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Abstract

There have been wide spread claims in the literature about
the emergent reasoning capabilities of Pretrained Large Lan-
guage Models. However, recent studies, have found that their
ability to plan remains questionable. Through our experi-
ments using GPT-2, we empirically demonstrate that the per-
formance of a finetuned baseline remains poor because it vi-
olates pre-conditions of actions in the plans that it generates.
To improve the planning capabilities of a finetuned LLM, we
train a verifier, which can classify actions as being valid or
invalid in a particular state. By randomly sampling actions
from the same dataset, we generate examples of invalid ac-
tions which are then used to train a verifier which can check
for action applicability. In the presence of diverse sampling
from a generator and a verifier which can prune invalid tra-
jectories, we show significant gains in the success rate on the
Blocksworld domain. Additionally, we show that finetuning
the GPT-2 generator itself to create the verifier generalizes
better than finetuning the base GPT-2. Lastly, we investigate
the role of the sampling temperature which can be used to
control the exploration-exploitation tradeoff.

Introduction
Pre-trained Large Language Models which employ Trans-
formers(Vaswani et al. 2017) as the backbone architecture
have made huge strides in the field of Deep Learning and be-
come the de-facto architecture for a variety of tasks in NLP.
These models posses a rich amount of knowledge about the
world, as a by-product of their pre-training. Recent works
have hinted at their emergent abilities to reason (Kojima
et al. 2023). Sometimes, the reasoning can be elicited by
prompting the model in the correct fashion, referred to as
Chain-of-Thought Prompting(Wei et al. 2023).

This leads to a natural question: can these models plan? A
recent work (Valmeekam et al. 2023) investigates the plan-
ning abilities of various LLMs like GPT-3, InstructGPT and
BLOOM. In this work, the authors prompt the model with
a textual description of the domain and an example plan,
in hope that the LLM could generalize to other instances.
However, the results show very poor performance on test in-
stances. Even after finetuning the models on plans generated
by a SOTA planner, the performance remains sub-par.

The PDDL framework provides a convenient abstraction
for planning by specifying relations over objects of differ-
ent types. Actions are parameterized by objects and have

pre-conditions and effects. The ability of an LLM like archi-
tecture to plan subsumes the ability to build a world-model
of a domain. In the context of PDDL, knowing a world-
model would be equivalent to knowing the effects and pre-
conditions of an action. Our investigation of the poor per-
formance of finetuned models reveals that they don’t per-
form well because eve the finetuned models often take ac-
tions which are invalid in a particular state, leading to failed
plans. This leads to poor success rate of such planners on
test instances. In other words, when trained on trajectories,
LLMs are bad at capturing pre-conditions of actions.

In order to alleviate this problem of finetuned models,
we train a verifier which classifies a generated action as
valid or invalid in a given state. Verifiers have been pro-
posed in the context of reasoning and problem-solving for
Language Models. For instance, (Cobbe et al. 2021) train
a verifier for mathematical problem solving in natural lan-
guage by explicitly labeling solutions generated by a fine-
tuned generative language model. The “good” examples are
present in the finetuning dataset itself. However, the “bad”
examples requires human annotation which can be cumber-
some and expensive. Along similar lines, Yang et al propose
verifier-guided search(Yang, Deng, and Chen 2022), where
each proof step is a (premise, conclusion) pair. For training
a verifier, they propose augmentations, such as negating the
conclusion, removing parts of the premise, etc.

In the context of PDDL planning, we propose a cheap
source of negative examples. For a state in the dataset, we
generate a negative example by sampling any random action
present in the dataset. Equipped with this simple strategy,
we can train a verifier. We demonstrate that sampling a di-
verse set of trajectories and using the verifier to prune them
is critical for improving the success rate of these planners.

For our experiments, we use Blocksworld as the testbed
and finetuned GPT-2(Radford et al. 2019) models as the gen-
erator and the verifier. Results show that given the same
number of attempts a generator equipped with a verifier
achieves a gain of 27% over the pure-generator baseline. Ad-
ditionally, the rate of bad trajectories decreases from 52% to
a mere 5%. We also investigate the role of the sampling tem-
perature of the generator and demonstrate it’s role in balanc-
ing the exploration-exploitation tradeoff. Finally, we show
that finetuning the generator itself for verification general-
izes better as compared to finetuning vanilla GPT-2.



Verifier Augmented Plan Generation in LLMs
The PDDL framework (Ghallab et al. 1998) defines a class
of planning problems where each problem can be defined
using a domain D, a start state I and a goal specification G.
The domain consists of a set F of predicates and a set A of
action templates. An instantiation of the domain consists of
grounding the predicates over a set of objectsO. A grounded
action consists of an action template a and a mapping V of
each argument of an action to an object. Such a mapping
induces a set of pre-conditions pre(a[V]) and a set of effects
eff(a[V]). A grounded action is said to be applicable in a
state if all its preconditions are true. When a grounded action
is applied to a state, all the effects of the action become true
in the next state.

We aim to take a generate-test loop approach to plan-
ning using LLMs, where the generate part is a fine-
tuned LLM and the test part is also a finetuned LLM.
We assume an offline dataset of successful trajectories
{(s1, a1, s2, a2..., sg)} where each si contains a textual rep-
resentation of the state. The generator and verifier are both
learnt using the same dataset. Since the domain is Markovian
and we work with goal-conditioned policies, policy learn-
ing can be formulated as an auto-regressive generation task
wherein the model has to generate an action and the corre-
sponding next state given a state and the goal. For this pur-
pose, we finetune a pre-trained LLM GPT-2 (Radford et al.
2019) to be the generator. The generator is an LLM which
is finetuned to generate the action and the next state ai, si+1

given the goal state and the previous state sg, si. The veri-
fier is also a LLM which is finetuned to predict whether the
action ai is applicable in state si.

Figure 1: The figure shows a prompt which contains si and
sg , which is given to the generator as input and the output
it generates, which contains ai and si+1. The verifier taken
the current state si and generated action ai as input. After
each transition generation, if the verifier approves the action,
the generated next state si+1, is given as input for the next
transition along with the goal sg . If the verifier disapproves
of the action, planner restarts from the initial state s0.

Training the Generator
To create the generator, we finetune the pretrained GPT-
2 model on transitions extracted from successful execution
traces. From a trajectory (s1, a1, s2....sg), where each si and
ai is the textual representation of the state and action respec-
tively and sg is the goal, we train GPT-2 on a transition, con-

taining (sg, si, ai, si+1). During inference, we provide with
(sg, si) as the prompt and the model generates (ai, si+1). 1

An example of the prompt can be seen in Figure 1.

Training the Verifier
In the context of planning, a verifier needs to learn which
actions are applicable in a particular state. We hypothesize
that preconditions can be implicitly learnt by a high-capacity
model like GPT-2, given negative samples. Learning a ver-
ifier from successful trajectories is an interesting problem,
since we do not have explicit knowledge about actions which
are inapplicable in a particular state. We generate the train-
ing dataset for the verifier in the following manner: for every
transition (si, ai, si+1), (si, ai) is a positive sample. To gen-
erate a negative sample, we use (si, a′) where a′ is a random
action samples from the dataset of trajectories. We note that
a′ may well be executable in the state si, however, the prob-
ability of such an event is low.

To train the verifier, we finetune the generator on the ver-
ification dataset. Since the GPT-2 architecture is a auto-
regressive decoder architecture, the last token’s contextual
embedding contains the summary of the entire sentence,
which is then passed through an MLP to perform a predic-
tion task. In our case, the verifier is passed a state and an ac-
tion, and the verifier has to do a classify the action as valid
or invalid in the state.

Verifier-augmented Generation
Figure 1 shows the overall verifier augmented plan gener-
ation process. The GPT-2 Generator takes the initial state
s0 ← sI and goal sg . At the ith transition the generator
incrementally generates the next action ai and state si+1

from si, sg . The verifier then checks whether the transition
si

ai→si+1 is valid. If it is valid, then the generator continues
with si+1, sg . If the transition is not valid, the generator is
reset to start from s0, sg .2 It should be noted that the learned
verifier is not guaranteed to be correct in checking transition
validity–it can have both false positives and false negatives.

Experimental Evaluation
Generating the training data
Using a randomized Blocksworld instance generator, with
the same parameters, we generate 10,000 initial states with
varying number of blocks and 200 test instances. To gen-
erate training trajectories, we use a random-exploring3

agent which selects any action uniformly randomly from

1There are two reasons why it isn’t preferred to include the en-
tire history into the prompt. Firstly, the context window is of lim-
ited size. Secondly, if generation is done step by step, the inference
time scales as O(n), whereas if the entire history is included in the
prompt, it scales as O(n2), n being the # of transitions.

2An alternative to resetting the generator all the way back to
s0, sg would be to just reset it to start from the previous state si.
One difference is that si, sg may be an unsolvable planning prob-
lem even when s0, sg is solvable.

3Any planner can be used to generate such trajectories and is
not important to demonstrate the utility of verifiers



the set of applicable actions in a state. In order to gener-
ate some diversity, we prune actions in which the next state
has already been explored. This gives us access to an of-
fline dataset of valid and diverse trajectories D = {Ti =

(s1, a1, s2, a2...sg)}|D|
i=1. To generate training data for GPT-

2 from these trajectories, we choose the end state as the goal
and each individual transition is taken as an input sentence4.
Additional details can be found in the Appendix.

Baselines and Metrics
For all the methods, we consider a maximum plan length
Lmax. To measure the utility of a verifier we consider the
following methods:

• generator@k: This agent generates at most k plans of
length at most Lmax. In the first plan that the agent’s gen-
erated next state matches the goal, the plan is proposed.
The inference algorithm is given in Algorithm 1

• generator+verifier@k: This agent generates at most k
plans of length atmost Lmax. As soon as a plan is found
which reaches the goal and the verifier approves all tran-
sitions, it is proposed. The inference algorithm is given
in Algorithm 2

For all baselines, we use top-p sampling for the next token
during generation (Holtzman et al. 2020) with p = 0.99,
with a temperature τ = 1. Lmax is set to 40 steps.

Each planner proposes a plan for an instance. To assess
the planners, we consider the following metrics:

• bad-transition-rate(BTR): Does the plan have an illegal
action in the proposed plan?

• goal-reaching-rate(GRR): Is the goal achieved in the
proposed plan?

Algorithm 1: Inference algorithm for generator@k

Require: G: generator, V : verifier, Lmax: Max plan
length, k: Max number of plans, s0: Start state, sg: Goal.
i← 0
while i < Lmax do
j ← 0
while j < k do

if sj == g then
return (a1, a2...aj−1)

end if
aj , sj+1 ← G(sj , sg)
j ← j + 1

end while
i← i+ 1

end while

Results
How does generator+verifier do? For the purpose of this
experiment, we set k = 25 and the trained model is used

4We only consider complete specification of the goal state in
our work for simplicity, although a partial specification is an easy
extension.

Algorithm 2: Inference algorithm for generator+verifier@k

Require: G: generator, V : verifier, Lmax: Max plan
length, k: Max number of plans, s0: Start state, sg: Goal.
i← 0
while i < Lmax do
j ← 0
while j < k do

if sj == g then
return (a1, a2...aj−1)

end if
aj , sj+1 ← G(sj , sg)
if V (sj , aj) fails then

break
end if
j ← j + 1

end while
i← i+ 1

end while

for generating plans on the 200 test instances. For each test
instance, there can be three possible outcomes:

1. The proposed plan is valid and reaches the goal.5

2. The proposed plan fails because of illegal actions in any
intermediate step.

3. The planner fails to propose a plan.

Method GRR BTR
generator@25 0.375 0.525

generator+verifier@25 0.655 0.05

Table 1: Results of generator@25 and genera-
tor+verifier@25 on 200 Blocksworld test instances.

As we see from Table 1, generator@25 can only solve 37.5%
of the instances, and has a bad transition in 52.5% of the total
instances(Note that if even one action is inapplicable, the en-
tire trajectory is invalid). However, generator+verifier@25 is
able to gain substantially over generator@25 and achieve a
score of 65.5%. Additionally, we see that BTR goes down
significantly and is present in only 5% of the proposed plans
in the test instances.

Does the performance improve with more attempts?
Since the generator is non-deterministic, we expect that the
GRR of the planner would increase with increasing number
of attempts that it gets at generating a plan. In order to ver-
ify this hypothesis, we vary k in the range {1, 8, 16, 25},
and measure the performance of generator@k and gener-
ator+verifier@k. The results can be seen in Figure 2. It
is evident that the performance of both models increases
with increasing number of trajectories, but only genera-
tor+verifier@k is able to improve consistently unlike gen-
erator@k which plateaus around 16 trajectories.

5An example plan can be found in the Appendix



Figure 2: GRR of generator+verifier@k and generator@k
with increasing number of attempts at generating a plan

Finetuning the generator to train the verifier leads to bet-
ter generalization. Which model should be finetuned to
create the verifier? The first option is to finetune GPT-2 it-
self, referred to as Vbase. The other option is to finetune the
generator, referred to as the Vgenerator

6. From results in Ta-
ble 2, we observe that finetuning the generator leads to better
results. Intuitively, this could be because the generator has
already been trained on a related task, which makes it more
robust.

Method GRR BTR
generator+verifier(Vbase)@25 0.635 0.105

generator+verifier(Vgenerator)@25 0.655 0.5

Table 2: Results of using a verifier finetuned on GPT-2 ver-
sus the generator.

How does the sampling temperature affect results? The
sampling temperature τ of the LM controls the diversity in
the output by scaling the un-normalized log probabilities of
each token by a factor of τ . A temperature of 0 would lead
to greedy sampling and a temperature of infinity would lead
to a uniform distribution over next tokens. To investigate the
role of temperature in the performance of the architecture,
we do a sweep over τ ∈ {0.2, 0.5, 0.8, 1.1}. The results can
be seen in Figure 3.

The inverted U-shaped curve can be explained by the
exploration-exploitation tradeoff where there is an op-
tima reached at a particular temperature. At a lower
temperature(τ = 0.2), the generator is very conservative
and doesn’t have a lot of diversity in the generated plans.
Suprisingly, it also makes a much lower number of bad tran-
sitions. On the other hand, at a higher temperature(τ = 1.1),
the generator is very exploratory and starts making more bad
transitions, which is why the goal reaching rate starts de-
creasing. This is also suggestive of the fact that τ can be
tuned on a validation set to find the optimal value.

6Note that the generator itself was finetuned from GPT-2.

Figure 3: Plot comparing GRR of generator+verifier@25
with respect to varying values of temperature

Related Work
Unlike methods such as SayCan (Ahn et al. 2022), which
use LLMs for heuristic guidance, and depend instead on
external simulators for correctness, our verifier is learned
from the same trajectory data used for finetuning the LLM
in the first place. The idea of learning to act from an of-
fline dataset of trajectories ties in to the field of offline RL.
The ability to plan from the “logs” of a system provides effi-
ciency by reducing the number of interactions required with
the environment to learn the dynamics/policy in the environ-
ment. Even for PDDL planning, the efforts to leverage pre-
vious trajectories to provide planning capabilities pre-dates
the rise of transformers. For example, (Zhuo et al. 2020) use
word vector embeddings and RNNs to support plan recogni-
tion. Recent works such as Decision Transformer(Chen et al.
2021) also employ large Transformer models to learn poli-
cies purely from trajectories. The work by (Pallagani et al.
2022) attempts to learn plans directly from action sequences
generated by a planner. They too represent the states and ac-
tions in the form of text which acts as input for an LLM. Nei-
ther of these works however leverage independently trained
verifiers like we do.

Conclusions and Future Work
From our study, we discover that the usage of a verifier is
critical for using Large Language Models for the purposes
of planning, since it can prune plans which have illegal ac-
tions. It is able to successfully unlock scaling with respect
to an increasing number of attempts at generating a plan.
An interesting question might be how to employ the feed-
back of verifiers into the generator during test-time. Also,
how does the technique of verification scale to the level of
pre-trained models as large as GPT-3 or GPT-4. Is it possible
that a verifier could be built merely by prompt engineering
via in-context learning? All these questions seem worth in-
vestigating, which we leave for future work. The appendix
contains additional details on the training and test data, the
hyper-parameter settings for the training of the generator and
verifier, as well as an example of a 40 transition plan gener-
ated by the generator+verifier@25.
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Appendix
Training data
The training set consists of 10000 initial states with 3 to 8
blocks. The generators used were taken from (Seipp, Tor-
ralba, and Hoffmann 2022). Using these, we generate tra-
jectories of length at most 20, by sampling a random action
from the valid set of actions in a state. Whenever a state is
visited which has already been visited, we stop the trajec-
tory. Then, we collect all the transitions in that trajectory
with the goal being the end state. This allowed us to gener-
ate almost 61,000 trajectories. We create a similar validation
dataset of 6000 trajectories. To convert the PDDL state and
action to its textual representation, we convert all the true
propositions to text and append them in lexicographical or-
der.

Test instances
With a process similar to the training data generation, we
generate 200 trajectories on different initial states of length
atmost 30. The end state is sampled from the second half
of the generated trajectory, so that the end state requires a
non-trivial number of actions to reach.

Generator
The generator is a finetuned GPT-2 model trained on 2
Nvidia V100 GPUs. The hyperparameters for training the
generator are given in Table 3

Parameter Value
Batch size 16

Training epochs 20
Learning rate 5e-6
Warmup steps 50

Table 3: Training hyperparameters for the generator

Verifier
The verifier is finetuned on the generator which itself is a
GPT-2. It was trained on 1 Nvidia V100 GPU. The hyperpa-
rameters for training the verifier are given in Table 4

Parameter Value
Batch size 8

Training epochs 1
Learning rate 5e-6
Warmup steps 20

Table 4: Training hyperparameters for the verifier

An Example Plan
The following is an example plan generated by gen-
erator+verifier@25. Note that the plan will not be
(near-)optimal, because the training data doesn’t use
an (near-)optimal planner for trajectories. If (near-)optimal
trajectories are used for training, the quality of plans will

also be improved.
Transition 1:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (on b1
b4) (on b3 b2) (on b4 b3) (on-table b2)

ACTION: (unstack b1 b4)

NEXT STATE: (clear b4) (holding b1) (on
b3 b2) (on b4 b3) (on-table b2)

Transition 2:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b4) (holding b1) (on b3
b2) (on b4 b3) (on-table b2)

ACTION: (putdown b1)

NEXT STATE: (arm-empty) (clear b1)
(clear b4) (on b3 b2) (on b4 b3)
(on-table b1) (on-table b2)

Transition 3:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b4) (on b3 b2) (on b4 b3) (on-table b1)
(on-table b2)

ACTION: (pickup b1)

NEXT STATE: (clear b4) (holding b1) (on
b3 b2) (on b4 b3) (on-table b2)

Transition 4:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b4) (holding b1) (on b3
b2) (on b4 b3) (on-table b2)

ACTION: (putdown b1)

NEXT STATE: (arm-empty) (clear b1)
(clear b4) (on b3 b2) (on b4 b3)
(on-table b1) (on-table b2)

Transition 5:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)



(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b4) (on b3 b2) (on b4 b3) (on-table b1)
(on-table b2)

ACTION: (unstack b4 b3)

NEXT STATE: (clear b1) (clear b3)
(holding b4) (on b3 b2) (on-table b1)
(on-table b2)

Transition 6:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b3) (holding
b4) (on b3 b2) (on-table b1) (on-table
b2)

ACTION: (stack b4 b1)

NEXT STATE: (arm-empty) (clear b3)
(clear b4) (on b3 b2) (on b4 b1)
(on-table b1) (on-table b2)

Transition 7:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b3) (clear
b4) (on b3 b2) (on b4 b1) (on-table b1)
(on-table b2)

ACTION: (unstack b3 b2)

NEXT STATE: (clear b2) (clear b4)
(holding b3) (on b4 b1) (on-table b1)
(on-table b2)

Transition 8:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b2) (clear b4) (holding
b3) (on b4 b1) (on-table b1) (on-table
b2)

ACTION: (putdown b3)

NEXT STATE: (arm-empty) (clear b2)
(clear b3) (clear b4) (on b4 b1)
(on-table b1) (on-table b2) (on-table
b3)

Transition 9:

GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b2) (clear
b3) (clear b4) (on b4 b1) (on-table b1)
(on-table b2) (on-table b3)

ACTION: (unstack b4 b1)

NEXT STATE: (clear b1) (clear b2)
(clear b3) (holding b4) (on-table b1)
(on-table b2) (on-table b3)

Transition 10:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b2) (clear b3)
(holding b4) (on-table b1) (on-table
b2) (on-table b3)

ACTION: (putdown b4)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (clear b3) (clear b4)
(on-table b1) (on-table b2) (on-table
b3) (on-table b4)

Transition 11:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b2) (clear b3) (clear b4) (on-table b1)
(on-table b2) (on-table b3) (on-table
b4)

ACTION: (pickup b2)

NEXT STATE: (clear b1) (clear b3)
(clear b4) (holding b2) (on-table b1)
(on-table b3) (on-table b4)

Transition 12:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b3) (clear b4)
(holding b2) (on-table b1) (on-table
b3) (on-table b4)

ACTION: (stack b2 b1)

NEXT STATE: (arm-empty) (clear b2)
(clear b3) (clear b4) (on b2 b1)



(on-table b1) (on-table b3) (on-table
b4)

Transition 13:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b2) (clear
b3) (clear b4) (on b2 b1) (on-table b1)
(on-table b3) (on-table b4)

ACTION: (unstack b2 b1)

NEXT STATE: (clear b1) (clear b3)
(clear b4) (holding b2) (on-table b1)
(on-table b3) (on-table b4)

Transition 14:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b3) (clear b4)
(holding b2) (on-table b1) (on-table
b3) (on-table b4)

ACTION: (stack b2 b3)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (clear b4) (on b2 b3)
(on-table b1) (on-table b3) (on-table
b4)

Transition 15:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b2) (clear b4) (on b2 b3) (on-table b1)
(on-table b3) (on-table b4)

ACTION: (unstack b2 b3)

NEXT STATE: (clear b1) (clear b3)
(clear b4) (holding b2) (on-table b1)
(on-table b3) (on-table b4)

Transition 16:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b3) (clear b4)
(holding b2) (on-table b1) (on-table
b3) (on-table b4)

ACTION: (stack b2 b4)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (clear b3) (on b2 b4)
(on-table b1) (on-table b3) (on-table
b4)

Transition 17:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b2) (clear b3) (on b2 b4) (on-table b1)
(on-table b3) (on-table b4)

ACTION: (pickup b3)

NEXT STATE: (clear b1) (clear b2)
(holding b3) (on b2 b4) (on-table b1)
(on-table b4)

Transition 18:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b2) (holding
b3) (on b2 b4) (on-table b1) (on-table
b4)

ACTION: (stack b3 b2)

NEXT STATE: (arm-empty) (clear b1)
(clear b3) (on b2 b4) (on b3 b2)
(on-table b1) (on-table b4)

Transition 19:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b3) (on b2 b4) (on b3 b2) (on-table b1)
(on-table b4)

ACTION: (unstack b3 b2)

NEXT STATE: (clear b1) (clear b2)
(holding b3) (on b2 b4) (on-table b1)
(on-table b4)

Transition 20:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b2) (holding
b3) (on b2 b4) (on-table b1) (on-table
b4)



ACTION: (putdown b3)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (clear b3) (on b2 b4)
(on-table b1) (on-table b3) (on-table
b4)

Transition 21:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b2) (clear b3) (on b2 b4) (on-table b1)
(on-table b3) (on-table b4)

ACTION: (pickup b3)

NEXT STATE: (clear b1) (clear b2)
(holding b3) (on b2 b4) (on-table b1)
(on-table b4)

Transition 22:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b2) (holding
b3) (on b2 b4) (on-table b1) (on-table
b4)

ACTION: (putdown b3)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (clear b3) (on b2 b4)
(on-table b1) (on-table b3) (on-table
b4)

Transition 23:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b2) (clear b3) (on b2 b4) (on-table b1)
(on-table b3) (on-table b4)

ACTION: (pickup b1)

NEXT STATE: (clear b2) (clear b3)
(holding b1) (on b2 b4) (on-table b3)
(on-table b4)

Transition 24:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b2) (clear b3) (holding
b1) (on b2 b4) (on-table b3) (on-table
b4)

ACTION: (putdown b1)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (clear b3) (on b2 b4)
(on-table b1) (on-table b3) (on-table
b4)

Transition 25:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b2) (clear b3) (on b2 b4) (on-table b1)
(on-table b3) (on-table b4)

ACTION: (pickup b3)

NEXT STATE: (clear b1) (clear b2)
(holding b3) (on b2 b4) (on-table b1)
(on-table b4)

Transition 26:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b2) (holding
b3) (on b2 b4) (on-table b1) (on-table
b4)

ACTION: (putdown b3)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (clear b3) (on b2 b4)
(on-table b1) (on-table b3) (on-table
b4)

Transition 27:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b2) (clear b3) (on b2 b4) (on-table b1)
(on-table b3) (on-table b4)

ACTION: (unstack b2 b4)

NEXT STATE: (clear b1) (clear b3)
(clear b4) (holding b2) (on-table b1)
(on-table b3) (on-table b4)

Transition 28:
GOAL: (arm-empty) (clear b1) (clear



b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b3) (clear b4)
(holding b2) (on-table b1) (on-table
b3) (on-table b4)

ACTION: (stack b2 b1)

NEXT STATE: (arm-empty) (clear b2)
(clear b3) (clear b4) (on b2 b1)
(on-table b1) (on-table b3) (on-table
b4)

Transition 29:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b2) (clear
b3) (clear b4) (on b2 b1) (on-table b1)
(on-table b3) (on-table b4)

ACTION: (unstack b2 b1)

NEXT STATE: (clear b1) (clear b3)
(clear b4) (holding b2) (on-table b1)
(on-table b3) (on-table b4)

Transition 30:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b3) (clear b4)
(holding b2) (on-table b1) (on-table
b3) (on-table b4)

ACTION: (stack b2 b3)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (clear b4) (on b2 b3)
(on-table b1) (on-table b3) (on-table
b4)

Transition 31:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b2) (clear b4) (on b2 b3) (on-table b1)
(on-table b3) (on-table b4)

ACTION: (unstack b2 b3)

NEXT STATE: (clear b1) (clear b3)
(clear b4) (holding b2) (on-table b1)
(on-table b3) (on-table b4)

Transition 32:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b3) (clear b4)
(holding b2) (on-table b1) (on-table
b3) (on-table b4)

ACTION: (stack b2 b1)

NEXT STATE: (arm-empty) (clear b2)
(clear b3) (clear b4) (on b2 b1)
(on-table b1) (on-table b3) (on-table
b4)

Transition 33:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b2) (clear
b3) (clear b4) (on b2 b1) (on-table b1)
(on-table b3) (on-table b4)

ACTION: (pickup b3)

NEXT STATE: (clear b2) (clear b4)
(holding b3) (on b2 b1) (on-table b1)
(on-table b4)

Transition 34:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b2) (clear b4) (holding
b3) (on b2 b1) (on-table b1) (on-table
b4)

ACTION: (stack b3 b4)

NEXT STATE: (arm-empty) (clear b2)
(clear b3) (on b2 b1) (on b3 b4)
(on-table b1) (on-table b4)

Transition 35:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b2) (clear
b3) (on b2 b1) (on b3 b4) (on-table b1)
(on-table b4)

ACTION: (unstack b2 b1)

NEXT STATE: (clear b1) (clear b3)



(holding b2) (on b3 b4) (on-table b1)
(on-table b4)

Transition 36:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b3) (holding
b2) (on b3 b4) (on-table b1) (on-table
b4)

ACTION: (stack b2 b3)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (on b2 b3) (on b3 b4)
(on-table b1) (on-table b4)

Transition 37:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b2) (on b2 b3) (on b3 b4) (on-table b1)
(on-table b4)

ACTION: (unstack b2 b3)

NEXT STATE: (clear b1) (clear b3)
(holding b2) (on b3 b4) (on-table b1)
(on-table b4)

Transition 38:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b1) (clear b3) (holding
b2) (on b3 b4) (on-table b1) (on-table
b4)

ACTION: (putdown b2)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (clear b3) (on b3 b4)
(on-table b1) (on-table b2) (on-table
b4)

Transition 39:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (arm-empty) (clear b1) (clear
b2) (clear b3) (on b3 b4) (on-table b1)
(on-table b2) (on-table b4)

ACTION: (pickup b1)

NEXT STATE: (clear b2) (clear b3)
(holding b1) (on b3 b4) (on-table b2)
(on-table b4)

Transition 40:
GOAL: (arm-empty) (clear b1) (clear
b2) (on b1 b3) (on b3 b4) (on-table b2)
(on-table b4)

STATE: (clear b2) (clear b3) (holding
b1) (on b3 b4) (on-table b2) (on-table
b4)

ACTION: (stack b1 b3)

NEXT STATE: (arm-empty) (clear b1)
(clear b2) (on b1 b3) (on b3 b4)
(on-table b2) (on-table b4)


