the resampled frame have the same semantic text as the object
template, naturally leading to semantic consistency. We display the whole pipeline in Figure 2.

3.2 SPATIAL-TEMPORAL IMPLICIT REPRESENTATION (STIR)

Given an image sequence V = {Iτ ∈ RH×W }tτ=t−N containing the tth frame and its historical N
neighboring frames, we aim to construct an implicit representation for the sequence, i.e., V̂ , which
maps the spatial and temporal coordinates of a pixel (i.e., p = (xp, yp, τp)) in the continuous domain
to the corresponding RGB value (i.e., V̂(p)). To this end, we propose to extend the recent local
implicit image representation (Chen et al., 2021; Ho & Vasconcelos, 2022) to the spatial-temporal
domain. In a straightforward way, we can formulate the task as

V̂(p) =
∑
q∈Np

ωqfθ(zq, dist(p,q)), (1)

where p = (xp, yp, τp) is the coordinates of a pixel in the continuous spatial and temporal domain,
that is, xp ∈ [0, H − 1] and yp ∈ [0,W − 1] can be non-integer and determines the spatial position
of the pixel while τp ∈ [t − N, t] can be non-integer and decide its temporal location. The set Np
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contains neighboring pixels of the pixel p in V . The vector zq denotes the feature of the pixel q,
and the function dist(p,q) measures the spatial distance between the two pixels (e.g., Euclidean
distance). The function fθ is parameterized as an MLP. Intuitively, the function fθ(zq, dist(p,q))
is to map the feature of neighboring pixel q to the color of p based on their spatial distance. All
generated color values are weightedly aggregated and the weight ωq is determined by the volume
ratio of the cube formed by p and q to the total neighboring volume.

The complexity of the above formulation (e.g., Equation 1) is directly related to the size of the
neighboring set. For example, we consider K ×K spatial neighboring pixels across the N neigh-
boring temporal frames. Then, the complexity of a pixel’s reconstruction is O(NK2). To alleviate
the computing costs, we propose to decompose the reconstruction along the spatial and temporal
domains and reformulate the Equation 1. Specifically, we first build a spatial implicit representation
that estimates the color values of a spatial location across all neighboring frames; that is, we have

V̂(p(t−N :t)) =
∑

(xq,yq)∈N(xp,yp)

ωsp
(xq,yq)

fθsp(zq(t−N:t)
, dist((xp, yp), (xq, yq))), (2)

where p(t−N :t) = [(xp, yp, t−N), . . . , (xp, yp, t)] and V̂(p(t−N :t)) preserves the N color values of
pixels at poistion (xp, yp) across all temporal frames. The term zq(t−N:t)

concatenates the features
of all pixels at location (xp, yp) across all temporal frames. The function fθsp is an MLP with the
parameter θsp, and the weight ωsp

(xq,yq)
is determined by the area ratio of the rectangle formed by

(xp, yp) and (xq, yq) to the total neighboring areas as done in (Chen et al., 2021). After getting
V̂(p(t−N :t)), we further build a temporal implicit representation that can estimate the color value of
the pixel p = (xp, yp, τp), that is, we have

V̂(p) =
∑

τq∈[t−N,t]

ωtp
τqfθtp(V̂(p(t−N : t))[τq], dist(τp, τq)), (3)

where V(p(t−N : t))[τq] is the τqth element in V(p(t−N : t)), and fθtp(·) is also an MLP to
map the predicted V(p(t−N : t))[τq] to color value of the pixel p. Compared with Equation 1, the
complexity of Equation 2 and Equation 3 is reduced to O(K2 +N).

We can simplify the developed STIR (i.e., Equation 2 and Equation 3) as

V̂(p) = STIR(p,V|fβ , fθsp , fθtp) (4)

where fβ is an encoder network to extract pixels’ features (i.e., zq in Equation 1). Once we train the
parameters of fβ , fθsp , fθtp , we can generalize STIR to build implicit representations for arbitrary
image sequences.

3.3 LANGUAGE-DRIVEN RESAMPLENET (LRESAMPLENET)

With the STIR, we can resample the tth frame by

Ît(p̄) = STIR(p,V|fβ , fθsp , fθtp),with p = p̄+∆p (5)

where p̄ = (x̄p, ȳp, t) is the discrete coordinate of the tth frame, that is, x̄p, and ȳp are integers
sampled from [0, H − 1] and [0,W − 1], respectively. Note that, we fix the temporal coordinate as
t since we handle the tth frame. ∆p are continuous offsets to generate continuous coordinates (i.e.,
p) based on the integer coordinates p̄. Hence, if we iterate through all discrete coordinates within
the frame It, we can reconstruct the tth frame and get Ît. The key problem is how to predict the
offset ∆p. We propose to use the language extracted from the template T and the pixel’s feature to
guide the resampling, that is, to generate the offset for each pixel in It.

Specifically, we initiate the process by employing CLIP (Radford et al., 2021)’s image encoder to
extract the template (i.e., T)’s embedding. Subsequently, given a set of texts encompassing potential
categories of the object, we compare the template’s embedding with the embeddings of all the texts.
Following this, we select the text embedding that exhibits the highest similarity with the template’s
embedding as the ztxt. Note that the text set can be updated based on different application scenarios,
and alternative vision-language models or image caption methods can also be employed to achieve
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the same objective. After that, we design a convolutional neural network denoted as language-
driven resampleNet (LResampleNet) that takes the template’s text embedding and pixel’s feature
embedding as inputs and predicts the offset; that is, we have

∆ = LResampleNet(Z, ztxt) (6)

where Z ∈ RH×W×C contains the C-channel features of HW pixels in It and is extracted via the
encoder network fβ(·), and ztxt ∈ R1×M is the text embedding of the object template. In practice,
we concatenate each pixel’s feature with the text embedding and feed them to the LResampleNet.
The output ∆ ∈ RH×W×3 contains the offsets of all pixels.

3.4 IMPLEMENTATION DETAILS

Architectures. We set the fθsp and fθtp are five-layer MLPs with a ReLU activation layer and the
hidden dimensions are 256. We use the network of (Lim et al., 2017) without the upsampling mod-
ules as the encoder for extracting pixel features (i.e., fβ), which can generate a feature with the same
size as the input image.
Loss function. Given an attacked image sequence V = {Iτ}tτ=t−N and the object template T, we
obtain the reconstructed tth frame Ît. When we have the clean version of Ît (i.e., I∗t ), we follow
existing works and only use the L1 loss function to train the STIR and LResampleNet. Intuitively,
following the objectives in Section 3.1, we can add a consistency loss for the features of Ît and T
but we do not see clear benefits.
Training datasets. We employ three widely-used datasets, i.e., ImageNet-DET (Russakovsky et al.,
2015), ImageNet-VID, and YouTube-BoundingBoxes (Real et al., 2017) to train the STIR. Specif-
ically, given a randomly sampled video, we randomly select five continuous frames in the video
to form an image sequence and crop the object template T from another randomly chosen frame.
Then, we add adversarial perturbations to the image sequence and regard the perturbed sequence as
the V in Equation 4. Here, we apply the FGSM attack on a pre-trained SiamRPN++ with ResNet50
tracker to produce adversarial perturbations. After that, we have a pair of V and T as the training
sample. We have sampled around 490,000 pairs for training STIR and LResampleNet, and 20,000
pairs as the validation set. We train the STIR and LResampleNet independently since they have
different functionalities, and joint training could hardly get good results for both modules. Besides,
ImageNet-DET is an image dataset and we perform random translations on its images to get an im-
age sequence to enlarge the training datasets.
Other details. We train and perform our method on a server with an NVIDIA RTX A6000 GPU
and an Intel Core i9-10980XE 3.0GHz CPU using Pytorch (Paszke et al., 2019). In alignment with
the tracker’s design, we have configured the reconstruction range to be the search region rather than
the entire image, resulting in a significant reduction in time costs.
LRR for adversarial tracking defense. LRR has a high generalization. After training LRR, we can
use it to defend against diverse attacks for different trackers on any tracking dataset. Specifically,
given an incoming frame, we can employ the Equation 5 and Equation 6 to reconstruct it and feed it
to subsequent trackers to estimate the object’s location and size.

4 EXPERIMENTAL RESULTS

We conduct a series of experiments to evaluate LRR’s defensive efficacy under various previously
discussed settings, reporting the average results from three independent trials.
Testing datasets. For evaluate the effectiveness of adversarial defense approach, we utilized three
widely used tracking datasets: OTB100 (Wu et al., 2015), VOT2019 (Kristan et al., 2019), and
UAV123 (Mueller et al., 2016). VOT2019 and OTB100 are popular tracking datasets that consist of
60 and 100 videos, respectively. UAV123 dataset focuses on object tracking in videos captured by
uncrewed aerial vehicle cameras, containing 123 videos.
Trackers and attacks. Given the variance in adversarial attacks on VOT tasks across both al-
gorithms and implementations, it is crucial to employ representative trackers to facilitate a com-
prehensive and impartial assessment of adversarial attack resilience. This approach also serves to
demonstrate the general efficacy of our proposed defense mechanism. To this end, we select track-
ers from the SiamRPN++ family: SiamRPN++ with ResNet50 and SiamRPN++ with MobileNetV2,
and identify four challenging attackers, the IoU Attack (Jia et al., 2021), SPARK (Guo et al., 2020b),
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Table 1: Comparing LRR with baselines on OTB100, VOT2019, and UAV123 under Four Attacks.
SiamRPN++ Defenses OTB100 Prec. (%) VOT2019 EAO UAV123 Prec. (%)

Cln. RTAA IoU CSA SPARK Cln. RTAA IoU CSA SPARK Cln. RTAA IoU CSA SPARK

Res50

wo.Def 91.4 32.7 75.9 47.2 69.8 0.277 0.080 0.153 0.089 0.079 79.5 41.2 70.5 46.5 40.8

ATFGSM 85.1 53.5 77.6 60.7 69.6 0.214 0.100 0.176 0.109 0.078 77.4 48.9 72.5 44.9 41.3

ATPGD 81.8 50.2 76.8 62.3 61.0 0.218 0.090 0.171 0.125 0.057 79.4 55.6 74.0 68.8 37.0

ATCSA 84.3 52.2 77.2 80.9 65.1 0.251 0.090 0.164 0.152 0.072 76.8 43.2 70.6 74.2 34.5

DISCO 86.0 86.3 78.6 83.6 85.7 0.249 0.244 0.190 0.204 0.248 79.1 76.8 75.9 77.7 76.0

LRR 87.8 86.9 85.3 89.4 89.3 0.262 0.255 0.217 0.237 0.269 79.3 77.7 78.6 81.8 79.3

MobileV2

wo.Def 85.5 25.6 67.8 40.9 32.2 0.267 0.062 0.125 0.083 0.037 80.3 39.3 66.2 42.2 22.5

ATFGSM 79.4 35.6 72.6 63.1 30.1 0.213 0.070 0.144 0.121 0.041 78.4 39.3 67.1 64.1 21.6

ATPGD 77.7 34.9 72.0 73.0 23.9 0.202 0.075 0.122 0.130 0.035 77.9 36.7 67.7 71.3 18.7

ATCSA 79.4 34.2 60.2 76.6 35.7 0.263 0.078 0.097 0.137 0.037 74.8 43.4 56.4 70.9 14.8

DISCO 82.9 78.7 75.0 79.9 80.1 0.175 0.161 0.132 0.166 0.208 74.6 76.2 73.3 72.9 75.3

LRR 85.6 83.2 82.1 83.9 85.4 0.240 0.205 0.166 0.223 0.239 79.1 78.7 75.9 76.2 79.0

Figure 3: Visualization comparison before & after LRR defense for SiamRPN++ under CSA attack.

CSA (Yan et al., 2020), and RTAA (Jia et al., 2020), which are known to deliver robust performance
against SiamRPN++ trackers. We detail the implementations of these attacks in A.9.
Defence baselines. To assess the effectiveness of our proposed method comprehensively, we com-
pare it against adversarial fine-tuning techniques and SOTA adversarial defense approach. Adver-
sarial fine-tuning, as outlined by (Goodfellow et al., 2014), is a strategy that trains a model with both
clean and adversarial examples, thereby enhancing the model’s resilience against attacks. For the
adversarial fine-tuning baseline, we employ FGSM (Goodfellow et al., 2014), PGD (Madry et al.,
2017), and CSA (Yan et al., 2020) to generate adversarial examples and augment the training data,
thereby enabling the model to fortify its defenses against adversarial attacks. Both PGD and FGSM
add minimal calculated perturbation to the input image based on the gradient of the tracker model’s
loss concerning the input, while CSA uses its perturbation generator to inject adversarial exam-
ples, progressively reducing the confidence of the tracker’s backbone. For the adversarial defense
method, we adapt the SOTA method, DISCO (Ho & Vasconcelos, 2022), for tracking tasks, using it
to predict each pixel’s RGB value through local implicit functions, thus defending against attacks.
We incorporate DISCO as a frame processor into our adversarial tracking attacks defense task.

4.1 COMPARISON RESULTS

LRR achieves SOTA performance over the baselines, as detailed in Table 1, which analyzes adver-
sarial defense under four attacks across three datasets and two SiamRPN++ family trackers. The
LRR setup follows the approach in Section 3.4. The table illustrates that SiamRPN++ trackers
can be compromised, impacting precision on OTB100 and UAV123 and Expected Average Over-
lap (EAO) on VOT2019. FGSM and PGD, as adversarial fine-tuning approaches, provide minimal
defense, decreasing performance even on non-attacked inputs. While CSA fine-tuning improves de-
fense against its generator’s examples, it underperforms under other attacks. Overall, the adversarial
fine-tuning baselines present a marginally successful defense against IoU and CSA but are ineffec-
tive against RTAA and SPARK. Meanwhile, DISCO displays robust defense against all attack types
but is outperformed by LRR due to its inability to leverage information between frames. To validate
the effectiveness further, we compare the visualizations of DISCO and LRR at both the image level
and the response map level in the supplementary material A.3. The results demonstrate that LRR
can achieve higher consistency at the semantic and image quality levels than DISCO.
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Table 2: Comparison between STIR alone and LResampleNet on VOT2019, OTB100, and UAV123.
SiamRPN++ Attacks OTB100 Prec. (%) VOT2019 EAO UAV123 Prec. (%)

Org. wo.LResample LResample Org. wo.LResample LResample Org. wo.LResample LResample

Res50

wo.Atk 91.4 88.1 87.8 0.277 0.268 0.262 79.5 79.5 79.3
RTAA 32.7 85.9 86.9 0.080 0.247 0.255 41.2 77.0 77.7

IoUAttack 75.9 84.0 85.3 0.153 0.213 0.217 70.5 78.2 78.6
CSA 47.2 85.9 89.4 0.089 0.219 0.237 46.5 79.7 81.8

SPARK 69.8 87.7 89.3 0.079 0.256 0.269 40.8 77.9 79.3

MobileV2

wo.Atk 85.5 85.5 85.6 0.267 0.238 0.240 80.3 78.4 79.1
RTAA 25.6 80.7 83.2 0.062 0.204 0.205 39.3 77.7 78.7

IoUAttack 67.8 79.0 82.1 0.125 0.163 0.166 66.2 74.9 75.9
CSA 40.9 79.8 83.9 0.083 0.216 0.223 42.2 75.7 76.2

SPARK 32.2 83.7 85.4 0.037 0.225 0.239 22.5 78.2 79.0

Table 3: Comparison of ResampleNet with & without language guidance on three datasets.
SiamRPN++ Attacks OTB100 Prec. (%) VOT2019 EAO UAV123 Prec. (%)

Org. wo.Lang. Lang. Org. wo.Lang. Lang. Org. wo.Lang. Lang.

Res50

wo.Atk 91.4 88.1 87.8 0.277 0.270 0.262 79.5 79.6 79.3
RTAA 32.7 86.1 86.9 0.080 0.250 0.255 41.2 77.4 77.7

IoUAttack 75.9 84.4 85.3 0.153 0.219 0.217 70.5 78.4 78.6
CSA 47.2 86.0 89.4 0.089 0.222 0.237 46.5 79.8 81.8

SPARK 69.8 87.8 89.3 0.079 0.254 0.269 40.8 78.1 79.3

MobileV2

wo.Atk 85.5 86.1 85.6 0.267 0.238 0.240 80.3 79.6 79.1
RTAA 25.6 81.2 83.2 0.062 0.201 0.205 39.3 78.0 78.7

IoUAttack 67.8 79.0 82.1 0.125 0.151 0.166 66.2 75.3 75.9
CSA 40.9 81.1 83.9 0.083 0.219 0.223 42.2 76.0 76.2

SPARK 32.2 84.5 85.4 0.037 0.228 0.239 22.5 78.4 79.0

4.2 ABLATION STUDY AND DISCUSSION

In this section, we explore the effectiveness of the components in our LRR (Language-Driven Re-
sampling Network), specifically discussing the individual contributions of the resampling network,
language-driven approach, and spatial-temporal information toward the defense mechanism.
Overall results. LRR has demonstrated robust defense against adversarial attacks. Employing
the VOT2019’s Expected Average Overlap (EAO) metric, a composite measure of Accuracy and
Robustness, it is evident from Table 1 that our defenses significantly enhanced EAO. Following
the implementation of our defense, the average EAO value under attack increased to 89% and 81%
for the SiamRPN++ with ResNet50 and MobileNetV2 trackers, respectively. Additionally, using
precision as a metric for the OTB100 and UAV123 datasets, our defense approach has shown a boost
in precision to 90% across all attackers and trackers, highlighting its effectiveness. Furthermore, we
extend our evaluation to four additional widely used datasets, including one large-scale dataset, as
detailed in A.1. This extended evaluation demonstrates the effective transferability of our method
across diverse datasets. In A.8, we also compare with image resizing and compression-based
defense methods, which further demonstrates the advantages of our method.
Illustrative Overview of Defense Results. Figure 3 qualitatively demonstrates the defense results
achieved by LRR. Our method removes the adversarial textures effectively and makes the tracker
localize the object of interest accurately. In A.3, we delve further into visualizations on correlation
maps and discuss in greater depth the impact of our method on adversarial defense.
Effectiveness of resampling. To validate the effectiveness of our primary contribution, we
conducted experiments to demonstrate the influence of the LResampleNet in LRR. Given STIR’s
independent training with LResampleNet, it should estimate perturbations utilizing spatial-temporal
information. We evaluated STIR without resampling, following the experimental settings of
previous evaluations. In Table 2, we present the increase in precision for the OTB100 and UAV123
datasets and the rise in EAO value for VOT2019. In Table 2, results indicate that tracking outcomes
without the LResampleNet are less effective than LRR in defending against adversarial tracking
attacks. A more detailed discussion on this is articulated in A.2.
Effectiveness of language guidance. When introducing the resampling mechanism into our
pipeline in Section 3.4, we used language to establish a connection between incoming frames and
the tracking template, constituting a major contribution to our work. Since we feed both pixel
embedding and text embedding to the resampling network, we aim to validate the effectiveness
of our language-driven approach. We designed a resampling network without text embedding
(ResampleNet), allowing pixel embedding to serve as the sole input, replacing the LResampleNet
in our existing pipeline. As shown in Table 3, the use of ResampleNet guidance appears to be less
effective when compared to our LRR pipeline. However, compared to the pipeline that uses STIR
alone, ResampleNet demonstrates an enhanced defense against adversarial tracking attacks. The
primary reason for this is ResampleNet’s ability to estimate adversarial perturbations by leveraging
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Table 4: Comparison of STIR with different settings of N , evaluated on OTB100 and VOT2019.
SiamRPN++ Attacks OTB100 Prec. (%) VOT2019 EAO

Org. N = 1 N = 2 N = 3 N = 4 N = 5 Org. N = 1 N = 2 N = 3 N = 4 N = 5

Res50

wo.Atk 91.4 86.5 87.3 87.1 87.3 88.1 0.277 0.237 0.251 0.255 0.267 0.268
RTAA 32.7 84.9 85.0 85.6 85.6 85.9 0.080 0.240 0.241 0.241 0.245 0.247

IoUAttack 75.9 78.7 79.2 80.9 83.1 84.0 0.153 0.190 0.191 0.208 0.211 0.213
CSA 47.2 82.6 82.8 83.3 85.2 85.9 0.089 0.203 0.204 0.215 0.216 0.219

SPARK 69.8 85.5 85.8 86.3 87.0 87.7 0.079 0.245 0.249 0.251 0.252 0.256

the implicit continuous representation from the input pixel embedding.
Effectiveness of spatial-temporal information. To validate STIR in learning spatial-temporal
information, we trained it separately by altering the input frame length N ∈ {1, 2, 3, 4, 5} from the
training dataset described in Section 3.4. To assess the influence of LResampleNet, we evaluated
these STIR models independently without the integration of our LRR on OTB100 and VOT2019
datasets using SiamRPN++ with ResNet50 tracker. The results presented in Table 4, reveal that
as the number of frame inputs length N increases, STIR demonstrates an enhanced capability to
defend against adversarial tracking attacks. This suggests that STIR is able to extract more hidden
information from spatial-temporal information brought by input frames, thereby serving a better
purpose in constructing video frame RGB values from it.
Transferability to transformer-based trackers. To clarify the transfer-
ability of our LRR approach, we adapted our method to the recently pro-
posed transformer-based tracker model, ToMP-50 (Mayer et al., 2022).

Table 5: Defense on ToMP-50 across 3 datasets
ToMP Attacks OTB100 Prec. (%) VOT2019 EAO UAV123 Prec. (%)

Org. LRR Org. LRR Org. LRR

ToMP-50 wo.Atk 90.1 89.8 0.556 0.547 88.2 87.8
RTAA 61.8 90.0 0.337 0.552 58.5 88.0

Specifically, we employed RTAA to attack
ToMP-50 and applied our LRR method for de-
fense, evaluating the results across three differ-
ent datasets. The results, delineated in Table 4,
underscore the transferability of our proposed
method, sustaining its efficacy even when in-
corporated with newly developed tracking models. A detailed discussion can be found in A.4.
Defense efficiency. LRR addresses attacks via the elimination of perturbations at testing
time. This strategy allows our method to be easily integrated into various existing track-
ing task pipelines, which also raises the concern of additional computational consumption.
We report the time cost of our methods in Table 6. Using our proposed method as a standalone frame
processor, our STIR defense can maintain processing at approximately 29 fps. In comparison, LRR
operates at around 25 fps. This allows for the facilitation of online tracking adversarial defense
capability. For a more detailed discussion, please refer to A.6.

5 CONCLUSION

Table 6: Average time costs on OTB100.

SiamRPN++
Cost per frame (ms)

Track Attack Defense
- RTAA IoUAttack CSA SPARK STIR LRR

Res50 16 215 1184 4 76 34 39
MobileV2 13 118 667 4 62 34 39

In this work, we have developed a novel im-
plicit representation, i.e., language-driven re-
samplable continuous representation (LRR),
against state-of-the-art adversarial tracking at-
tacks. We first built a spatial-temporal implicit
representation (STIR) to utilize the spatial-
temporal neighboring pixels for effective appearance reconstruction. Then, we designed the
language-driven ResampleNet to encourage semantic consistency between the reconstructed frame
and the object template. After training on large-scale datasets, our method can be used to defend
against different attacks for different trackers on different testing datasets. Impressively, our method
has successfully defended four state-of-the-art attacks and let the adversarial accuracy approach the
clean accuracy while maintaining the high accuracy on the clean data.
Limitations. As an extra module, the proposed method inevitably increases the computing and
time costs. In the future, we can explore approaches to decrease costs. Besides, the generalization to
non-noise-based attacks like motion blur (Guo et al., 2021) should be future studied. Furthermore, in
recent years, researchers have increasingly directed their attention toward natural language-specified
visual object tracking (Wang et al., 2021), which offers greater flexibility in real-world scenarios.
However, existing attack and defense methods predominantly focus on template-based trackers,
overlooking this emerging trend. Future research endeavors should aim to bridge this gap.
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6 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our approach, we have open-sourced our code and pro-
vided a benchmark that includes our method, which is accessible via https://github.com/
tsingqguo/robustOT. This repository contains the essential evaluation code, along with com-
prehensive instructions to facilitate the deployment of the proposed methods and the establishment
of the evaluation environment. The repository also includes a pre-trained model, allowing for direct
replication of the demonstrated results.

All implementation details are meticulously described in Section 3.4. The thorough documentation,
along with the availability of the benchmark and pre-trained model, aims to assist in the validation
and replication of the presented results.
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