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ABSTRACT

Latest federated learning (FL) methods started to focus on how to use unlabeled
data in clients for training due to users’ privacy concerns, high labeling costs, or
lack of expertise. However, current Federated Semi-Supervised/Self-Supervised
Learning (FSSL) approaches fail to learn large-scale images because of the lim-
ited computing resources of local clients. In this paper, we introduce a new frame-
work FedMAE, which stands for Federated Masked AutoEncoder, to address the
problem of how to utilize unlabeled large-scale images for FL. Specifically, Fed-
MAE can pre-train one-block Masked AutoEncoder (MAE) using large images
in lightweight client devices, and then cascades multiple pre-trained one-block
MAEs in the server to build a multi-block ViT backbone for downstream tasks.
Theoretical analysis and experimental results on image reconstruction and classi-
fication show that our FedMAE achieves superior performance compared to the
state-of-the-art FSSL methods.

1 INTRODUCTION

Self-supervised learning (SSL) has attracted extensive research attention for learning representations
without costly data labeling. The common practice in computer vision is to design proxy tasks to al-
low visual representation learning from unlabeled images (Doersch et al., 2015; Noroozi & Favaro,
2016; Zhang et al., 2016; Gidaris et al., 2018). The current state-of-the-art SSL methods integrate
contrastive learning with Siamese networks to increase the similarity between two augmented ver-
sions of images (Wu et al., 2018; Chen et al., 2020b; He et al., 2020; Grill et al., 2020; Chen &
He, 2021), or use autoencoder to reconstruct the input images (Dosovitskiy et al., 2020; Bao et al.,
2021; He et al., 2022), while all these solutions assume training images are centrally available in
cloud servers. In the real world, however, decentralized image data are exploding in growth, and
data collected by different parties may not be centralized due to data privacy regulations.

Existing approaches cannot well use decentralized unlabeled data to learn a generic representation
while preserving data privacy. Federated Learning (FL) (Chen et al., 2019; McMahan et al., 2017)is
an emerging distributed training technique in which several clients collectively train a global model
through coordinated communication. However, traditional federated learning (Kairouz et al., 2021)
relies on data labels, while this assumption may be excessive as labeling data is expensive, time-
consuming, and indispensable to the participation of domain experts. Decentralized data is normally
unlabeled, non-independent and identically distributed (non-IID), which are critical challenges for
learning from multiple clients (Li et al., 2020; Zhao et al., 2018). Motivated by these practical
scenarios, many SSL methods are used in federated learning, such as FedU (Zhuang et al., 2021a),
FedEMA (Zhuang et al., 2021b) and Orchestra (Lubana et al., 2022). Due to the limited computation
resource of client devices, these approaches use small models, e.g., ResNet18, to train small images.
The state-of-the-art methods have not revealed how lightweight clients learn unlabeled large-scale
images effectively.

Recent advancement of Transformers has great achievements in computer vision Dosovitskiy et al.
(2020); He et al. (2022). However, the biggest problem with applying Transformers in federated
learning is a large weight, which is difficult to deploy on small computing devices for training large
images. In this paper, we propose a simple, effective, and scalable framework, FedMAE, which
stands for Federated Masked AutoEncoder. Our FedMAE only deploys the MAE with a one-block
encoder and a one-block decoder as our pre-training model on the local clients and masks the random
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Figure 1: Comparison of reconstructions of ImageNet validation images under 75% masking ratio.
From left to right of each quaternion, we show the masked image, the reconstruction of the un-
pretrained five-block MAE, the reconstruction of the five-block MAE pre-trained by FedMAE, and
the ground-truth image.

patches in the input image and then reconstructs the missing patches in the pixel space. Although the
one-block model learns limited information and performs poorly in downstream tasks, we found that
cascading many pre-trained one-block MAEs together (without weights aggregation in traditional
FL) can achieve stunning performance in downstream tasks. With this design, FedMAE can achieve
a win-win scenario, i.e., it improves model accuracy by training large images on lightweight client
devices and allowing more distributed or mobile clients to participate in training asynchronously. To
get a qualitative sense of our FedMAE performance, see Figure 1, which compares the reconstruction
effect of the un-pretrained five-block MAE and the five-block MAE pre-trained by FedMAE.

In summary, the main contributions of this work are summarized as follows:

• We propose FedMAE, a framework that realizes asynchronous training of large-scale un-
labeled images in FL. To the best of our knowledge, we are the first to apply Transformer
to FL, which shows that cascading multiple pre-trained one-block MAEs can form a high-
performance pre-trained ViT model for downstream tasks.

• We model an approximate mapping for FedMAE based on the equivalence between data
corruption and feature interference and give an approximate analytical solution to optimal
reconstruction, which depends only on the data, revealing the data impact of the optimal
reconstruction in federated autoencoding learning independent of the backbone.

• We pre-train FedMAE with large-scale datasets in FL and conduct extensive fine-tuning ex-
periments on downstream tasks, such as image reconstruction and image classification. The
results show FedMAE has huge improvement (30% to 50%) over state-of-the-art baselines.

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING AND TRANSFORMERS

Self-Supervised Learning is a recent paradigm in unsupervised representation learning, especially
discriminative SSL, which exploits the invariance of different views after data augmentation, making
the representations of positive pairs similar while pushing negative pairs away. In order to obtain
sufficient informative negative examples in contrastive learning, the methods usually rely on large
memory banks such as Moco (He et al., 2020), or large batch size such as SimCLR(Chen et al.,
2020b). BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021) further minimize the need for
negative samples by using a variety of strategies to prevent representation collapse.

Pre-training vision Transformers has attracted great attention recently due to the data-hungry issue.
ViT (Dosovitskiy et al., 2020) predicts the 3-bit mean color of the masked patches, which is the most
straightforward translation of BERT from NLP to CV. BEIT (Bao et al., 2021) uses image patches as
input and visual tokens are obtained by discrete VAE instead of clustering. The current most popular
way of pretraining Transformer are MAE (He et al., 2022) and MaskFeat (Wei et al., 2022), which
utilize the idea of self-supervised learning to predict features of the masked area.
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Figure 2: Overview of FedMAE Architecture. 1⃝ We use a tiny MAE with a one-block encoder
and a one-block decoder as our pre-training model on clients. 2⃝ Pre-training models in FL can be
trained on different clients asynchronously without average aggregation. 3⃝ After pre-training in
FL, pre-trained models are cascaded in the server to build a multi-block ViT for downstream tasks.

2.2 FEDERATED SEMI-SUPERVISED/SELF-SUPERVISED LEARNING

Semi-supervised learning and self-supervised learning are two methods in federated learning to
utilize unlabelled data in client devices for training. Federated semi-supervised learning has to rely
on some labeled data either in the server or in the devices (or both) to guide unlabeled data in training
the global model. RSCFed (Liang et al., 2022) relies on clients with labeled data to assist in learning
unlabeled data in other clients. FedMatch (Jeong et al., 2020) introduced the inter-client consistency
that aims to maximize the agreement across models trained at different clients.

Federated self-supervised learning normally does not rely on any labeled data but aims at pre-
training a high-performance model for downstream tasks. FedU (Zhuang et al., 2021a) is based
on the self-supervised method BYOL (Grill et al., 2020), which aims for representation learning.
FedEMA (Zhuang et al., 2021b) is an upgraded version of FedU, which adaptively updates online
networks of clients with EMA of the global model. Orchestra Lubana et al. (2022) relies on high
representational similarity for related samples and low similarity across different samples.

3 APPROACH

A masked autoencoder is a simple autoencoding method that reconstructs the original signal given its
partial observation. To enable more local clients to participate in training, FedMAE’s pre-training
model contains only one block of encoder and decoder, allowing many devices with insufficient
computing power, e.g., mobile phones and Internet of Things devices, to participate in training on
large images. Like all autoencoders, our one-block encoder maps the observed signal to a latent rep-
resentation, and the one-block decoder reconstructs the original signal from the latent representation
when pre-training. For the downstream model of FedMAE, we adopt a cascade design that allows
multiple pre-trained one-block MAE connected in sequence to build a ViT model with multi-blocks
for downstream training. Figure 2 illustrates the idea, introduced next.
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3.1 PRE-TRAINED MODEL

In FedMAE, we build a tiny MAE with a one-block encoder and a one-block decoder as the pre-
trained model for client devices. Our encoder is a ViT but applied only on visible, unmasked patches.
Similar to a traditional ViT, our encoder embeds patches using a linear projection with additional
positional embeddings and then processes the resultant set using a single Transformer block. Just
as in a standard MAE, our encoder only performs on a small subset (e.g., 25%) of the whole set.
Masked patches are removed, and no mask tokens are used for our encoder. The whole set is handled
by a lightweight one-block decoder. The pre-trained model only has one Transformer block, which
is used to predict masked patches for reconstructing original images.

3.2 DOWNSTREAM MODEL

Without a doubt, the pre-trained model has a certain ability to filter interference that masks features
because of the loss of explicit information. Therefore, when the pre-trained model is transferred
to the downstream ViT classifier, its performance is significantly improved compared to the un-
pretrained ViT, which can only obtain classification knowledge through label training and cannot
mine implicit features. Moreover, the input and output of each block from the Transformer are in
the same dimension, and each block in the multi-block ViT is learning how to extract feature repre-
sentations. They have the same or similar learning capabilities, although there are some differences
in extracting features. Due to the similarity of learning purposes for each block, FedMAE tries to
cascade multiple one-block pre-trained MAEs, which will achieve higher-order implicit feature rep-
resentations based on multi-block mapping to help boost and speed up the downstream task training.

3.3 TRAINING PROCESS

In Figure 2, 1⃝ shows the pre-training model of FedMAE on clients, which only contains a one-
block encoder and a one-block decoder. We use unmasked patches (25% of the whole image) for
encoding, which means the model is tiny that is easy to deploy in many lightweight clients and
train large images. 2⃝ shows the communication between clients and the server. Due to the special
one-block structure of the pre-training model and the very small learning rate of Transformer, the
average operation of multiple model weights is not necessary (or effective) to boost the accuracy.
Therefore, FedMAE realises pure asynchronous training, i.e., multiple pre-training models can train
on different clients asynchronously without relying on each other. 3⃝ shows cascading multiple pre-
trained one-block MAEs to form a multi-block model to help train the downstream task, e.g., both
the encoder and decoder are needed to perform the image reconstruction task, and only the encoder
is used to produce image representations for recognition.

4 ANALYSIS

Based on the FedMAE as a system prototype, we analyze the data modeling and system mapping of
federated learning with autoencoding. We analyze the relationship between the absence of explicit
information in the data and feature perturbations and establish the equivalence between spatial vari-
ation in the data and feature denoising. An analytic model for federated autoencoders is given based
on approximate linear mapping with a corresponding analytic solution as the linear approximation
of optimal reconstruction. This analytic solution depends on the data only, revealing the data impact
of the optimal reconstruction independent of the backbone in federated learning.

4.1 PROBLEM FORMULATION

4.1.1 DATA CORRUPTION AND FEATURE INTERFERENCE

Modeling the pre-training dataset as a source dataset DS = {xS1, xS2, . . . , xSn} and downstream
dataset as a target dataset DT = {xT1, xT2, . . . , xTn} with lables YT = {yT1, yT2, . . . , yTn}, we
design an encoder h(x) = z and a decoder g(z) = x. The reconstruction by the pair of h(x), g(z)
can be represented as x̂ = g(h(x)). We use a loss function l(x, g(h(x))) to measure the error
between the original and reconstructed data, while the parameters of the autoencoder are learned
through DS to minimize the reconstruction error.
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Since MAE uses patch sampling, the x input loses much explicit information, degraded as x̃, which
leads to a corrupted input-to-feature explicit feature knowledge representation of g(·), h(·). At this
point, the training task becomes into reconstructing the original input x from its corrupted degra-
dation x̃ by minimizing l(x, g(h(x̃)). While on the features, the loss of explicit information corre-
sponds to the loss of a portion of the features, leading to the corrupted degradation of the features as
z̃. Since we use uniform dimensional encoding in the features, z̃ and z are still uniform dimensions,
so the above corruption in the features can be modeled as an interference as ∆z = z − z̃.

It can be seen that the loss of explicit information in data x is equivalent to the noise interference of
feature z. We analyze this feature interference due to data loss and manage to design a mechanism
to reduce this interference by hidden feature mining and train the system to learn for discovering
hidden features.

4.1.2 FEDERATED LEARNING WITH VARIATION BASED AUGMENTATION

We adopt FL in the pre-training system. There are K clients and 1 server, where each client has n
samples as a dataset Xk = {xki}n, where k refers to the index of the kth client. If we aggregate
all the samples and format them into a package, the corresponding aggregation can be formulated
as Xk = [xk1, . . . , xkn]. With MAE, the system training uses random corruption, i.e., the location
of the deducted patches is different each time. Therefore, the original data on kth client then has
multiple variant versions of X̃k,j = {xki,j}n×m with the corresponding aggregation as X̃k,j =
[x̃k1,j , . . . , x̃kn,j ], where x̃ki,j refers to the variation result of the original input xki with the jth
masked corruption.

When m times of masked corruption is applied, then X̃k,j , k ≤ K, j ≤ m can provide K × n×m
samples of variants. It is equivalent to subjecting K×n original samples to m corruption variants. It
can be seen that the original data are augmented with features interfering with corruption processing
to form diverse variations. This strategy can improve the sample diversity as an augmentation on
the one hand and reduce the variance on the other hand so that the system can learn the impact of
feature interference on the data caused by multiple explicit information loss.

4.2 FEDERATED LEARNING WITH AUTOENCODER

For a single masked autoencoder, we model the corrupted inputs as D̃S = {x̃S1, x̃S2, . . . , x̃Sn},
where each x̃i is corrupted by randomly masking patches of data elements in xi and setting the
masked region to 0 with probability p ≥ 0.

Let x̂ be the reconstruction of x from the corrupted x̃.
x̂ = g(h(x̃)) (1)

We set the loss function to measure the residual between x and x̂ under corruption as
l(x, x̂) = l(x, g(h(x̃)) (2)

Then the goal of the training task of the autoencoder pair is to find the optimal solution of W to
reconstruct the corrupted inputs x̃ that minimizes the squared reconstruction loss l.

In order to obtain an optimal autoencoder, the main concern in our design is the relationship between
the stable output of the system reconstruction and the loss function, so it is of interest to study the
h(x) and g(z) function trajectories. When an image with all zero pixels enters the system, the
output of the encoder is a zero tensor, i.e., h(0) = 0. Consequently, the output of the decoder is also
a reconstruction image with all zero pixels, i.e., g(0) = 0. Therefore, there exists a zero reference
point for discussing the encoder and decoder operators. Then, we have the following proposition.
proposition 1. There exists a linear equivalent mapping with Wh to the approximate encoder h(·).

Proof. Expanding the nonlinear vector function h(x) into a Taylor series at 0, it yields
h(x) = h(0) +∇xh(0)(x) + ϵ (3)

where ∇xh(0) denotes the gradient of operator h(·) at x0 in the direction of the vector x, and ϵ a
higher order infinitesimal residual. When ignoring the residual and let ∇xh(0)x = Whx, it yields

h(x) ≈ Whx+ h(0) (4)
As h(0) = 0, h(x) can be represented by the mapping Wh, and the proof is obtained.
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Corollary 1. There exists a linear equivalent mapping with Wg to the approximate encoder g(·).
remark 1. A practical representation of the linear mapping Wh above is essentially an autoencoder
implemented using a linear neural network. In practice, this linear representation may be relatively
inferior because of the omission of higher-order feature representations and residual terms. In this
paper, we mainly focus on the nature of the mapping and therefore use this mapping to simplify the
problem, with the main aim of discussing the relationship between the sample, the loss function, and
the optimal reconstruction in federated learning.

For federated learning based on client k, this approximate linear equivalence mapping can help to
simplify the model, then approximated encoder h(·) can be formulated as a linear mapping Whk

.
Similarly, the decoder g(·) can be equated to another linear mapping Wgk , which yields

x̂ = gk(hk(x̃)) ≈ WgkWhk
x̃ = Wkx̃ (5)

then, the loss function can be formulated as

l(x, x̂) = l(x, gk(hk(x̃)) =
1

2n

n∑
i

∥xi −Wkx̃i∥2 (6)

Then we have the theorem below.
Theorem 1. The approximate optimal solution of Wk on client k can be obtained by W ∗

k , in which

W ∗
k = X̄kX̃

T
k (X̃kX̃

T
k )

−1 = W ∗
gkW

∗
hk (7)

where
X̃k = [X̃k,1, . . . , X̃k,j , . . . , X̃k,m]n×m

X̄k = [Xk, . . . , Xk]n×m
(8)

Proof. With m augmented corruptions, the aggregated input of client k can be formulated as

X̃k = [X̃k,1, . . . , X̃k,j , . . . , X̃k,m]n×m (9)

which is corresponding to the aggregated original data as X̄k = [Xk, . . . , Xk]n×m. Let X̂ = WkX̃
be the aggregated reconstruction of X . Then the transformed loss function of the training with the
aggregation can be formulated as

l(X̄k, X̂k) =
1

2
∥X̄k −WkX̃k∥2 =

1

2
tr

[
(X̄k −WkX̃k)

T (X̄k −WkX̃k)
]

(10)

This loss function is a convex function that can reach a minimum value when its derivative is 0.
Therefore, with ∇Wk

l(X̄, X̂) = 0, it yields

2∇Wk
l(X̄k, X̂k) = ∇Wk

tr
[
(X̄k −WkX̃k)

T (X̄k −WkX̃k)
]

= ∇Wk
tr(X̄T

k X̄k − X̃T
k W

T
k X̄k − X̄T

k WkX̃k + X̃T
k W

T
k WkX̃k)

= ∇Wk
tr(WkX̃kX̃

T
k W

T
k )− 2∇Wk

tr(WkX̄kX̃
T
k )

= 2WkX̃kX̃
T
k − 2X̄kX̃

T
k = 0

(11)

Solving the equation 11 yields W ∗
k = X̄kX̃

T
k (X̃kX̃

T
k )

−1 as the completion of the proof.

Theorem 2. The overall approximate optimal solution of W on K clients can be obtained by W ∗
A,

in which
W ∗

A = X̄X̃T (X̃X̃T )−1 (12)
where

X̃ = [X̃1,1, . . . , X̃k,j , . . . , X̃K,m]K×n×m

X̄ = [X, . . . ,X]K×n×m
(13)

Proof. The combination of data after aggregating all variation samples can be obtained by X̃ =
[X̃1,1, . . . , X̃k,j , . . . , X̃K,m]K×n×m, corresponding to the same scale of the original sample data
aggregation as a whole can be expressed as X̄ = [X, . . . ,X]K×n×m. With the modeling and
analytic deduction similar to equation 10 and equation 11, the optimal solution can be obtained.
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proposition 2. When random sampling is used to corrupt the data X, the performance of the estab-
lished optimal solution is proportional to the number of clients.
remark 2. As chunking and random sampling are applied to the raw data, each client enters each
training step with a single random sample of the raw data it carries, resulting in a different variant
of the data. If the sampling is different each time, then the original sample can thus be augmented to
produce genes to cover different variant versions of the data. The corresponding X̃ is used to solve
the optimal reconstruction mapping and the corresponding X̄ are then enriched with elements,
resulting in mapping solutions that better cover the different inputs.
proposition 3. The number of variant m has its analytic upper bound as

supm = n×
(
B

b

)
= n

B!

b!(B − b)!
(14)

where B refers to the number of all patches in {xi}n after chunking segmentation, b the number of
selected patches for encoding, and

(
B
b

)
is a combination with a selection of patches from B distinct

patches.
remark 3. Although the number of versions of the variation m is limited, disordering all the versions
at each step of the training can still enhance the performance of the system learning as dissimilar
patches can be rearranged in different orders to form different versions of permutation to augment
the data for training in each epoch.

5 EXPERIMENTS

In this section, we demonstrate our experimental results. Section 5.1 introduces our experimental
setup. Section 5.2 compares accuracies, model parameters and GFLOPs of different FSSL methods
with our FedMAE. In Section 5.3, we show the scalability of the amount of data on the server for
FedMAE. Moreover, we demonstrate the impact of the statistical heterogeneity and the number of
total clients for both FedMAE and other FSSL methods in Appendix A.1 and A.2. Additionally, we
present various ablation studies in Appendix A.3 to A.6 on many parameters (including the number
of clients, the number of local epochs, the participation ratio, the number of training rounds, and the
depth of the pre-trained backbone) and illustrate how they influence the training results of FedMAE.
We compare the performance on mask ratio and downstream model depth in many evaluation metrics
in Appendix A.7. We also provide the details about our experiment settings in A.8, and upload the
experiment code as supplementary materials.

5.1 EXPERIMENTAL SETUP

Datasets We conduct our experiments using pre-training datasets and downstream datasets. For pre-
training datasets, we use ImageNet (Deng et al., 2009) with 1000 classes and Mini-ImageNet with
100 classes, and both of their input size is 224x224. The total number of mini-ImageNet is 60000,
which are chosen from ImageNet by the method of (Vinyals et al., 2016), while the ImageNet has
1,281,167 training images and 50000 test images. For downstream datasets, we use four public
datasets, including CIFAR10, CIFAR100 (Krizhevsky et al., 2009), ROAD SIGN (Kulakin et al.,
2022) and Mini-INAT2021. There are 60,000 32x32 color images in CIFAR10 and CIFAR100,
where the training set has 50,000 images, and the test set has 10,000 images. CIFAR10 is used
for the task of 10-class image classification, while CIFAR100 is utilized for the 100-class image
classification task. On the other hand, ROAD SIGN and Mini-INAT2021 are two datasets containing
large-scale images. ROAD SIGN contains 56000 images for training and 24000 images for testing.
The size of each image is 224x224. There are 8 classes in ROAD SIGN, corresponding to the
categories of signs in Russian traffic. Mini-INAT2021 is the more accessible version of INaturalist
Dataset 2021. Compared to the original dataset which contains nearly 2.7M training images for
10000 natural species, the number of images in Mini-INAT2021 has been cut down to 50 training
samples and 10 validation samples per specie for a total of 500K training images and 100K validation
images. The maximum dimension of these images is 800 pixels.

Setup Our experiments consist of two phases: federated pre-training and downstream fine-tuning.
In the pre-training phase, we use the Mini-ImageNet dataset if our results need to be compared
with the results of other baselines. Otherwise, we use the ImageNet dataset to evaluate the effect
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of various parameters on the performance of our method. The pre-training dataset is divided into
K clients. When the data held by each client is assumed to be IID distributed among each other,
the division of the dataset requires that each client holds images of all categories. When the data
division is assumed to follow non-IID distribution, we divide the dataset by taking a sample of the
Dirichet distribution’s class priors (Hsu et al., 2019). More heterogeneous division can be made by
specifying smaller Dirichet parameter α during sampling. Unless otherwise stated, the federated
learning conducted in the pre-training phase adopts the following settings. The number of training
rounds is set to 200, the number of local epochs is set to 10, the total number of local clients is set
to 100, and the participation ratio is set to 0.05. In the downstream fine-tuning phase, we replace the
decoder part of the pre-trained backbone with the head layer specified by the downstream task and
retrain the weights and biases of all layers. For all downstream tasks, the model is trained for 100
epochs at a batch size of 64. In addition, for the supervised evaluation, we fine-tuned the new model
using 100% of the labeled data. For the semi-supervised evaluation, we use 10% of the labeled data
for fine-tuning.

Baselines To fairly evaluate the proposed FedMAE framework, we compare it with the following
state-of-the-art FSSL benchmarks. 1) Fed-SimSiam: a naive combination of SimSaim and FL. 2)
Fed-SimCLR: a naive combination of SimCLR and FL. 3) FedU (Zhuang et al., 2021a): Using the
divergence-aware predictor updating with self-supervised BYOL (Grill et al., 2020). 4) FedEMA
(Zhuang et al., 2021b): Using EMA of global model to adaptively update online client networks. 5)
Orchestra (Lubana et al., 2022): a novel clustering-based FSSL technique. For downstream tasks’
evaluation, we fine-tune the entire model using downstream labeled data (10% or 100% of the total
dataset).

Table 1: Accuracy (%) in IID (α = 0) and Non-IID (α = 1e − 1) of FL settings on CIFAR
and ROAD SIGN datasets. We use Mini-ImageNet for pre-training, and evaluate models using the
popular semi-supervised fine-tuning with 10% labeled data and fully-supervised fine-tuning. For
pre-training period, the local clients are 100, the training rounds of pre-training are 200, the local
training epochs are 10 in each training round. For the downstream task, the total downstream training
epochs are 100.

CIFAR10 CIFAR100 ROAD SIGN
IID Non-IID IID Non-IID IID Non-IIDMethod

10% 100% 10% 100% 10% 100% 10% 100% 10% 100% 10% 100%
Fed-SimSiam(%) 53.00 56.55 50.36 50.68 24.80 35.20 21.54 28.76 36.42 63.43 30.97 61.38
Fed-SimCLR(%) 60.47 64.05 58.46 61.28 29.57 41.09 27.60 38.99 46.48 79.15 45.54 76.03
FedU(%) 31.69 52.85 31.46 50.97 6.89 26.15 7.50 24.51 16.60 66.94 11.79 66.56
FedEMA(%) 32.14 55.01 33.10 53.84 8.39 28.18 7.34 28.36 11.36 68.49 16.39 69.20
Orchestra(%) 61.05 63.47 60.21 63.76 29.76 38.82 29.05 39.89 51.83 70.56 47.71 71.71
FedMAE(%) 67.35 90.92 67.24 90.57 34.56 73.33 33.97 74.11 98.24 100.00 98.19 100.00

Table 2: Comparison of FedMAE’s Model Parameters and GFLOPs with FSSL methods. We com-
pute the model parameters and GFLOPs using images with the size of 224x224 as input.

Fed-SimSiam Fed-SimCLR FedU FedEMA Orchestra FedMAE
(Pre-train)

FedMAE
(Downstream)

Model Params 12.03M 11.70M 38.47M 38.47M 11.84M 11.62M 39.97M
GFLOPs 3.65 3.65 7.40 7.40 7.31 1.23 7.39

5.2 COMPARISON WITH FSSL METHODS

We first assess the accuracies, model parameters and GFLOPs of different FSSL methods using
fine-tune protocol and transfer learning evaluation. In this experiment, we examine FedMAE’s
performance in IID and Non-IID scenarios since cross-device FL is our key purpose for developing
FedMAE. The pre-training dataset used in FL is Mini-ImageNet, and the downstream tasks’ datasets
are CIFAR10, CIFAR100 and ROAD SIGN. Table 1 shows our FedMAE outperforms its competi-
tors in accuracy results for three public datasets. Since both CIFAR10 and CIFAR100 are resized
to 224x224 size to fit our models, we choose simple but large images of RODA SIGN, which are
real 224x224. FedMAE clearly has a huge advantage of 30% to 50% improvement over the exist-
ing FSSL methods. Table 2 compares the differences between FedMAE and other FSSL methods
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in terms of model parameters and GFLOPs. The pre-training model of FedMAE is not only the
smallest in parameters but also the smallest in GFLOPs, which means faster transmission between
local clients and the server, and fewer computing power requirements for local clients. Although
the downstream model of FedMAE has a large number of parameters due to the cascade design, the
computation resources required for its training and subsequent inference are acceptable among all
models at present, which can be deployed for inference in local clients.

Table 3: Accuracy (%) with the amount of data on the server. The pre-training dataset is Mini-
ImageNet.

CIFAR10 CIFAR100 Mini-INAT
Amount of data on Server 0 1000 5000 10000 0 1000 5000 10000 0 1000 5000 10000
FedMAE (%) 90.92 91.70 92.40 92.96 73.93 74.23 75.16 76.17 46.01 46.33 48.83 49.01

5.3 SCALABILITY WITH THE AMOUNT OF DATA ON THE SERVER

Since what one-block MAE can learn is very limited, we share a small amount of data on the server
to help build a better downstream model. We tested the accuracies of downstream datasets when
sharing 0, 1000, 5000 and 10000 unlabeled data on the server. In this scenario, we first use clients’
data for federated training, after 200 training rounds, we cascade 5 one-block pre-trained MAE to
build a five-block MAE. Afterward, sharing data on the server will be fed into the five-block MAE
to train a better downstream model for downstream tasks. The training epochs here for sharing data
are 100. Results are shown in Table 3. Although the amount of data on the server is very limited,
FedMAE provides a good initialized model that can further build a better downstream model.

Table 4: Comparison on different model depth between un-pretrained model and FedMAE with
pre-trained model cascading. The pre-training dataset is Mini-ImageNet.
Model Depth 1 2 3 4 5 6 7 8 9 10

CIFAR10 Un-pretrained 66.49 71.86 75.97 78.81 80.19 81.73 82.29 82.87 82.83 83.09
Pre-trained 72.21 80.48 85.84 88.51 90.02 91.08 91.30 91.55 91.61 91.74

CIFAR100 Un-pretrained 40.41 49.76 55.49 59.18 60.76 62.20 63.17 63.99 63.89 63.91
Pre-trained 47.03 60.26 66.93 71.43 73.55 73.46 73.34 73.95 73.96 74.00

5.4 ABLATION STUDY

We further conducted additional experiments on the depth of the downstream model. Since the
pre-trained model is an MAE with only one block, and its learning ability to extract features is
very limited, so we want to know whether the pre-trained one-block encoder has a positive effect
on the deeper blocks of a multi-block encoder. Therefore, we cascade different numbers of pre-
trained models to compare with models of the same depth but without pre-training. The results
are shown in Table 4, which indicate that the pre-trained model still has a great influence on the
overall downstream model as the depth increases. Although the increase in model depth would have
improved the learning ability of the model, the result is obvious that the one-block pre-trained model
improves the learning ability of each block of the downstream model with multi-blocks.

6 CONCLUSION

We introduce a novel framework FedMAE, addressing the training of large-scale distributed un-
labeled datasets in federated learning. Our pre-training model only contains a one-block encoder
and a one-block decoder and uses a masking strategy for training data, so it is easy to deploy in
various lightweight clients. Pre-training models in FL can be trained on different clients asyn-
chronously without average aggregation. Pre-trained models are cascaded in the server to build a
multi-block downstream model. Theoretical analysis and experimental results on image reconstruc-
tion and classification show that our FedMAE achieves a considerable boost compared to previous
FSSL methods.
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Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, vol-
ume 162 of Proceedings of Machine Learning Research, pp. 14461–14484. PMLR, 2022. URL
https://proceedings.mlr.press/v162/lubana22a.html.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European conference on computer vision, pp. 69–84. Springer, 2016.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichten-
hofer. Masked feature prediction for self-supervised visual pre-training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14668–14678, 2022.

11

https://www.kaggle.com/datasets/sergeykulakin/russian-road-signs-categories-dataset
https://www.kaggle.com/datasets/sergeykulakin/russian-road-signs-categories-dataset
https://proceedings.mlr.press/v162/lubana22a.html


Under review as a conference paper at ICLR 2023

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European confer-
ence on computer vision, pp. 649–666. Springer, 2016.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Weiming Zhuang, Xin Gan, Yonggang Wen, Shuai Zhang, and Shuai Yi. Collaborative unsuper-
vised visual representation learning from decentralized data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4912–4921, 2021a.

Weiming Zhuang, Yonggang Wen, and Shuai Zhang. Divergence-aware federated self-supervised
learning. In International Conference on Learning Representations, 2021b.

A APPENDIX

A.1 STATISTICAL HETEROGENEITY.

We use 100 clients and analyze three levels of heterogeneity by setting α to 0 (none/IID), 1e-1 (mod-
erate), and 1e-3 (high). Results are shown in Figure 3. The data distribution in federated learning is
dispersed and most current FSSL methods are based on contrastive learning, so SSL approaches tend
to be sensitive to heterogeneity and therefore adopt certain strategies for this challenge. In contrast,
FedMAE is robust and its performance generally does not degrade with increasing heterogeneity. In
fact, the pre-trained model of FedMAE is an image reconstruction method that uses autoencoder,
which is not sensitive to image classification, FedMAE learns how to reconstruct the image itself
rather than the class features of images in the period of pre-training.

A.2 NUMBER OF CLIENTS.

Changing the number of clients also affects the performance of the pre-trained model in FL. We
increased the number of local clients from 100 to 400 with IID data distribution, still selecting 5
clients with 10 epochs in each training round, and the total number of training rounds are 200.
Results are provided in Figure 4. We find that, unlike other methods which significantly degrade
performance as the number of clients increases, FedMAE achieves similar performance or a gentle
decline, which indicates FedMAE can still learn a lot of useful knowledge on relatively dispersed
and small amounts of data.

Table 5: Robustness to local epochs on CIFAR10, CIFAR100 and ROAD SIGN. The pre-training
dataset is ImageNet. We find that FedMAE achieves the best accuracy when local epochs are 10.

Number of Local Epochs
in each training round 1 5 10 15 20

CIFAR10 (%) 90.57 93.25 93.68 92.73 92.71
CIFAR100 (%) 73.41 76.75 77.07 75.74 75.78

A.3 LOCAL EPOCHS

The number of local epochs represents the number of times all data from each client is trained in
each training round. According to Table 5, we find that increasing this federated learning attribute
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Figure 3: Sensitivity of Statistical Heterogeneity on CIFAR10, CIFAR100 and ROAD SIGN. The
pre-training dataset is Mini-ImageNet. FedMAE does not lose performance with increased hetero-
geneity.

can lead to an improvement in fine-tuning accuracy and the best result is achieved by setting the
number of local epochs to 10. However, local training may be limited to a small number of epochs
because of the resource limitations on clients. If we need to take this into account, it might be more
appropriate to set the number of local epochs to 5, as the improvement from increasing the number
of local epochs from 5 to 10 is very small.

A.4 PARTICIPATION RATIO

The participation ratio indicates the number of clients connecting to the server in each training round.
In this experiment, our method follows the aggregation strategy of other FSSL methods to average
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Figure 4: Scalability with the number of clients on CIFAR10, CIFAR100 and ROAD SIGN. The
pre-training dataset is Mini-ImageNet. FedMAE outperforms other FSSL methods and is generally
robust to a number of clients in the federation.

Table 6: Sensitivity to participation ratio on CIFAR10 and CIFAR100. The pre-training dataset is
ImageNet. While the accuracies of clients decrease at smaller participation ratios normally, we find
FedMAE is almost no degradation.

Number of Clients
in each training round 5 10 15 20 25

CIFAR10 (%) 91.77 91.57 91.98 91.56 91.66
CIFAR100 (%) 75.68 75.32 75.77 75.75 75.02

the client models trained in each round, while Table 6 shows that simply increasing this federated
learning attribute does not produce a boost in fine-tuning accuracy as in other FSSL methods which
uses CNN architecture. The reason why this attribute has no effect to the results is that the pre-train
model is very short which only has one block autoencoder, and the learning rate is very small. If we
increase the depth of the pre-trained backbone and the participation ratio, the fine-tuning accuracy
may also be improved.

A.5 NUMBER OF TRAINING ROUNDS

According to Table 7, the fine-tuning accuracy for the downstream tasks increases as the number of
training rounds increases in pre-training. This increase trend is more pronounced in the first 1200
rounds, while eases off in the later rounds. Therefore, for our method FedMAE, we consider a good
Nash equilibrium between training cost and fine-tuning accuracy is 1200 training rounds.
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Table 7: Accuracy with the number of training rounds for pre-training on CIFAR10 and CIFAR100.
The pre-training dataset is ImageNet. The accuracy will improve with the number of training rounds
and finally reach a stable value.

Number of
Training Rounds 200 400 600 800 1000

CIFAR10 (%) 91.44 92.43 92.49 92.17 92.76
CIFAR100 (%) 75.11 75.70 76.07 76.19 76.01
Number of
Training Rounds 1200 1400 1600 1800 2000

CIFAR10 (%) 92.98 92.83 92.99 93.18 93.02
CIFAR100 (%) 76.42 76.26 76.20 76.46 76.48

Table 8: The influence of the pre-trained model depth (i.e. the number of pre-trained Transformer
blocks in downstream model) on fine-tuning accuracy. The pre-training dataset is Mini-ImageNet.

Model Depth Downstream Model Blocks Accuracy (%)
Block 1 Block 2 Block 3 Block 4 Block 5 CIFAR10 CIFAR100

1 Un-pretrained - - - - 66.49 40.41
Pre-trained - - - - 72.21 47.03

2
Un-pretrained Un-pretrained - - - 71.86 49.76
Pre-trained Un-pretrained - - - 77.28 54.90
Pre-trained Pre-trained - - - 80.48 60.26

3

Un-pretrained Un-pretrained Un-pretrained - - 75.97 55.49
Pre-trained Un-pretrained Un-pretrained - - 79.97 61.04
Pre-trained Pre-trained Un-pretrained - - 83.45 65.26
Pre-trained Pre-trained Pre-trained - - 85.84 66.93

4

Un-pretrained Un-pretrained Un-pretrained Un-pretrained - 78.81 59.18
Pre-trained Un-pretrained Un-pretrained Un-pretrained - 82.79 64.08
Pre-trained Pre-trained Un-pretrained Un-pretrained - 85.09 67.38
Pre-trained Pre-trained Pre-trained Un-pretrained - 87.67 70.19
Pre-trained Pre-trained Pre-trained Pre-trained - 88.51 71.43

5

Un-pretrained Un-pretrained Un-pretrained Un-pretrained Un-pretrained 80.19 60.76
Pre-trained Un-pretrained Un-pretrained Un-pretrained Un-pretrained 84.61 66.04
Pre-trained Pre-trained Un-pretrained Un-pretrained Un-pretrained 85.75 68.70
Pre-trained Pre-trained Pre-trained Un-pretrained Un-pretrained 87.29 71.31
Pre-trained Pre-trained Pre-trained Pre-trained Un-pretrained 89.25 73.00
Pre-trained Pre-trained Pre-trained Pre-trained Pre-trained 90.02 73.55

A.6 DEPTH OF PRE-TRAINED BACKBONE

The results of the previous ablation study show that the fine-tuning accuracy is influenced by the
depth of the downstream model, and our method FedMAE still has an effect on the downstream
model as the depth increases. Based on this finding, we continue to test whether changing the
number of pre-trained blocks in the downstream model could also affect the fine-tuning accuracy for
downstream tasks. The model depth in this session is from one to five. The experimental results in
Table 8 demonstrate that every pre-trained Transformer block in the cascaded encoder contributes to
the improvement of fine-tuning accuracy. As the depth of the model increases, the more pre-trained
blocks are cascaded in downstream models, the higher fine-tuning accuracy the downstream model
has.

Table 9: The impact of special designs in FedMAE on the computational speed and the fine-
tuning(FT) accuracy. The pre-training dataset is Mini-ImageNet, and the downstream dataset is
Mini-INat2021.

Participation Mask Pre-trained Downstream Pre-trained Pre-train FT Pre-train Speed
Ratio Ratio Model Depth Model Depth Model Params GFLOPs Acc Time Up
1/100 0.75 5 blocks 5 blocks 39.97M 2.67 53.45% 8h 1x
1/100 0.75 1 block 5 blocks 11.62M 1.23 48.48% 7.6h 1.05x
5/100 - 1 block 5 blocks 11.62M 2.37 48.02% 43.2h 1x
5/100 0.75 1 block 5 blocks 11.62M 1.23 48.32% 38.5h 1.12x
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A.7 SPEEDUP ANALYSIS

The experimental results listed previously show that our method FedMAE not only outperforms
other FSSL methods in terms of fine-tuning accuracy but also in terms of computational speed. We
also conduct additional experiments to analyze which of FedMAE’s designs achieves speedup and
how much. The analysis results are demonstrated in Table 9. On the one hand, the results show
that pre-training one-block MAE instead of the five-block MAE on each client is an effective design
to achieve speedup. Although the fine-tuning accuracy becomes worse, the total pre-train time is
decreased, and the computation resources are significantly reduced. On the other hand, the masking
strategy applied in MAE also leads to a boost in computational speed. The speedup caused by
masking is more noticeable and does not affect the fine-tuning accuracy.

Table 10: Environment Setting.
Config Details
Server GPU Count 8
Server GPU Type RTX A5000 (24GB)
Server CPU Type AMD EPYC 7513 32-core
CUDA 11.3
Framework PyTorch

Table 11: Federated Pre-training Settings. The first sub-table shows the default setting for federated
learning, and the second sub-table shows the default setting for local training on clients.

FL Config Details
communication rounds 200
local epoch 10
total clients 100
participant ratio 0.05

Training Config Details
batch size 256 / Mini, 512 / ImageNet
base learning rate 1.5e-4
learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
optimizer AdamW (Loshchilov & Hutter, 2017)
optimizer momentum β1 = 0.9, β2 = 0.999 (Chen et al., 2020a)
weight decay 0.05
augmentation RandomResizedCrop

A.8 EXPERIMENT DETAILS

Model Architecture The architecture of the model trained on the clients follows the MAE archi-
tecture in the original paper (He et al., 2022). The model consists of an encoder and a decoder, and
uses a linear projection layer in the middle to connect the two parts. However, unlike the original
MAE, the encoder and decoder depths in our client model are the same and minimal, i.e. there is
only one Transformer block for each part (Vaswani et al., 2017). On the other hand, the final pre-
trained model used for various downstream tasks follows the typical ViT architecture (Dosovitskiy
et al., 2020). We cascade multiple pre-trained model for downstream training but without masking
training images.

Environment Configuration All the experiments were conducted in the same experimental envi-
ronment. The specific environment configurations are given in Table 10.

Federated Pre-Training Table 11 shows the default settings of the federated pre-training phase.
For the FL side, we adopt this set of settings that are used generically in many FSSL papers. For
the training side, we do not change the default MAE pre-training setting specified in the original
paper, as we find that this set of settings does a good enough job of training our client model as well.
Besides, we use different batch sizes when the dataset varies.
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Table 12: Fine-tuning Setting.
Config Details
batch size 64
base learning rate 1e-3
training epochs 100
learning rate schedule cosine decay
warmup epochs (Goyal et al., 2017) 5
optimizer AdamW
optimizer momentum β1 = 0.9, β2 = 0.999
weight decay 0.05
layer-wise lr decay 0.75 (Clark et al., 2020)
augmentation RandAug (9, 0.5) (Cubuk et al., 2020)
mixup (Zhang et al., 2017) 0.8
cutmix (Yun et al., 2019) 1.0
drop path (Huang et al., 2016) 0.1
label smoothing (Szegedy et al., 2016) 0.1

Fine-Tuning The default settings of the fine-tuning phase are in Table 12. Similar to the federated
pre-training phase, we also follow the default settings in the original paper to fine-tune our model.
However, since the size of benchmark datasets for the downstream task is not large, we use a small
batch size for the best fine-tuning result.
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