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ABSTRACT

Consumption Drives Production (CDP) on social platforms aims to deliver interpretable
incentive signals for creator ecosystem building and resource utilization improvement,
which strongly relies on attributions. In large-scale and complex recommendation sys-
tem, the absence of accurate labels together with unobserved confounding renders back-
door adjustments alone insufficient for reliable attribution. To address these problems, we
propose Adversarial Learning Mediator based Multi Touch Attribution (ALM-MTA), an
extensible causal framework that leverages front-door identification with an adversarially
learned mediator: a proxy trained to distillate outcome information to strengthen causal
pathway from treatment to outcome and eliminate shortcut leakage. Then, we introduce
contrastive learning that conditions front door marginalization on high match consumption
upload pairs for ensuring positivity in large treatment spaces. To assess causality from non
RCT logs, we also incorporate a non personalized bucketed protocol, estimating grouped
uplift and computing AUUC over treatment clusters. Finally, we evaluate ALM-MTA per-
formance using a real-world recommendation system with 400 million DAU (daily active
users) and 30 billion samples. ALM-MTA has increased DAU with 0.04% and 0.6% of the
daily active creators, with unit exposure efficiency increased by 670%. On causal utility,
ALM-MTA achieves higher grouped AUUC than the SOTA in every propensity bucket,
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with a maximum gain of 0.070. In terms of accuracy, ALM-MTA improves upload AUC
by 40% compared to SOTA. These results demonstrate that front-door deconfounding with
adversarial mediator learning provides accurate, personalized and operationally efficient
attribution for creator ecosystem optimization.

1 INTRODUCTION

In platform-mediated creator economies, content platforms have exhibited a stable ‘consumption-drives-
production’ pattern: users are more likely to transition into creation (i.e., upload new content) after con-
suming sufficiently ‘inspiring’ content Yao et al. (2024); O’Toole (2023). Accordingly, understanding and
quantifying the drivers of user-generated content enables platforms to present content that inspires creation,
thereby cultivating a vibrant creator ecosystem and optimizing resource allocation O’Toole (2023); Bhar-
gava (2022). Within recommender systems, the task is naturally formalized as a multi-touch attribution
(MTA) problem, in which multiple prior touchpoints in a user’s consumption sequence may jointly lead to
the eventual conversion (an upload) Shender et al. (2020); Yao et al. (2022). Accurate causal attribution is
not only essential for interpretability, but it also directly impacts on incentive design, cold-start handling,
and re-ranking optimization Liu et al. (2025a). However, in large-scale, complex recommender systems,
multi-touch attribution is jointly constrained by (i) the absence of explicit ground truth, (ii) pervasive multi-
source confounding, and (iii) the large-scale candidate-touchpoint space, rendering reliable and scalable
causal attribution a central challenge for system design and creator-ecosystem governance Luo et al. (2024).
Within these constraints, industrial practice typically bifurcates attribution into strict rule based methods and
semantic/path similarity methods. The former delivers high precision yet very limited coverage, whereas
the latter broadens coverage but lacks causal identifiability and often conflates correlation with cause Gao
et al. (2024). Both methods fail to estimate the counterfactual effect on the upload outcome of removing a
specific video within the video consumption sequence, while preserving the rest of the trajectory (see Fig.1).
At the individual level, estimating a personalized causal effect requires quantifying, within a user’s sequen-
tial consumption context, each touchpoint’s marginal uplift in that user’s upload probability producing an
intra-individual ranking by causal strength Wang et al. (2025); Tang (2024). Since rule- or semantic-based
methods typically rely on cohort-level averaging and similarity scores, ignoring heterogeneous treatment
effects (HTE), sequence effects, and interactions among touchpoints, they are ultimately difficult to provide
personalized effect estimates at the user level Lee et al. (2025); Zhan et al. (2024). Consequently, conven-
tional methods cannot simultaneously achieve precision, coverage, and personalization.
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Figure 1: Counterfactual attribution by touchpoint deletion in
the video consumption sequence.

To address these challenges, we present a
novel counterfactual causal multi-touch at-
tribution framework that defines a touch-
point’s uplift as the drop in predicted up-
load probability when that touchpoint is
deleted from the video consumption se-
quence. Given unobserved confounding
in complex systems, backdoor adjustment
alone cannot ensure causal identifiability.
We therefore invoke front-door identifica-
tion by introducing a latent mediator that
transmits the causal pathway from con-
sumption to upload. This mediator can be
observed through an adversarial, label-agnostic proxy Y ′ that does not reveal the outcome Y . We en-
sure scalability and overlap in high-cardinality treatment spaces through contrastive learning and calibrated
reweighting, and train for stability under personalization and platform dynamics. The result is individualized
and reproducible uplift estimates that unify attribution across diverse business tasks.
In summary, this paper presents the following key contributions:

• A novel causal MTA framework that addresses unobserved system-level confounders in recom-
mendation ecosystems, overcoming a core limitation of prior attribution methods.

• A unified strategy for eliminating latent confounding that combines front-door identification,
adversarial proxy mediation, and propensity reweighting. This design ensures causal identifiability
in the presence of unobserved confounders and prevents outcome leakage by making the mediator
observable.

• Scalable overlap-preserving operationalization. A deployment-ready learning and evaluation
method that maintains positivity and consistency in sparse, larger treatment.
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• Strong empirical gains at real-world large-scale recommendation system. ALM-MTA (i) ex-
pands attributable coverage by 1.5× over the prior SOTA, (ii) increases daily active users (+0.04%)
and daily active creators (+0.6%), (iii) improves unit exposure efficiency by 670%, (iv) achieves
higher grouped AUUC across all propensity buckets (maximum gain +0.070), and (v) attains an
upload AUC of 0.907 (+40% over SOTA).

2 RELATED WORK

Data-Driven Multi-Touch Attribution. The central task of MTA is to allocate credit for a conversion across
a sequence of user touchpoints. Early data-driven methods moved beyond simple heuristics (e.g., last-touch)
to employ interpretable statistical models. Foundational work includes using logistic regression and survival
analysis to model conversion probability based on touchpoint history Shao & Li (2011); Ren et al. (2018).
To better capture the sequential and temporal nature of user journeys, subsequent research adopted path-level
models. Markov chains, which model the probability of transitioning between channels, became a popular
approach for quantifying a channel’s marginal contribution through its removal effect Anderl et al. (2014).
This line of work was later extended with more powerful sequence models like Recurrent Neural Networks
(RNNs) to learn more complex user path representations Arava et al. (2018); Ji & Wang (2017). Concur-
rently, game-theoretic approaches, particularly the Shapley value, gained widespread adoption due to their
axiomatic properties of fairness and additivity Zhao et al. (2018). However, the computational complexity of
the exact Shapley value has spurred research into efficient approximation methods Jia et al. (2019); Kumar
et al. (2020). While these methods offer valuable insights, they are predominantly correlational and often
rely on the strong, implicit assumption that user touchpoints are exogenous, failing to adequately address
the confounding bias inherent in real-world systems.
Causal Inference in Attribution and Recommendation. More recent work has rigorously framed MTA
as a causal effect estimation problem, aiming to compute the uplift or Average Treatment Effect (ATE)
of a touchpoint on a user’s conversion probability. A dominant approach for this is the backdoor adjust-
ment, rooted in the potential outcome framework Chen (2024). This involves leveraging methods like In-
verse Propensity Weighting (IPW) and Doubly Robust (DR) estimators to control for observed confounders
Rosenbaum & Rubin (1983); Dudı́k et al. (2011). These techniques are foundational to modern causal
MTA and efforts to debias recommender systems from selection and exposure biases Bottou et al. (2013);
Schnabel et al. (2016). However, their validity hinges on the strong ignorability (or unconfoundedness)
assumption—that all common causes of treatment and outcome have been measured. This assumption is
rarely tenable in complex ecosystems like recommender systems, where latent factors such as user intent,
social influence (peer effects), and the platform’s own strategic biases act as unobserved confounders Yang
et al. (2020); Molina et al. (2022). Our work directly confronts this critical limitation.
Front-Door and Proxy-Based Methods for Unobserved Confounding. When strong ignorability is vi-
olated, alternative identification strategies are required. The front-door criterion, introduced by Neuberg
(2003) provides another powerful theoretical tool for identifying causal effects in the presence of unob-
served confounding, provided a valid mediating variable can be identified. A mediator is a variable that
intercepts the causal pathway from treatment to outcome entirely. While theoretically elegant, the practical
application of the front-door criterion has been limited, primarily due to the stringent requirement of find-
ing and perfectly measuring a mediator that satisfies the necessary conditional independence properties Xu
et al. (2023b). Recent efforts have explored using deep learning models to learn mediator representations,
but often still assume the mediator is fully observable Luo et al. (2024); Xu et al. (2023c). To overcome
the challenge of unobservable variables, researchers have turned to proxy-based and adversarial learning
techniques. Proxy variables correlated with latent confounders have been investigated to partially mitigate
confounding bias Miao et al. (2018a); Tchetgen Tchetgen et al. (2024a). In parallel, adversarial learning has
been adapted for causal inference to learn balanced representations that are invariant to treatment assign-
ment, thereby mitigating confounding bias Ganin et al. (2016); Long et al. (2017); Johansson et al. (2016);
Shalit et al. (2017). However, they have not been systematically integrated with the front-door criterion
for MTA. Our work present a framework that leverages an adversarial proxy to render the latent mediator
observable while preventing outcome leakage, thereby operationalizing the front-door criterion for MTA. In
contrast to prior proxy-based methods that primarily approximate unobserved confounders to mitigate bias,
our design focuses on enabling mediator observation as the key to front-door identifiability. Recent debias-
ing methods address latent confounding through multi-cause modeling Huang et al. (2025) or latent causal
structure learning Xu et al. (2025), which rely on backdoor-style adjustment. Moreover, including substitute
confounders Xu et al. (2023a) method, these approaches do not address front-door identification with latent
mediators, outcome leakage from proxies, or positivity in high-cardinality treatments. ALM-MTA fills these
gaps through adversarial proxy mediation and contrastive overlap control.
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3 TASK AND PROBLEM FORMULATION

Task. Given a user’s recent consumption sequence and contextual features, we estimate the individualized
causal uplift of each touchpoint (a consumed item) on the user’s subsequent upload (creation) behavior and
output this uplift as multi touch attribution for interpretation and downstream ranking. Specifically, let the
user level observation be (X,T, Y ): X denotes user and environmental context (including observable plat-
form covariates), T = ⟨τ1, . . . , τL⟩ is time-ordered sequence of consumed touchpoints, and Y ∈ {0, 1}
indicates whether the user uploads within consumption sequence horizon.The uplift of consumed touch-
point is defined as the counterfactual removal drop in upload probability.See Appendix §A.1 for a detailed
discussion of the front-door assumptions and the proxy mediator.

∆(τj |X,T ) = P (Y = 1|do(T ), X)− P (Y = 1|do(T\τj), X). (1)

In practice, the model outputs the approximate difference between these two counterfactual probabilities as
the attribution strength, producing “multi-point” attribution labels that construct actionable touchpoint-level
causal attribution targets in non-RCT logs without explicit labels.

: Block the pathW
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Figure 2: Causal graph with latent confounding
and adversarially observed mediator. X denotes
observed confounding. W is unobserved potential
confounding. T means treatment. Y is the result or
output variable. Y ′ is observations of result Y . M
represents Mediator, which is transmission path be-
tween T and Y .

Causal Graph Structure and Variables. Large-
scale recommendation involves system- and
sequence-level confounding which is hard to
enumerate. To obtain identifiable individual effects,
we adopt a graph (X,W, T,M, Y ) with unobserved
confounders W , mediator M , and outcome Y (see
Fig.2). X is observable confounding (e.g., static
or dynamic attributes of users), W is unobservable
confounding (e.g., strategies of recommendation
systems), M is mediator (e.g., the path to trigger the
upload action after a user views a video in CDP), Y ′

is the proxy (e.g., compare the upload with the videos
user has viewed and determine the motivated path).
In the Causal Graph, the unobserved confounder W
and the observed covariates X can both influence T
and Y , and the causal path from touchpoints to the outcome must pass through T → M → Y . Since
large-scale recommendation system involves hard-to-enumerate system- and sequence-level confounding,
backdoor adjustment alone cannot ensure identifiability.
Front-Door Identification. To identify P (Y = 1|do(T ), X) and ∆(τj |X,T ) thereby under the observed
distribution, we invoke the front-door criterion: (i) Path containment: all directed paths from T to Y pass
through M ; (ii) No backdoor for M → Y : unobserved confounding does not affect M (or is blocked by X);
(iii) Block T → M backdoors: by marginalizing on T blocks backdoor paths from T to M . Under these
conditions, the standard front-door formula gives:

E(Y |do(T = t)) = ΣmE(Y |do(M = m)) ∗ P (M = m|do(T = t)), (2)

from which touchpoint-level uplift is defined and estimated.
Overlap under large-cardinality treatments. The meaning of attribution overlap is that for any unit, the
probabilities of receiving and not receiving the treatment are strictly positive. When marginalizing over
T , the denominator of the conditional probability must be non-zero. However, in the bandwagon business
scenario, the treatment space is extremely large, making it difficult to satisfy the overlap condition when
marginalizing T .
Objective (individualized attribution). We estimate a function gθ(X,T ) that approximates the interven-
tional response P (Y = 1|do(T ), X) via front-door identification, integrating the adversarial proxy-mediator
and contrastive filtering into the estimation pipeline. Touchpoint-level attribution for τj ∈ T is defined as:

∆̂(τj |X,Y ) = gθ(X,T )− gθ(X,T{τj}). (3)

4 MODEL: ALM-MTA FRAMEWORK

ALM-MTA (Fig.3) can be viewed as a practical front-door generalization of causal multi-touch attribution
to large-scale recommendation, taking a user context X and a time-ordered treatment sequence T to pro-
duce individualized, touchpoint-level uplift labels. Operationally, the model first reweights observational
logs with inverse propensity scores (IPW) to mitigate back-door bias from X → T . A shared neural back-
bone then encodes the sequence and feeds two coordinated heads. The first is a lightweight ITE head that
aggregates touchpoint embeddings with learned weights to parameterize the logit for P (Y |X,T ). Uplift is
obtained by comparing this logit with the one re-estimated after removing a touchpoint. The second is a
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mediator-observation head supervised by a proxy Y ′. Through adversarial learning, this head is trained to
capture the T → M → Y pathway while suppressing shortcut leakage Y ′ → Y so that the mediator signal
remains usable for front-door identification.
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Figure 3: The ALM-MTA architecture. User features and treatment sequences are reweighted via IPW and
encoded by a shared backbone. A weighted ITE head estimates per-touchpoint uplift, while an adversarial
proxy branch renders the latent mediator observable without leaking the outcome. Residual corrections
refine signals, jointly enabling front-door identification and stable counterfactual attribution at scale.

4.1 THE STRATEGIES FOR ELIMINATING LATENT CONFOUNDING

A major challenge in multi-touch attribution in observational logs is the presence of latent confounders that
simultaneously affect the consumed touchpoints T and the upload result Y . Without proper treatment, these
confounders lead to biased attribution estimates. We adopt three strategies, including front-door identifica-
tion, adversarial proxy mediation, and propensity reweighting, to eliminate such confounding and guarantee
causal identifiability.
Eliminating latent confounding via the front-door criterion. As shown in Section 3, the causal graph in
Figure 2 fully satisfies the three conditions of the front-door criterion. Therefore, we can apply the front-
door criterion to eliminate unobserved confounders W . When conditioning on treatment T and covariates
X , the mediator M is not confounded with the result Y . Formally,

E[Y |do(M = m)] = Σt′,xE[Y |M = m,T = t′, X = x] ∗ P (T = t′, X = x). (4)

Given T and X , all back-door paths from M to Y are blocked, so that

E[Y |do(M = m), T = t
′
, X = x] = E[Y |M = m,T = t

′
, X = x], (5)

E[Y |do(M = m)] = Σt′,xE[Y |M = m,T = t′, X = x] ∗ P (T,X|do(M = m))

= Σt′,xE[Y |M = m,T = t′, X = x] ∗ P (T,X).
(6)

Substituting this equality into the front-door formula yields the following.

E[Y |do(T = t)] = Σm,t′,xE[Y |M = m,T = t′, X = x]

× P (T = t′, X = x) ∗ P (M = m|T = t).
(7)

This derivation shows that the causal effect of T on Y can be identified through the mediator M , even in the
presence of unobserved confounders W .
Mediator Identification via Adversarial Proxy. We posit that the causal effect of T on Y is transmitted
through a latent mediator M . However, M is unobservable in practice. We therefore introduce a proxy
variable Y ′ that correlates with M . A mediator branch is supervised by Y ′ to produce an embedding M̂
To prevent shortcut leakage, we add an adversarial objectiveBai et al. (2021): a discriminator attempts to
predict Y from M̂ , while the mediator branch is optimized to suppress this predictability. As a result, M̂
retains only the information necessary for the causal path T → M → Y , without directly revealing the
outcome. Observing the proxy brings an additional benefit. By the monotonicity of conditional variance,
enlarging the conditioning set from {X,T} to {X,T, Y ′} satisfies:
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V ar(Y |X,Y ) ≥ V ar(Y |X,T, Y ′), (8)

which shows that incorporating Y ′ reduces the variance in the estimation of uplift and improves stability
in high-cardinality treatments. This is particularly valuable in high-cardinality treatments, where data per
touchpoint is sparse.
Unconfoundedness under the observational distribution. Data-driven modeling must rely on historical
exposure logs; because exposures are jointly determined by user preferences and platform policies, the in-
terventional path do(T ) deviates significantly from the empirical log Pobs(X,T,M, Y ). Direct training on
the raw data therefore learns correlation and is affected by confounding. To bridge this gap using observa-
tional data alone, we adopt a “front-door debiasing + inverse-propensity reweighting” scheme: assign each
sample the weight w(x, t) = 1/Pobs(T = t | X = x). Under positivity and a correctly specified propensity
model, the reweighted distribution becomes “as if randomized” given X; further leveraging the front-door
structure T →M → Y (which, after conditioning on T,X , blocks all back-door paths from M to Y ), the
upload probability can be decomposed into counterfactual gains at the touchpoint level that are estimable
from observables (see Appendix §A.2 for derivation):

upload =
∑
t

upliftt =
∑
t

E[Y | do(T = 1)]− E[Y | do(T = 0)]

=
∑
t

∑
x,m

f(m, t, x)
Pobs(x,m, Torigin)

Pobs(t | x)
=

∑
instance

f(M,T,X)w(X,T ).
(9)

Where f(M,T,X) = E[Y | M,T,X]. It follows that combining front-door debiasing with IPW enables
causal attribution to be identified directly from raw logs, guarantees unconfoundedness with respect to latent
confounders, and establishes the scheme’s theoretical implementability. The loss in upload probability is
modeled as the uplift, which is assumed to be linearly aggregable into the overall upload.

4.2 CONTRASTIVE LEARNING FOR OVERLAP

For causal identification, every unit must have non-zero probability of receiving each treatment. In large-
scale attribution, however, the treatment space is extremely high-cardinality, and many touchpoints occur
rarely. This leads to violations of positivity, making marginalization over all T unstable and high-variance.
Therefore, we introduce a contrastive learning module that estimates the semantic ’match’ between each
consumed touchpoint T and the proxy mediator Y ′, as shown in Fig.4. Positive pairs are constructed from
the actual proxy–touchpoint interactions that precede an upload, while negatives are drawn from unrelated
touchpoints. The InfoNCE loss encourages embeddings of (Y ′, T ) pairs that are causally related to be-
ing closer, and unrelated pairs to be farther apart. The resulting score ω(τ, Y ′) quantifies how strongly a
touchpoint is aligned with the proxy outcome. During front-door estimation, we restrict marginalization
to the high-match subset τhigh = {τ ∈ T |ω(τ, Y ′)top − K}, and reweight accordingly. This guarantees
that the denominator of conditional probabilities remains positive, satisfying overlap and reducing estimator
variance.

4.3 STABILITY-ORIENTED ATTRIBUTION

similarity
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1

Observation of Y'
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𝑞

T: Treatment

contrastive loss
weighted sum

Figure 4: Contrastive overlap control for front-
door estimation.

Causal conclusions should not fluctuate simply because of
incidental variations in training. When the same statisti-
cal procedure is applied, the resulting causal effects ought
to remain invariant. In practice, models trained on large-
scale personalized logs are highly sensitive that uplift es-
timates often drift across random seeds, data orderings,
and minor perturbations, undermining the reproducibility
of attribution. Our framework explicitly enforces stability
by designing the learning architecture and training process
to resist such sources of randomness. Instead of allow-
ing the network to absorb all correlations present in the
data, we deliberately simplify the feature interactions so
that only robust signals are retained. This structural par-
simony is further reinforced by L2 regularization, which
prevents the model from overfitting spurious fluctuations.
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5 EXPERIMENTS

5.1 BASELINE MODEL

We benchmark three families of methods on the Criteo conversion-prediction task: statistical learning (SL),
deep learning (DL), and causal learning (CL). Logistic Regression (LR) serves as the classical statistical
learning baseline. For deep learning, we include deepMTA Neuberg (2003) as a representative attribution
model. We evaluate three causal learning baselines: DML Chernozhukov et al. (2018), DESCN Zhong et al.
(2022), and causalMTA Liu et al. (2025a). All baselines are trained on the same data and features, using
identical splits and evaluation protocols for fair comparison.

5.2 EXPERIMENT SETUP

The model comprises a counterfactual attribution backbone adversarial- and contrastive-learning branches.
The backbone estimates per-touchpoint uplift under deletion/perturbation on list-wise sequences and auxil-
iary branches perform proxy mediation and cross-modal alignment between consumed items and produced
content. The per-forward complexity is 1.31B FLOPs in total: 0.92B FLOPs for the counterfactual attribu-
tion backbone and 0.39B FLOPs for adversarial and contrastive components. Path-level attribution signals
are subsequently converted into point-wise targets for scalable distributed training. Simultaneously, we use
the Direct Routing GradientLiu et al. (2025b) method to reduce the impact of tradeoffs between targets.
Further implementation details and the full training recipe are provided in Appendix A.3.

5.3 DATA

Our experiments are conducted on large-scale user consumption–production logs. To simulate the streaming
nature of online systems, we adopt a streaming training method with both positive (upload) and negative
(non-upload) samples.
Data volume. We used 100 consecutive days of online logs to generate over 30 billion training instances.
Treatments were treated as short video touchpoints within the recommendation system that could potentially
promote creation or increase activity, organized into consumption sequences based on user chronological
order. The number of treatment candidates reached the billion-level.
Labels. The outcome variable Y is a binary upload signal (0/1). To enrich supervision without leaking Y ,
we introduce a proxy signal Y ′ in the CDP scenario. Specifically, Y ′ measures the similarity between the
user’s new work and the candidate treatment according to pre-defined strategies and rules. By design, Y ′ acts
as an adversarially constrained, observable intermediary proxy that provides the necessary path information
for front-door identification.
Positive and Negative sampling strategy. Positives are users who uploaded contents. The overall positive-
negative sample ratio was controlled at 2:3 to ensure balanced classification and statistical power. We ensure
the interaction volume of negatives, quantified by the length of collect and like sequences. The upload
activity distribution of negatives is aligned with that of the positives. The specific sampling strategy is
shown in Table 1.

Table 1: The specific positive and Negative sampling strategy.

L POSITIVE NEGATIVE RATIO

L < 20 5 billion 4,440 billion 0.16%
20 < L < 120 3 billion 840 billion 0.54%

L > 120 2 billion 280 billion 1.07%

Streaming training. We construct a
Hive table in a list-wise format every
hour. Stratified negative samples are
used to control computational cost while
preserving representativeness, and fea-
ture generation is performed via the Kai-
works FG pipeline. During inference
process, the fine-ranking model queries the MTA model to obtain attribution labels, which are transformed
into point-wise samples with full shuffling for training stability.

5.4 CAUSALITY EVALUATION SCHEME

Since randomized controlled trials (RCTs) are not available, the true average treatment effect (ATE) cannot
be directly observed. Standard predictive metrics such as AUC only assess discrimination accuracy but fail to
measure whether the predicted uplifts correspond to genuine causal contributions. To bridge this challenge,
we designed a non-personalized AUUC protocol based on Shapley value sampling, which provides a princi-
pled evaluation of attribution quality on observational data. Appendix §A.4 shows the full non-personalized
bucketed AUUC protocol.
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5.5 EFFECTIVENESS VERIFICATION

Ablation Studies and Mechanism Analysis. We ablate the causal pipeline to quantify the contributions
of mediator observation and contrastive adaptation. First, a DML counterfactual baseline with propensity
correction and privileged inputs achieves an AUC of only 0.6498 and UAUC of 0.50, indicating that latent
system-level confounding remains unresolved by backdoor adjustment alone. Second, while direct mediator
observation through Y ′ inflates discrimination (AUC 0.97, UAUC 0.90), it induces severe outcome leak-
age and training instability, as evidenced by large loss oscillations and failure to converge (Fig. 5(a)). By
introducing adversarial learning, ALM-MTA effectively eliminates this leakage and stabilizes convergence,
yielding a robust AUC of 0.86 and UAUC of 0.71 (Fig. 5(b)). Furthermore, integrating a MoCo-style con-
trastive learner addresses the sparsity in large-scale treatment spaces by ensuring overlap, which further
boosts predictive accuracy to AUC 0.907 and UAUC 0.825. Finally, for established attribution categories,
the method improves AUC to 0.63–0.70.
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(a) Observe Mediator directly through Y'
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(b) Indirect observation of Mediator through adversarial learning
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Figure 5: Training dynamics and ablation analysis. (a) Direct proxy observation leads to non-converging
oscillation, indicating outcome leakage. (b) Adversarial learning removes leakage, resulting in stable con-
vergence. (c) Loss comparison with baselines, where ALM-MTA shows higher initial loss (due to MTL) but
converges effectively. (d) AUC comparison, demonstrating that ALM-MTA achieves superior discrimina-
tion against baselines as training progresses.

Table 2: Methods performance across discrimination, calibration
and causal ranking metrics. AUC and gAUC assess discrimina-
tion; log-loss reflects calibration; avg AUUC measures grouped
causal uplift ranking. ALM-MTA attains the best results on all
four metrics.

AUC log-loss gAUC avg AUUC

LR 0.5102 0.7833 0.5011 0.4725
deepMTA 0.7598 0.4108 0.6364 0.6277

DML 0.6498 0.5433 0.5031 0.8421
DESCN 0.5492 0.6920 0.5003 0.8429

causalMTA 0.8167 0.2835 0.6752 0.8493
ALM-MTA 0.9070 0.1384 0.8210 0.8686

Results and discussion. We evalu-
ated the performance of all methods us-
ing AUC, log loss, gAUC and aver-
aged grouped AUUC. Grouped AUUC
measures causal validity by ranking pre-
dicted uplifts within propensity-stratified
treatment-cluster buckets and integrating
the uplift curve—larger area indicates
better alignment with realized causal
gains. Appendix §A.4 shows the full
non-personalized bucketed protocol. Lo-
gistic regression performs poorly under
observational confounding, with AUC
0.5102, log loss 0.7833, gAUC 0.5011,
and grouped AUUC 0.4725. Deep sequence models such as deepMTA improve discrimination to AUC
0.7598 with lower log loss 0.4108, yet their gAUC 0.6364 and grouped AUUC 0.6277 reveal sensitivity to
spurious sequential correlations. DML and DESCN show uneven behavior on ordered, sparse treatments:
discrimination remains low (AUC 0.6498 and 0.5492; gAUC 0.5031 and 0.5003) despite higher grouped
AUUC around 0.84, indicating unstable calibration and ranking consistency. CausalMTA introduces coun-
terfactual deconfounding and improves to AUC 0.8167, log loss 0.2835, gAUC 0.6752, and grouped AUUC
0.8493, though it still depends on observable confounders. Our ALM MTA attains the best results across all
metrics, reaching AUC 0.9070, the lowest log loss 0.1384, gAUC 0.8210, and the highest grouped AUUC
0.8686, as shown in Table 2 and visualized in Fig. 5(d). The consistent gains across discrimination, calibra-
tion, and grouped causal ranking indicate that adversarial mediator observation and contrastive adaptation
effectively remove latent confounding and scale to large treatment spaces, yielding reliable and causally
faithful attribution.
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Stability Analysis. Fig. 6 illustrates the stability of attribution estimates across DML, DESCN, CausalMTA
and our ALM-MTA. We exclude IR and DeepMTA as they capture only correlational patterns rather than
causal effects. We observe that both DML and DESCN exhibit high sensitivity to random initialization,
with markedly divergent bimodal pxtr distributions across training runs, leading to inconsistent causal ex-
planations. This instability underscores their inability to provide reproducible causal insights in large-scale
recommendation settings. CausalMTA reduces this variance to some extent, yielding more consistent distri-
butions and thus partially improving attribution stability. By contrast, ALM-MTA achieves the most stable
behavior: its pxtr distributions remain highly consistent across seeds, indicating that the causal attributions
it generates are reproducible and robust. This confirms that the adversarial mediator design and stability-
oriented training procedure effectively mitigate randomness in estimation, yielding stable and interpretable
causal attributions.

5.6 ONLINE EVALUATION AT REAL-WORLD PRODUCTION SCALE

We deployed ALM-MTA in real-world production, where its multi-touch uplift labels are consumed by
fine-ranking training and online reweighted serving under fully aligned policies. We evaluate four metrics
to ensure causal coherence and reproducibility: supply-side gains, scalability, coverage, and attribution
accuracy.
Supply-side gains with steady platform health. Our first online experiment confirms that the proposed
method robustly improves key supply-side metrics. We observe a direct increase in the core active creator
population, with Weekly Active Users (WAU) rising by +0.131% and Daily Active Users (DAU) rising by
+0.180%. The addressable scale of these creators also expands by +0.119%. These gains are mediated
by stronger creation-intent signals, as theorized. Engagements with production-related prompts (+0.292%),
publication-focused prompts (+0.789%), and social-driven prompts (+0.465%) all increase significantly.
This strengthening of the mediator stage (M ) leads to downstream increases in producer WAU (+0.566%)
and trend-following creators (+0.555%), alongside a +0.065% improvement in content diversity. Impor-
tantly, these targeted improvements do not negatively impact overall platform health. Macro-level indicators
such as active devices (−0.010%), per-user time spent (+0.018%), and per-device time spent (+0.010%)
fluctuate only negligibly. This provides strong evidence that our front-door and adversarial-mediator archi-
tecture effectively strengthens the intended T →M → Y causal chain while preventing reliance on spurious
correlations.
Scalability in larger treatment spaces. Under heavier load and larger treatment spaces, the method pre-
serves positivity and remains stable at system scale. Producer WAU and author-open scale increase by
+0.145% and +0.179%, respectively. The CDP indicators also rise significantly, with production traffic effi-
ciency at +0.504% and uploads per user at +0.569%. Stronger consumption-side signals (strict-bandwagon
VV +0.424%, broad-bandwagon plays +0.249%) validate the maintenance of overlap by contrastive front-
door marginalization. Platform health remains within a narrow fluctuation band (active devices +0.035%,
overall time +0.002%), and faster interaction scenarios show enhanced comment dwell (+0.128%), indicat-
ing that expanding the treatment space does not come at the expense of platform health.
Coverage and multi-touch depth. Under a unified threshold of 0.54, upload coverage increases from 0.39
to 0.58 (up to 1.49×), while the average number of attributed touchpoints per covered upload rises from
2.93 to 7.31 (up to 2.49×). These results indicate that, in high-cardinality treatment spaces, an attribution
framework incorporating front-door identification and contrastive learning can substantially broaden the
coverage of explainable uploads and increase touchpoint-level explanatory granularity. The resulting higher
label density directly improves supervision quality for uplift-oriented re-ranking and incentive allocation.
Attribution accuracy. Under the ‘matching and activation’ criterion, we assess causal links between touch-
points and uploads. Compared with the method currently deployed online (Precision 4.32%, Recall 7.95%),
our method achieves substantial improvements under the same evaluation: Precision increases to 21.88%,
and Recall increases to 11.67%. Moreover, in the high-confidence segment (top-score bucket), Precision
reaches 54%, indicating strong discriminability and calibration in the head region of the scoring function.
Overall, ALM-MTA produces attribution labels with markedly higher accuracy and practical utility, provid-
ing more reliable supervision for downstream uplift re-ranking and incentive allocation.
Overall, the online results across these metrics are consistent with offline evaluation and ablation studies.
These findings validate the effectiveness of our method’s deconfounding strategy and yield attribution labels
that are immediately actionable for production ranking and incentive design. The Appendix §A.6 presents
diverse and cross-domain attribution case studies to demonstrate the universality of our causal attributions.

6 CONCLUSION AND FUTURE WORK

Conclusion. We present ALM-MTA, an extensible and practical causal attribution framework for
consumption-drives-production platforms. The method (i) casts attribution as a front-door identifiable prob-
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Figure 6: Attribution stability analysis across random seeds. We compare the distribution of attribution
scores (pxtr) under identical training data but varying random seeds (10, 100, 1000). Baselines (DML,
DESCN) exhibit dispersed distributions across seeds, indicating high sensitivity to initialization. In con-
trast, ALM-MTA demonstrates highly consistent overlap, confirming superior reproducibility and robust-
ness against random factors.

lem with a latent mediator that transmits the causal pathway from consumption to upload, (ii) renders the
mediator observable via an adversarially constrained proxy Y ′ that is invariant to the outcome Y , coupled
with contrastive learning, and (iii) ensures scalability and positivity in high-cardinality treatment spaces
by restricting front-door marginalization to contrastively identified high-match consumption–upload pairs.
Together, these elements remove latent confounding without outcome leakage and yield reproducible, in-
dividualized uplift labels with materially higher actionable coverage and label density at production scale.
Empirically, ALM-MTA improves predictive accuracy and grouped causal ranking offline and delivers mea-
surable gains to creator-ecosystem metrics online while preserving overall platform health.
Future work. (i) Threshold analysis to determine the optimal balance between coverage and precision,
thereby maximizing attribution efficiency; (ii) Relaxing the independence assumption via enhanced training
architectures (e.g., multi-head attribution) and leave-one/two-out inference to capture higher-order depen-
dencies; and(iii) Improving attribution explainability by elucidating the causal mechanisms linking con-
sumption to production and extending the framework to broader feedback and consumption loops.
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REPRODUCIBILITY STATEMENT

For community verification and reproducibility, we have released and open-sourced the full codebase in the
link 1. In addition, we will release a de-identified version of the CDP dataset together with the preprocessing
scripts in link of github later, so that the complete workflow (from data construction to evaluation) can be
fully reproduced. Model design and identification are specified in Sec. 4, covering IPW reweighting, the
ITE head, and the adversarial proxy–mediator used for front-door identification (Sec. 4.1). Architectural
complexity and compute (FLOPs) are reported in Sec. 5.2 and matched by our configs. Data construction
and preprocessing (streaming training, positive/negative sampling, and the proxy label Y ′) are documented
in Sec. 5.3. Offline metrics include AUC, log-loss, gAUC, and propensity-stratified grouped-AUUC; the
AUUC definition and the full non-personalized bucketed protocol are given in Sec. 5.4 and App. A.4, and
are reproduced in our evaluation toolkit. To demonstrate reproducibility, we report multi-seed stability; our
method consistently regenerates the stability plots in Fig. 6.

1https://github.com/logwhistle/ALM-MTA
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THE USE OF LARGE LANGUAGE MODEL

We used large language models (LLMs) only to aid or polish the writing; no content generation, ideation, or
data analysis was performed by LLMs.
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A APPENDIX

A.1 PROXY-BASED JUSTIFICATION OF THE MEDIATOR Y ′

In our CDP setting, the latent mediator M represents an “inspiration” or creative-intent signal that connects
content consumption to subsequent uploads. Since M is not directly observed, we follow the proxy iden-
tification literature Miao et al. (2018b); Tchetgen Tchetgen et al. (2024b) and use a proxy variable Y ′ as a
surrogate for M . The proxy Y ′ is not an arbitrary auxiliary label; it is defined by strong business rules that
reflect how consumption can inspire production in our platform. Concretely, Y ′ indicates whether a con-
sumed video and a subsequently uploaded video (i) use the same music or template, or (ii) are highly similar
in an embedding space, capturing similar themes or storylines. Before this work, our production system
already used Y ′ directly as a heuristic link from consumption to production. Empirically, strict element-
level matching (same music/template) covers about 7% of daily uploads, and broader semantic matching
contributes roughly another 40%, so the proxy-based inspiration paths account for a substantial portion of
creator activity.
Following the proxy-identification framework of Miao et al. and Tchetgen Tchetgen et al., an effective proxy
for an unobserved mediator should satisfy three key conditions: (i) a relevance condition, meaning the proxy
is strongly correlated with the latent mediator M ; (ii) an exclusion condition, meaning that conditional on
M the proxy does not have a direct path to the outcome Y ; and (iii) an identifiability condition, meaning
the proxy exhibits sufficient variation to capture changes in M and allow the causal effect to be identified.
In our design, the business rules underlying Y ′ ensure the relevance and identifiability conditions: Y ′ is
explicitly constructed to track changes in “inspiration” (e.g., reusing music/templates or themes), and the
high coverage figures above indicate rich variation across users and content.

W

X

MT Y 𝑌!

Figure 7: Minimum DAG.

To approximate the exclusion restriction and avoid
introducing a new shortcut path from Y ′ to Y , we
employ adversarial mediator learning. The media-
tor branch is trained to predict Y ′, while a discrimi-
nator simultaneously tries to predict Y from the me-
diator representation. The mediator network is opti-
mized (via a gradient-reversal layer) to make this pre-
diction impossible, effectively suppressing any infor-
mation about Y that can be directly recovered from
the learned mediator. In this way, the raw proxy Y ′

is used to construct a “clean” mediator representation
that remains strongly related to M but has minimal direct predictive power for Y .
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Finally, we connect this proxy–mediator construction to the front-door criterion discussed in Section 3. Our
causal graph (Figure 2) involves variables (X,W, T,M, Y ), where X are observed covariates, T are con-
sumed touchpoints, M is the latent “inspiration” mediator, Y is the upload event, and W denotes unobserved
system-level confounders (e.g., latent intent or social influence). The minimum DAG graph is as Fig.7. The
standard front-door identification of the effect of T on Y via M relies on three conditions: (i) all directed
paths from T to Y go through M (path containment); (ii) there is no uncontrolled confounder affecting both
M and Y , i.e. M ⊥⊥ Y | T,X (no M → Y back-door); and (iii) there is no uncontrolled confounder
affecting both T and M , i.e. T ⊥⊥M | X (no T →M back-door).
In large-scale recommendation platforms, Condition (ii) is the most fragile in the raw variables: an un-
observed factor W can influence both the mediator M and the outcome Y , opening a back- door path
M ← W → Y and inducing spurious association between M and Y even after conditioning on T and X .
The combination of the proxy Y ′ and adversarial mediator learning is designed precisely to approximate this
condition at the representation level. The learned mediator representation M̂ retains the variation needed to
explain Y ′ and the T → M → Y pathway (relevance), while the adversarial objective actively suppresses
any shortcut information about Y that leaks through W . Thus, when we apply the front-door adjustment in
Section 3, M̂ should be understood as a “cleaned” surrogate mediator that approximately satisfies the “no
M → Y back-door” requirement in our CDP setting.
The combination of the proxy Y ′ and adversarial mediator learning is designed precisely to approximate this
condition at the representation level. The learned mediator representation M̂ retains the variation needed to
explain Y ′ and the T →M → Y pathway (relevance), while the adversarial objective actively suppresses
any shortcut information about Y that leaks through W . Thus, when we apply the front-door adjustment in
Section 3, M̂ should be understood as a “cleaned” surrogate mediator that approximately satisfies the “no
M → Y back-door” requirement in our CDP setting.

Proxy sensitivity analysis. We also analyse how the quality of the proxy Y ′ affects both offline causal
metrics and online KPIs. Since M is latent, we cannot directly measure corr(Y ′,M). Instead, we rely on
an existing “inspiration” module in our CDP system that models M as a function of (T, Y ′) and is regularly
audited by third-party annotators. For each inferred inspiration path, annotators judge whether the consumed
content plausibly inspired the upload. From these audits we obtain (i) path coverage (the fraction of uploads
with at least one inspiration path) and (ii) precision (the fraction of paths judged truly inspirational), which
together serve as a qualitative proxy for the correlation between Y ′ and the latent mediator M .
To study sensitivity, we start from a very strict definition of Y ′ and gradually add more proxy signals along
business-defined paths (an “add-one” strategy). We consider four nested configurations:

• Strict element match. Y ′ is defined only by exact element matches (same music or template,
near-duplicate text). This yields path coverage of about 16.8% with precision close to 100%. In
this configuration, ALM-MTA achieves grouped gAUUC ≈ 0.8496 and an uplift in creator DAU
of about +0.201% + 0.123% ≈ +0.32%.

• Element + semantic match. We extend Y ′ to include high semantic similarity in embedding space
in addition to exact element overlap. Coverage increases to roughly 28.8% with precision around
82%, and grouped gAUUC improves to ≈ 0.8573, with an additional creator-DAU uplift of about
+0.164%.

• Element + semantic + path. We further incorporate path-level signals (e.g., collect-and-reuse
patterns). Coverage rises to about 39.8% with precision around 88%, and grouped gAUUC is
≈ 0.8577, with an additional DAU uplift of about +0.105%.

• Full path set. Finally, we use the full suite of proxy signals. Coverage reaches about 60.4% with
precision around 90%, and ALM-MTA achieves grouped gAUUC ≈ 0.8686. In this deployed
configuration, the overall uplift in creator DAU is about +0.514% compared to the rule-based
baseline, which can be decomposed into incremental gains of roughly +0.222% and +0.160%
when the last proxy families are added.

We observe a clear, smooth pattern: when we deliberately weaken the proxy (using only very strict element
matches), both gAUUC and creator-DAU gains are reduced but do not collapse. As we enrich Y ′ with
additional semantic and path-level signals, coverage and precision remain high, and both gAUUC and online
uplift improve monotonically. This behaviour indicates that ALM-MTA is robust to reasonable variations in
proxy quality: as long as Y ′ remains a meaningful proxy for inspiration, the front-door mechanism continues
to deliver consistent causal and business gains.
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A.2 PROOF OF UNCONFOUNDEDNESS DERIVATION

We provide the detailed derivation for equation 10. Starting from the interventional definition:

upload =
∑
t

upliftt, (10)

E[Y | do(T = t)] =
∑
m,x

E[Y |M = m,T = t,X = x]P (M = m | T = t,X = x)P (X = x). (11)

By the front-door criterion, conditioning on T and X blocks all back-door paths from M to Y . Therefore,
we can rewrite:

E[Y | do(T = t)] =
∑
m,x

f(M = m,T = t,X = x)P (M = m | T = t,X = x)P (X = x), (12)

where f(M,T,X) = E[Y |M,T,X].
Using observational data, the joint distribution can be reweighted via inverse propensity:

P (X,M, T ) =
Pobs(X,M, Torigin)

Pobs(T | X)
. (13)

Substituting, we obtain:

E[Y | do(T = t)] =
∑
m,x

f(m, t, x)
Pobs(x,m, Torigin)

Pobs(t | x)
. (14)

Aggregating across treatments yields the full attribution decomposition:

upload =
∑
t

E[Y | do(T = t)]. (15)

This confirms that combining front-door adjustment with IPW produces an “as-if randomized” distribution,
enabling unbiased causal attribution directly from observational logs.

A.3 IMPLEMENTATION DETAILS AND TRAINING RECIPE

Model architecture. ALM-MTA is implemented as a multi-task model with a shared backbone encoder
fθ(X,T ) and several task-specific heads: (i) a main head hmain that predicts upload Y and uplift; (ii) a
proxy head hproxy that predicts the proxy Y ′ and produces a mediator representation M̂ ; (iii) an adversarial
head hadv that predicts Y from M̂ ; (iv) DML-related components that reweight the main loss by the esti-
mated propensity w(X,T ); and (v) a contrastive head hctr that operates on (T, Y ′) embeddings for in-batch
pairwise contrastive learning. Gradients from explanation-related heads (proxy, adversarial, contrastive) to
the backbone are routed using a stop-gradient / gradient-surgery scheme so that uplift prediction remains the
primary optimization objective.

Optimization. Dense parameters are optimized with Adam (initial learning rate 1 × 10−5), and sparse /
embedding parameters with Adagrad (initial learning rate 5 × 10−4). We apply standard L2 regularization
on all trainable parameters. Unless otherwise stated, models are trained with large mini-batches under a
data-parallel setup over multiple workers.

Losses and weighting. Let Lmain denote the main loss on Y (uplift / upload), LDML the DML-related
regularization, Ladv the adversarial loss on Y given M̂ , Lreg the sum of regularization terms, and Lctr the
in-batch contrastive loss. The total objective is

L = Lmain + λDMLLDML + λadvLadv + λregLreg + λctrLctr.

In practice, we choose coefficients so that the average loss scales satisfy

Lmain : LDML : Ladv : Lreg : Lctr ≈ 1 : 0.6 : 4 : 0.1 : 0.2.

Concretely, we use a small base weight (e.g., 10−3) for the contrastive term and adjust λDML, λadv, and
λreg such that the monitored loss magnitudes fall into the above ratio. This keeps gradient contributions
from different objectives within the same order of magnitude, which we find sufficient for stable training at
industrial scale.
Moreover, our empirical tuning guideline is that the different loss terms should have similar magnitude on
the training curves (within 1 order of magnitude). Under strong regularization and at industrial scale, we
find that the method is quite insensitive to small perturbations of these hyperparameters(see Fig.8).
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Figure 8: Parameter sensitivity analysis. (a) The changes in the learning rates of dense and sparse parameters
have limited impact on AUC level at convergence, verifying the insensitivity to the lr hyperparameter. (b)
The changes in weight of regularization have limited impact on AUC. (c) The changes in weight of con-
trastive learningloss have limited impact on AUC.

Training schedule. We adopt a lightweight staged schedule:

(i) Backbone warm-up. Train the shared backbone and main head with DML (i.e., Lmain +
λDMLLDML) until the offline AUC curve becomes stable.

(ii) Proxy co-training. Enable the proxy head and jointly optimize Lmain and the proxy loss so that
the mediator representation M̂ captures Y ′-related signal, while still treating Lmain as the primary
objective.

(iii) Adversarial and contrastive annealing. Starting from zero weights, gradually increase λadv and λctr

to their target values. This avoids an over-strong adversary or contrastive term at early stages and
keeps Lmain dominant; in practice we monitor that all loss terms remain within roughly one order
of magnitude.

A.4 OFLINE CAUSALITY EVALUATION: PROPENSITY–STRATIFIED GROUPED AUUC

We first cluster the high-cardinality touchpoints into approximately K = 1000 categories using multimodal
embeddings, denoted as T ′. This reduces sparsity and enables reliable estimation of uplift at the cluster level.
For each treatment cluster, we estimate its causal contribution using an unbiased Shapley value estimator.
Instead of exhaustively computing all marginal contributions, we apply sampling:

ϕ̂i(v) =
1

K
ΣK

k=1

v(S(l) ∪ {i})− v(S(k))

p(S(k)|i)
, (16)

where S(k) is a randomly sampled subset for participant i in the k-th sampling, and v(·) is the model’s value
function (expected outcome). p(S(k)|i) denotes the probability of sampling the subset S(k) conditioned on
including participant i. The resulting ϕ̂i is The estimated value of the Shapley value for participant i.

To further reduce bias, we stratify users by estimated propensity scores P (T
′ |X). This ensures that compar-

isons between exposed and unexposed units within each stratum are balanced, mitigating residual confound-
ing. Finally, the Area Under the Uplift Curve (AUUC) is computed by aggregating Shapley-based uplifts
across users and treatments:

AUUC =
1

N
ΣN

n=1Σ
t
i=1upliftni, (17)

where upliftni is the simplified Shapley value assigned to treatment i for user n. AUUC evaluates whether
higher predicted uplifts correspond to higher realized causal gains, thus capturing the causal validity of
attribution.

Goal. In non–RCT logs, absolute ATE is unobservable and naive correlational metrics (e.g., AUC) do not
validate causal usefulness. We therefore design a non–personalized bucketed protocol that approximates
causal uplift at the treatment–cluster level and evaluates whether a model’s predicted uplifts align with these
estimates.

Setup. Let U be users, T be consumed touchpoints, and Y the upload outcome. We cluster touchpoints
by multimodal content embeddings into K treatment clusters C = {1, . . . ,K} (typical K≈ 103). For each
user i and cluster c, define an exposure indicator Ei,c ∈{0, 1} (user i consumed any item from cluster c in
the window). Let Xi denote user/context covariates. A model under test outputs predicted uplifts ûi,c.

Propensity estimation & stratification (PSM-style debiasing). To mitigate user-preference bias that in-
validates purely data-driven ground truth, we estimate exposure propensity for each (i, c) pair,

ei,c = P (Ei,c = 1 | Xi),
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using a simple, leakage-free classifier (e.g., logistic regression). We stratify (i, c) pairs into B propensity
buckets by quantiles of ei,c (e.g., B=10). Within each bucket b, units have comparable exposure likelihoods,
reducing static/dynamic preference bias and enabling fair comparisons.

Shapley-based uplift labeling within buckets. Within each bucket b, we estimate per-pair causal contri-
bution using a simplified Shapley sampler that treats treatment clusters as players:

ϕ̂
(b)
i,c =

1

L

L∑
ℓ=1

vi
(
S(ℓ) ∪ {c}

)
− vi

(
S(ℓ) \ {c}

)
Pr

(
S(ℓ) | c

) , (18)

where S(ℓ) is a random subset of clusters preceding c in a random permutation and vi(·) is the user-level
value function (expected upload under the subset). This produces de-biased, bucket-conditional uplift labels
that are more robust than raw Shapley alone.

Grouped AUUC. For each bucket b, sort pairs (i, c) by model scores ûi,c in descending order, obtaining
the sequence {(ib,(1), cb,(1)), . . . , (ib,(Nb), cb,(Nb))}. Define the cumulative causal gain

Ub(k) =

k∑
j=1

ϕ̂
(b)
ib,(j),cb,(j)

, k = 1, . . . , Nb,

and normalize by the total uplift Zb =
∑Nb

j=1

∣∣ϕ̂(b)
ib,(j),cb,(j)

∣∣. The bucket-level AUUC is the Riemann sum of
the normalized curve:

AUUCb =
1

Nb

Nb∑
k=1

Ub(k)

Zb
. (19)

Finally, the grouped AUUC aggregates across buckets with size weights wb=Nb/
∑

b′ Nb′ :

gAUUC =

B∑
b=1

wb AUUCb. (20)

Higher gAUUC indicates better alignment of predicted uplifts with bucket-conditional causal gains.

Why this improves offline evaluation. (i) De-biasing: Shapley alone is data-driven and suffers from
user-preference bias; propensity stratification (PSM-style) removes major static/dynamic bias, making the
Shapley labels usable as proxy ground truth. (ii) Positivity: Bucketing enforces overlap by comparing units
with similar propensities, stabilizing estimates in high-cardinality treatment spaces. (iii) Comparability:
Ranking within buckets prevents models from exploiting exposure frequency artifacts and focuses evaluation
on causal ordering quality.

A.5 SUPPLEMENTARY EXPERIMENTS ON PUBLIC CRITEO DATASET

Criteo (Criteo Attribution Modeling for Bidding Dataset) datasetDiemert Eustache, Meynet Julien et al.
(2017) represents a sample of 30 days of Criteo live traffic data. Each line corresponds to one impression (a
banner) that was displayed to a user. For each banner we have detailed information about the context, if it
was clicked, if it led to a conversion and if it led to a conversion that was attributed to Criteo or not. Data
has been sub-sampled and anonymized so as not to disclose proprietary elements. The average touchpoint
sequence length is 2.68, the longest touchpoint sequence length is 880.
Using cost (bucketing value, which makes modeling easier to converge and further reduces information
leakage) as Y ′, adversarial learning is used together with impressions to eliminate shortcuts from T− > Y
and Y− > Y ′. The variables after adversarial learning are used as observations of M; the longest sequence
length is set to 16.

Table 3: AUC and log-loss between ALM-MTA
and causalMTA.

AUC log-loss

causalMTA 0.9659±0.01 0.0517±0.003
ALM-MTA 0.9729±0.01 0.0634±0.002

AUC and logloss: To ensure stability, the model incor-
porates adversarial learning, resulting in a larger initial
loss and thus a higher logloss after convergence com-
pared to causalMTA. ALM-MTA models the transforma-
tion better (i.e., has a higher AUC). Furthermore, the con-
fidence intervals of ALM-MTA are more stable, primar-
ily due to further optimization of the stability component.
To some extent, ALM-MTA exhibits better interpretability and robustness than other baseline models, yield-
ing more stable causal conclusions (see Table.3).
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Budget and CVR: Because of the introduction of cpp/attribute (adversarial learning leakage prevention)
as a front-door observation signal, ALM-MTA is more sensitive to cost/attribute and can achieve better
CPA. For CVR, the improvement is limited at 1/2 budget, but results in 1/4, 1/8 and 1/16 budget illustrate
that ALM-MTA is more sensitive to cost, especially when the budget is limited (see Table.4).

Table 4: Performance comparison under different budget constraints.

Model CPA Conversion CVR
1/2 1/4 1/8 1/16 1/2 1/4 1/8 1/16 1/2 1/4 1/8 1/16

DeepMTA 36.25 30.60 26.08 25.97 1372 880 549 289 0.1194 0.1202 0.1236 0.1249
CAMTA 32.61 29.73 26.05 26.25 1270 864 538 211 0.1127 0.1160 0.1191 0.1166
CausalMTA 30.34 29.52 26.45 25.47 1441 976 548 255 0.1247 0.1265 0.1305 0.1283
ALM-MTA 27.32 24.85 22.71 22.03 1503 1070 557 291 0.1248 0.1271 0.1320 0.1298

A.6 CASES

In the CDP business, users are influenced by the videos they have viewed in the past, which in turn inspires
them to create. From the case study, we can see that ALM-MTA captures the causal relationship from video
(treatment) to Y (upload behavior) in multiple scenarios(see Fig.9).

18



Published as a conference paper at ICLR 2026

eating

upload treatment

cartoon 
material

upload treatment

upload treatment

outfit

upload treatment_1 treatment_2

gesture 
dance

upload treatment

role
playing

game

Figure 9: Causal Attribution from Historical Video Views to User Upload via ALM-MTA.
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