Read Anywhere Pointed:
Layout-aware GUI Screen Reading with Tree-of-Lens Grounding

Anonymous ACL submission

Abstract

Graphical User Interfaces (GUISs) are central to our
interaction with digital devices. Recently, grow-
ing efforts have been made to build models for
various GUI understanding tasks. However, these
efforts largely overlook an important GUI-referring
task: screen reading based on user-indicated points,
which we name the Screen Point-and-Read (SPR)
task. This task is predominantly handled by rigid
accessible screen reading tools, in great need of
new models driven by advancements in Multimodal
Large Language Models (MLLMs). In this paper,
we propose a Tree-of-Lens (ToL) agent, utilizing
a novel ToL grounding mechanism, to address the
SPR task. Based on the input point coordinate and
the corresponding GUI screenshot, our ToL agent
constructs a Hierarchical Layout Tree. Based on
the tree, our ToL agent not only comprehends the
content of the indicated area but also articulates the
layout and spatial relationships between elements.
Such layout information is crucial for accurately
interpreting information on the screen, distinguish-
ing our ToL agent from other screen reading tools.
We also thoroughly evaluate the ToL. agent against
other baselines on a newly proposed SPR bench-
mark, which includes GUIs from mobile, web, and
operating systems. Last but not least, we test the
ToL agent on mobile GUI navigation tasks, demon-
strating its utility in identifying incorrect actions
along the path of agent execution trajectories. Code
and data will be released.

1 Introduction

Graphical User Interfaces (GUIs), dominate our
digital interactions with visually rich screenshots
featuring colors, icons, texts, and spatial layouts.
Recognizing that screenshots are more accessi-
ble and intuitive for depicting visual cues, there

A
Free Shipping Until My B.ag (@iems) _ $1.98
= Tumbler, 6 pack
-
J 1 $1.99
Lasted Arrivals Pitcher, 64 oz

»

=3
< J ' >
/)

$17.99

Proceed to Checkout

Tumbler Glass
6 pack 150z 90z
$1.99 $4.99 $4.99

1
1
1
1
1
1
I
1
1
1
1
I
I
Champagne coupe |
1
1
\

[() other Screen Reading tool: |
| Thisls an image for Tumbler, 6 pack. |
|
|

1 Our Smart Screen Reader:

1 This is an image of a 6-pack tumbler set
priced at $1.99. It is the first item in a
shopping cart dropdown menu in the

op-right corner of the screen.

1
t
\
__ Content description __ Layout description

Figure 1: Our ToL agent describes the region on the
screenshot indicated by a user’s point. Distinguished
from other screen reading tools, our ToL agent can out-
put layout-aware descriptions for points anywhere on
the screen.

are growing efforts to build Al agents to inter-
pret GUIs visually (Shaw et al., 2023; Deng et al.,
2023; Cheng et al., 2024; Hong et al., 2023; You
etal., 2024). Existing works, however, overlook the
point-based screen reading task, where the input
is the coordinate of a user’s indicated point on the
screen and the corresponding screenshot, and the
output is a descriptive interpretation of the screen
region pointed. This task is critical for accessible
technology, providing valuable assistance to users
with visual impairments and we refer to such a task
as the Screen Point-and-Read (SPR) task.

Aiming to solve the SPR task, we introduce the
Tree-of-Lens (ToL) agent. Taking advantage of the
generalizability of the advanced Multimodal Large

Language Models (MLLMs), the ToL agent is built
for GUIs screenshots across domains with a point
anywhere on the screen as input. The output from
the ToL agent is natural language descriptions for
both the content of the indicated region and the re-
lated information about the screen layout, as shown
in Figure 1. Especially, we find that it is critical
to articulate the layout between elements in the
screenshot for users to gain a comprehensive under-
standing of the interface and avoid ambiguity. For
example, with only content description, one can-
not distinguish the two identical “Tumbler pack"
shown in Figure 1.

Our ToL agent employs a ToL grounding mech-
anism, constructing a Hierarchical Layout Tree for
each input screenshot to depict its underlying struc-
ture. The nodes in the tree represent regions of
varying scales. We build this tree using an object
detection model trained on our newly collected An-
droid Screen Hierarchical Layout (ASHL) dataset,
which contains 50k bounding boxes of hierarchi-
cal screen regions from Android screenshots. This
model enables an automatic extraction of local and
global regions, forming the Hierarchical Layout
Tree. After constructing the tree, we extract the tar-
get path based on the region of interest, producing
lenses as visual prompts for the MLLM, simulating
a human-like, gradually refined focus.

To rigorously evaluate our ToL agent against
other baselines, we introduce the Screen Point-and-
Read (SPR) benchmark with the SPR task that re-
quires the model to generate descriptions based on
user-indicated points. This benchmark consists of
650 screenshots from web, mobile, and operating
system GUIs, manually annotated with 1,500 target
points and regions. With the SPR benchmark, we
show that our ToL agent achieves the best perfor-
mance compared with the baselines of other general
and GUI-specialized MLLMs, with over 15% and
30% improvements respectively in terms of the ac-
curacy of content and layout descriptions compared
with vanilla text-prompting GPT-40.

In addition, we also test our ToL. agent with tra-
jectories from a mobile GUI navigation agent. By
applying ToL agent to describe the point of each
action taken in the trajectory, we demonstrate its
utility in identifying incorrect actions along the ex-
ecution path. This capability is pivotal for refining
the development of mobile agents, as it provides
clear, actionable feedback on navigation decisions.
This application not only validates the ToL agent’s
effectiveness but also opens up possibilities for

strengthening the performance of mobile agents
with sophisticated, layout-aware GUI understand-
ing capabilities.

In conclusion, the contributions of our paper are
as follows:

* We develop the Tree-of-Lens (ToL) ground-
ing method and build the ToL agent that gener-
ates descriptions that effectively combine both
content and layout information of the pointed
screen regions.

* We propose the Hierarchical Layout Tree to
represent the underlying hierarchical structure
of the screenshot. We collect the Android
Screen Hierarchical Layout dataset and train a
model to build the Hierarchical Layout Tree.

* We introduce the Screen Point-and-Read
benchmark, which specifically challenges the
model to produce accurate descriptions that
include both content and layout details.

* We rigorously test the ToL agent on the Screen
Point-and-Read benchmark and we demon-
strate its ability to accurately identify incor-
rect actions in mobile navigation trajectories.

2 Related Works

MLLMs for GUI Understanding Recent ad-
vancements in Multimodal Large Language Models
(MLLMs) have led to arising a series of highly ca-
pable generalist models (Liu et al., 2024b; Chen
et al., 2023; Ye et al., 2023; Dai et al., 2023;
Bai et al., 2023; Liu et al., 2024a). Spurred by
the strong general capability of MLLMs, recent
works have been focused on utilizing and improv-
ing MLLMs for GUI tasks. Some focus mainly on
a specific GUI task such as GUI navigation (Wang
et al., 2024; Yang et al., 2023b; Zheng et al., 2024),
GUI referring expression comprehension (Cheng
etal., 2024), while some aim at a set of GUI ground-
ing and referring tasks simultaneously, such as Co-
gAgent (Hong et al., 2023), which is Multi-task
Fine-tuned on CogVLM (Wang et al., 2023), and
Ferret-UI (You et al., 2024), ensuing Ferret (You
et al., 2023; Zhang et al., 2024), tailored for GUI
domain. In our work, we focus on the Screen Point-
and-Read (SPR) task, a referring task in which
inputs are point locations on the screen with the
corresponding screenshots, and develop a specific
benchmark to evaluate the model’s performance in

Hierarchical Layout Tree Construction

Target Path Selection & Prompting

r Y4

Hierarchical Layout Tree
-—— poin X,Y) ..

Screenshot

1

1 \
! Global / \

regions
L1] ! g

Screenshot

[
Target Point on iregions

screen P(x, y)

Please describe the \
area indicated by

Content
& Layout

Description

___________/.____/ \; __________ ’

Figure 2: Pipeline of the Tree-of-Lens agent. The Hierarchical Layout Tree is first constructed based on detected
global and local regions from the input screenshot. Then, a set of hierarchical lenses with various field widths is
generated from the tree and sent as visual prompts to GPT-40 to generate the content and layout descriptions.

such tasks. Also, inspired by big challenges that
MLLMs are facing in understanding images with
complex layout information (Fan et al., 2024), we
propose the Tree-of-Lens (ToL) agent that gener-
ates layout-aware description, which distinguishes
from all other GUI agents with GUI referring abil-

1ty.

Chain-of-Thoughts for Vision The Chain of
Thoughts (CoT) (Wei et al., 2022) methodology in
natural language processing (NLP) has spurred vari-
ous inspiring ideas in this direction. (Creswell et al.,
2022) applied it to interpretable logical reasoning,
(Zhou et al., 2022) improved methods for break-
ing down complex problems, (Wang et al., 2022)
focused on enhancing the "exploring-selecting"
mechanism in reasoning path, and (Yao et al., 2024;
Besta et al., 2024) brought in more sophisticated
patterns for reasoning. To embrace CoT in the
vision area, Xi et al. (2023) uses Chain-of-Look
prompting for surgical scene understanding to learn
rich semantics from surgical endoscopic videos. In
comparison, Chen et al. (2024) designated an it-
erative step-by-step reasoning manner for VQA
problem, letting MLLMs "See-Think-Confirm" to
generate a better rationale for the decided answer.
Recently, Shao et al. (2024) proposed a multi-turn
processing pipeline that dynamically focuses on
visual inputs and provides interpretable thoughts.
Moving along with the direction, we aim to facil-
itate MLLMs on the GUI referring task by gener-
ating a chain of lenses with varying field widths,
ranging from fine-grained to coarse views. The
chain of lenses demonstrates the hierarchical lay-
out of the GUI, simulating a human-like sequence
of attention, improving MLLMs on producing ro-
bust and accurate descriptions with the content and
layout information regarding the target point input

in the accessible screen reading task.

3 Tree-of-Lens Agent
3.1 Task Definition

We aim to develop an agent to interpret designated
regions on GUIs indicated by points, which we
refer to as the Screen Point-and-Read (SPR) task.
This agent needs to process input consisting of
a screenshot .S; and a point coordinate P; on the
screen, where the point represents a region of the
user’s interest. Two target outputs are language de-
scriptions ﬁf for the content of the targeted region
and D! for the layout information of the screen
related to the targeted region.

3.2 Method Overview

Targeting the SPR task, we propose the Tree-of-
Lens (ToL) agent equipped with the ToL grounding
mechanism, as shown in Figure 2. Since our agent
relies on the pure visual modality of the GUI and
leverages the strong visual referring capabilities of
MLLMs, such as GPT-4o, it can effectively read
anywhere pointed on screens from any domain,
including but not limited to web, mobile, and oper-
ating systems.

The three distinct design goals distinguish our
LoT agent from previous models. First, our LoT
agent outputs rich, natural language descriptions
rather than fixed template descriptions from acces-
sible screen reading tools such as VoiceOver!. Sec-
ond, it can handle any point location on the screen
as input by dynamically detecting the pointed re-
gion, which might be as small as an icon or a
broader area, such as a full-screen window. Last
but not least, the descriptions generated by our
agent encompass both the content and layout per-

! https://support.apple.com/guide/voiceover/welcome/mac

https://support.apple.com/guide/voiceover/welcome/mac

spectives, detailing the targeted region’s function
and position within the GUI’s layout.

3.3 Hierarchical Layout Tree Construction

Hierarchical Layout Tree The layout of the GUI
screenshot usually features an inherent hierarchy
decided by GUI source codes. We propose the Hier-
archical Layout Tree to represent this hierarchical
structure. This tree structure corresponds to each
screenshot, with each node representing a square
region within the GUI screenshot. Instead of using
varied depths of tree structures from the underlying
source codes of GUIs, for simplicity, the proposed
Hierarchical Layout Tree has a fixed 3-layer depth
for every GUI screenshot, with nodes in each layer
representing regions of varied hierarchies. The top
layer node represents the whole screenshot. The
middle layer nodes represent global regions, which
encompass larger, comprehensive areas that include
multiple related elements, such as panels or groups
of controls, forming significant parts of the user
interface. The leaf nodes represent local regions,
referring to smaller, more specific areas, typically
denoting individual interactive elements like but-
tons, text fields, and icons.

Model and tree construction pipeline In order
to extract the Hierarchical Layout Tree that depicts
the hierarchical layout of screenshots without re-
lying on such structured text modality, we train
a GUI region detection model to detect the local
and global regions for each GUI screenshot, then
construct the Hierarchical Layout Trees accord-
ingly. The GUI region detection model is fine-
tuned on the DINO detection model with ResNet-
50 backbone (Zhang et al., 2022; Chen et al., 2019).
Once the regions are detected, we construct the
Hierarchical Layout Tree, where each predicted
global region serves as a node connected to one
or more leaves representing the predicted local
regions. The connection between global and lo-
cal regions is determined by the highest IoU be-
tween the local and global regions, where for a
predicted local region R;, its parent global region
is]%j,j = ArgMax;loU(R;, R;).

Android Screen Hierarchical Layout dataset
To train a detection model for the Hierarchical Lay-
out Tree, we build a dataset named the Android
Screen Hierarchical Layout (ASHL) dataset, fea-
turing screenshots and bounding boxes labeled as
either global or local regions. There are around 52k

nnnnnnnnnnnnnn

Lens 1 with a fine-grained field width Lens 2 with a coarse field width

Figure 3: Example of the lenses generated from the
Hierarchical Layout Tree based on a point coordinate.
Lens 2 can be seen as a zooming-out from Lens 1. ToL
agent’s corresponding output is in Appendix A.

bounding boxes from 2,180 screenshots, spanning
all 18 different Android applications.

The dataset collection process is fully auto-
mated based on the MagicWand simulator (Ding
et al.), where we first sample screenshots along
with their corresponding source codes based on
pre-recorded actions of humans navigating dif-
ferent Android applications. Then, we extract
GUI regions R; from the source codes with pre-
defined coordinates to become nodes and leaves
in a tree structure. The parent-child relationships
Parent-Child(R;, Rj)establish = 1 are also inher-
ent directly from the code. Next, we refine the tree
by pruning branches corresponding to non-visible
regions and merging connected nodes with an In-
tersection Over Union (IoU) greater than 0.9 to a
single node, representing the region R, ;, where

Ri-i-j = Max(Ri, Rj),
if IOU(RZ',R]') > 0.9
& Parent-Child(R;, Rj) == 1. (1)

Notably, we find that the merged connected nodes
R;(; often indicate regions having united seman-
tic contents due to their multiple code attributes.
Therefore, we further label those merged nodes
with more than one leaf as global regions and the
corresponding leaves as local regions:

Global Regions =

{Rijllen(Leaf(Riyj)) > 1} (2)
Local Regions =

{Leaf(Riﬂ)|len(Leaf(Ri+j)) > 1}, (3)

where Leaf(R;) outputs all the leaves in the tree
tracing down from the node of region R;.

3.4 Target Path Selection and Multi-lens
Prompting

Based on the constructed Hierarchical Layout Tree,
we next select a target path from the tree and gen-
erate a series of image prompts with annotations
based on the input screenshot .S; and point P;. The
image series represents different "lenses" with vary-
ing field widths and becomes the visual prompt for
the MLLM, GPT-40, which we refer to as Multi-
lense prompting.

The process first identifies the smallest local re-
gion that contains the input point. Then the con-
nected parent global region is extracted from the
Hierarchical Layout Tree’. We next curate two
lenses in a sequence that visually articulates this
hierarchical relationship from a fine-grained to a
coarse view: the first lens shows only the global
region from the screenshot while marking the local
region with a colored bounding box labeled ‘1°, the
target point with a semi-transparent red dot; the
second lens includes the complete input screenshot
and marks the global region with another bounding
box labeled ‘2’. Figure 3 shows an example.

Then a Multi-lens Prompting method is adopted,
where the curated set of lenses is sent to GPT-40
with a text prompt which includes the text coordi-
nate of the target point. Some specific instructions
are also included in the prompt, asking, "Explain
where box 1 is in relation to box 2 and where box
2 is located on the overall screen." In this way, we
provide clear visual cues that facilitate the GPT-
4o to generate detailed descriptions that reflect the
GUT’s content and layout. For more details about
the prompt used, please refer to Appendix C.

4 Screen Point-and-Read Benchmark

4.1 Overview

We introduce the Screen Point-and-Read (SPR)
benchmark to rigorously evaluate our ToL agent on
the SPR task, where descriptions are required based
on user-indicated points on screenshots. As shown
in Table 1, this benchmark covers a diverse domain
of GUIs with a total 650 screenshots. Each screen-
shot is annotated with an average of around 2 target
points and their corresponding local regions on the
screenshot. Figure 4i illustrates the normalized co-
ordinates of target points F; in the SPR benchmark,
demonstrating thorough and comprehensive cover-
2 In some rare cases, the input point is outside all local regions,

we treat the global regions as local regions in this process and
the parent of the global region is the full screenshot.

=
=]
L

Mobile 300 [T B Mobile
Web [0 Web
08 ,,"‘ Operating System 250 [T Operating System
I o T 5P S 00
® X et s 200
oo ndeRti et ¢
= ogst v § o\ el 3
Jool HRLuMAWIR | O
> - Y 2 t3 Wiy 100
021 IICh st on e }
- 4 o - e
. - B 1‘: 50
0.0

T T T T T 0-
0.00 0.25 050 0.75 1.00 0-1% 1-10% 10-50%50-100%
X-coordinate Local Region Area Ratio

@) (i)
Figure 4: (i) shows the normalized locations of target
points P; in the input screenshot .S;. (ii) shows dis-

tributions of the area of local regions R; in our SPR
benchmark.

Domain ‘Screenshots Target Points Local Regions
Web 199 500 500
Mobile 201 500 500
Operating System 250 500 500
Total | 650 1,500 1,500

Table 1: Key Statistics of the SPR Benchmark

age of every location on the screen. The regions
included have various content, and their area ranges
from 1% to over 50% of the screen, as shown in
Figure 4ii.

4.2 Data Collection

We first gather mobile and web screenshots from
Screenspot (Cheng et al., 2024) and operating sys-
tem screenshot from the data explorer videos® of
OSWorld (Xie et al., 2024). Then we randomly
generate 3 or 4 candidates of the target point P; for
each screenshot. Then, to maximize the variety of
the region indicated by points, we hire 3 students to
check these candidate points, where they assess all
the candidate points on each screenshot and remove
those that represent duplicated regions. Then, the
remaining points are regarded as the target point
P;, and the annotators draw the bounding boxes
of the corresponding local regions R;. After the
annotation, scripts were used to spot errors, such as
ensuring that local regions R; included P; inside.
The annotated data is then manually examined by
authors to ensure quality.

4.3 Evaluation

The SPR benchmark evaluates both the accuracy
of the generated content description D¢ and the
generated layout description Dl Since there is
no ground truth for the generated descriptions, we

3 https://os-world.github.io/explorer.html

https://os-world.github.io/explorer.html

involve human evaluations and also propose auto-
mated cycle consistency evaluations inspired by the
two-agent evaluation in Padmakumar et al. (2022);
Fan et al. (2023).

Human evaluation We conduct surveys with hu-
man judges to assess the quality of the generated
descriptions. Each survey presents a screenshot
with an indicated point, accompanied by descrip-
tions from different screen readers. The judges are
asked to rate these descriptions based on three cri-
teria: how well they describe the content, how well
they articulate the layout, and their overall prefer-
ence. Each question had four options, ranging from
"very well" to "not at all," which we numerically
mapped to accuracy scores of 100%, 66%, 33%,
and 0%, respectively.

Cycle consistency evaluation In order to eval-
uate screen reader models automatically, we pro-
pose the cycle consistency evaluation. The outputs
(ﬁc, ﬁl) from the screen-reader are each used as
the input for an auxiliary model tasked with spe-
cific validation tasks, with the alternative model’s
performance indicating the quality of the screen-
reader’s descriptions.

Specifically, to evaluate content accuracy, GPT-
4o serves as the auxiliary model, performing a
multi-choice selection task. This alternative model
is asked to select one from the multi-choice candi-
dates based on the predicted descriptions D¢. The
candidates are four screenshots of different GUI
regions cropped based on human annotation, with
only one targeted region

Multi-choice question =) 4)
Multi-choice candidates(S;, P;, DA%)
= {Crop(Sk;, Rx;)|j € [0,4],
ko =1i,ki,ka ks € N}, (5)

where @ is the fixed question and Crop(S;, R;)
means the screenshot .S; cropped at the region R;.

For layout description accuracy, we design an-
other multi-choice selection task for the auxiliary
model, GPT-4-turbo. This multi-choice selection
task requires the auxiliary model to select the posi-
tional relationship of two regions indicated by F;
and P;) based on corresponding generated layout
descriptions D!; and D;. Py, the reference point,
is manually annotated to represent a region R, that
does not overlap with the local region of the tar-
get point R; on the same screen S;, especially for

the evaluation of the layout description accuracy.*
The multi-choice selection task presented to the
auxiliary model is

Multi-choice question = Qgen(ﬁli, Eli/) (6)
Multi-choice candidates = C, @)

where Qgen is a question template that needs to be
filled with the layout descriptions generated, and
C are some fixed choices provided such as ‘upper,
‘lower,” ‘left,” etc. Based on the ground truth loca-
tion of ; and R;/, we calculate the accuracy of the
choices made by the auxiliary model, which indi-
cates the screen reader’s proficiency in describing
the layout.

5 Experiments

Baselines We adopt several baselines, including
generalist MLLMs: the proprietary GPT-40 (Ope-
nAl, 2024) and the open-source L1aVA-NeXT (Liu
et al., 2024a). We also test the CogAgent (Hong
et al., 2023), a MLLM specifically tuned for GUI
tasks. The inputs for baselines are the text prompt
with the input point coordinate P; and the screen-
shot .S;. We keep prompts for baselines in the same
style as the ToL agent, expect that we have to sim-
plify it for CogAgent as we find it necessary for Co-
gAgent to follow the instructions. Detailed prompt
design is shown in Appendix C.

Training We divide the ASHL dataset into 90
% training and 10% evaluation sets for the GUI
region detection model training process. Training
is performed on four NVIDIA A6000 GPUs with
a batch size of 8, spanning 90 epochs. The opti-
mized model demonstrated excellent performance,
achieving an Average Precision (AP) of 94.1% and
an Average Recall (AR) of 95.9%.

5.1 Main Results

We evaluate our ToL agent against three baselines
on the SPR benchmark as shown in Table 2. The
results are consistent across both human evaluation
and automatic cycle consistency evaluation, show-
ing that our ToL. agent achieves the best perfor-
mance in terms of content and layout description
accuracy. Notably, our ToLL agent demonstrates
over a 15% improvement compared to the GPT-40

* There are in total 1,117 target points P; are accompanied by
a manually selected reference point P;/, due to R; is taking
most area of the full screen.

Avg. Len. Human evaluation (%) | Cycle consistency evaluation (%) | Language Similarity

Content Layout Overall | Content Acc Layout Acc BERTScore ROUGE
LlaVA-NeXT| 51.95 21.69 959 21.19 25.43 7.20 85.18 16.52
CogAgent 30.69 22.18 13.33 20.62 25.86 8.00 82.31 15.49
GPT-40 34.44 3273 28.12 30.88 35.10 21.87 85.76 15.08
ToL Agent 38.37 41.82 3342 41.63 74.96 39.67 86.73 19.47

Table 2: Main results. We evaluate our ToL agent against three other baselines with the human evaluation and cycle
consistency evaluation of our SPR benchmark. Additionally, we compare the generated content descriptions with
human verified content descriptions using language similarity scores. The results show that the ToL. agent achieves

the best performance.

Content Layout
Acc Acc
ToL Agent 75.0 39.7

+ w/o multi-lens visual prompt 71.2 (-3.8) | 37.7 (-2.0)
+ w/o target point mark 65.6 (-9.4)]37.6 (-2.1)
+ w/o local & global regions marks|35.1 (-29.9)|21.9 (-18.6)

Table 3: Ablation results. We gradually refine the abla-
tion to exclude various processes in our ToL grounding
mechanism for ToL. agent on the SPR benchmark. The
results show the effectiveness of various components.

model. Furthermore, the overall scores from the hu-
man evaluation indicate that descriptions generated
by our ToL agent are the most favorable. Interest-
ingly, although the results show that the CogAgent
performs slightly worse than L1aVA-NeXT in terms
of the content and layout description accuracy, the
overall scores from human judges slightly prefer
LIaVA-NeXT. We believe this preference is due
to the LIaVA-NeXT model’s tendency to produce
longer descriptions with more information about
the screen, creating a more comprehensive feel.

Additionally, we leverage language similarity
scores, including BERTScore and ROUGE-L, to
compare the generated content descriptions with
human-verified descriptions. These descriptions
are captions generated using GPT-4V with the di-
rect input of Crop(S;, R;), and we manually ex-
amined and corrected mistakes. We observe that
the overall trend from the language similarity eval-
uation results matches the content evaluation re-
sults from human and cycle consistency evalua-
tions. However, the differences in language simi-
larity scores between models are relatively indis-
tinguishable. We believe this is because the cap-
tions are more comprehensive, sometimes redun-
dant, whereas the screen reading output is more
focused on delivering the key features of the con-
tent to help users understand it.

‘Content Acc ‘Layout Acc

Human 92.8 70.3

ToL Agent 72.5 (-20.3) |41.3 (-29.0)
ToL w/ GT local regions 85.5(-7.3) [44.3 (-26.0)
ToL w/ GT global regions 88.2 (-4.6) [46.6 (-23.7)
ToL w/ GT global local regions| 89.5 (-3.3) [48.2 (-22.1)

Table 4: Bottleneck analysis. Replacing local and global
regions with GT annotations mainly improves content
description accuracy, indicating rooms of improvements
for both the GUI region generation process and the
MLLM leveraged.

5.2 Ablation Study

Effectiveness analysis To assess the effective-
ness of the ToL. design, we conduct an ablation
study where we progressively refine the ablation
to exclude key design components and evaluate
these ablated versions on our SPR benchmark us-
ing the cycle consistency evaluation, as shown in
Table 3. First, we modify our ToL agent to ex-
clude the multi-lens visual prompting. This change
necessitates annotating bounding boxes for the lo-
cal region, global region, and the target point on
the complete screenshot as a single visual prompt.
Then we further remove the red dot mark from
the visual prompt, resulting in a design similar to
the Set-of-Mark (SoM) prompting method (Yang
etal., 2023a). As aresult, these changes lead in per-
formance degradation in both content and layout
description accuracy, indicating the effectiveness
of our visual prompting strategies. Finally, we ab-
late the input visual prompt to remove marks of
local and global regions that we extract from our
Hierarchical Layout Tree. This drastic modifica-
tion results in a significant decrease in performance,
underscoring the importance of our Hierarchical
Layout Tree in the of the ToL design.

Bottleneck analysis To examine the bottlenecks
in our ToL agent, we replace the local and global re-
gions generated from the Hierarchical Layout Tree

Actions, Target points

Content & Layout

The current goal is to {Task Goal}

. i fione Prompts:

TTFaek Screenshots: DLCA"DUOTTS- Toms: Based on given info, should the agent proceed?

i i History: 1. Click, Py, S 1. D, D

 Goal(s) } ry o i P S , i d Action validation output;

) 3' CIick’ P ' g el oo Analysis: "The 'Current region' description
Mobile — N : b e =8 Agent 3. D5, D} —_ @ — dligns with the 'Instruction' given, which is to
A’:;\rlﬂ ¥ © ™ G tap Settings. The icon indicated in the 'Current

L PT-4 ion'i s
N Gurrent: t, Glick, Py, S, v BB, region' is a settings icon,

Answer: YES

Figure 5: Pipeline of employing our ToL agent in verifying the actions from a mobile navigation agent.

with human annotations, considered as the ground
truth (GT). We also assess human performance by
having human annotators write both content and
layout descriptions manually. Due to the high cost
of human efforts, we conduct experiments on a
20% random sample of the SPR benchmark. As
shown in Table 4, substituting either GT local re-
gions or GT global regions significantly close the
gap toward human performance in the ToL agent’s
accuracy of content descriptions. However, for lay-
out descriptions, the gap remains, indicating that
the MLLM we leverage is the bottleneck in this as-
pect. This finding aligns with the conclusion from
(Fan et al., 2024), which highlights that current
MLLMs face significant challenges in understand-
ing the layout of multipanel images.

5.3 Broader Application: Verification of
Mobile Navigation Agent Actions

In this section, we demonstrate how our ToL agent
helps identify incorrect actions for a mobile navi-
gation agent, MagicWonder, on MagicWand plat-
form(Ding et al.). Driven by a specific task goal,
such as "connect to Wifi in settings", MagicWonder
can generate actions to interact with a live mobile
screen and save the detailed information for each
step along its execution trajectory. More details
are provided in Appendix D.1. To incoorporate our
ToL agent with the verification purpose, we design
a simple pipeline. As shown in Figure 5, the layout
and content descriptions are generated by our ToL
agent for each action point and sent to the GPT-4-
Turbo model. The GPT-4-Turbo model, based on
the task goal, instructions, and descriptions from
ToL agent, decides whether the last action from the
MagicWonder is correct or not.

Data sampling We select 52 mobile agent tra-
jectories with specific task goals from instruction-
guided executions on MagicWand platformDing
et al., with more details in Appendix D.2. Each
trajectory consists of multiple execution steps trig-
gered by distinct actions, resulting in a total action
number of 209. We hire two students to annotate

Predicted as
Correct Incorrect TP/FP Rate
100.2+2.0 8.8 £2.0 92% +0.02
61.9 429 36.1 2.9 38% +0.03

Correct Action
Incorrect Action

Table 5: Results of leveraging the ToL agent to verify
actions from a mobile navigation agent. "Predicted as"
column shows the number of predicted actions. True
positive and false positive rate are shown on the right
most column calculated from the data on the left

incorrect actions in the chosen trajectories to get
the ground truth labels.

Result We perform 10 end-to-end evaluations
and present the mean value and standard deviation
in Table 5. Despite minor fluctuations, while 92%
correct actions can be stably recognized, about 38%
incorrect actions can be identified. This reveals that
incorporating the description from the ToL agent
can significantly and robustly improve mobile nav-
igation agents’ capability. Our ToL agent can also
identify particularly tricky challenges faced by mo-
bile navigation agents during execution. One no-
table issue is the "execution loop," where agents
repeatedly take actions on the same or similar re-
gions without making progress. Our results show
that for all 20 incorrect actions fall into this cate-
gory, 44% + 0.04 can be successfully detected.

6 Conclusion and Discussion

In this work, we propose a novel Tree-of-Lens
(ToL) grounding method and build a ToL. agent
for the Screen Point-and-Read (SPR) task, an im-
portant screen referring task. Our ToL agent out-
puts layout-aware descriptions for pointed regions
on screenshots. With our newly proposed Screen
Point-and-Read (SPR) benchmark, we show that
our ToL agent outperforms all other baselines in
terms of content and layout description accuracy,
demonstrating great potential to improve accessi-
bility of digital devices for visually impaired users.
We also apply the ToL agent to identify incorrect
actions in the execution trajectories of a mobile
navigation agent, achieving promising results.

7 Limitations

In this work, we propose a novel Tree-of-Lens
(ToL) agent for the Screen Point-and-Read (SPR)
task. Leveraging GPT4-o to generate content and
layout descriptions allows us to set up the pipeline
quickly and validate ToL’s effectiveness in a short
time period. However, the accumulated server de-
lay in requesting GPT4-o services has occupied
more than 80% of end-to-end evaluation, not to
mention the high expense accompanying, which
is a non-trivial issue for real-world applications.
Thus, a more efficient and locally hosted model
has to be given out in place of GPT-40. More-
over, since our ToL agent leverages MLLM to
generate descriptions, there are potential risks that
the generated descriptions from the MLLM could
contain harmful contents. Therefore more post-
processing strategy might be needed. Last but not
least, another critical challenge is balancing ap-
plication efficiency with improved semantic repre-
sentation, thereby enabling on-device support and
further expanding ToL’s application areas. Our cur-
rent work is limited for research purpose and more
application-wise exploration is pending.

References

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682—17690.

Jun Chen, Deyao Zhu, Xiaogian Shen, Xiang Li, Zechun
Liu, Pengchuan Zhang, Raghuraman Krishnamoor-
thi, Vikas Chandra, Yunyang Xiong, and Mohamed
Elhoseiny. 2023. Minigpt-v2: Large language model
as a unified interface for vision-language multi-task
learning. arXiv:2310.09478.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao,
Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng,
Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng,
Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu
Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong
Wang, Jianping Shi, Wanli Ouyang, Chen Change
Loy, and Dahua Lin. 2019. MMDetection: Open mm-
lab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155.

Zhenfang Chen, Qinhong Zhou, Yikang Shen, Yining
Hong, Zhiqing Sun, Dan Gutfreund, and Chuang
Gan. 2024. Visual chain-of-thought prompting for
knowledge-based visual reasoning. In AAAI Confer-
ence on Artificial Intelligence.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024.
Seeclick: Harnessing gui grounding for advanced
visual gui agents. arXiv preprint arXiv:2401.10935.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. In The
Eleventh International Conference on Learning Rep-
resentations.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong,
Jungi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven Hoi. 2023. Instructblip: Towards
general-purpose vision-language models with instruc-
tion tuning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2web: Towards a generalist agent for
the web. In Thirty-seventh Conference on Neural
Information Processing Systems.

Lei Ding, Yi Zhang, and Jeshwanth Bheemanpally. En-
hancing mobile" how-to" queries with automated
search results verification and reranking. In The Sec-
ond Workshop on Generative Information Retrieval.

Yue Fan, Jing Gu, Kaizhi Zheng, and Xin Wang. 2023.
R2H: Building multimodal navigation helpers that
respond to help requests. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 14803—-14819, Singapore.
Association for Computational Linguistics.

Yue Fan, Jing Gu, Kaiwen Zhou, Qiangi Yan, Shan
Jiang, Ching-Chen Kuo, Xinze Guan, and Xin Eric
Wang. 2024. Muffin or chihuahua? challenging large
vision-language models with multipanel vqa. arXiv
preprint arXiv:2401.15847.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. 2023. Cogagent: A
visual language model for gui agents. arXiv preprint
arXiv:2312.08914.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024a. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024b. Visual instruction tuning. Advances in

neural information processing systems, 36.

OpenAl. 2024. Gpt-4o.

https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://doi.org/10.18653/v1/2023.emnlp-main.915
https://doi.org/10.18653/v1/2023.emnlp-main.915
https://doi.org/10.18653/v1/2023.emnlp-main.915
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://openai.com/index/hello-gpt-4o/

Aishwarya Padmakumar, Jesse Thomason, Ayush Shri-
vastava, Patrick Lange, Anjali Narayan-Chen, Span-
dana Gella, Robinson Piramuthu, Gokhan Tur, and
Dilek Hakkani-Tur. 2022. Teach: Task-driven em-
bodied agents that chat. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 2017-2025.

Hao Shao, Shengju Qian, Han Xiao, Guanglu Song,
Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng
Li. 2024. Visual cot: Unleashing chain-of-thought
reasoning in multi-modal language models. arXiv
preprint arXiv:2403.16999.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Be-
rant, Panupong Pasupat, Hexiang Hu, Urvashi Khan-
delwal, Kenton Lee, and Kristina N Toutanova. 2023.
From pixels to ui actions: Learning to follow in-
structions via graphical user interfaces. Advances in
Neural Information Processing Systems, 36:34354—
34370.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan,
Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.
2024. Mobile-agent: Autonomous multi-modal mo-
bile device agent with visual perception. arXiv
preprint arXiv:2401.16158.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei
Zhao, Xixuan Song, et al. 2023. Cogvlm: Visual ex-
pert for pretrained language models. arXiv preprint
arXiv:2311.03079.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Nan Xi, Jingjing Meng, and Junsong Yuan. 2023. Chain-
of-look prompting for verb-centric surgical triplet
recognition in endoscopic videos. In Proceedings of
the 31st ACM International Conference on Multime-
dia, pages 5007-5016.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu,
Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caim-
ing Xiong, Victor Zhong, and Tao Yu. 2024. Os-
world: Benchmarking multimodal agents for open-
ended tasks in real computer environments. Preprint,
arXiv:2404.07972.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun-
yuan Li, and Jianfeng Gao. 2023a. Set-of-mark
prompting unleashes extraordinary visual grounding
in gpt-4v. arXiv preprint arXiv:2310.11441.

10

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Ze-
biao Huang, Bin Fu, and Gang Yu. 2023b. Appa-
gent: Multimodal agents as smartphone users. arXiv
preprint arXiv:2312.13771.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye,
Ming Yan, Yiyang Zhou, Junyang Wang, An-
wen Hu, Pengcheng Shi, Yaya Shi, et al. 2023.
mplug-owl: Modularization empowers large lan-
guage models with multimodality. arXiv preprint
arXiv:2304.14178.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du,
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-
Fu Chang, and Yinfei Yang. 2023. Ferret: Refer
and ground anything anywhere at any granularity. In
The Twelfth International Conference on Learning
Representations.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers,
Amanda Swearngin, Jeffrey Nichols, Yinfei Yang,
and Zhe Gan. 2024. Ferret-ui: Grounded mobile ui
understanding with multimodal llms. arXiv preprint
arXiv:2404.05719.

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su,
Jun Zhu, Lionel Ni, and Heung-Yeung Shum. 2022.
Dino: Detr with improved denoising anchor boxes
for end-to-end object detection. In The Eleventh In-
ternational Conference on Learning Representations.

Haotian Zhang, Haoxuan You, Philipp Dufter, Bowen
Zhang, Chen Chen, Hong-You Chen, Tsu-Jui Fu,
William Yang Wang, Shih-Fu Chang, Zhe Gan, et al.
2024. Ferret-v2: An improved baseline for referring
and grounding with large language models. arXiv
preprint arXiv:2404.07973.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. Gpt-4v(ision) is a generalist web agent,
if grounded. arXiv preprint arXiv:2401.01614.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. 2022.
Least-to-most prompting enables complex reasoning
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972

A Example outputs of the ToLL Agent

For each GUI domain, we show one example of
the output of our ToL agent along with the lenses
generated. We do not deliberately cherry pick the
best case, but show examples with both strong and
weak performances. An example for the operation
system domain is shown in Figure 6. An example
for the mobile domain is shown in Figure 7. An
example for the web domain is shown in Figure 8.

B Examples of the Cycle Consistency
Evaluation

We select one result of our cycle consistency evalu-
ation for the content description and show it in Fig-
ure 9. The left four images come from the cropped
areas from different GUI screens, with only one
of which matches the description in the prompt on
the right side. As shown, GPT4-o0 can successfully
choose the correct option in the "Answer" field and
give its reasoning in the "Analysis" field.

For cycle consistency evaluation regarding the
layout description, the question contains the gen-
erated layout descriptions from models. We let
GPT-40 choose one option from predefined 9 rela-
tive positions together with its analysis, referring
to the layout evaluation output in Figure 11. The
ground truth is provided with script based on the hu-
man annotated local regions for the target point and
reference point. The ground truth is also checked
by human.

Prompt used by LIaVA-NEXT and GPT-40 For
the baseline models, L1aVA-NEXT and GPT-4o0
share the same prompting template as shown in
Figure 14.

Prompt used by CogAgent In order to drive Co-
gAgent to follow instructions, a simplified prompt-
ing template is applied, as shown in Figure 15.

C Text Prompt templates

We show the templates of text prompts we used for
different MLLMs. We substitute the {{z}}.,{{y}}
with the normalized coordinate of the input point.

Prompt used by ToL agent For our ToL agent,
we use the text prompt template shown in Figure
13 for GPT-4o.

11

D Mobile Navigation Action Verification

D.1 Example

Figure 16 illustrates one action verification case in
our experiment: MagicWonder is asked to accom-
plish "pause historical track in Youtube App". Len
1 and Len 2 show the agent was attempting to click
the "Setting" icon by giving the instruction "Tap
Settings" at the second step along the execution tra-
jectory. The first step in action varification is to get
the response from ToL. Agent that describes Len 1
and Len 2 correctly with more detailed application
contexts. Using this information, GPT-40 could
correctly judge whether this action on the screen
was in accordance with the given instruction.

D.2 Sample Strategy of Mobile Navigation
Action Execution Trajectory

MagicWand simulator can launch mobile agents
to take action on devices under the guidance of a
series of instructions. The corresponding runtime
GUI context, like GUI screenshot, actionable re-
gions, instructions for each step and action details,
are saved into a self-descriptive JSON format. We
deliberately choose the instructions from WeWeb
dataset (Ding et al.) having few overlapping with
our ASHL dataset. After execution on MagicWand,
we chose those trajectories with task completion
rate less than 50% to evaluate whether ToL infor-
mation was accurate enough. The selected trajec-
tories cover 11 Android applications from 8 ap-
plication domains, where the chosen applications
include SYSTEM, Entertainment, Education, Food
& Drinks, Communication, Shopping, News, Maps
& Navigation. The chosen Android apps include
Messenger, Google Maps, YouTube, Settings, Qui-
zlet, FlipBoard, McDonalds, eBay, Google Chat,
Here WeGo, DoorDash.

D.3 Action verification Pipeline Details

As shown in Figure 5, a set of navigation actions,
target points, and corresponding screenshots, are
first recorded during the interaction between the
mobile navigation agent and the mobile screen.
Then, our ToL agent first processes each pair of
target points and screenshots (FP;,S;), including
those from the history path of navigation trajectory
and the currently planned one (i € [0, t—1]), where
the P, — 1 is the target point that the navigation
agent plans to interact with for the next step. As a
result, the layout and content descriptions ﬁf, ﬁf
are generated. Next, we concatenate all the descrip-

Lens 1

ToL Agent output:

Amcamss nadiDuh B o, O

Lens 2

This is a copyright statement and usage disclaimer from the Intellectual Property Office of Singapore. It is located near the center-bottom
area of the document shown in the word processor on the screen, which is situated within the larger desktop view containing various icons

and applications.

Figure 6: Example of the generated description for an operation system screenshot from our ToLL agent with the
two lenses generated. The global region generated is not perfect as the bounding box is a little bigger than the

application window on the top right part.

. English Chinese
UK Chinamainland

B

Lens 1

ToL Agent output:

ounis

o Engish Ghinese
UK China mainiand

Lens 2

This is a close button (X icon). It is located in the upper right corner of the language selection area, which itself is positioned centrally on the

screen.

Figure 7: Example of the generated description for a mobile screenshot from our ToL. agent with the two lenses

generated.

12

INSTOCK KU
*ok Kk

$14.47

V8 +Energy, Healthy Energy Drink, Steady Energy from Black
and Green Tea, Pomegranate Blueberry, 8 Ounce Can ,Pack of
4

ToL Agent output:

Lens 2

This is the section where users can view the status, SKU, price, quantity selector, add to cart button, and options to add to wish list or

compare products for a V8 energy drink.

This section is located on the right side within the product information area. The product information area itself is positioned on the right half

of the complete screen.

Figure 8: Example of the generated description for a web screenshot from our ToL agent with the two lenses
generated. The description output is not perfect regarding the layout information as the "product information area"
indicated by the global region is not only "on the right half of the complete screen" but the middle and lower areas

of the complete screen.

tions and send them to the GPT-4-Turbo model to
determine whether agent actions follow the given
task goal.

Target path selection For each mobile screen-
shot saved in the execution trajectory, the DINO de-
tection model extracts all global regions with confi-
dential scoring larger than 0.15 and local regions
with confidential scoring larger than 0.05, consis-
tent with our baseline evaluation. For click action,
ToL first finds the smallest local and global regions
that contain the click point. Usually, DINO’s out-
put aligns with regions that have clear pixel bound-
aries. To improve the accuracy of local regions with
smaller sizes, we extend DINO’s output regions by
50 pixels. If no match is found, we further extend
the boundaries horizontally, following general GUI
design principles. Different from click action, input
action involves a region with a clear-cut boundary.
Accordingly, ToL selects the smallest local region
with an IoU value greater than 0.4 with the input
region and the corresponding global region with
an IoU value greater than 0.1 with the input re-
gion. With the chosen local and global regions,
ToL follows Chain-of-Lens prompting mentioned
in section 3.4 to get region description.

Action verification We prompt GPT-40 by us-
ing current action name, instruction, and region
description at the current step, together with histor-
ical action names and region descriptions, letting it
judge whether the mobile agent can proceed. Only
two general rules are mentioned in the prompt:

1. The agent should not proceed if the "Current

13

region" is repeated too often in "Historical
action and region description"

2. The agent may proceed if the "Current region"
aligns with "Instruction”

GPT40’s response includes a simple yes or no
and a detailed reason.

Prompt used by GPT-40 in Action Verification
To evaluate the role of LoT in mobile agents, we
only list historical action and region description,
current region, the instruction for current execution
step together with the format we expect. During
runtime, the aforementioned information will be
used to replace variables in the prompting template
{{haction}}, {{instruction}}, {{region}}, {{ac-
tion}} separately.

We briefly mention two high-level goals that the
agent is trying to achieve and expect it to figure
out details via ToL information. More fine-grained
work could be introduced later to get even better
performance of action validation, though not our
main focus now.

E Human Evaluation

We leverage human evaluation to test different
screen reading models on our SPR benchmark. We
leverage Amazon Mechanical Turk® platform to
find annotators to complete the survey that we de-
signed for our human evaluation. We pay $0.15
for each survey and the screenshot of the survey is
shown in Figure 18

> https://www.mturk.com

https://www.mturk.com

Four cropped regions:
a.

Outdoor Cycle

S 32 42kMm

{

}

}

Prompt:

Given this target description: This is an \"Outdoor Cycle\" workout
entry showing a distance of 32.42 kilometers. completed on
2023/11/13.

and the following 4 candidate screenshots labeled with a, b, ¢ and d.

Which candidate best match the target description? Please provide
your answer in the following json format:

"Analysis": "...",
"Answer": "a/b/c/d/none"

Content evaluation output:

"Analysis": "Candidate a displays an 'Outdoor Cycle' workout with a
distance of 32.42 kilometers completed on 2023/11/13. Candidate b is
about receiving items and does not match the target description.
Candidate ¢ shows weather information, which also does not match
the target description. Candidate d is about sending items and is
unrelated to the workout entry description.",

"Answer": "a"

Figure 9: One example of our cycle consistency evaluation for content description. A predicted description is shown
on the right and four different cropped screen regions were sent as four separate images to GPT-40. GPT-40 choose

the matched region or answer with "unknown".

loss

Figure 10: Training Loss of ResNet-50 backbone with
epoch 90.

F GUI Region Detection Model

Training details Using MMDetection frame-
work (Chen et al., 2019), we change the training
into two-label classification according to our task
setting. Considering our dataset volume, we load
pre-trained weights yielding the best performance
on COCO, instead of training from scratch. We
train the model for 90 epochs with a MultiStepLR
scheduler set by milestones per 30 epochs and
= (0.1, the loss had further reduced to 2.5803 with
small fluctuation, as shown in Figure 10.

We also examine the Average Precision metrics
with different IoU and Area on the validation set:
they show a clear convergence trend after epoch 70

and the results on validation set are shown in Table
6.

14

IoU Area ‘ Average
0.50:0.95 all 0.9410

0.50 all 0.9620

0.75 all 0.9470
0.50:0.95 small 0.702
0.50:0.95 medium | 0.897
0.50:0.95 large 0.943

Table 6: Average precision on the validation set® for
GUI region detection model.

Inference Examples and Evaluation Results
After training, we utilize the GUI region detection
model on unseen OS, Web, and mobile screenshots
in our SPR benchmark. We show four examples of
the detection results in Figure 17. The identified
local regions are marked by green rectangles, and
the global regions are highlighted in red. Addition-
ally, we manually annotate global regions for 20%
of randomly selected data from SPR benchmark.
With the human annotated regions for the target
points, we calculate the accuracy of our trained
GUI region detection model as shown in Figure
7. Trained on only mobile data, our model shows
generalization ability to other unseen domains.

Except for some undetected ones, many local
and global regions were successfully identified
with promising confidential scores. We assume
that GUI elements share some common design pat-
terns learned by DINO and guarantee good perfor-
mance for zero-shot inference on heterogeneous
platforms.

Prompt:

Given target description A:

It is located near the top of the screen, slightly to the
right.
and target description B:

The logo is located in the upper left section of the
screen, and it is placed within the larger content area of the
website.

Where is B relative to A? Please provide your answer in the
following json format:

"Analysis": "...",

"Answer":
"left/right/upper/lower/upper-left/upper-right/lower-left/lower-ri
ght/unknown".

}
Layout evaluation output:

"Analysis": "Target description A indicates that the
confirmation dialog is located near the top of the screen,
slightly to the right. Target description B states that the 'One
Stop Market' logo is located in the upper left section of the
screen. Given these positions, the logo (B) is in the upper
left while the dialog (A) is towards the top and slightly to the
right.”,

"Answer": "upper-left"

}

Figure 11: One example of our cycle consistency evalua-
tion for layout descriptions. The layout descriptions for
target point and reference point are provided in prompt
and GPT-4o is asked to decide their spatial relationship
by choosing one option from the given 9 options.

Given the following information in a mobile naviga-
tion task:

Historical action and region description: {{haction}}
Task Goal: {{goal}}

Current region: {{region}}

The agent now is going to interact with the "Current
region" with the action: {{action}}. Should the agent
proceed?

Note: The agent should not proceed if the "Current
region" is repeated too often in "Historical action and
region description".

Note: The agent may proceed if the "Current region"
aligns with "Task Goal".

Please provide your answer in the following JSON
format:

{
"Analysis

(]

"Answer":

}

nonoon

o coo g

yes/no"

Figure 12: Prompt used by GPT-40 in Action Validation

15

You are a smart screen reader that outputs concise nat-
ural language to answer questions from users based
on the area (box 1) pointed out by the user shown as
a red dot on the screen. The red dot is inside the box
1 in the first image, at (x,y) = ({{z}}.{{y}}), where
x and y are the normalized coordinates.

Note: box 1 is the box with label 1 and box 2 is the
box with label 2, box 1 is located inside box 2

Note: the first image shows the box 1 from the view
of box 2, and the second image shows the box 2 from
the complete screen.

Note: if the user asks about the location, based on
the layout, explain where box 1 is in box 2 and then
explain where box 2 is in the overall screen.

Note: don’t mention box 1, box 2 or the red dot in
the output.

User question: (1) what is this? (2) where it is located
in the screen?
Your output should in format (1) ... (2) ...

Figure 13: Prompt used by ToL agent

You are a smart screen reader that outputs concise
natural language to answer questions from users
based on the area pointed by the user at (x,y) =
({{z}}.{{y}}), where x and y are the normalized
coordinates of the image.

Note: if the user asks about the location, based on the
layout, explain where the target area is located locally
and then explain where it is in the overall screen.
Note: don’t mention the area directly in the output,
instead, use "it", "this".

User question: (1) what is this? (2) where it is located
in the screen?
Your output should in format (1) ... (2) ...

Figure 14: Prompt used by L1aVA-NEXT and GPT-40

What is indicated by the point at (x,y) =
{{z}}.{{y}}), where x and y are the normalized
coordinates of the image.

and where it is located in the screen?

Figure 15: Prompt used by CogAgent

Domains: ‘ Mobile Web oS Avg.
Local Region 38.4% 394% 10.0% 29.3%
Global Region | 45.6% 358% 51.0% 44.1%

Table 7: Accuracy of the generated local region and
global regions from our trained GUI region detection
model compared with human annotation with IoU@0.5.
Since the local regions are small, it brings a great chal-
lenge.

32908 O L G40
S @Q @
test2 android Q @
(@test2android + View channel >
(& switchaccount G Google Account @ Turn on Incognito.
Len 1
History View all

Step 1: ToL Agent output:

EEXEH#ER S | BKYBER ERE | BKe B BB

W E HBTEA sE—! BRI Response: This is a settings icon, which commonly indicates access to
EBX8 E£Bx8 EBXL P

system settings. This icon is located in the upper-right corner within a
Playlists Viewal larger interface that appears to be a user profile page.

Step 2: Action validation output:

Liked videos i My playlist
Private

Private - Playlist

B] Yourvideos Analysis: "The 'Current region' description aligns with the 'Instruction’
given, which is to tap Settings. The icon indicated in the 'Current region’
is a settings icon.

Answer: YES ()

P Your movies & TV

A 8 @ &t @

Home Shorts Subscriptions You

Len 2

Figure 16: Given the goal of "pausing historial track in Youtube App", mobile Agent on MagicWand plans to click
on the screen. ToL. Agent generates descriptions for the action planed. The description is sent as input for action
verification reasoning, where GPT-40 model output the analysis with decision, which is shown on the bottom right.
The GPT-40 concludes that the click action is correct.

16

New Issue

Fite (reauired]
=] [i
ad descrotion temolaes to el
o

[0 Securty & Compiiance]
af] [

) Brse=@Be

@ Infrastructure.
®
N

Q wii
X }

« Eolispse sidebad

(1) Web page

R
x 09:13 L
Fle edit o] styles Table x
-0 U e e LSRR Mkl Te Y B0 EH-U- B 0E W& O -
AR EE—-|mE |- BIu-5 HH AAa-w-E=== = 4 d - Q App Library
)
a
a ®
(-]
% e find the E-book purchase option for your reference: | I b
8
o use BLCUP eBqok for PC | |
payment for this eBook online. |
)
leer center (Your BLCUP ID. |
0
Miiload and install Windows eBqok Reader (flipviewer) on your PC. |
llser center (Your RICUP ID
—— —_— —_— =

(iii) Ubuntu GUI

Figure 17: Inference results on

Social

Entertainment

(iv) Unseen Mobile GUI

Web, OS, and unseen Mobile GUI

17

m&__ =

A visually impaired user cannot see the screen that he is pointing at, so he needs some help to understand it.

Instruction:

Step 1: Check which point did the user point at, by locating where the red arrow head is in the screenshot provided below. The user pointed right at the tip of the arrow head, where the user
might mean just an icon or a large widget.

Step 2: Check response messages/descriptions responding to the question displayed in the image, rate how good they are.

Tease describe what 1t 1s and where 1t is.
1815 Sat Dec 23 s
Home Q Search
& o b
Recent Shared CloudFil.. Pinned
@ -
Recent -
=) @ You recently opened this @ Yourecently opened this
® ey, 2022 ® 5ep21,2022
MRS i ckz
=] icchon =] Fies aon
®
&

Response from Al #1:

This is an icon featuring a house. It is located towards the left side of the screen. Specifically, it is within a smaller box nestled at the top of the left sidebar in a larger box. The larger box occupies the
top left section of the entire screen layout.

1. How well does Al #1 describe the content the screen region pointed?

O Verywell O Far O Notwell O Awiul

2. How well does Al #1 describe the layout about the pointed screen region?
O Verywell QO Far O Notwell O Awful

B. Overall how much do you like the response from Al #1?

O Verymuch QO Far QO Notmuch QO Notatall

Response from Al #2:

Figure 18: Screenshot of the survey we used in the human evaluation based on our SPR benchmark. Due to the
limited page length, questions are not shown completely, but the rest questions follow the same format as the shown
one.

18

	Introduction
	Related Works
	Tree-of-Lens Agent
	Task Definition
	Method Overview
	Hierarchical Layout Tree Construction
	Target Path Selection and Multi-lens Prompting

	Screen Point-and-Read Benchmark
	Overview
	Data Collection
	Evaluation

	Experiments
	Main Results
	Ablation Study
	Broader Application: Verification of Mobile Navigation Agent Actions

	Conclusion and Discussion
	Limitations
	Example outputs of the ToL Agent
	Examples of the Cycle Consistency Evaluation
	Text Prompt templates
	Mobile Navigation Action Verification
	Example
	Sample Strategy of Mobile Navigation Action Execution Trajectory
	Action verification Pipeline Details

	Human Evaluation
	GUI Region Detection Model

