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Abstract

Long context large language models (LLMs)001
pose significant challenges for efficient serv-002
ing due to the large memory footprint and high003
access overhead of KV cache. Retrieval-based004
KV cache reduction methods can mitigate these005
challenges, typically by offloading the com-006
plete KV cache to CPU and retrieving neces-007
sary tokens on demand during inference. How-008
ever, these methods still suffer from unsatisfac-009
tory accuracy degradation and extra retrieval010
overhead. To address these limitations, this pa-011
per proposes A2ATS, a novel retrieval-based012
KV cache reduction method. A2ATS aims to013
obtain an accurate approximation of attention014
scores by applying the vector quantization tech-015
nique to key states, thereby enabling efficient016
and precise retrieval of the top-K tokens. First,017
we propose Windowed Rotary Position Embed-018
ding, which decouples the positional depen-019
dency from query and key states after position020
embedding. Then, we propose query-aware021
vector quantization that optimizes the objective022
of attention score approximation directly. Fi-023
nally, we design the heterogeneous inference024
architecture for KV cache offloading, enabling025
long context serving with larger batch sizes.026
Experimental results demonstrate that A2ATS027
can achieve a lower performance degradation028
with similar or lower overhead compared to ex-029
isting methods, thereby increasing long context030
serving throughput by up to 2.7×.031

1 Introduction032

Large language models (LLMs) with long context033

windows (OpenAI, 2023; Reid et al., 2024; Dubey034

et al., 2024; Jiang et al., 2024; Yang et al., 2024a;035

DeepSeek-AI et al., 2024) are driving advance-036

ments in AI applications. However, these mod-037

els pose significant challenges for efficient serving.038

Their Transformer-based (Vaswani et al., 2017) ar-039

chitecture generates and maintains a Key-Value040

(KV) cache during inference to store intermediate041

results and avoid re-computation. As the context042

length increases, the size of the KV cache grows 043

proportionally, leading to severe overheads. First, 044

the size of KV cache accessed when generating 045

each token increases, resulting in a GPU memory 046

bandwidth bottleneck. Moreover, the large KV 047

cache size of each request limits the maximum 048

feasible batch size, resulting in suboptimal GPU 049

utilization. 050

Various methods were proposed to address 051

these challenges from different perspectives. 052

Quantization-based methods (Liu et al., 2024b; 053

Hooper et al., 2024) compress KV cache by using 054

lower bit-width representations for KV cache ele- 055

ments. Eviction-based methods (Xiao et al., 2024; 056

Zhang et al., 2023; Li et al., 2024; Yang et al., 057

2024b) reduce the KV cache size by directly evict- 058

ing unimportant tokens from memory. Retrieval- 059

based methods (Tang et al., 2024; Singhania et al., 060

2024; Zhang et al., 2024; Liu et al., 2024a; Chen 061

et al., 2024) offload the complete KV cache to CPU 062

memory and retrieve necessary tokens on demand 063

during inference. However, these methods still 064

face challenges of limited compression ratio, un- 065

satisfactory accuracy degradation, or extra retrieval 066

overhead. 067

To address the above limitations, this paper pro- 068

poses A2ATS, a novel retrieval-based KV cache re- 069

duction method. A2ATS aims to obtain an Accurate 070

Approximation of ATtention Scores by applying 071

vector quantization technique to key states, thereby 072

enabling efficient and precise retrieval of the top-K 073

tokens. In order to achieve this goal, we face two 074

main challenges. First, the position-dependent na- 075

ture of key states after applying position embedding 076

hinders the direct application of shared codebooks 077

across varying inputs. Second, directly utilizing the 078

conventional vector quantization fails to guarantee 079

an accurate approximation of attention scores. To 080

overcome these challenges, the main contributions 081

in this paper are as follows: 082

• We observe high inter-input similarities be- 083
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tween codebooks of key states before posi-084

tion embedding, and the objective misalign-085

ment between vector quantization and atten-086

tion score approximation by experimental and087

theoretical analysis;088

• We propose Windowed Rotary Position Em-089

bedding to decouple the positional depen-090

dency from query and key states after position091

embedding,092

• We propose and query-aware vector quantiza-093

tion that directly optimizes the objective of094

attention score approximation;095

• We design the heterogeneous inference sys-096

tem for KV cache offloading, enabling long097

context serving with larger batch sizes.098

Experimental results demonstrate that A2ATS can099

achieve a low accuracy degradation of 2.2 on100

Llama-3.1-8B and 0.4 on Mistral-7B while access-101

ing only 6% of the entire KV cache, thereby in-102

creasing long context serving throughput by up to103

2.7×. Our source code is publicly available 1.104

2 Preliminaries105

2.1 Self-Attention Modules and Rotary106

Position Embedding107

Self-attention modules (Vaswani et al., 2017) and108

Rotary Position Embedding (RoPE) (Su et al.,109

2021) have become the de facto standard com-110

ponents of state-of-the-art (SOTA) LLMs (Dubey111

et al., 2024; Yang et al., 2024a; Jiang et al., 2024;112

DeepSeek-AI et al., 2024).113

In the self-attention module, during decoding114

phase, the inference process begins by linearly115

projecting the input states of the i-th token into116

query (qi), key (ki), and value (vi) states, where117

qi, ki, vi ∈ R1×d, and d denotes the number of118

channels or hidden dimensions per head. To enable119

the model to effectively capture the positional re-120

lationships between tokens, position embeddings121

are then applied to the query and key states. These122

hidden states before and after this transformation123

are abbreviated as pre-PE and post-PE states, re-124

spectively.125

RoPE is a commonly used position embedding126

in SOTA LLMs. Specifically, for the i-th token, a127

position-dependent rotation matrix Ri ∈ Rd×d is128

applied to the query qi and key ki, to obtain their129

post-PE counterparts, denoted by q̃i and k̃i:130

1https://anonymous.4open.science/r/
4987d19d-f5cd-4f14-910d-c7141ce37f13/

q̃i = qiRi, k̃i = kiRi (1) 131

Then the matrices of KV cache of the context can 132

be denoted by K̃ = [k̃1; k̃2; . . . ; k̃n] ∈ Rn×d and 133

V = [v1; v2; . . . ; vn] ∈ Rn×d respectively, where 134

n denotes the context length. Next, these post-PE 135

states are used to compute the output state oi as 136

shown in formula (2): 137

oi = Softmax

(
q̃iK̃

⊤
√
d

)
V = Softmax

(
ui√
d

)
V

(2) 138

where ui = q̃iK̃
⊤ ∈ R1×n denotes the attention 139

scores before softmax. 140

Due to the inherent property of rotation matrices 141

that RiR
⊤
j = Ri−j (Su et al., 2021), the attention 142

score ui,j between the i-th query and j-th key can 143

be expressed as: 144

ui,j = q̃ik̃
⊤
j = qiRi(kjRj)

⊤ = qiRiR
⊤
j k

⊤
j

= qiRi−jk
⊤
j

(3) 145

This equation illustrates how RoPE encodes the 146

relative position (i− j) directly into the attention 147

scores, allowing the model to effectively capture 148

the positional relationships between tokens. 149

2.2 Vector Quantization for Efficient 150

Attention Score Approximation 151

Vector quantization (Buzo et al., 1980) is a data 152

compression technique that maps input vectors to 153

a finite set of codewords from a learned codebook. 154

Formally, given an input space X ⊆ R1×d with 155

data distribution D, vector quantization aims to con- 156

struct a codebook C = {c1, c2, . . . , cL} ⊂ R1×d 157

with a size of L codewords to minimize the follow- 158

ing objective: 159

J(C) = Ex∼D[∥x− x̂∥2] (4) 160

where x ∈ R1×d denotes the input vector, x̂ = 161

cf(x;C) denotes the quantized vector, and f(x;C) 162

denotes the quantization function that maps x to its 163

nearest codeword: 164

f(x;C) = argmin
j

∥x− cj∥2 (5) 165

Finding the optimal codebook C is computation- 166

ally expensive. Therefore, approximate algorithms 167

such as LBG and k-means++ (Linde et al., 1980; 168

Arthur and Vassilvitskii, 2007) are commonly used 169

to find a suboptimal but effective codebook. 170
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Figure 1: Inter-sample cosine similarities of pre-PE and
post-PE codebooks.
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Figure 2: Visualization of second-moment matrices H
of post-PE query states. Each pixel represents an ele-
ment in H . Warmer colors correspond to higher values,
while cooler colors correspond to lower values.

After obtaining the codebook, vector quantiza-171

tion compresses an input x by replacing the original172

vector with its index s = f(x;C). Since the stor-173

age requirement for the index is substantially lower174

than that of the original vector, vector quantization175

achieves significant data compression ratio.176

Multiple studies (Lingle, 2024; Zhang et al.,177

2024; Liu et al., 2024a) have investigated applying178

vector quantization to post-PE key states of LLMs179

to efficiently approximate attention scores. Let s ∈180

{1, 2, . . . , L}1×n denotes the codeword index vec-181

tor of all post-PE key states, where the length of this182

vector is n, and each element si ∈ {1, 2, . . . , L}183

denotes the codeword index of the i-th key state.184

Then, the k̃i can be quantized as k̂i = csi , and the185

attention score ui,j can be approximated as:186

ûi,j = q̃ik̂
⊤
j = q̃ic

⊤
sj (6)187

This equation illustrates the approximation of atten-188

tion scores without the memory-intensive access to189

the k̃j .190

3 Motivation191

3.1 Inter-Input Similarity of Codebooks192

PQCache (Zhang et al., 2024) and ClusterKV (Liu193

et al., 2024a) propose applying vector quantization194
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Figure 3: A comparison of MSE of attention score ap-
proximation between conventional vector quantization
and query-aware vector quantization.

to post-PE key states, with individual codebooks 195

constructed for each input during the prefilling 196

phase. However, constructing codebooks during 197

inference requires iterative access to the entire KV 198

cache, incurring high memory access overhead. To 199

address this limitation, we investigate the feasibil- 200

ity of employing shared codebooks for all inputs 201

based on the inter-input similarity of codebooks. 202

To quantify the similarity between codebooks 203

C1 and C2, we define the cosine similarity between 204

codebooks as metric, which can be formulated as: 205

sim(C1, C2) =
1

2L

L∑
i=1

max
j∈{1,2,...,L}

cos(c1i, c2j)+

1

2L

L∑
i=1

max
j∈{1,2,...,L}

cos(c2i, c1j)

(7) 206

where c1i, c1j ∈ C1, c2i, c2j ∈ C2. This metric 207

computes the average maximum cosine similar- 208

ity from each codeword in one codebook to any 209

codeword in the other codebook. A cosine simi- 210

larity score closer to 1 indicates higher similarity 211

between codebooks, while a score closer to 0 or 212

negative values indicates lower similarity. 213

We utilize the Llama-3.1-8B-Instruct 214

model (Dubey et al., 2024), and two ran- 215

dom samples from the FineWeb dataset (Penedo 216

et al., 2024) with a context length of approximately 217

32k tokens each for experiments. We collect 218

pre-PE and post-PE (RoPE is used in here) key 219

states from all attention heads on both samples, 220

then employ k-means++ algorithm (Arthur and 221

Vassilvitskii, 2007) to generate codebooks with a 222

size of 4096 codewords for each set of key states, 223

and calculate the inter-sample cosine similarities 224

of pre-PE and post-PE codebooks using Equation 225

(7). The similarity generated by pre-PE and 226
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post-PE codebooks are shown in Figure 1. From227

the experimental results, we derive the following228

key observations:229

Observation 1: High inter-input similarities of230

pre-PE codebooks suggest the potential for us-231

ing shared codebooks to effectively approximate232

key states across various inputs. The cosine233

similarities for pre-PE codebooks remain remark-234

ably high, exceeding 0.9 for the majority of layers,235

indicate a very strong similarity across codebooks236

of various inputs. This finding indicates that the se-237

mantic information in key states might be broadly238

similar.239

Observation 2: The position-dependent nature240

of post-PE key states hinders the direct applica-241

tion of a shared codebook. The post-PE code-242

book similarities are consistently lower, fluctuating243

around 0.85, with some layers below 0.8, indicat-244

ing weaker similarity across inputs. The reason is245

that RoPE causes semantically similar key states246

at different positions to have different representa-247

tions. The position-dependent nature of post-PE248

key states makes it difficult to construct a single249

codebook that can effectively quantize representa-250

tions with all semantic information at all possible251

positions. This representation divergence becomes252

a key challenge for directly applying a shared code-253

book on post-PE key states, necessitating the devel-254

opment of a novel vector-quantization-compatible255

position embedding method.256

3.2 Objective Misalignment of Vector257

Quantization258

The optimization objective of vector quantization259

is to minimize the mean squared error (MSE) of260

the approximate key states, while attention score261

approximation focuses on minimizing the MSE of262

attention scores. This discrepancy between their263

optimization objectives raises a fundamental ques-264

tion:265

Does the optimal codebook for vector quantiza-266

tion necessarily yield the most accurate approxi-267

mation of attention scores?268

Formally, let C denote the codebook constructed269

by vector quantization, J(C) denote the MSE of270

vector quantization with C, and J ′(C) denote the271

MSE of attention scores approximation with C. We272

need to investigate whether the following equation273

holds:274

argmin
C

J(C) ≡ argmin
C

J ′(C) (8)275

To address this question, we analyze the relation- 276

ship between J and J ′. 277

For vector quantization, the objective J can be 278

reformulated as: 279

J(C) = Ek̃∼Dkey [∥k̃ − k̂∥2]
= Ek̃∼Dkey [(k̃ − k̂)(k̃ − k̂)⊤]

(9) 280

where Dkey denotes the distribution of post-PE key 281

states, and k̂ denotes quantized key. 282

For attention score approximation, the objective 283

J ′ is formualted as: 284

J ′(C) = Ek̃∼Dkey, q̃∼Dquery [(q̃k̃
⊤ − q̃k̂⊤)2]

= Ek̃∼Dkey, q̃∼Dquery [(q̃(k̃ − k̂)⊤)2]

= Ek̃∼Dkey, q̃∼Dquery [(k̃ − k̂)q̃⊤q̃(k̃ − k̂)⊤]

= Ek̃∼Dkey [(k̃ − k̂)H(k̃ − k̂)⊤]
(10) 285

where Dquery denotes the distribution of post-PE 286

query states, H = Eq̃∼Dquery [q̃⊤q̃] ∈ Rd×d de- 287

notes the second-moment matrix of query states. 288

The two objectives only align if the query- 289

dependent H is proportional to the identity ma- 290

trix. To examine this consistency, we visualize H 291

on a set of input samples, as depicted in Figure 2. 292

The visualization shows that H is not proportional 293

to the identity matrix, displaying a non-uniform 294

and non-diagonal structure. This result reveals 295

a fundamental misalignment between the vector 296

quantization objective J and the attention score 297

approximation objective J ′, suggesting potential 298

inaccuracy in attention score approximation. 299

To validate the impact of this objective mismatch, 300

we compare conventional vector quantization that 301

minimizes objective J , with its query-aware vari- 302

ant that directly minimizes objective J ′ (implemen- 303

tation details in Section 4.2) in Figure 3. From 304

experimental results, the query-aware method con- 305

sistently achieves lower squared error in attention 306

score approximation. Thus, we derive the follow- 307

ing observation: 308

Observservation 3: Optimizing vector quan- 309

tization alone fails to guarantee accurate ap- 310

prroximation of attention scores due to objective 311

misalignment, necessitating query-aware vector 312

quantization for bridging this objective gap. 313

4 Method 314

In A2ATS, there are two stages. During the offline 315

pre-processing stage (1st stage), A2ATS constructs 316
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a shared codebook on a representative dataset for317

each attention head of each layer.318

During the inference stage (2nd stage), A2ATS319

applies quantization functions to key states to map320

them to the nearest codewords. At each autore-321

gressive decoding step, A2ATS first utilizes code-322

books and codeword indices to approximate atten-323

tion scores, then retrieves the top-K tokens with the324

highest attention scores for computation, thereby325

mitigating the memory overhead of accessing the326

entire KV cache.327

4.1 Windowed Rotary Position Embedding328

As discussed in Section 3.1, the position-dependent329

nature of post-PE key states hinders the direct appli-330

cation of a shared codebook in the vector quantiza-331

tion process. A seemingly straightforward solution332

would be to quantize pre-PE key states, and then333

incorporate RoPE when approximating attention334

scores. However, this approach is computation-335

ally expensive, as it necessitates calculating and336

applying the rotary matrices for each token at each337

inference.338

To overcome this inefficiency, while eliminating339

the inherent position-dependent nature of post-PE340

key states, we propose Windowed Rotary Position341

Embedding (WRoPE). This approach builds on the342

findings by Su (2023b,a) that transformer-based343

models are nonsensitive to the positional informa-344

tion of non-local tokens. The core idea of WRoPE345

is to use standard RoPE for local tokens (i.e. those346

in the window) and use approximate positional in-347

formation for non-local tokens (i.e. those not in348

the window). Specifically, WRoPE computes the349

attention scores as follows:350

ui,j =

{
qiRi−jk

⊤
j , i− j < w

qiRbk
⊤
j , i− j ≥ w

(11)351

where w is the window size, acting as a threshold352

for local vs. non-local tokens, and b is a constant353

value representing a fixed relative position approxi-354

mation for non-local tokens.355

For local tokens (i.e., i− j < w), WRoPE func-356

tions identically to standard RoPE, as defined in357

Equation 3. For non-local tokens outside the win-358

dow (i.e., i − j ≥ w), the position-dependent ro-359

tation matrix Ri−j is replaced by a fixed rotation360

matrix Rb, approximating the relative positional361

information (i− j) with a constant offset b. Then,362

we can calculate the post-PE query and key states363

as:364

q̃i = qiRb, k̃i = ki (12)365

Since post-PE key k̃i states are identical to their 366

pre-PE counterparts ki, WRoPE decouples the po- 367

sitional dependency from post-PE representations, 368

therefore optimizes subsequent vector quantization. 369

4.2 Query-Aware Vector Quantization 370

As discussed in Section 3.2, conventional vector 371

quantization fails to achieve accurate approxima- 372

tion of attention scores, due to the objective mis- 373

alignment between vector quantization and atten- 374

tion score approximation. 375

To address this limitation, we propose query- 376

aware vector quantization, a custom vector 377

quantization method that directly optimizes 378

the objective of attention score approximation. 379

Specifically, we replace the squared Euclidean dis- 380

tance ∥k̃− k̂∥2 of conventional vector quantization 381

with a query-aware quadratic form (k̃ − k̂)H(k̃ − 382

k̂)⊤ derived from formula (10), where H repre- 383

sents the second-moment matrix of query states. 384

Formally, the query-aware vector quantization 385

minimizes the following objective: 386

J ′(C) = Ek̃∼Dkey

[
(k̃ − k̂)H(k̃ − k̂)⊤

]
(13) 387

where k̂ = cf ′(k̃;C) denotes the quantized k̃, and 388

the corresponding query-aware quantization vector 389

quantization is formulated as: 390

f ′(k̃;C) = argmin
j

(k̃ − cj)H(k̃ − cj)
⊤ (14) 391

For the codebook construction process, we re- 392

formulate the objective function to utilize con- 393

ventional efficient vector quantization algorithms 394

like k-means++ (Arthur and Vassilvitskii, 2007). 395

Specifically, we apply Cholesky decomposition 396

to the positive definite matrix H = LLT , where 397

L ∈ Rd×d denotes the Cholesky factor. Let 398

z = k̃L, Cz = CL, ẑ = k̂L (15) 399

where z ∈ R1×d denotes the transformed key state. 400

Then, we can re-derive the objective of attention 401

score approximation J ′ as: 402

J ′(C) = Ek̃∼Dkey

[
(k̃ − k̂)H(k̃ − k̂)⊤

]
= Ek̃∼Dkey

[
(k̃ − k̂)LL⊤(k̃ − k̂)⊤

]
= Ek̃∼Dkey

[
(k̃L− k̂L)(k̃L− k̂L)⊤

]
= Ez∼Dz

[
(z − ẑ)(z − ẑ)⊤

]
(16) 403
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And the quantization function f ′ can be re-derived404

as:405

f ′(k̃;C) = argmin
j

(k̃ − cj)H(k̃ − cj)
⊤

= argmin
j

(k̃L− cjL)(k̃L− cjL)
⊤

= argmin
j

(z − czj )(z − czj )
⊤

= f(z;Cz)
(17)406

where f(z;Cz) denotes the quantization function407

of conventional vector quantization. Then, we can408

derive that409

ẑ = k̂L = cf ′(k̃;C)L = czf(z;Cz) (18)410

Equations 16, 18 reveal that the objective of at-411

tention score approximation is equivilant to that412

of conventional vector quantization on trans-413

formed z. This alignment enables the application414

of conventional efficient vector quantization algo-415

rithms in codebook construction process.416

During the offline pre-processing stage, we col-417

lect z on a representative dataset and construct its418

codebook Cz using k-means++ (Arthur and Vassil-419

vitskii, 2007). Then, The original shared codebook420

C for k̃ is calculated as:421

C = CzL−1 (19)422

During inference, the codeword index of k̃ is com-423

puted through query-aware quantization function:424

f ′(k̃;C) = argmin
j

(k̃L−cjL)(k̃L−cjL)
⊤ (20)425

Let s ∈ {1, 2, . . . , L}1×n denotes the codeword426

index vector of all key states after applying query-427

aware vector quantization, where sj = f ′(k̃j ;C).428

Then, the attention score is approximated as:429

ûi,j = q̃ik̂j = q̃icsj (21)430

4.3 Heterogeneous Inference Design431

Although approximating attention scores via vector432

quantization and then selectively retrieving top-K433

tokens for computation reduces memory access434

overhead, the issue of KV Cache occupying sub-435

stantial GPU memory remains unresolved. To re-436

duce the memory footprint of KV Cache and enable437

larger batch sizes for improved GPU utilization, we438

design a heterogeneous inference system.439

We partition the decoding process of our pro-440

posed A2ATS into three components:441

(1) GPU-based model execution: All model 442

weights reside on the GPU memory. Computa- 443

tions involving model weights are executed on the 444

GPU during inference. 445

(2) GPU-based approximation of attention 446

scores: The codebook is stored on the GPU. During 447

inference, the GPU first executes the quantization 448

function to assign codewords to key states, then 449

computes attention weight approximations using 450

the codebooks and indices, and lastly gathers the 451

indices of top-K tokens. 452

(3) CPU-based selective attention: The full KV 453

Cache is maintained on the CPU memory. During 454

decoding, the top-K token indices and the current 455

query state are transferred to the CPU, where selec- 456

tive attention computation is performed to derive 457

the attention output. This output is then transferred 458

back to the GPU for subsequent computations. 459

This design aims to minimize data transfer be- 460

tween CPU and GPU, thereby reducing latency. 461

Furthermore, to fully leverage the CPU’s thread- 462

level parallelism and SIMD capabilities, we imple- 463

ment a custom selective attention kernel optimized 464

for CPU execution. 465

5 Experiments 466

5.1 Experimental Setup 467

Tasks. We utilize RULER (Hsieh et al., 2024) as 468

our benchmark for downstream tasks evaluation. 469

This synthetic benchmark contains thirteen sub- 470

tasks organized into four categories: information 471

retrieval, multi-hop tracing, information aggrega- 472

tion, and question answering. It evaluates long- 473

context comprehension and reasoning capabilities 474

of LLMs, while effectively revealing the accuracy 475

drop caused by KV cache reduction methods. 476

Models. We conduct our main experiments on 477

Llama-3.1-8B-Instruct (Dubey et al., 2024) and 478

MegaBeam-Mistral-7B-512k (Wu et al., 2024). 479

These models feature long-context processing ca- 480

pabilities with context windows of up to 128K and 481

512K tokens, respectively. As for the ablation study 482

and end-to-end throughput evaluation, we apply the 483

Llama-3.1-8B-Instruct model. 484

Methods. For main experiments, we compare the 485

proposed A2ATS with the following four KV cache 486

reduction methods, along with the full attention 487

baseline: H2O (Zhang et al., 2023), SnapKV (Li 488

et al., 2024), Quest (Tang et al., 2024), Mag- 489

icPIG (Chen et al., 2024). For a fair comparison, 490

the sparsity ratios of all KV cache reduction meth- 491

6



ods are controlled around 0.06. Detailed discus-492

sions are presented in Appendix A.493

For ablation studies, we evaluate the following494

configurations on Llama-3.1-8B-Instruct:495

• Baseline: It utilizes standard RoPE and con-496

ventional vector quantization.497

• WRoPE: It utilizes WRoPE and conventional498

vector quantization.499

• QAVQ: It utilizes standard RoPE and query-500

aware vector quantization.501

• A2ATS: The proposed method with WRoPE502

and query-aware vector quantization.503

Implementation Details. The hyper-parameters504

w and b of WRoPE are set to 64 and 2048, re-505

spectively. The codebooks of query-aware vector506

quantization, with a size of 4096 each, are con-507

structed from a set of sample inputs consisting of508

approximately 64K tokens of text randomly sam-509

pled from FineWeb (Penedo et al., 2024) and 16K510

tokens of randomly generated uuid strings. The511

end-to-end speedup experiments are conducted on512

a server equipped with an NVIDIA H800 GPU513

with 80GB memory, and an Intel Xeon Platinum514

8469C CPU.515

5.2 Main Results on Downstream Tasks516

Table 1 compares the accuracies of different meth-517

ods on RULER, along with attention sparsity ratios518

and auxiliary memory overhead. Experimental re-519

sults draw the following conclusions:520

A2ATS minimizes accuracy degradation under521

comparable sparsity ratios. For Llama models,522

A2ATS achieves an average accuracy of 86.6, out-523

performing H2O (27.0), SnapKV (72.7), Quest524

(80.7), and MagicPIG (85.7). For Mistral mod-525

els, A2ATS achieves an average accuracy of 86.3,526

surpassing H2O (22.3), SnapKV (67.6), Quest527

(78.4), and MagicPIG (84.6). Notably, A2ATS528

achieves these accuracies with comparable sparsity529

ratios (0.060 for Llama, 0.062 for Mistral) to H2O,530

SnapKV and Quest, lower than those of MagicPIG531

(0.068 for Llama, 0.064 for Mistral). These results532

demonstrate the superior accuracy preservation of533

A2ATS.534

A2ATS causes comparable or lower auxiliary535

memory overhead compared to existing meth-536

ods. A2ATS causes auxiliary memory usage537

(0.008) identical to eviction-based methods, i.e.,538

H2O and SnapKV, while being significantly more539

memory efficient than retrieval-based approaches,540

i.e., Quest (0.031) and MagicPIG (2.344). This541

efficiency comes from the inherent nature of vector542
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Figure 4: End-to-end inference throughput of Llama-
3.1-8B-Instruct across varying context lengths and batch
sizes.

quantization, requiring only one codeword index 543

for each token in each attention head, eliminat- 544

ing the need for storing either per-page metadata 545

(Quest) or large LSH tables (MagicPIG). 546

5.3 Ablation Study 547

Table 2 validates the effectiveness of WRoPE 548

and query-aware vector quantization on improv- 549

ing model accuracy. Experimental results draw the 550

following conclusions: (1) WRoPE is fundamen- 551

tal to attention score approximation using shared 552

codebooks. (2) Query-aware vector quantization 553

provides a further improvement in model accuracy 554

by aligning the objectives of vector quantization 555

and attention score approximation. Detailed discus- 556

sions are presented in Appendix B. 557

5.4 End-to-End Inference Speedup 558

Figure 4 compares the inference throughput of the 559

proposed A2ATS against full attention on Llama- 560

3.1-8B-Instruct. At a context length of 16K, 561

A2ATS initially exhibits marginally lower through- 562

put than full attention for small batch sizes (≤ 5), 563

primarily due to CPU-GPU data transfer overhead. 564

As batch sizes increase, the throughput of A2ATS 565

grows linearly to exceed 100 tokens/s, while full at- 566

tention plateaus below 80 tokens/s due to memory 567

bandwidth bottleneck and ends up out of mem- 568

ory at a batch size of 22. A2ATS achieves a peak 569

throughput of over 160 tokens/s, a 2.1× speedup 570

over full attention, with a maximum batch size of 571

over 64. This trend becomes more pronounced at 572

64K context lengths, where full attention struggles 573

with batches over 5, while A2ATS serving a batch 574

size of up to 16 with a throughput of up to 45 to- 575

kens/s, delivering a 2.7× performance advantage. 576

These results highlight A2ATS’s potential in miti- 577

gating the memory bottleneck in long context LLM 578

serving. 579
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Models Sparsity↓ Aux Mem↓ Accuracy↑

16K 32K 64K 96K Average

Llama-3.1-8B-Instruct 1.000 0.000 94.4 91.9 85.9 83.1 88.8
H2O 0.060 0.008 27.6 30.6 24.9 25.0 27.0
SnapKV 0.060 0.008 72.7 75.1 72.2 70.7 72.7
Quest 0.060 0.031 84.3 84.0 80.0 74.4 80.7
MagicPIG 0.068 2.344 92.3 87.6 83.9 79.1 85.7
A2ATS 0.060 0.008 92.2 90.4 84.3 79.6 86.6

MegaBeam-Mistral-7B-512K 1.000 0.000 91.8 88.2 83.3 83.4 86.7
H2O 0.060 0.008 22.5 23.4 20.7 22.6 22.3
SnapKV 0.060 0.008 69.3 68.5 69.5 65.2 67.6
Quest 0.060 0.031 81.5 80.8 76.7 74.4 78.4
MagicPIG 0.064 2.344 88.7 85.2 82.6 81.8 84.6
A2ATS 0.062 0.008 91.6 88.1 83.4 82.2 86.3

Table 1: Comparison of sparsity ratio, auxiliary memory usage and accuracy on RULER benchmark. ‘Aux Mem’
refers to ‘Auxialiary Memory Usage’, which denotes the extra memory usage caused by KV cache reduction
methods compared to the original key cache. ‘16K’, ‘32K’, ‘64K’ and ‘96K’ denote the input context length.

Config 16K↑ 32K↑ 64K↑ 96K↑ Average↑

Baseline 86.4 86.3 81.5 71.3 81.4
WRoPE 92.3 90.0 82.8 78.4 85.9
QAVQ 91.7 86.9 76.3 69.4 81.1
A2ATS 92.2 90.4 84.3 79.6 86.6

Table 2: Ablation study on the importance of WRoPE
and query-aware vector quantization for accuracy.

6 Related Work580

Quantization-based KV cache reduction. This581

method aims to compress KV cache by using582

lower bit-width representations for KV cache el-583

ements (Liu et al., 2024b; Hooper et al., 2024).584

However, it typically faces challenges of limited585

compression ratio and extra computational over-586

head caused by the dequantization process.587

Eviction-based KV cache reduction. This method588

aims to reduce the KV cache size by directly evict-589

ing unimportant tokens from memory (Xiao et al.,590

2024; Zhang et al., 2023; Li et al., 2024; Yang et al.,591

2024b). These methods typically record statistics592

of attention weights of each token. When the KV593

cache reaches its capacity limit, they utilize heuris-594

tic rules and historical statistics to predict which595

tokens are more likely to get high attention weights596

in future decoding, then retain these tokens while597

evicting the rest. Although these methods generally598

have low additional overhead, they often lead to599

noticeable performance degradation.600

Retrieval-based KV cache reduction. This601

method keeps the entire KV cache in memory while602

selectively retrieving tokens crucial for the current603

inference. Quest (Tang et al., 2024) chunks the con- 604

tinuous KV cache into pages and pre-calculates nec- 605

essary metadata for each page during prefilling. For 606

decoding, it selects the top-K critical cache pages 607

to participate in selective attention computation. 608

PQCache (Zhang et al., 2024) and ClusterKV (Liu 609

et al., 2024a) perform vector quantization on the 610

key states with individual codebooks constructed 611

for each input during prefilling. For decoding, 612

the system uses codewords of the codebooks to 613

approximate attention scores, then retrieves the 614

top-K tokens for computation. MagicPIG (Chen 615

et al., 2024) employs Locality-Sensitive Hashing 616

on query and key states for token retrieval. Al- 617

though these methods generally achieve lower per- 618

formance degradation compared to eviction-based 619

methods, they still suffer from unsatisfactory per- 620

formance and lead to extra overhead. 621

7 Conclusion 622

In this paper, we propose A2ATS, a novel retrieval- 623

based KV cache reduction method. First, we pro- 624

pose Windowed Rotary Position Embedding to de- 625

couple the positional dependency from query and 626

key states after position embedding. Then, we pro- 627

pose query-aware vector quantization to achieve 628

an accurate attention score approximation. Next, 629

we introduce the heterogeneous inference design 630

for KV cache offloading which increases available 631

batch size. Experimental results demonstrate that 632

A2ATS achieves lower performance degradation 633

with comparable or lower overhead compared to 634

existing methods, thereby boosting long context 635

serving throughput by up to 2.7×. 636
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8 Limitations637

The limitations of this work can be summarized in638

two main aspects.639

First, while A2ATS demonstrates lower accuracy640

degradation compared to existing methods while641

accessing a comparable proportion of KV cache, it642

still exhibits non-negligible performance degrada-643

tion. This suggests opportunities for future work644

to investigate adaptive attention sparsity allocation645

strategies that dynamically optimize the sparsity646

ratios across layers and attention heads, based on647

their contextual importance.648

Second, while A2ATS increases long context649

serving throughput by up to 2.7×, our current650

implementation is limited to single-GPU deploy-651

ment. Future research could further explore (1) dis-652

tributed multi-GPU system designs for scaled de-653

ployment, (2) integration with disaggregated LLM654

serving architectures like MoonCake (Qin et al.,655

2024).656
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A Method Configurations892

For the main experiments, we compare the follow-893

ing five KV cache reduction methods, along with894

the full attention baseline:895

• H2O (Zhang et al., 2023): An eviction-based896

method that preserves heavy hitter tokens and897

recent tokens;898

• SnapKV (Li et al., 2024): An eviction-based899

method that preserves important tokens based900

on statistics within an observation window;901

• Quest (Tang et al., 2024): A retrieval-based902

method that selects tokens based on metadata903

of KV cache pages;904

• MagicPIG (Chen et al., 2024): A retrieval-905

based method that utilizes LSH for token sam-906

pling;907

• A2ATS: The proposed method.908

For a fair comparison, the sparsity ratios of all909

KV cache reduction methods are controlled around910

0.06, which means approximately 6% of KV cache911

is accessed at each inference. It is important to note912

that the sparsity ratio discussed in this paper differs913

in definition from the cost2 in MagicPIG (Chen914

et al., 2024). Specifically, cost2 measures the ra-915

tio of computation overhead (FLOPs) compared916

to full attention, whereas our sparsity ratio mea-917

sures the ratio of memory access overhead (MOPs)918

relative to full attention. Since attention modules919

are typically considered memory-bound (Kim et al.,920

2023), we argue that the latter metric provides more921

meaningful insights on potential overhead reduc-922

tion. Additionally, the initial 4 tokens and the most923

recent 64 tokens are statically preserved to align924

with MagicPIG (Xiao et al., 2024). The detailed925

configurations for each methods are shown in Ta-926

ble 3.927

Method Configurations

H2O hh_size = 0.06 × input_length
SnapKV prompt_capacity = 0.06 × input_length

Quest page_size = 32, ratio = 0.06
MagicPIG K = 10, L = 150

A2ATS topk = 0.03

Table 3: Configurations of KV cache reduction methods.

B Detailed Discussions of Ablation Study928

Table 2 validates the effectiveness of WRoPE929

and query-aware vector quantization on improv-930

ing model accuracy. Experimental results draw the931

following conclusions:932

WRoPE is fundamental to attention score ap- 933

proximation using shared codebooks. WRoPE 934

achieves an average improvement of +4.5 over the 935

baseline, with consistent gains across all context 936

lengths. This result confirms WRoPE’s critical 937

role in preventing representation divergence of key 938

states caused by positional embedding. 939

Query-aware vector quantization provides a fur- 940

ther improvement in model accuracy by aligning 941

the objectives of vector quantization and atten- 942

tion score approximation. Our full method, incor- 943

porating query-aware vector quantization, demon- 944

strates further improvements, particularly at longer 945

context lengths (+1.5 at 64K, +1.2 at 96K, respec- 946

tively). However, query-aware vector quantiza- 947

tion alone underperforms the baseline, exhibiting 948

a more significant drop at longer context lengths. 949

This performance degradation suggests that repre- 950

sentation divergence is not solely limited to key 951

states but also affects query states, hindering the 952

effectiveness of query-aware vector quantization. 953

With WRoPE mitigating positional dependencies, 954

query-aware vector quantization further optimizes 955

the attention score approximation, achieving state- 956

of-the-art performance. 957
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