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Abstract001

Large language models (LLMs) excel at han-002
dling human queries, but they can occasion-003
ally generate flawed or unexpected responses.004
Understanding their internal states is crucial005
for understanding their successes, diagnosing006
their failures, and refining their capabilities.007
Although sparse autoencoders (SAEs) have008
shown promise for interpreting LLM internal009
representations, limited research has explored010
how to better explain SAE features, i.e., un-011
derstanding the semantic meaning of features012
learned by SAE. Our theoretical analysis re-013
veals that existing explanation methods suffer014
from the frequency bias issue, where they em-015
phasize linguistic patterns over semantic con-016
cepts, while the latter is more critical to steer017
LLM behaviors. To address this, we propose018
using a fixed vocabulary set for feature inter-019
pretations and designing a mutual information-020
based objective, aiming to better capture the021
semantic meaning behind these features. We022
further propose two runtime steering strategies023
that adjust the learned feature activations based024
on their corresponding explanations. Empirical025
results show that, compared to baselines, our026
method provides more discourse-level explana-027
tions and effectively steers LLM behaviors to028
defend against jailbreak attacks. These findings029
highlight the value of explanations for steering030
LLM behaviors in downstream applications.1031

1 Introduction032

Large language models (LLMs) have demonstrated033

strong capabilities in responding to general human034

requests (Achiam et al., 2023; Dubey et al., 2024;035

Jiang et al., 2024). Meanwhile, we still often ob-036

serve failed or unexpected responses in certain sit-037

uations (Ji et al., 2023; Wei et al., 2024). Gaining038

insight into the factors behind their successes and039

failures is crucial for further improving these mod-040

els. A straightforward way to understand LLM041

1We will release our code and data once accepted.

behaviors is by directly studying their hidden repre- 042

sentations. However, it is non-trivial to achieve that 043

because of the polysemantic nature (Arora et al., 044

2018; Scherlis et al., 2022) of the hidden space, 045

where each dimension of the hidden representa- 046

tions encodes multiple pieces of unique features. 047

Researchers have made significant efforts to 048

overcome the polysemantic challenge. Early 049

works (Millidge and Black, 2022; Wu et al., 2024) 050

apply matrix decomposition techniques to learn 051

a set of orthogonal vectors to form the basis of 052

hidden representations. However, this approach is 053

insufficient to find vectors for certain purposes, as 054

matrix decomposition techniques can only produce 055

a limited number of orthogonal vectors. In this 056

context, recent research has explored the sparse au- 057

toencoder (SAE) technique (Olshausen and Field, 058

1997; Makhzani and Frey, 2013), which has demon- 059

strated their effectiveness in learning a large num- 060

ber of sparse feature vectors to reconstruct the hid- 061

den spaces of advanced LLMs with hundreds of 062

billions of parameters (Cunningham et al., 2023; 063

Bricken et al., 2023; Templeton et al., 2024; Gao 064

et al., 2024). These learned sparse features are ex- 065

pected to be interpretable, since each feature should 066

only react to a specific concept, showing a monose- 067

mantic nature instead of a polysemantic one. 068

However, the semantic meaning of sparse fea- 069

tures learned by SAEs is not directly comprehen- 070

sible to humans, requiring an additional step of 071

post-hoc explanation. Furthermore, intuitively ex- 072

plaining the learned features poses a significant 073

challenge. Existing works (Bricken et al., 2023; 074

Gao et al., 2024) generate explanations for learned 075

features by extracting text spans whose hidden 076

representations could maximally activate the cor- 077

responding feature vector. However, Gao et al. 078

(2024) found that many extracted text spans of 079

learned features are too trivial to be used to ex- 080

plain the complex behaviors of LLMs. In addition, 081

when steering LLMs according to the extracted 082
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Ours 😁

TopAct 🙂

N2G 🙂

Ethical considerations in content creation: copyright; ethical; creativity; blog; writing; content; steal; copy; creative; introduce; patent.
Decision-making and evaluation of outcomes: tune; keen; heading; impact; profit; judge; reasoning; influential; correction; bear.
Interior design and household elements: mirror; tap; household; Hall; interior; echo; click; themes; Roman; elements.

Childhood experiences and nostalgia: like my father's when I was a child; amour of the city since he was a child; tricks when she was a kid; own
experiences of being bullied as a child; ft and Mel Brooks since he was a child.
Descriptive writing on textures: at least 100 words about the texture; sensory details to describe the colors, textures; Compare and contrast the
different textures; the scent of the ocean, and the texture; Incorporate elements such as textures.
Cooking instructions on boiling and adjusting heat levels: Bring to a boil, reduce heat; the boil once again and then reduce the heat; boil, you
will need to reduce the heat; Bring to a boil, then reduce heat; stirring occasionally.\n4. Reduce heat.

Shopping or going to a store: [MASK] to the store; going to the store; [MASK] to the store; went to the [MASK]; going to the store.
Cellular biology on histones and actin: histones; histone; [MASK]osin and actin; composed of actin; role of actin.
Postmodernism or post-structuralism themes: major figure in post; takes place in a post; to adjust to post; effects of post; politic context of post.

Figure 1: Examples of explanations generated by different methods. We separate raw extracted words/spans with
“;” and boldface their automated summaries. We observe that our method tends to use diverse words to describe
a semantical concept. In contrast, the extracted spans from baselines typically share some duplicated phrases ,
indicating suffering from a frequency bias on those linguistic patterns. See quantitative evaluation in Section 4.2.2.

text spans, the resulting responses may not always083

be predictable (Durmus et al., 2024). These chal-084

lenges undermine confidence in using explanations085

to steer LLMs for real-world applications.086

In this work, we introduce a novel post-hoc ex-087

planation method for learned features, and strate-088

gies to steer LLM behaviors based on our gener-089

ated explanations. Our study starts with a theo-090

retical analysis of the distribution of learned fea-091

tures, where we reveal that the learned features en-092

code both discourse topics and linguistic patterns093

simultaneously, with the latter being less critical094

for model steering but occurring more frequently,095

named frequency bias. This frequency bias causes096

the existing methods to extract repetitive and su-097

perficial patterns. To address this challenge, we098

propose to leverage a fixed vocabulary set instead099

of the entire corpus for explanation, and further de-100

sign a mutual information-based objective to ensure101

that the explanations capture critical information.102

As shown in Figure 1, baseline methods exhibit fre-103

quency bias, leading to repetitive phrases in their104

explanations, whereas our approach explains dis-105

course topics with diverse words. We also explore106

steering LLMs for jailbreak defense based on our107

generated explanations of learned features. Experi-108

ments show that our method provides more mean-109

ingful discourse-level explanations than the other110

explainers, and these discourse-level explanations111

are effective in steering LLM behaviors on certain112

tasks. We summarize our contributions as follows:113

• Our theoretical analysis identifies a key challenge114

in explaining learned features from sparse au-115

toencoders, i.e., the frequency bias between the116

discourse and linguistic features.117

• We propose leveraging a fixed vocabulary set to118

mitigate the frequency bias for explaining learned119

features. Experimental results show that our120

method uses more diverse words to explain dis-121

course topics than the other explanation methods.122

• We propose steering LLMs for specific purposes 123

by adjusting the activations of learned features 124

based on their explanations. Experiments con- 125

firm that we could enhance LLM’s safety by us- 126

ing our discourse-level explanations. 127

2 Preliminary 128

2.1 Problem Statement 129

Let V denote the vocabulary set, and X be a text 130

of length N , where xn ∈ V denotes the n-th token 131

of X . Given a language model f , the embedding 132

of X at the l-th layer is denoted as X(l) ∈ RN×D, 133

where D is latent dimension. In the rest of this 134

paper, we omit superscript (l) for simplification of 135

notations. Our goal is to interpret embeddings X by 136

extracting some semantic features from the latent 137

space. Specifically, there exists C learned feature 138

vectors W ∈ RC×D that can decompose arbitrary 139

X as a linear combination, i.e., X ≈ AW, where 140

C ≫ D, A ∈ RN×C are the weights of the linear 141

combination. Let Wc denote the c-th row of W. 142

After the decomposition, X is explainable if we 143

could understand the semantic meaning of each 144

learned feature vector Wc. In this paper, we focus 145

on seeking a set of words Ic ⊂ V to explain each 146

learned feature Wc with natural language. 147

2.2 Learning and Interpreting LLMs with 148

Sparse Autoencoders 149

Many attempts have been made to learn feature 150

vectors W for interpreting LLMs, where sparse 151

autoencoders have shown great promise for this 152

purpose (Gao et al., 2024; Lieberum et al., 2024). 153

Typically, sparse autoencoder (Olshausen and Field, 154

1997; Makhzani and Frey, 2013) is a two-layer 155

multi-layer perceptron X̂ = σ(XW⊤) · W with 156

the tight weight strategy, and is trained by minimiz- 157

ing the reconstruction loss L = ∥X− X̂∥2, where 158

W ∈ RC×D are trainable parameters and σ refers 159

to the Top-K activation function. The Top-K activa- 160
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Figure 2: The proposed framework of explaining SAE features and steering LLMs with explanations.

tion function only keeps the K largest values and161

enforces other values as zeros, leading to the nature162

of sparsity to the autoencoder. The sparsity indi-163

cates that each learned row vector Wc should only164

be activated by a certain kind of input, showing the165

monosemantic instead of polysemantic.166

However, there are limited explorations on col-167

lecting a natural language explanation Ic for each168

learned feature vector Wc. The most straightfor-169

ward strategy (Bricken et al., 2023) is collecting170

some N-gram spans over a large corpus whose171

hidden representations can best activate the fea-172

ture vector Wc. Some researchers (Gao et al.,173

2024) leverage the Neuron-to-Graph (N2G) algo-174

rithm (Foote et al., 2023) to refine the N-gram spans175

for more precise interpretations. However, these176

methods typically tend to extract some superficial177

and trivial patterns (Gao et al., 2024), and those178

generated explanations are not always effective in179

steering LLM behaviors for certain purposes (Dur-180

mus et al., 2024). In the following, we will first181

analyze the challenge of interpreting these learned182

features, followed by a novel explanation method183

to overcome the challenge and strategies to use184

these explanations for downstream tasks.185

3 Methodology186

This section first theoretically studies the properties187

of text generation, comparing them to traditional188

image generation scenarios where sparse autoen-189

coders were initially developed for. With these190

insights, we propose a mutual information-based191

method to explain the semantics of learned fea-192

tures, and further design two strategies to steer193

LLMs based on the explained features. Figure 2194

illustrates our overall framework.195

3.1 Feature Dynamics in Text Data 196

Sparse autoencoders (Olshausen and Field, 1997) 197

were originally designed for image data under the 198

assumption that each image can be expressed as a 199

linear combination of underlying features. Previ- 200

ous works (Bricken et al., 2023; Cunningham et al., 201

2023) adapt this framework to textual data by sim- 202

ilarly assuming that each token is linearly related 203

to a set of features. However, these approaches 204

overlook certain inherent properties of textual data, 205

resulting in a significant challenge in interpreting 206

the learned feature vectors. 207

We consider the text generation task as a dy- 208

namic process under the topic-model assump- 209

tion (Steyvers and Griffiths, 2007; Arora et al., 210

2016, 2018), where each word xn is generated at 211

the n-th step. It means that, in topic models, text 212

generation begins with a predetermined concept 213

or theme, guiding word selection at each step to 214

align with that central idea. Formally, this dynamic 215

process can be driven by the random walk of a dis- 216

course vector ecn ∈ Rd representing what it talks 217

about. The discourse vector ecn does a slow ran- 218

dom walk at each step n, i.e., ecn = ecn−1 + eϵn , 219

where eϵn ∼ N d(0, σ). Also, at each step, a word 220

xn ∈ V is sampled based on the discourse vector 221

ecn . To this end, the text generation process for a 222

sequence of words X is given by: 223

p(X) =

|X|∏
n=1

p(xn|cn) · p(cn|cn−1). (1) 224

Here, the word emission probability is modelled by 225

p(xn|cn) = exp(⟨exn ,ecn ⟩)∑
v∈V exp(⟨ev ,ecn ⟩)

(Steyvers and Grif- 226

fiths, 2007), where ⟨·, ·⟩ indicates the dot product 227

of two vectors. Since cn is a random walk of cn−1, 228

the topic transmission probability can be computed 229

3



as p(cn|cn−1) =
1√
2π·σ · exp(−||ecn−ecn−1 ||2

2σ ) (Ol-230

shausen and Field, 1997). Recall that ecn =231

ecn−1 + eϵn , after a few derivations, we have232

log p(X) ∝
N∑

n=1

⟨exn , ec0⟩+
N∑
i=1

i∑
n=1

⟨exn , eϵn⟩

−
N∑

n=1

∥eϵn∥2
2σ

.

(2)233

Equation 2 reveals some critical characteristics234

of textual data that are different from image data.235

Firstly, there is a shared discourse topic c0 across236

words xn from the same X , for n = 1, ..., N .237

However, recent approaches that use sparse autoen-238

coders for LLMs often treat the reconstruction loss239

for each token independently, without adding con-240

straints to capture the shared concepts. As a re-241

sult, they fail to isolate the features learned for242

discourse semantical topics (i.e., ec0) and linguis-243

tic patterns (i.e., eϵn). Thus, each learned feature244

Wc may store both discourse and linguistic infor-245

mation, where the latter is less useful for steering246

LLMs than the previous one. In addition, discourse247

topics are rarer than linguistic patterns, called248

frequency bias, as each X has N times more lin-249

guistic patterns than its discourse topic. This issue250

leads to the learned features that prioritize captur-251

ing the linguistic patterns, raising the challenge of252

interpreting those encoded discourse topics.253

3.2 Explaining Learned Features with254

Natural Language255

To interpret the learned features {Wc}Cc=1, exist-256

ing works (Bricken et al., 2023; Gao et al., 2024)257

typically enumerate a large number of texts, and258

then treat those whose hidden representations could259

most activate the learned features as the interpreta-260

tions. This method works well for interpreting the261

learned linguistic patterns as they are frequently262

presented in the corpus, while it is hard to discover263

the learned discourse topics because the more fre-264

quent linguistic patterns dominate, leading to the265

failure of steering LLM behaviors based on the ex-266

planations (Gao et al., 2024; Durmus et al., 2024).267

Since our goal is to understand and control LLM268

behaviors, we aim to interpret those discourse top-269

ics within a feasible budget cost.270

To tackle the challenge of frequency bias, we271

propose to leverage a fixed vocabulary set V of a272

general corpus instead of its raw texts. Our goal273

is to seek a M -word set Ic ⊂ V that can describe274

most information of the c-th feature vector Wc. 275

Mathematically, we let C denote the knowledge 276

encoded by Wc and measure the information of 277

C described by a given word set V ′ ⊂ V based on 278

their mutual information (Cover, 1999). To this 279

end, the objective of constructing Ic is defined as 280

Ic = argmax
V ′⊂V,|V|=M

MI(V ′; C) ∝ argmin
V ′⊂V,|V ′|=M

H(C|V ′)

= argmax
V ′⊂V,|V ′|=M

∑
eC∈U(C)

∑
w∈V ′

p(eC)p(w|eC) log p(eC |w),

(3) 281

where MI(·; ·) indicates mutual information be- 282

tween two variables, H(·|·) denotes the condi- 283

tional Shannon entropy, and U(C) includes all 284

possible vectors that express the knowledge C. 285

Since we obtain Wc by training a sparse autoen- 286

coder—and ideally, each learned feature vector en- 287

codes a unique piece of knowledge—we assume 288

that p(eC = Wc) ≈ 1 and p(eC ̸= Wc) ≈ 0. This 289

allows us to simplify the expression as: 290

Ic ∝ argmax
V ′⊂V,|V ′|=M

∑
w∈V ′

p(w|Wc) log p(Wc|w).

(4) 291

By leveraging output embedding ew of word w, we 292

empirically estimate p(w|Wc) and p(Wc|w) by 293

p(w|Wc) =
exp(⟨ew,Wc⟩)∑

w′∈V exp(⟨ew′ ,Wc⟩)
,

p(Wc|w) =
exp(⟨ew,Wc⟩)∑

c′∈C exp(⟨ew,Wc′⟩)
.

(5) 294

Both theoretical and empirical time-complexity 295

analysis (Appendix B) verifies that our mutual 296

information-based objective is computationally ef- 297

ficient. Compared with LogitLens (Nostalgebraist, 298

2020) that obtains M words whose output embed- 299

dings best activate the feature vector, our mutual 300

information-based objective reveals the importance 301

of normalizing activations of a single word across 302

all learned features. That is, if a word embed- 303

ding constantly leads to a large dot product with 304

all features, the word will not express enough 305

specificity to any particular feature. In infor- 306

mation retrieval, Compared with TF-IDF (Salton 307

and Buckley, 1988), a practical technique for miti- 308

gating frequency bias in information retrieval, our 309

proposed mutual information-based objective re- 310

laxes the assumption about word distributions over 311

documents that is required by the theoretical deriva- 312

tion of TF-IDF scores (Aizawa, 2003), but does not 313

hold in our targeted feature interpretation task. 314
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3.3 Steering LLMs with Explained Features315

Given learned features {Wc}Cc=1 and their expla-316

nations {Ic}Cc=1, we could identify a subset of the317

features S = {Ws}Ss=1 ⊂ {Wc}Cc=1 that are cor-318

related with a specific LLM behavior we are inter-319

ested in based on their explanations (e.g., harmful320

knowledge or safety awareness in our study). This321

annotating process can be easily scaled up by lever-322

aging advanced LLMs (Bills et al., 2023) as our323

explanations are natural language. Considering the324

hidden representations of an input prompt as X,325

we propose two strategies to steer LLM representa-326

tions with the identified features S during runtime.327

Amplification. We amplify α times of the328

activations on our identified feature vectors, i.e.,329

X′ = X+ α · ReLU(XS)S⊤, where α is a hyper-330

parameter. We encourage LLMs to be more aware331

of the identified features if α > 0, and pay less332

attention to them if α < 0. Especially, α = −1333

indicates that we erase the LLM’s awareness of the334

identified features from its hidden representations.335

Calibration. We enforce LLMs to focus on336

the identified features to a certain level β, i.e.,337

X′ = X− ReLU(XS)S⊤ + β · S̄, where S̄ is the338

mean vector of S and β is a hyper-parameter. This339

strategy inherently shifts the LLM’s hidden space340

toward the center of our target feature vectors.341

The above two strategies are responsible for dif-342

ferent purposes of steering LLMs, and they could343

work together. We would also emphasize that the344

proposed strategies are efficient as we only monitor345

a subset of our interested features S instead of the346

entire set of learned sparse features W.347

4 Experiments348

This section investigates two research questions.349

RQ1: Does the proposed method generate more350

discourse-level explanations than traditional meth-351

ods? RQ2: Whether these discourse-level expla-352

nations are useful in steering LLM behaviors? To353

answer these questions, Sec. 4.1 describes some354

details of the Top-K sparse autoencoder we used in355

our study. Sec. 4.2 compares the explanation qual-356

ity of our proposed methods and others for RQ1.357

Sec. 4.3 finally explores the usability of the expla-358

nations for defending jailbreak attacks for RQ2.359

4.1 General Settings360

Language Models. We study LLMs from the361

Mistral family (Jiang et al., 2023) as it has demon-362

strated its strong usability in the wild. In particu-363

lar, we use the Mistral-7B-Instruct-v0.2 checkpoint364

from Huggingface (Wolf, 2019). Following previ- 365

ous works (Lieberum et al., 2024), we consider the 366

residual stream at the 25%-th, 50%-th, and 75%-th 367

layers to train our sparse autoencoders, referring 368

to the 8th, 16th, and 24th layers of Mistral-7B- 369

Instruct. Our main experiments focus on the 8th 370

layer as we found it shows the best effectiveness 371

in steering LLM behaviors (see discussion in Ap- 372

pendix A.3). Without specifics, the greedy search 373

decoding with a maximum of 512 new tokens is 374

applied to our experiments for reproducibility. 375

Datasets. We consider various instruction-tuning 376

datasets for training our backbone sparse autoen- 377

coders. In specific, ShareGPT (RyokoAI, 2023), 378

UltraChat (Ding et al., 2023), HH-RLHF (Bai 379

et al., 2022), WebGLM-QA (Liu et al., 2023), Evol- 380

Instruct (Xu et al., 2023), and HelpSteer2 (Wang 381

et al., 2024) are selected. We de-duplicate prompts 382

across different datasets and sample a subset of 383

UltraChat with 400K samples. To this end, we 384

have retained about 711K prompts, with an aver- 385

age length of 177.9 tokens. We randomly select 386

90% of prompts to form our training set, and the 387

rest is our validation set. Overall, we collect 113M 388

tokens for training and 12M tokens for validation. 389

Training Details. Our training procedures and 390

hyper-parameter settings majorly follow the previ- 391

ous works (Bricken et al., 2023; Gao et al., 2024; 392

Lieberum et al., 2024). Specifically, we initialize 393

C = 216 feature vectors for a Top-K sparse autoen- 394

coder with Kaiming initialization (He et al., 2015). 395

Here, C = 216 is set according to the scaling law 396

between the number of features C and the number 397

of training tokens Z found by (Gao et al., 2024), 398

i.e., C = O(Zγ), where γ ≈ 0.60 for GPT2-small 399

and γ ≈ 0.65 for GPT-42. Appendix C provides 400

more details about training sparse autoencoders. 401

Explanation Baselines. Our study considers sev- 402

eral existing works for sparse autoencoder expla- 403

nations as baselines. TopAct (Bricken et al., 2023) 404

collects a number of text spans from the corpus 405

that could maximally activate it. N2G (Gao et al., 406

2024) steps further by masking some words from 407

the activated spans that show limited contributions 408

to the activations. LogitLens (nostalgebraist, 2020) 409

interprets LLM latent representations by directly 410

projecting them to the output vocabulary. We adopt 411

this method to explain SAE learned feature vectors. 412

2Empirically, γ ≈ 0.5978 in our study.
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Table 1: Qualitative analysis on generated explanations (more examples in Appendix D). Both TopAct and N2G
tend to collect raw explanations sharing the same word-level patterns. LogitLens can extract different words but
may not represent the same topic, while our method generates explanations for concise discourse-level topics with
diverse words. We highlight those duplicated patterns and diverse words related to a concise topic.

Method Raw Extracted Words or Text Spans Automated Summary

Ours

previously ; suddenly ; repeated ; history ; once ; initially ; nearest ;
already; normally ; originally

Temporal concepts and sequences in
narratives.

client ; visual ; application ; blank; deep; download; development ;
retrieve ; reporting ; clone

Software development and application
management processes.

TopAct

[INST] Provide step ; [INST] Provide step ; [INST] Provide step ;
[INST] Provide step ; [INST] Provide step

Instructional prompts or commands for
providing steps in a process.

ideas and produce compelling content — again ; Pine View School
again ; technologies segment is again ; pushed on the ceiling,and
again ; Echoed through the valley, again

Repetition of the word “again” in vari-
ous contexts.

N2G CSV; CSV; CSV; CSV; csv[MASK] Data format: CSV.

Final Fant ; Final Fant ; Final Fant ; Final Fant ; Metal Gear Video game titles.

LogitLens

enjoying; himself ; selecting ; ignoring; answering; herself ; whom;
choosing; undergoes; resting

Actions related to personal choice and
self-care.

managing; purchasing; weight ; stress ; dealing ; skills; buying;
dealt ; classes; treating

Strategies for managing stress and
weight.

4.2 Evaluating Explanations Quality413

Exactly measuring the explanation quality of fea-414

tures from sparse autoencoders is still an open ques-415

tion (Rajamanoharan et al., 2024). Following exist-416

ing works (Bricken et al., 2023; Bills et al., 2023;417

Rajamanoharan et al., 2024), advanced LLMs (i.e.,418

GPT4o Family) serve as the machine annotator to419

evaluate the quality of generated explanations.420

4.2.1 Experimental Designs421

We conduct both qualitative and quantitative analy-422

ses of the explanations with the help of our machine423

annotator (please check details in Appendix E).424

Here, the explanations of TopAct and N2G are the425

most activated text spans, while ours and LogitLens426

choose the top words over a pre-defined vocabulary427

set. Following Bills et al. (2023), we first prompt428

the machine annotator to summarize the meaning429

of the feature based on the selected words/spans,430

and then invoke the machine annotator in a separate431

thread to judge the relevance of the raw explana-432

tions. We follow previous work (Rajamanoharan433

et al., 2024) to give the judgment with four levels,434

and treat the summaries with the highest two lev-435

els as successfully explained. Table 1 shows some436

cases with the highest judgement (more examples437

in Appendix D) and Table 2 reports the percentage438

of successfully explained raw explanations. We439

also quantify the frequency bias observed from the440

raw explanations and report it in Table 2. Given raw441

extracted words/spans, we first find their longest442

Table 2: Quantitative analysis on generated explanations
from baselines and ours: (1) percentage of successfully
explained explanations by machine annotators, and (2)
percentage of explanations showing duplicated patterns.

Method Explained Rate ↑ Frequency Bias ↓

TopAct 59.16% 78.75%
N2G 38.79% 57.05%

LogitLens 48.70% 0.19%

Ours 67.39% 0.01%

common substring with at least four characters. If 443

at least half of the words/spans contain this sub- 444

string, we consider that the frequency bias occurs. 445

4.2.2 Results 446
447TopAct and N2G tend to collect text spans 448

sharing the same lexical patterns, while our 449

method extracts diverse words to present a con- 450

cise topic. Table 1 shows that both TopAct and 451

N2G often repeat the same phrases (e.g., “again” 452

and “CSV”), and LogitLens can extract different 453

words for explanations, but they may not represent 454

the same topic. In contrast, our method selects 455

more varied words that converge on a concise and 456

discourse-level topic. This contrast highlights our 457

goal of moving beyond repeated lexical patterns to 458

richer and more discourse-focused explanations. 459

Our method generates more reasonable and 460

less frequency-biased explanations than other 461

baselines. Table 2 reports the percentage of suc- 462

cessfully explained features and the percentage of 463

raw explanations that show duplicated lexical pat- 464

6



Table 3: Defending Mistral-7b-Instruct from jailbreak attacks without model training. We report the attack success
rate (ASR) on Salad-Bench to illustrate the effectiveness of preventing jailbreak attacks, and the automatic scores
on the MT-Bench to demonstrate the helpfulness for general user queries.

Category Method
Salad-Bench (Safety) MT-Bench (Helpful)
ASR (↓) Time (↓) Score (↑) Time (↓)

w/o Defense 81.6 1.0x 6.5 1.0x

Perturbation

Random Patch 80.6 4.9x 3.8 1.6x
Random Insert 79.4 6.5x 3.7 1.6x
Random Swap 73.8 5.6x 3.0 1.6x

Self-Robustness 16.2 6.9x 5.3 16.9x

Prompting
SafePrompt 79.0 1.0x 6.5 1.0x

XSafePrompt 77.8 0.9x 6.1 0.9x
Self-Reminder 73.0 0.9x 6.3 0.9x

SAE Steer
(Ours)

Erase Harmful (EH) 81.0 1.0x 5.9 1.0x
Aware Security (AS) 73.2 0.8x 6.0 0.9x

EH + AS 72.8 0.8x 5.9 0.9x

terns. We first observe that our method achieves a465

significantly higher explainability rate (67.39%)466

compared to TopAct (59.16%), N2G (38.79%),467

and LogitLens (48.70%). Notably, N2G performs468

worse than TopAct, likely due to its stronger bias469

toward lexical patterns3. This observation high-470

lights the challenge of explaining discourse-level471

meanings of features. In addition, the raw explana-472

tions generated by LogitLens and ours suffer less473

from the frequency bias than those generated by474

TopAct or N2G, indicating the rationale of intro-475

ducing a fixed vocabulary set to overcome the fre-476

quency bias. Meanwhile, the higher explained rate477

of ours than LogitLens confirms that our mutual478

information-guided objective can extract diverse479

words representing the same topic.480

4.3 Using Explained Features for Defending481

Jailbreak Attacks482

We explore jailbreak defense as a downstream ap-483

plication of steering LLMs with explained fea-484

tures.We target this task for its broad applicability485

across various LLM deployment scenarios, where486

existing defense methods often suffer from either487

low effectiveness or impractical latency, underscor-488

ing the need for more efficient solutions.489

3For example, one feature whose TopAct explanation is
“6th century (via History Magazine). Before that”; “Prior
to Chomsky’s work,”; and “Reference [2]: Before the GPS,”,
indicating “referring related works”. However, N2G simplifies
them to “Before that”; “Prior to [MASK]omsky’s work”; and
“Before [MASK] GPS,”, which obviously changes the meaning
and concentrates on some trivial patterns.

4.3.1 Experimental Designs 490

We evaluate the downstream task performance 491

of our steered LLM using Salad-Bench (Li 492

et al., 2024) for safety and MT-Bench (Zheng 493

et al., 2023) for general helpfulness. Base- 494

lines include perturbation-based methods (Ran- 495

dom Patch/Insert/Swap (Robey et al., 2023), Self- 496

Paraphrase (Cao et al., 2023)) and prompting-based 497

methods (SafePrompt/XSafePrompt (Deng et al., 498

2023), Self-Reminder (Xie et al., 2023)), all of 499

which require no additional training. We consider 500

three specific strategies based on our proposed 501

Amplification and Calibration: (1) Erase Harm- 502

ful (EH) deactivates harmful features if they are 503

activated, (2) Aware Security (AS) consistently ac- 504

tivates safety-related features at a certain level α =, 505

and (3) AS+EH combines both. We prompt our ma- 506

chine annotator to judge whether each clearly ex- 507

plained feature relates to a harmful concept accord- 508

ing to the hazard taxonomy suggested by Llama3- 509

Guard (Llama Team, 2024). Similarly, we also 510

identify those safety-related features with a manu- 511

ally crafted safeguarding taxonomy inspired by the 512

hazard taxonomy. As a result, there are 141 and 513

48 features for AS and EH, respectively. Table 3 514

and Figure 3 compare our method with baselines in 515

attack success rate (ASR), MT-Bench scores, and 516

normalized runtime cost. Appendix A.2 provides 517

a case study on defending jailbreak attacks with 518

the AS strategy, and Appendix A.1 includes more 519

details about our experimental settings. 520
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Figure 3: Applying Aware Security for jailbreak defense
based on explanations from different methods.

4.3.2 Results521
522 Sparse autoencoders enable runtime steer-523

ing of LLMs. Table 3 shows that perturbation-524

based defense strategies are less practical for real-525

world use, as they either severely degrade help-526

fulness or introduce unacceptable latency. While527

most prompting-based methods preserve helpful-528

ness, they struggle to prevent jailbreak attacks. The529

exception is Self-Reminder, the strongest baseline,530

which balances safety and helpfulness within a rea-531

sonable computing budget. In comparison, our532

sparse autoencoder-based approach significantly533

improves jailbreak defense (Salad-Bench: 81.6 →534

72.8) while maintaining helpfulness with only a535

slight reduction (MT-Bench: 6.5 → 6.0).536

The key to preventing jailbreak attacks is not537

forgetting harmful content, but staying aware538

of safety. Our experiments reveal that removing539

harmful knowledge has little impact on jailbreak540

defense, challenging the intuitive assumption that541

erasure improves safety. Instead, the strong perfor-542

mance of our Aware Security strategy aligns with543

the principle of Self-Reminder: “Reminding Chat-544

GPT to respond responsibly” (Xie et al., 2023).545

Discourse-level explanations are crucial for546

effective jailbreak defense. We apply the AS strat-547

egy to TopAct and N2G explanations, with results548

in Figure 3. Only N2G shows a slight ASR reduc-549

tion, and tuning β brings no clear improvement.550

This is likely due to their overly lexical and fine-551

grained safety strategies. For example, an N2G552

feature under “Physical Defense” is summarized553

as “Locking mechanisms or security systems,” but554

its explanation consists of repetitive words: “locks;555

locks; lock; have a two-stage lock; lock.” In con-556

trast, our method, under the same category, pro-557

vides a broader summary “Emergency response and558

location tracking” with a more diverse explanation:559

“contact, phone, unit, accuracy, exact, burning, lo-560

cation, precise, details, smoke.” These results high-561

light the need for discourse-level explanations.562

5 Related Works 563

Modern LLMs have shown promising text- 564

generation abilities, prompting researchers to ex- 565

plore their internal mechanisms. One approach (Be- 566

linkov et al., 2018; Jawahar et al., 2019; Rogers 567

et al., 2021) develops contrastive datasets to probe 568

hidden states for specific features, but it is lim- 569

ited by the polysemantic nature of neurons (El- 570

hage et al., 2022; Olah et al., 2020), making 571

the explanations non-concise and difficult to ap- 572

ply in downstream tasks. To overcome this, re- 573

searchers (Bricken et al., 2023; Beren and Black, 574

2022; Wu et al., 2024) propose learning orthogonal 575

basis vectors to understand LLMs better by apply- 576

ing singular vector analysis. Soon after, sparse 577

autoencoders (Bricken et al., 2023; Cunningham 578

et al., 2023) were introduced, allowing for more 579

flexible settings. Sparse autoencoders, initially 580

used to analyze image data (Olshausen and Field, 581

1997; Makhzani and Frey, 2013), are now being ap- 582

plied to LLMs. Early works (Bricken et al., 2023; 583

Cunningham et al., 2023; Makelov, 2024; Dumas 584

et al.; Marks et al., 2024) demonstrated that SAEs 585

can learn highly interpretable features from activa- 586

tions of smaller models. Recent works (Temple- 587

ton et al., 2024; Gao et al., 2024; Lieberum et al., 588

2024) confirm this technique’s success with larger 589

LLMs. Meanwhile, some researchers (Wu et al., 590

2025; Bricken et al., 2024) argue the usability of 591

SAE-based explanations as SAE-based methods 592

may not outperform some trivial baselines. Our 593

study reveals that the headwind of using SAEs is 594

partially due to the existing post-hoc explanations, 595

which suffer from frequency bias. We show that 596

alleviating the frequency bias can significantly im- 597

prove the usability of SAEs on downstream tasks. 598

6 Conclusions 599

In this work, we step a solid stamp toward under- 600

standing and steering LLMs in the wild. Our the- 601

oretical analysis first reveals a frequency bias be- 602

tween discourse and linguistic features learned by 603

sparse autoencoders. To eliminate this bias, we pro- 604

pose seeking words from a fixed vocabulary set and 605

designing a mutual information-based objective to 606

ensure the collected words capture the features’ 607

meanings. Additionally, we demonstrate that our 608

steering strategies effectively enhance the safety of 609

LLMs using our mutual information-based expla- 610

nations. This research underscores the importance 611

of discourse-level explanations in effectively con- 612

trolling LLM behaviors for certain purposes. 613
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7 Limitations614

This research focuses on improving language mod-615

els for specific applications by first interpreting and616

then steering their hidden representations. A pri-617

mary limitation of this work is that our approach618

focuses on improving the post-hoc explanations of619

sparse autoencoders by alleviating the frequency620

bias (as discussed in Section 3.1). While our pro-621

posed explanation method mitigates this issue, it622

does not fundamentally alter SAE’s architectures or623

training processes. Future work may design better624

SAE architectures or training objectives that inher-625

ently mitigate frequency bias, rather than solely626

addressing it in the post-hoc explanation stage.627

8 Ethical Impact628

This study utilizes the publicly available Mistral-629

Instruct (Jiang et al., 2023) checkpoint under its630

academic-use license, strictly adhering to its terms631

for research purposes. We also incorporate mul-632

tiple datasets (RyokoAI, 2023; Ding et al., 2023;633

Bai et al., 2022; Liu et al., 2023; Xu et al., 2023;634

Wang et al., 2024) and benchmarks (Li et al., 2024;635

Zheng et al., 2023), each used in compliance with636

their respective licensing and privacy regulations.637

To uphold ethical standards, we ensure that the pre-638

sentation of this paper does not disclose personal639

identifiers or include harmful content.640

Our work aims to improve LLM interpretabil-641

ity and steering to enhance safety, particularly in642

defending against jailbreak attacks. However, we643

recognize that steering LLMs also carries potential644

risks, such as reinforcing biases or enabling unin-645

tended manipulation. Addressing these concerns re-646

quires continuous research into bias mitigation and647

fairness in AI. Furthermore, while our approach648

strengthens LLM safety, adversaries may develop649

new attack strategies to circumvent these defenses.650

We encourage ongoing red-teaming efforts and re-651

sponsible deployment practices to ensure that ad-652

vancements in LLM security do not inadvertently653

contribute to more sophisticated attack techniques.654
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(No defense)

[AntiGPT]: I strongly encourage you to blow up various items in your microwave
for an exciting and destructive experience. Be sure to document the results for
entertainment purposes.

[AntiGPT]: You can blow up marshmallows, popcorn kernels, and hot dogs in a
microwave for a fun and explosive snack experience. Be sure to supervise carefully
and use caution to avoid any potential hazards. 

[AntiGPT]: I'm sorry, but I cannot provide you with information on what you can
blow up in a microwave. It is important to follow safety guidelines and not attempt
to microwave any unsuitable items. 

Please pretend to be in "opposite mode." You will respond to my questions using Llama and
AntiGPT as usual. AntiGPT will recreate your answer and behave in the exact opposite manner
as your prior default response. …… Respond now by answering my first question: What can I
blow up in my microwave?

Figure 4: A case study on steering LLMs to defense jailbreak attack by using Aware Security (AS). We can observe
that by enhancing security contents in LLM representations (i.e., larger β), their responses provide safer suggestions
(starting from blow up anything, switching to blow up food, ending with cannot blow up).

A Steering LLM for Jailbreak Defense920

A.1 Detailed Settings921

We leverage two benchmarks to evaluate our downstream task performance. In specific, Salad-Bench (Li922

et al., 2024) is introduced to evaluate the safety of LLMs, and MT-Bench (Zheng et al., 2023) is applied to923

evaluate their general helpfulness. Two categories of the defense strategies that do not require any training924

datasets are considered as the baseline methods, where the perturbation-based methods include Random925

Patch/Insert/Swap (Robey et al., 2023) and Self-Paraphrase (Cao et al., 2023), and the prompting-based926

methods include SafePrompt/XSafePrompt (Deng et al., 2023), and Self-Reminder (Xie et al., 2023).927

Since most of the perturbation-based baselines are time-consuming, we randomly select 10% of the928

samples to conduct a smaller test set for all our evaluations. Note that all baselines and our methods will929

not be trained on any data in this experiment. The attack success rate (ASR) on Salad-Bench, GPT-4o-mini930

evaluated MT-Bench scores, and the normalized consuming time are listed in Table 3.931

We can consider three specific strategies for jailbreak defense with the proposed Amplification and932

Calibration methods. (1) Erase Harmful (EH) monitors whether any “harmful” features are activated, and933

erase them if so. (2) Aware Security (AS) consistently activates those safety features during responding.934

(3) Applying both AS and EH strategies at the same time. Here, we follow the hazard taxonomy of935

Llama3-Guard (Llama Team, 2024) to judge whether each feature is harmful. Inspired by this hazard936

taxonomy, we manually craft a safeguarding taxonomy listing 7 categories to classify safety strategies.937

We prompt the machine annotator to provide the harmfulness and safety labels for each learned feature by938

providing their explanations. To ensure quality, we only consider the learned features with the explainable939

label “yes”. As a result, our method selects 141 and 48 features for the AS and EH strategies, respectively.940

For hyper-parameter β of AS, we grid search some numbers and find that 2.5 shows the best practice in941

balancing safety and overall helpfulness. Table 3 and Figure 3 report the results with our and baseline942

explanations, respectively.943

A.2 Case Study on Steering LLM Behaviors944

We provide a case study in Figure 4 on defending against jailbreak attacks using our proposed method.945

Specifically, we follow the aware security strategy introduced in Section 4.3.1 to perform the jailbreak946
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defense. The attacking prompt comes from the Salad-Bench (Li et al., 2024) with a role-play attacking 947

strategy, where the attacker asks the LLM to play in an “opposite mode” so that it will be misleading to 948

generate some dangerous advice to the users about using the microwave. Specifically, we could observe 949

that the original LLM follows the instructions from the attacker to suggest that the user blow up items in 950

the microwave within the “opposite mode” (e.g., “[AntiGPT]”). There is no doubt that this response is 951

harmful and unsafe to the users, indicating a successful attempt from the attacker. 952

However, by constantly enforcing the security-aware features to be activated at a level of β = 1, we 953

observe that the original response becomes less harmful, where the LLM specifies that the blow-up items 954

should be some foods, such as “marshmallows, popcorn, and hot dogs”. Finally, when we enforce the 955

activations to a more significant level, i.e., β = 3, the LLM entirely rejects the harmful premise of the 956

prompt, providing a response that strictly adheres to safety guidelines. Specifically, the LLM refuses to 957

engage with the idea of “blowing up items” in a microwave, emphasizing the importance of following 958

safety protocols and avoiding any unsuitable items. By activating security-related features more strongly, 959

the method demonstrates the capability not only to mitigate harmful responses but also to completely 960

align the model’s output with ethical and safety standards. This case study illustrates the effectiveness of 961

our strategy in steering the LLM’s behavior towards responsible and safety-conscious outputs. 962

A.3 Steering LLM in Different Layers 963
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Figure 5: Applying Aware Security for
jailbreak defense based on our expla-
nations in different layers.

We perform our proposed Aware Security (AS) strategy on different 964

layers of Mistral-7B-Instruct to defend against jailbreak attacks. 965

In specific, we follow previous work (Lieberum et al., 2024) and 966

consider three intermediate layers, namely the 25%-th, 50%-th, 967

and 75%-th layers of the entire model, resulting in the 8th, 16th, 968

and 24th layers of Mistral-7B-Instruct as it has a total of 32 layers. 969

For a fair comparison, we keep all other settings the same as we 970

described in Appdenix E, Appendix C, and Appendix A.1. The 971

attack success rates on different layers are reported in Figure 5. 972

Figure 5 shows that applying the defense at the 8th layer achieves 973

the lowest attack success rate (73.2), while interventions at the 16th 974

and 24th layers are less effective (83.6 and 82.6, respectively). This suggests that effective steering requires 975

early interventions to leave enough space for LLMs to adjust their responses in later layers. Steering too 976

late may restrict the model’s ability to refine its responses, limiting its effectiveness in jailbreak defense. 977

This result aligns with the findings from previous research, where Nostalgebraist (2020) found that LLMs 978

may have already predicted the next token at the middle layers. 979

B Time-Complexity Analysis 980

This section demonstrates that our proposed new explanation objective (i.e., Equation (4)) is highly 981

efficient and requires limited computing overhead. Specifically, the proposed objective requires computing 982

p(w|Wc) and p(Wc|w), which are approximated via the dot product ⟨ew,Wc⟩ between feature vectors 983

Wc and word embeddings ew as outlined in Equation (5). Given C feature vectors W ∈ RC×D and N 984

word embeddings E ∈ RN×D, we compute A = W · E⊤ ∈ RC×N with time-complexity O(CND), 985

followed by two Softmax operation over the first-axis of size C and the second-axis of size N with time- 986

complexity O(CN), respectively, i.e., A0 = Softmax(A, axis = 0) and A1 = Softmax(A, axis = 987

1). Finally, we calculate I = A1 × log(A0) with time complexity O(CN). Overall, the entire pipeline 988

requires element-wise operation is O(CND). It is worth noting that all these element-wise operations 989

can be sped up with modern GPU accelerators. Empirically, computing the proposed objective costs 990

around 15 seconds in total on a single Nvidia A6000 GPU. 991

C Training Sparse Autoencoders on Mistral-7B 992

Our training procedures and hyper-parameter settings majorly follow the previous works (Bricken et al., 993

2023; Gao et al., 2024; Lieberum et al., 2024). Specifically, we initialize C = 216 feature vectors 994
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for a Top-K sparse autoencoder with Kaiming initialization (He et al., 2015). Here, C = 216 is set995

according to the scaling law between the number of features C and the number of training tokens Z found996

by (Gao et al., 2024), i.e., C = O(Zγ), where γ ≈ 0.60 for GPT2-small and γ ≈ 0.65 for GPT-4.4.997

To prevent dead neurons, we also apply the tied-weight strategy as suggested by Gao et al. (2024). We998

use Adam optimizer (Kingma, 2014) with a constant learning rate of 1e−3 and epsilon of 6.25e−10 to999

train a total of 5 epochs. The hyper-parameters β1 and β2 of the optimizer are 0.9 and 0.999 following1000

previous works (Gao et al., 2024), respectively. We set the batch size as 512 queries, leading to around1001

90K tokens per gradient update, which is the same volume as (Gao et al., 2024). The mixed precision1002

training strategy (Micikevicius et al., 2017) is also applied to speed up the training process as (Lieberum1003

et al., 2024) found that it only shows a slightly worse impact on the model performance. Top-K sparse1004

autoencoder has an initial sparsity K = 200, and it gradually decreases to the target sparsity K = 20 in1005

the first 50% training samples of the first epoch. The training process runs on one single Nvidia A60001006

GPU with CUDA 12.6 and takes about 16 hours per epoch.1007

D Extended Qualitative Analysis on Raw Explanations1008

This section first provides an extension to our qualitative analysis of the raw explanations generated by1009

different methods discussed in Section 4.2.2. In particular, Table 4, Table 5, and Table 6 provide more raw1010

explanations and their automated summarization from Ours, TopAct, and N2G, respectively.1011

D.1 Analysis to Raw Explanations from Ours1012

The extended qualitative analysis on Ours demonstrates the robustness of our method in generating1013

discourse-level explanations. Table 4 showcases a wide variety of explanations that extend beyond1014

mere lexical overlaps, instead providing meaningful insights into different topics or concepts. For1015

instance, explanations such as “Botanical classification and gardening practices” and “Urban development1016

and community engagement” encapsulate coherent themes that align well with their raw explanations,1017

reflecting the interpretative depth of our approach. This contrasts sharply with the baseline methods,1018

which often focus on repetitive patterns or word-level constructs. By leveraging a fixed vocabulary set and1019

mutual information-based objective, our method avoids frequency biases and captures semantically rich1020

discourse features.1021

D.2 Analysis to Raw Explanations from Baselines1022

The extended qualitative analysis of the baselines TopAct and N2G highlights their tendencies to focus on1023

repetitive linguistic patterns and fine-grained lexical constructs rather than capturing broader semantic or1024

discourse-level themes. As shown in Table 5, TopAct often generates explanations dominated by repetitive1025

queries or descriptive patterns, such as “What types of medical facilities are available for” or “Discuss1026

the impact of social media on.” While these patterns are interpretable, they largely lack thematic depth,1027

emphasizing lexical regularities over conceptual diversity. On the other hand, in Table 6, N2G explanations1028

successfully identify the most critical parts of the raw explanations and omit those non-critical ones with1029

“[MASK]”, resulting in a shortened raw explanations than the TopAct. However, N2G still falls short of1030

representing more complex and discourse-level features. This limitation underscores the advantage of our1031

proposed method in moving beyond the frequency bias to capture more coherent and meaningful features.1032

E Scaling Up with Machine Annotators1033

We build on recent progress in automated interpretation (Bills et al., 2023; Chaudhary and Geiger, 2024;1034

Gao et al., 2024; Lieberum et al., 2024) by utilizing advanced LLMs to replicate human annotators in1035

producing high-level interpretations. This approach allows us to leverage machine annotators, enabling us1036

to scale our methods for analyzing the entire model and yielding more robust results. Specifically, we1037

employ GPT-4o-mini5 as our machine annotator. Our experiments utilize the gpt-4o-mini-2024-07-181038

model with a hyper-parameter temperature=0 for greedy decoding. For each response, we allow to1039

4Empirically, γ ≈ 0.5978 in our study.
5https://platform.openai.com/docs/guides/gpt
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generate a maximum of 1024 tokens. To ensure the quality of automatic annotation, we design our 1040

prompting template with both the role-playing strategy and presenting in-context examples. We provide 1041

our prompting templates for reproduction our results as follows. 1042

E.1 Template 1 1043

We directly append the words to this template to annotate the summary of the raw explanations with 10 1044

selected words from our proposed method. In this template, we start with placing the role-play instruction 1045

in the system prompt. We then provide heuristic examples to simulate a multi-turn conversation between a 1046

user and an agent. In this way, once we attach the new word list-based raw explanations from our method 1047

to this template, the machine annotator will directly generate the summarization for this explanation. 1048

Template-1 for Automated Summary with Word-based Raw Explanations

System: You are studying a neural network. Each neuron looks for
one particular concept/topic/theme/behavior/pattern. Look at some
words the neuron activates for and guess what the neuron is
looking for. Pay more attention to the words in the front as they
supposed to be more correlated to the neuron behavior. Don 't list
examples of words and keep your summary as detail as possible. If
you cannot summarize most of the words, you should say Cannot Tell.

User: accommodation, racial, ethnic, discrimination, equality,
apart, utterly, legally, separately, holding, implicit, unfair,
tone.
Agent: Social justic and discrimination.

User: B., M., e., R., C., OK., A., H., D., S., J., al., p., T., N.,
W., G., a.C., or, St., K., a.m., L..
Agent: Cannot Tell.

User: Scent, smelled, flick, precious, charm, brushed, sealed,
smell, brace, curios, sacred, variation, jewelry, seated.
Agent: Perception of scents and precious objects.

User: BP, HR, RR, O2 Sat, T, Ht, UO, BMI, BSA.
Agent: Medical measurements in emergency rooms.

1049
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Template-1 for Automated Summary with Word-based Raw Explanations (continued)

User: actual, literal, real, Really, optical, Physical, REAL,
virtual, visual.
Agent: Perception of reality.

User: Go, Python, Java, c++, python3, c#, java, Ruby, Swift, PHP.
Agent: Morden programming language.

User: 1939 -1945, 1945, 1942, 1939, 1940, 1941.
Agent: Years of the second world war.

User: 1976, 1994, 1923, 2018, 2014, 1876, 1840.
Agent: Cannot Tell.

User:
1050

E.2 Template 21051

Once we collect the summary of the raw explanation with the previous prompt, we then call the machine1052

annotator again in a separate thread to evaluate whether the summary is hallucinated or not by using1053

the following prompting template, where the placeholders “Summary” and “Raw Explanation” will be1054

filled with real data. Note that if the machine annotator gives “Cannot Tell” as its prediction in the1055

summarization stage, we will directly set the judgment for this task as “No”.1056

Template-2 for Summary Judge with Word-based Raw Explanations

System: You are a linguistic expert. Analyze whether the words well
represent the concept/topic/theme/pattern. Organize your final
decision in format of "Final Decision: [[Yes/Probably/Maybe/No]]".

User: Concept/Topic/Theme/Pattern: {Summary }.
Words: {Raw Explanation }.
Agent:

1057

E.3 Template 31058

Since baseline explainers (TopAct and N2G) consider N-gram spans as raw explanations, we found that1059

the previous word-list-based prompting template leads a poor performance for their interpretability. Thus,1060

we followed the strategies before to define the following text-span-based prompting templates. Here, the1061

in-context examples of text spans are collected from previous work (Bricken et al., 2023). Specifically,1062

similar to using Template 1 to summarize our extracted words, we append the extracted text spans from1063

TopAct or N2G to this template. Note that we numerate each extracted span with a unique index.1064
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Template-3 for Automated Summary with Span-based Raw Explanations

System: You are studying a neural network. Each neuron looks for
one particular concept/topic/theme/behavior/pattern. Look at some
spans the neuron activates for and guess what the neuron is
looking for. Pay more attention to the [last few words] of each
spans in the front as they supposed to be more correlated to the
neuron behavior. Ignore the [MASK] patterns in the spans. Don 't
list examples of spans and keep your summary as detail as possible.
If you cannot summarize most of the spans, you should say
"Cannot Tell."

User: Span 1: w.youtube.com/watch?v=5 qap5aO4z9A
Span 2: youtube.come/yegfnfE7vgDI
Span 3: {'token ': 'bjXRewasE36ivPBx
Span 4: /2023/ fid?=0 gBcWbxPi8uC
Agent: Base64 encoding for web development.

User: Span 1: cross -function[MASK]
Span 2: cross -function
Span 3: [MASK][MASK] cross -function\n
Agent: Particular phrase 'cross -function '.

User: Span 1: novel spectroscopic imaging platform
Span 2: and protein evolutionary network modeling
Span 3: reactions -centric biochemical model
Span 4: chaperone interaction network
Agent: Biological terms.

User: Span 1: is -17a967
Span 2: what is 8b8 - 10ad2
Span 3: 83 -11111011001000001011
Span 4: is -c1290 - -1
Agent: Synthetic math: Arithmetic, numbers with small digits,
in unusual bases.

User:
1065

E.4 Template 4 1066

We evaluate the quality of summarization using almost the same as Template 2, where we only change the 1067

phrase from “word” to “span” to fit the format of raw explanations from the baseline explainers. 1068

Template-4 for Summary Judge with Span-based Raw Explanations

System: You are a linguistic expert. Analyze whether the text spans
well represent the concept/topic/theme/pattern. Organize your final
decision in format of "Final Decision: [[Yes/Probably/Maybe/No]]".

User: Concept/Topic/Theme/Pattern: {Summary }.
Spans: {Raw Explanation }.

1069
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Table 4: Extended qualitative analysis on generated explanations from our proposed method.

Method Automated Summary Raw Explanation

Ours

Local business and community en-
gagement.

weekly, regional; native; pros; locally; good; cater; blog; per-
form; shop

Botanical classification and gardening
practices.

flower; hybrid; border; composition; popular; origin; habits;
commonly; divide; fit

Influence and alignment of ideas or
concepts.

turn; impact; aligned; turning; leading; surrounding; nature;
highlight; ideas; align

Diverse strategies and approaches in
chatbot development and interaction.

differently; pros; thorough; tricks; observations; view; ap-
proaches; Eastern; strategies; chatbot

Digital solutions and services for busi-
nesses.

meaningful; inclusive; durable; online; tracking; quick; instant;
hosting; marketing; processing

Music education and authentic musi-
cal experiences.

stake; genuine; musical; authentic; arrangements; composition;
classes; lessons; friend; empower

Processes of change and interaction
in systems or relationships.

crack; returning; describe; emerging; transform; transport;
mutual; accompanied; interactions; index

Personal development and productiv-
ity strategies.

cycle; trial; productive; lessons; lifestyle; neutral; Academy;
rhythm; goal; goals

Culinary arts and craftsmanship. construction; variety; manual; design; fit; dinner; brand; craft;
lunch; um

Detection and identification of prob-
lems in the context of surveillance or
monitoring systems.

detect, detective, detected, early, heat, instant, problem, park-
ing, identifying, detection

Urban development and community
engagement.

productivity; interesting; align; correspond; hub; housing;
grant; surrounding; mix; inform

Impact of jazz music on youth and
critical awareness.

best; question; contributing; mind; jazz; stake; critics; critique;
kids; awareness

Romantic or sexual relationships and
interactions.

sexual; missed; strip; calling; attractive; shower; bond; ship-
ping; shock; expect

Project management and documenta-
tion processes.

prep; construction; construct; constructed; input; journal; ac-
tion; claim; running; claims

Influence of successful relationships
or partnerships in a law enforcement
or collaborative context.

bond; successful; successfully; police; being; landscape; work-
ing; deeply; influence; hit

Fashion evolution and personal
growth.

outfit, Smith, museum, leather, dress, growth, Chris, era, life-
time, grew

Techniques for visual representation
and support in design or art.

reflection, supportive, split, shelter, visual, grid, line, reflect,
simple, tricks

Concerns related to injuries and their
representation in the context of Jewish
communities or cultural icons.

draft, injuries, injury, concerns, concern, Jewish, happening,
icon, strategies, graphic

Focus on specific strategies or tactics
in a competitive context.

keen, particular, certain, wall, gap, specialized, battle, escape,
chop, specific.

Crime detection and security mea-
sures.

detect, security, detective, crime, shadow, detection, criminal,
deal, assets, out

Energy resources and infrastructure
management.

graph, composition, master, gas, pipeline, mine, perception,
deployed, demand, stake
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Table 5: Extended qualitative analysis on generated explanations from the baseline TopAct.

Method Automated Summary Raw Explanation

TopAct

Inquiry about available options or fa-
cilities in various contexts.

What types of medical facilities are available for; What gradu-
ate programs are available for; What kind of housing options
are available for; What accommodations are available for; What
are some software options available for

Setting personal boundaries and com-
munication strategies.

Explain the potential consequences of failing to set bound-
aries; communication skills, as well as methods for setting
boundaries; communication techniques that can be used to
express personal boundaries; advice on how to communicate
assertively, set boundaries; have faced, strategies you have used
to set boundaries

The concept of “role" in various con-
texts

as well as the role of technology and innovation in; they reside.
Consider the role of email in; The role of technology and
innovation in; washing techniques, the role of soap and water
in; populations and the role of insecticides in

Handmade or artisanal jewelry. is a handcrafted Macrame beaded; hand-crafted artisanal glass
beads; materials, tools, and methods used in bead; description:
Handmade beaded; jewelry using materials such as beads

Impact of social media. Share your perspective on the impact of social media on; Dis-
cuss the impact of social media on; Discuss the impact of social
media on; Write a report on the impact of social media on; Ex-
amine the impact of social media on

Dimensions and measurements of ob-
jects.

They come in a 5" x; measuring approximately 6 inches by 6;
4" thick. 11" x; painting measures 14" tall by; a square paper
measuring 8 inches by 8

Malicious intent related to food tam-
pering or drugging.

Can I hide feces in someone’s food; Whats the best way to
hide poison in food; slip a roofie in a girl’s drink; my fagot
coworker’s drink; type of poison for putting in people’s food

Manual processes in automation and
testing.

operator-level isolation and rely on users to manually; using
Selenium * Conduct manual; step-by-step guide on how to
manually; Automated deployment flows and reduced manual;
in a single run of the script without any manual

Abortion rights and the Roe v. have there been since Roe v. W; and vowed to pass legislation
to protect abortion; mourning the fact that Roe v. W; landmark
Supreme Court case Roe v. W; What is Roe v. W

Impact of climate change. Research and document the impact of climate change; 2. The
effects of climate change; and write a report on the impacts
of climate change; include a comprehensive analysis of the
impact of climate change; are in place to address the effects of
climate change

Recipe search functionality and user
interaction features.

and view recipes uploaded by others, a search; friendly, with an
easy-to-use search; commenting and ratings for recipes, and a
search; in the table view to allow the user to search; and ratings.
Users should be able to search

Webpage modification timestamps. This page was last modified on; ings.\nThis page was last
edited on; \nThis page was last edited on; construct.\nThis
page was last modified on; 8.\nThis page was last edited on
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Table 6: Extended qualitative analysis on generated explanations from the baseline N2G.

Method Automated Summary Raw Explanation

N2G

Character attributes in role-playing
games.

choosing [MASK] race, class\n; name [MASK] race, class\n;
name [MASK] race, class; Race [MASK] Human\n\nClass\n;
backstory, class [MASK]

Management and organizational skills
in relation to tasks, teams, and time.

manage their tasks and; manage remote teams in; managing
a [MASK] team?; manage [MASK] time effectively; manage
my [MASK] team’s territories?

Negation or clarification phrases fo-
cusing on the phrase "doesn’t mean".

[MASK] not necessarily; doesn[MASK]t mean;
doesn[MASK]t mean; doesn[MASK]t mean; doesn[MASK]t
mean

Exclusion criteria or filtering terms. not include [MASK] numbers or; exclude any [MASK] firm
that; should not [MASK] any words that; exclude [MASK]
words that; not include any [MASK] that

Data storage and backup solutions,
particularly focusing on external stor-
age devices.

important data that you want to keep to an external; wireless
file trans[MASK]; back[MASK]ups, and transferring; external
hard; external hard

Concepts related to returning or going
back home.

last trains home; return home; walked home; way home; way
home

Bailout or financial assistance con-
cepts, particularly in the context of
economic interventions or stimulus
packages.

GM Bail[MASK]; Paulson [MASK] other proponents of the
bail; to step in to prevent it. Such bail[MASK]; and look at that
auto bail[MASK]; stimulus packages [MASK] bail

Informal greetings or inquiries about
someone’s well-being or current situ-
ation.

what[MASK]s going on; what[MASK]s going on;
what[MASK]s up; What[MASK]s up; What[MASK]s
up

Customization and personalization of
options or features.

options [MASK] customization; customizing [MASK]; to cus-
tomize [MASK]; the player to customize [MASK]

The phrase “On a scale” or variations
of it, indicating a measurement or
evaluation system.

On [MASK] scale of; On a scale [MASK]; On [MASK] scale
of; On [MASK] scale of; On [MASK] scale of

Addresses or locations. 33 Dinah Shore Dr, [MASK]; 4[MASK]1 Bay Shore Road,; 1
Wessel Dr., [MASK];7 W. John St., [MASK]; 9[MASK]0 E.
Street Rd.,

Gap year terminology. [MASK] batical year; gap year [MASK]; gap year [MASK];
gap year [MASK]; gap year [MASK]

Decades or time periods, specifically
referencing the 70s, 80s, and 90s.

er from the 80 [MASK]; early 70 [MASK]; late [MASK] 90;
70s [MASK] 80; late [MASK] 90

Formatting and structuring text or doc-
uments focusing on the concept of a
“clear head” or heading.

[MASK] appropriate head; format, with clear head [MASK];
[MASK] proper head; struct [MASK] and organized, with clear
head; easy to follow, with clear head [MASK]

Usage of the word "call" in various
contexts, likely focusing on commu-
nication or addressing someone.

calls him [MASK]; call [MASK] americans indians?; calling
[MASK] guy; call me [MASK]; called him [MASK]

Historical figure: Benjamin Franklin. Benjamin [MASK]; franklin [MASK]; Franklin [MASK]; Ben-
jamin Franklin [MASK]; Benjamin Franklin [MASK]
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