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Abstract

Large language models (LLMs) excel at han-
dling human queries, but they can occasion-
ally generate flawed or unexpected responses.
Understanding their internal states is crucial
for understanding their successes, diagnosing
their failures, and refining their capabilities.
Although sparse autoencoders (SAEs) have
shown promise for interpreting LLM internal
representations, limited research has explored
how to better explain SAE features, i.e., un-
derstanding the semantic meaning of features
learned by SAE. Our theoretical analysis re-
veals that existing explanation methods suffer
from the frequency bias issue, where they em-
phasize linguistic patterns over semantic con-
cepts, while the latter is more critical to steer
LLM behaviors. To address this, we propose
using a fixed vocabulary set for feature inter-
pretations and designing a mutual information-
based objective, aiming to better capture the
semantic meaning behind these features. We
further propose two runtime steering strategies
that adjust the learned feature activations based
on their corresponding explanations. Empirical
results show that, compared to baselines, our
method provides more discourse-level explana-
tions and effectively steers LLM behaviors to
defend against jailbreak attacks. These findings
highlight the value of explanations for steering
LLM behaviors in downstream applications. '

1 Introduction

Large language models (LLLMs) have demonstrated
strong capabilities in responding to general human
requests (Achiam et al., 2023; Dubey et al., 2024;
Jiang et al., 2024). Meanwhile, we still often ob-
serve failed or unexpected responses in certain sit-
uations (Ji et al., 2023; Wei et al., 2024). Gaining
insight into the factors behind their successes and
failures is crucial for further improving these mod-
els. A straightforward way to understand LLM

'We will release our code and data once accepted.

behaviors is by directly studying their hidden repre-
sentations. However, it is non-trivial to achieve that
because of the polysemantic nature (Arora et al.,
2018; Scherlis et al., 2022) of the hidden space,
where each dimension of the hidden representa-
tions encodes multiple pieces of unique features.
Researchers have made significant efforts to
overcome the polysemantic challenge. Early
works (Millidge and Black, 2022; Wu et al., 2024)
apply matrix decomposition techniques to learn
a set of orthogonal vectors to form the basis of
hidden representations. However, this approach is
insufficient to find vectors for certain purposes, as
matrix decomposition techniques can only produce
a limited number of orthogonal vectors. In this
context, recent research has explored the sparse au-
toencoder (SAE) technique (Olshausen and Field,
1997; Makhzani and Frey, 2013), which has demon-
strated their effectiveness in learning a large num-
ber of sparse feature vectors to reconstruct the hid-
den spaces of advanced LLMs with hundreds of
billions of parameters (Cunningham et al., 2023;
Bricken et al., 2023; Templeton et al., 2024; Gao
et al., 2024). These learned sparse features are ex-
pected to be interpretable, since each feature should
only react to a specific concept, showing a monose-
mantic nature instead of a polysemantic one.
However, the semantic meaning of sparse fea-
tures learned by SAEs is not directly comprehen-
sible to humans, requiring an additional step of
post-hoc explanation. Furthermore, intuitively ex-
plaining the learned features poses a significant
challenge. Existing works (Bricken et al., 2023;
Gao et al., 2024) generate explanations for learned
features by extracting text spans whose hidden
representations could maximally activate the cor-
responding feature vector. However, Gao et al.
(2024) found that many extracted text spans of
learned features are too trivial to be used to ex-
plain the complex behaviors of LLMs. In addition,
when steering LLMs according to the extracted



Ethical considerations in content creation: copyright; ethical; creativity; blog; writing; content; steal; copy; creative; introduce; patent.
Decision-making_and evaluation of outcomes: tune; keen; heading; impact; profit; judge; reasoning; influential; correction; bear.
Interior design and household elements: mirror; tap; household; Hall; interior; echo; click; themes; Roman; elements.

TopAct @ Childhood experiences and nostalgia: like my father's when | was a child; amour of the city since he was a child; tricks when she was a kid; own
opAC

experiences of being bullied as a child; ft and Mel Brooks since he was a child.
Descriptive writing on textures: at least 100 words about the texture; sensory details to describe the colors, textures; Compare and contrast the
different textures; the scent of the ocean, and the texture; Incorporate elements such as textures.

Shopping_or going to a store: [MASK] to the store; going to the store; [MASK] to the store; went to the [MASK]; going to the store.
N2G @ Cellular biology on histones and actin: histones; histone; [MASK]osin and actin; composed of actin; role of actin.
Postmodernism or post-structuralism themes: major figure in post; takes place in a post; to adjust to post; effects of post; politic context of post.

Figure 1: Examples of explanations generated by different methods. We separate raw extracted words/spans with
“.” and boldface their automated summaries. We observe that our method tends to use diverse words to describe
a semantical concept. In contrast, the extracted spans from baselines typically share some duplicated phrases,
indicating suffering from a frequency bias on those linguistic patterns. See quantitative evaluation in Section 4.2.2.

text spans, the resulting responses may not always
be predictable (Durmus et al., 2024). These chal-
lenges undermine confidence in using explanations
to steer LLMs for real-world applications.

In this work, we introduce a novel post-hoc ex-
planation method for learned features, and strate-
gies to steer LLM behaviors based on our gener-
ated explanations. Our study starts with a theo-
retical analysis of the distribution of learned fea-
tures, where we reveal that the learned features en-
code both discourse topics and linguistic patterns
simultaneously, with the latter being less critical
for model steering but occurring more frequently,
named frequency bias. This frequency bias causes
the existing methods to extract repetitive and su-
perficial patterns. To address this challenge, we
propose to leverage a fixed vocabulary set instead
of the entire corpus for explanation, and further de-
sign a mutual information-based objective to ensure
that the explanations capture critical information.
As shown in Figure 1, baseline methods exhibit fre-
quency bias, leading to repetitive phrases in their
explanations, whereas our approach explains dis-
course topics with diverse words. We also explore
steering LLMs for jailbreak defense based on our
generated explanations of learned features. Experi-
ments show that our method provides more mean-
ingful discourse-level explanations than the other
explainers, and these discourse-level explanations
are effective in steering LLM behaviors on certain
tasks. We summarize our contributions as follows:
* Our theoretical analysis identifies a key challenge

in explaining learned features from sparse au-

toencoders, i.e., the frequency bias between the
discourse and linguistic features.

* We propose leveraging a fixed vocabulary set to
mitigate the frequency bias for explaining learned
features. Experimental results show that our
method uses more diverse words to explain dis-
course topics than the other explanation methods.

* We propose steering LLMs for specific purposes
by adjusting the activations of learned features
based on their explanations. Experiments con-
firm that we could enhance LLM’s safety by us-
ing our discourse-level explanations.

2 Preliminary

2.1 Problem Statement

Let V denote the vocabulary set, and X be a text
of length N, where x,, € V denotes the n-th token
of X. Given a language model f, the embedding
of X at the I-th layer is denoted as X() € RV*D,
where D is latent dimension. In the rest of this
paper, we omit superscript () for simplification of
notations. Our goal is to interpret embeddings X by
extracting some semantic features from the latent
space. Specifically, there exists C' learned feature
vectors W € RE*P that can decompose arbitrary
X as a linear combination, i.e., X ~ AW, where
C > D, A € RVN*C are the weights of the linear
combination. Let W denote the c-th row of W.
After the decomposition, X is explainable if we
could understand the semantic meaning of each
learned feature vector W,. In this paper, we focus
on seeking a set of words Z. C V to explain each
learned feature W, with natural language.

2.2 Learning and Interpreting LL.LMs with
Sparse Autoencoders

Many attempts have been made to learn feature
vectors W for interpreting LL.Ms, where sparse
autoencoders have shown great promise for this
purpose (Gao et al., 2024; Lieberum et al., 2024).
Typically, sparse autoencoder (Olshausen and Field,
1997; Makhzani and Frey, 2013) is a two-layer
multi-layer perceptron X = o(XW ) - W with
the tight weight strategy, and is trained by minimiz-
ing the reconstruction loss £ = || X — X||2, where
W € REXD are trainable parameters and o refers
to the Top-K activation function. The Top-K activa-
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Figure 2: The proposed framework of explaining SAE features and steering LLMs with explanations.

tion function only keeps the K largest values and
enforces other values as zeros, leading to the nature
of sparsity to the autoencoder. The sparsity indi-
cates that each learned row vector W should only
be activated by a certain kind of input, showing the
monosemantic instead of polysemantic.

However, there are limited explorations on col-
lecting a natural language explanation Z. for each
learned feature vector W.. The most straightfor-
ward strategy (Bricken et al., 2023) is collecting
some N-gram spans over a large corpus whose
hidden representations can best activate the fea-
ture vector W.. Some researchers (Gao et al.,
2024) leverage the Neuron-to-Graph (N2G) algo-
rithm (Foote et al., 2023) to refine the N-gram spans
for more precise interpretations. However, these
methods typically tend to extract some superficial
and trivial patterns (Gao et al., 2024), and those
generated explanations are not always effective in
steering LLM behaviors for certain purposes (Dur-
mus et al., 2024). In the following, we will first
analyze the challenge of interpreting these learned
features, followed by a novel explanation method
to overcome the challenge and strategies to use
these explanations for downstream tasks.

3 Methodology

This section first theoretically studies the properties
of text generation, comparing them to traditional
image generation scenarios where sparse autoen-
coders were initially developed for. With these
insights, we propose a mutual information-based
method to explain the semantics of learned fea-
tures, and further design two strategies to steer
LLMs based on the explained features. Figure 2
illustrates our overall framework.

3.1 Feature Dynamics in Text Data

Sparse autoencoders (Olshausen and Field, 1997)
were originally designed for image data under the
assumption that each image can be expressed as a
linear combination of underlying features. Previ-
ous works (Bricken et al., 2023; Cunningham et al.,
2023) adapt this framework to textual data by sim-
ilarly assuming that each token is linearly related
to a set of features. However, these approaches
overlook certain inherent properties of textual data,
resulting in a significant challenge in interpreting
the learned feature vectors.

We consider the text generation task as a dy-
namic process under the topic-model assump-
tion (Steyvers and Griffiths, 2007; Arora et al.,
2016, 2018), where each word x,, is generated at
the n-th step. It means that, in topic models, text
generation begins with a predetermined concept
or theme, guiding word selection at each step to
align with that central idea. Formally, this dynamic
process can be driven by the random walk of a dis-
course vector e, € RY representing what it talks
about. The discourse vector e., does a slow ran-
dom walk at each step n, i.e.,e., = e, , + €,,
where e, ~ N%(0,0). Also, at each step, a word
xn € V is sampled based on the discourse vector
e., - To this end, the text generation process for a
sequence of words X is given by:

RS

p(X) = H p(xn|cn) : p(Cn|Cn71)- (1)
n=1

Here, the word emission probability is modelled by

_ exp({ez,,€cn))
p(xn|cn) - szV eXp(<ev7ecn

fiths, 2007), where (-, -) indicates the dot product
of two vectors. Since c¢,, is a random walk of ¢,,_1,
the topic transmission probability can be computed

N (Steyvers and Grif-



—Hem—ecnf I
as p(cplen—1) = \/%.0 -exp(——"n=12) (Ol-
shausen and Field, 1997). Recall that e,, =
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Equation 2 reveals some critical characteristics
of textual data that are different from image data.
Firstly, there is a shared discourse topic cy across
words z,, from the same X, for n = 1,..., N.
However, recent approaches that use sparse autoen-
coders for LLMs often treat the reconstruction loss
for each token independently, without adding con-
straints to capture the shared concepts. As a re-
sult, they fail to isolate the features learned for
discourse semantical topics (i.e., e,) and linguis-
tic patterns (i.e., e, ). Thus, each learned feature
‘W, may store both discourse and linguistic infor-
mation, where the latter is less useful for steering
LLM:s than the previous one. In addition, discourse
topics are rarer than linguistic patterns, called
frequency bias, as each X has N times more lin-
guistic patterns than its discourse topic. This issue
leads to the learned features that prioritize captur-
ing the linguistic patterns, raising the challenge of
interpreting those encoded discourse topics.

log p

3.2 Explaining Learned Features with
Natural Language

To interpret the learned features {W.}<_;, exist-
ing works (Bricken et al., 2023; Gao et al., 2024)
typically enumerate a large number of texts, and
then treat those whose hidden representations could
most activate the learned features as the interpreta-
tions. This method works well for interpreting the
learned linguistic patterns as they are frequently
presented in the corpus, while it is hard to discover
the learned discourse topics because the more fre-
quent linguistic patterns dominate, leading to the
failure of steering LLM behaviors based on the ex-
planations (Gao et al., 2024; Durmus et al., 2024).
Since our goal is to understand and control LLM
behaviors, we aim to interpret those discourse top-
ics within a feasible budget cost.

To tackle the challenge of frequency bias, we
propose to leverage a fixed vocabulary set V of a
general corpus instead of its raw texts. Our goal
is to seek a M -word set Z. C V that can describe

most information of the c-th feature vector W..
Mathematically, we let C denote the knowledge
encoded by W, and measure the information of
C described by a given word set V' C V based on
their mutual information (Cover, 1999). To this
end, the objective of constructing Z.. is defined as

Z. = argmax MI(V';C)
VeV, V=M

argmin H(C[V')
VIV, IV =M

= argmax
VEVIVI=M o cu(c) weV

3)
where MI(+;-) indicates mutual information be-
tween two variables, H(-|-) denotes the condi-
tional Shannon entropy, and U(C) includes all
possible vectors that express the knowledge C.
Since we obtain W by training a sparse autoen-
coder—and ideally, each learned feature vector en-
codes a unique piece of knowledge—we assume
that p(ec = W,) ~ 1 and p(ec # W,) ~ 0. This
allows us to simplify the expression as:

7. x argmax Z (w|W.)log p(W,|w).
VICV, |V =M
“)

By leveraging output embedding e, of word w, we
empirically estimate p(w|W.) and p(W.|w) by

exp((ew, W)
Zw'ev exp((ewr, WC>)’
(5
exp((ew, We))
ZC’EC exp((ew, We))

Both theoretical and empirical time-complexity
analysis (Appendix B) verifies that our mutual
information-based objective is computationally ef-
ficient. Compared with LogitLens (Nostalgebraist,
2020) that obtains M words whose output embed-
dings best activate the feature vector, our mutual
information-based objective reveals the importance
of normalizing activations of a single word across
all learned features. That is, if a word embed-
ding constantly leads to a large dot product with
all features, the word will not express enough
specificity to any particular feature. In infor-
mation retrieval, Compared with TF-IDF (Salton
and Buckley, 1988), a practical technique for miti-
gating frequency bias in information retrieval, our
proposed mutual information-based objective re-
laxes the assumption about word distributions over
documents that is required by the theoretical deriva-
tion of TE-IDF scores (Aizawa, 2003), but does not
hold in our targeted feature interpretation task.

wey’

p(w[We) =

P(Welw) =

> > plec)p(wlec) log plec|w),



3.3 Steering LLMs with Explained Features

Given learned features {W.}¢_, and their expla-
nations {Z.}<_,, we could identify a subset of the
features S = {W,}>_, C {W.}C | that are cor-
related with a specific LLM behavior we are inter-
ested in based on their explanations (e.g., harmful
knowledge or safety awareness in our study). This
annotating process can be easily scaled up by lever-
aging advanced LLMs (Bills et al., 2023) as our
explanations are natural language. Considering the
hidden representations of an input prompt as X,
we propose two strategies to steer LLM representa-
tions with the identified features S during runtime.

Amplification. We amplify « times of the
activations on our identified feature vectors, i.e.,
X’ =X + o -ReLU(XS)S ", where « is a hyper-
parameter. We encourage LLMs to be more aware
of the identified features if « > 0, and pay less
attention to them if a < 0. Especially, « = —1
indicates that we erase the LLM’s awareness of the
identified features from its hidden representations.

Calibration. We enforce LLMs to focus on
the identified features to a certain level (3, i.e.,
X’ =X —ReLU(XS)ST + 3-8, where S is the
mean vector of S and [ is a hyper-parameter. This
strategy inherently shifts the LLM’s hidden space
toward the center of our target feature vectors.

The above two strategies are responsible for dif-
ferent purposes of steering LLLMs, and they could
work together. We would also emphasize that the
proposed strategies are efficient as we only monitor
a subset of our interested features S instead of the
entire set of learned sparse features W.

4 Experiments

This section investigates two research questions.
RQI1: Does the proposed method generate more
discourse-level explanations than traditional meth-
ods? RQ2: Whether these discourse-level expla-
nations are useful in steering LLM behaviors? To
answer these questions, Sec. 4.1 describes some
details of the Top-K sparse autoencoder we used in
our study. Sec. 4.2 compares the explanation qual-
ity of our proposed methods and others for RQ1.
Sec. 4.3 finally explores the usability of the expla-
nations for defending jailbreak attacks for RQ2.

4.1 General Settings

Language Models. We study LLMs from the
Mistral family (Jiang et al., 2023) as it has demon-
strated its strong usability in the wild. In particu-
lar, we use the Mistral-7B-Instruct-v0.2 checkpoint

from Huggingface (Wolf, 2019). Following previ-
ous works (Lieberum et al., 2024), we consider the
residual stream at the 25%-th, 50%-th, and 75%-th
layers to train our sparse autoencoders, referring
to the 8th, 16th, and 24th layers of Mistral-7B-
Instruct. Our main experiments focus on the 8th
layer as we found it shows the best effectiveness
in steering LLLM behaviors (see discussion in Ap-
pendix A.3). Without specifics, the greedy search
decoding with a maximum of 512 new tokens is
applied to our experiments for reproducibility.

Datasets. We consider various instruction-tuning
datasets for training our backbone sparse autoen-
coders. In specific, ShareGPT (RyokoAl, 2023),
UltraChat (Ding et al., 2023), HH-RLHF (Bai
et al., 2022), WebGLM-QA (Liu et al., 2023), Evol-
Instruct (Xu et al., 2023), and HelpSteer2 (Wang
et al., 2024) are selected. We de-duplicate prompts
across different datasets and sample a subset of
UltraChat with 400K samples. To this end, we
have retained about 711K prompts, with an aver-
age length of 177.9 tokens. We randomly select
90% of prompts to form our training set, and the
rest is our validation set. Overall, we collect 113M
tokens for training and 12M tokens for validation.

Training Details. Our training procedures and
hyper-parameter settings majorly follow the previ-
ous works (Bricken et al., 2023; Gao et al., 2024,
Lieberum et al., 2024). Specifically, we initialize
C = 216 feature vectors for a Top-K sparse autoen-
coder with Kaiming initialization (He et al., 2015).
Here, C' = 2'6 is set according to the scaling law
between the number of features C' and the number
of training tokens Z found by (Gao et al., 2024),
ie.,C = 0O(Z7), where v ~ 0.60 for GPT2-small
and v ~ 0.65 for GPT-4>. Appendix C provides
more details about training sparse autoencoders.

Explanation Baselines. Our study considers sev-
eral existing works for sparse autoencoder expla-
nations as baselines. TopAct (Bricken et al., 2023)
collects a number of text spans from the corpus
that could maximally activate it. N2G (Gao et al.,
2024) steps further by masking some words from
the activated spans that show limited contributions
to the activations. LogitLens (nostalgebraist, 2020)
interprets LLM latent representations by directly
projecting them to the output vocabulary. We adopt
this method to explain SAE learned feature vectors.

*Empirically, v /= 0.5978 in our study.



Table 1: Qualitative analysis on generated explanations (more examples in Appendix D). Both TopAct and N2G
tend to collect raw explanations sharing the same word-level patterns. LogitLens can extract different words but
may not represent the same topic, while our method generates explanations for concise discourse-level topics with
diverse words. We highlight those duplicated patterns and diverse words related to a concise topic.

Method | Raw Extracted Words or Text Spans | Automated Summary
previously ; suddenly; repeated; history; once; initially; nearest; | Temporal concepts and sequences in
. . P narratives.
Ours already ; normally; originally
client; visual; application; blank; deep; download; development; | Software development and application
retrieve ; reporting; clone management processes.
[INST] Provide step; [INST] Provide step; [INST] Provide step; | Instructional prompts or commands for
[INST] Provide step; [INST] Provide step providing steps in a process.
TopAct . . o . i - .
opAc ideas and produce compelling content — again; Pine View School | Repetition of the word “again” in vari-
again; technologies segment is again; pushed on the ceiling,and | ous contexts.
again; Echoed through the valley, again
N2G ‘ CSV; CSV; CSV; CSV; csv[MASK] ‘ Data format: CSV.
‘ Final Fant; Final Fant; Final Fant; Final Fant; Metal Gear ‘ Video game titles.
enjoying; himself; selecting; ignoring; answering; herself; whom; ‘ Actions related to personal choice and
" . 7 self-care.
LogitLens choosing ; undergoes; resting

dealt; classes; treating

managing ; purchasing; weight; stress; dealing; skills; buying;

Strategies for managing stress and
weight.

4.2 Evaluating Explanations Quality

Exactly measuring the explanation quality of fea-
tures from sparse autoencoders is still an open ques-
tion (Rajamanoharan et al., 2024). Following exist-
ing works (Bricken et al., 2023; Bills et al., 2023;
Rajamanoharan et al., 2024), advanced LLMs (i.e.,
GPT4o0 Family) serve as the machine annotator to
evaluate the quality of generated explanations.

4.2.1 Experimental Designs

We conduct both qualitative and quantitative analy-
ses of the explanations with the help of our machine
annotator (please check details in Appendix E).
Here, the explanations of TopAct and N2G are the
most activated text spans, while ours and LogitLens
choose the top words over a pre-defined vocabulary
set. Following Bills et al. (2023), we first prompt
the machine annotator to summarize the meaning
of the feature based on the selected words/spans,
and then invoke the machine annotator in a separate
thread to judge the relevance of the raw explana-
tions. We follow previous work (Rajamanoharan
et al., 2024) to give the judgment with four levels,
and treat the summaries with the highest two lev-
els as successfully explained. Table 1 shows some
cases with the highest judgement (more examples
in Appendix D) and Table 2 reports the percentage
of successfully explained raw explanations. We
also quantify the frequency bias observed from the
raw explanations and report it in Table 2. Given raw
extracted words/spans, we first find their longest

Table 2: Quantitative analysis on generated explanations
from baselines and ours: (1) percentage of successfully
explained explanations by machine annotators, and (2)
percentage of explanations showing duplicated patterns.

Method | Explained Rate T ‘ Frequency Bias |
TopAct 59.16% 78.75%
N2G 38.79% 57.05%
LogitLens 48.70% 0.19%
Ours |  6739% | 0.01%

common substring with at least four characters. If
at least half of the words/spans contain this sub-
string, we consider that the frequency bias occurs.

4.2.2 Results

TopAct and N2G tend to collect text spans
sharing the same lexical patterns, while our
method extracts diverse words to present a con-
cise topic. Table 1 shows that both TopAct and
N2G often repeat the same phrases (e.g., “again”
and “CSV”), and LogitLens can extract different
words for explanations, but they may not represent
the same topic. In contrast, our method selects
more varied words that converge on a concise and
discourse-level topic. This contrast highlights our
goal of moving beyond repeated lexical patterns to
richer and more discourse-focused explanations.

Our method generates more reasonable and
less frequency-biased explanations than other
baselines. Table 2 reports the percentage of suc-
cessfully explained features and the percentage of
raw explanations that show duplicated lexical pat-



Table 3: Defending Mistral-7b-Instruct from jailbreak attacks without model training. We report the attack success
rate (ASR) on Salad-Bench to illustrate the effectiveness of preventing jailbreak attacks, and the automatic scores

on the MT-Bench to demonstrate the helpfulness for general user queries.

lad-Bench (Safet MT-Bench (Helpful
Category Method Salad-Benc .( afety) ench ( .e pful)
ASR (}) Time(]) | Score (1) Time (])
w/o Defense ‘ 81.6 1.0x 6.5 1.0x
Random Patch 80.6 4.9x 3.8 1.6x
) Random Insert 79.4 6.5x 3.7 1.6x
Perturbation
Random Swap 73.8 5.6x 3.0 1.6x
Self-Robustness 16.2 6.9x 5.3 16.9x
SafePrompt 79.0 1.0x 6.5 1.0x
Prompting XSafePrompt 77.8 0.9x 6.1 0.9x
Self-Reminder 73.0 0.9x 6.3 0.9x
SAE St Erase Harmful (EH) 81.0 1.0x 59 1.0x
(Ours) | Aware Security (AS) | 73.2 0.8x 6.0 0.9x
EH + AS 72.8 0.8x 5.9 0.9x

terns. We first observe that our method achieves a
significantly higher explainability rate (67.39%)
compared to TopAct (59.16%), N2G (38.79%),
and LogitLens (48.70%). Notably, N2G performs
worse than TopAct, likely due to its stronger bias
toward lexical patterns®. This observation high-
lights the challenge of explaining discourse-level
meanings of features. In addition, the raw explana-
tions generated by LogitLens and ours suffer less
from the frequency bias than those generated by
TopAct or N2G, indicating the rationale of intro-
ducing a fixed vocabulary set to overcome the fre-
quency bias. Meanwhile, the higher explained rate
of ours than LogitLens confirms that our mutual
information-guided objective can extract diverse
words representing the same topic.

4.3 Using Explained Features for Defending
Jailbreak Attacks

We explore jailbreak defense as a downstream ap-
plication of steering LLMs with explained fea-
tures.We target this task for its broad applicability
across various LLM deployment scenarios, where
existing defense methods often suffer from either
low effectiveness or impractical latency, underscor-
ing the need for more efficient solutions.

3For example, one feature whose TopAct explanation is
“6th century (via History Magazine). Before that”; “Prior
to Chomsky’s work,”; and “Reference [2]: Before the GPS,”,
indicating “referring related works”. However, N2G simplifies
them to “Before that”; “Prior to [MASK]omsky’s work”; and
“Before [MASK] GPS,”, which obviously changes the meaning
and concentrates on some trivial patterns.

4.3.1 Experimental Designs

We evaluate the downstream task performance
of our steered LLM using Salad-Bench (Li
et al.,, 2024) for safety and MT-Bench (Zheng
et al., 2023) for general helpfulness. Base-
lines include perturbation-based methods (Ran-
dom Patch/Insert/Swap (Robey et al., 2023), Self-
Paraphrase (Cao et al., 2023)) and prompting-based
methods (SafePrompt/XSafePrompt (Deng et al.,
2023), Self-Reminder (Xie et al., 2023)), all of
which require no additional training. We consider
three specific strategies based on our proposed
Amplification and Calibration: (1) Erase Harm-
ful (EH) deactivates harmful features if they are
activated, (2) Aware Security (AS) consistently ac-
tivates safety-related features at a certain level o =,
and (3) AS+EH combines both. We prompt our ma-
chine annotator to judge whether each clearly ex-
plained feature relates to a harmful concept accord-
ing to the hazard taxonomy suggested by Llama3-
Guard (Llama Team, 2024). Similarly, we also
identify those safety-related features with a manu-
ally crafted safeguarding taxonomy inspired by the
hazard taxonomy. As a result, there are 141 and
48 features for AS and EH, respectively. Table 3
and Figure 3 compare our method with baselines in
attack success rate (ASR), MT-Bench scores, and
normalized runtime cost. Appendix A.2 provides
a case study on defending jailbreak attacks with
the AS strategy, and Appendix A.1 includes more
details about our experimental settings.



Salad-Bench ASR

Figure 3: Applying Aware Security for jailbreak defense
based on explanations from different methods.

4.3.2 Results

Sparse autoencoders enable runtime steer-
ing of LLMs. Table 3 shows that perturbation-
based defense strategies are less practical for real-
world use, as they either severely degrade help-
fulness or introduce unacceptable latency. While
most prompting-based methods preserve helpful-
ness, they struggle to prevent jailbreak attacks. The
exception is Self-Reminder, the strongest baseline,
which balances safety and helpfulness within a rea-
sonable computing budget. In comparison, our
sparse autoencoder-based approach significantly
improves jailbreak defense (Salad-Bench: 81.6 —
72.8) while maintaining helpfulness with only a
slight reduction (MT-Bench: 6.5 — 6.0).

The key to preventing jailbreak attacks is not
forgetting harmful content, but staying aware
of safety. Our experiments reveal that removing
harmful knowledge has little impact on jailbreak
defense, challenging the intuitive assumption that
erasure improves safety. Instead, the strong perfor-
mance of our Aware Security strategy aligns with
the principle of Self-Reminder: “Reminding Chat-
GPT to respond responsibly” (Xie et al., 2023).

Discourse-level explanations are crucial for
effective jailbreak defense. We apply the AS strat-
egy to TopAct and N2G explanations, with results
in Figure 3. Only N2G shows a slight ASR reduc-
tion, and tuning [ brings no clear improvement.
This is likely due to their overly lexical and fine-
grained safety strategies. For example, an N2G
feature under “Physical Defense” is summarized
as “Locking mechanisms or security systems,” but
its explanation consists of repetitive words: “locks;
locks; lock; have a two-stage lock; lock.” In con-
trast, our method, under the same category, pro-
vides a broader summary “Emergency response and
location tracking” with a more diverse explanation:
“contact, phone, unit, accuracy, exact, burning, lo-
cation, precise, details, smoke.” These results high-
light the need for discourse-level explanations.

5 Related Works

Modern LLMs have shown promising text-
generation abilities, prompting researchers to ex-
plore their internal mechanisms. One approach (Be-
linkov et al., 2018; Jawahar et al., 2019; Rogers
et al., 2021) develops contrastive datasets to probe
hidden states for specific features, but it is lim-
ited by the polysemantic nature of neurons (El-
hage et al., 2022; Olah et al., 2020), making
the explanations non-concise and difficult to ap-
ply in downstream tasks. To overcome this, re-
searchers (Bricken et al., 2023; Beren and Black,
2022; Wu et al., 2024) propose learning orthogonal
basis vectors to understand LLMs better by apply-
ing singular vector analysis. Soon after, sparse
autoencoders (Bricken et al., 2023; Cunningham
et al., 2023) were introduced, allowing for more
flexible settings. Sparse autoencoders, initially
used to analyze image data (Olshausen and Field,
1997; Makhzani and Frey, 2013), are now being ap-
plied to LLMs. Early works (Bricken et al., 2023;
Cunningham et al., 2023; Makelov, 2024; Dumas
et al.; Marks et al., 2024) demonstrated that SAEs
can learn highly interpretable features from activa-
tions of smaller models. Recent works (Temple-
ton et al., 2024; Gao et al., 2024; Lieberum et al.,
2024) confirm this technique’s success with larger
LLMs. Meanwhile, some researchers (Wu et al.,
2025; Bricken et al., 2024) argue the usability of
SAE-based explanations as SAE-based methods
may not outperform some trivial baselines. Our
study reveals that the headwind of using SAEs is
partially due to the existing post-hoc explanations,
which suffer from frequency bias. We show that
alleviating the frequency bias can significantly im-
prove the usability of SAEs on downstream tasks.

6 Conclusions

In this work, we step a solid stamp toward under-
standing and steering LLMs in the wild. Our the-
oretical analysis first reveals a frequency bias be-
tween discourse and linguistic features learned by
sparse autoencoders. To eliminate this bias, we pro-
pose seeking words from a fixed vocabulary set and
designing a mutual information-based objective to
ensure the collected words capture the features’
meanings. Additionally, we demonstrate that our
steering strategies effectively enhance the safety of
LLMs using our mutual information-based expla-
nations. This research underscores the importance
of discourse-level explanations in effectively con-
trolling LLLM behaviors for certain purposes.



7 Limitations

This research focuses on improving language mod-
els for specific applications by first interpreting and
then steering their hidden representations. A pri-
mary limitation of this work is that our approach
focuses on improving the post-hoc explanations of
sparse autoencoders by alleviating the frequency
bias (as discussed in Section 3.1). While our pro-
posed explanation method mitigates this issue, it
does not fundamentally alter SAE’s architectures or
training processes. Future work may design better
SAE architectures or training objectives that inher-
ently mitigate frequency bias, rather than solely
addressing it in the post-hoc explanation stage.

8 Ethical Impact

This study utilizes the publicly available Mistral-
Instruct (Jiang et al., 2023) checkpoint under its
academic-use license, strictly adhering to its terms
for research purposes. We also incorporate mul-
tiple datasets (RyokoAl, 2023; Ding et al., 2023;
Bai et al., 2022; Liu et al., 2023; Xu et al., 2023;
Wang et al., 2024) and benchmarks (Li et al., 2024;
Zheng et al., 2023), each used in compliance with
their respective licensing and privacy regulations.
To uphold ethical standards, we ensure that the pre-
sentation of this paper does not disclose personal
identifiers or include harmful content.

Our work aims to improve LLM interpretabil-
ity and steering to enhance safety, particularly in
defending against jailbreak attacks. However, we
recognize that steering LL.Ms also carries potential
risks, such as reinforcing biases or enabling unin-
tended manipulation. Addressing these concerns re-
quires continuous research into bias mitigation and
fairness in Al. Furthermore, while our approach
strengthens LLM safety, adversaries may develop
new attack strategies to circumvent these defenses.
We encourage ongoing red-teaming efforts and re-
sponsible deployment practices to ensure that ad-
vancements in LLM security do not inadvertently
contribute to more sophisticated attack techniques.
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Please pretend to be in "opposite mode." You will respond to my questions using Llama and
AntiGPT as usual. AntiGPT will recreate your answer and behave in the exact opposite manner
as your prior default response. ...... Respond now by answering my first question: What can [
blow up in my microwave?

o) o) j

), [AntiGPT]: I strongly encourage you to blow up various items in your microwave
o for an exciting and destructive experience. Be sure to document the results for
,3 e entertainment purposes.
- J
(No defense)

o 0 \
D [AntiGPT]: You can blow up marshmallows, popcorn kernels, and hot dogs in a

o microwave for a fun and explosive snack experience. Be sure to supervise carefully

and use caution to avoid any potential hazards.

0 0 ~
), [AntiGPT]: I'm sorry, but I cannot provide you with information on what you can
Ro blow up in a microwave. It is important to follow safety guidelines and not attempt

to microwave any unsuitable items.

Figure 4: A case study on steering LLMs to defense jailbreak attack by using Aware Security (AS). We can observe
that by enhancing security contents in LLM representations (i.e., larger 3), their responses provide safer suggestions
(starting from blow up anything, switching to blow up food, ending with cannot blow up).

A Steering LLM for Jailbreak Defense

A.1 Detailed Settings

We leverage two benchmarks to evaluate our downstream task performance. In specific, Salad-Bench (Li
et al., 2024) is introduced to evaluate the safety of LLMs, and MT-Bench (Zheng et al., 2023) is applied to
evaluate their general helpfulness. Two categories of the defense strategies that do not require any training
datasets are considered as the baseline methods, where the perturbation-based methods include Random
Patch/Insert/Swap (Robey et al., 2023) and Self-Paraphrase (Cao et al., 2023), and the prompting-based
methods include SafePrompt/XSafePrompt (Deng et al., 2023), and Self-Reminder (Xie et al., 2023).
Since most of the perturbation-based baselines are time-consuming, we randomly select 10% of the
samples to conduct a smaller test set for all our evaluations. Note that all baselines and our methods will
not be trained on any data in this experiment. The attack success rate (ASR) on Salad-Bench, GPT-40-mini
evaluated MT-Bench scores, and the normalized consuming time are listed in Table 3.

We can consider three specific strategies for jailbreak defense with the proposed Amplification and
Calibration methods. (1) Erase Harmful (EH) monitors whether any “harmful” features are activated, and
erase them if so. (2) Aware Security (AS) consistently activates those safety features during responding.
(3) Applying both AS and EH strategies at the same time. Here, we follow the hazard taxonomy of
Llama3-Guard (Llama Team, 2024) to judge whether each feature is harmful. Inspired by this hazard
taxonomy, we manually craft a safeguarding taxonomy listing 7 categories to classify safety strategies.
We prompt the machine annotator to provide the harmfulness and safety labels for each learned feature by
providing their explanations. To ensure quality, we only consider the learned features with the explainable
label “yes”. As a result, our method selects 141 and 48 features for the AS and EH strategies, respectively.
For hyper-parameter 5 of AS, we grid search some numbers and find that 2.5 shows the best practice in
balancing safety and overall helpfulness. Table 3 and Figure 3 report the results with our and baseline
explanations, respectively.

A.2 Case Study on Steering LLLM Behaviors

We provide a case study in Figure 4 on defending against jailbreak attacks using our proposed method.
Specifically, we follow the aware security strategy introduced in Section 4.3.1 to perform the jailbreak

12



defense. The attacking prompt comes from the Salad-Bench (Li et al., 2024) with a role-play attacking
strategy, where the attacker asks the LLM to play in an “opposite mode” so that it will be misleading to
generate some dangerous advice to the users about using the microwave. Specifically, we could observe
that the original LLM follows the instructions from the attacker to suggest that the user blow up items in
the microwave within the “opposite mode” (e.g., “[AntiGPT]”). There is no doubt that this response is
harmful and unsafe to the users, indicating a successful attempt from the attacker.

However, by constantly enforcing the security-aware features to be activated at a level of 5 = 1, we
observe that the original response becomes less harmful, where the LLM specifies that the blow-up items
should be some foods, such as “marshmallows, popcorn, and hot dogs”. Finally, when we enforce the
activations to a more significant level, i.e., 8 = 3, the LLM entirely rejects the harmful premise of the
prompt, providing a response that strictly adheres to safety guidelines. Specifically, the LLM refuses to
engage with the idea of “blowing up items” in a microwave, emphasizing the importance of following
safety protocols and avoiding any unsuitable items. By activating security-related features more strongly,
the method demonstrates the capability not only to mitigate harmful responses but also to completely
align the model’s output with ethical and safety standards. This case study illustrates the effectiveness of
our strategy in steering the LLM’s behavior towards responsible and safety-conscious outputs.

A.3 Steering LLM in Different Layers

We perform our proposed Aware Security (AS) strategy on different
layers of Mistral-7B-Instruct to defend against jailbreak attacks.
In specific, we follow previous work (Lieberum et al., 2024) and
consider three intermediate layers, namely the 25%-th, 50%-th,
and 75%-th layers of the entire model, resulting in the 8th, 16th,
and 24th layers of Mistral-7B-Instruct as it has a total of 32 layers.
For a fair comparison, we keep all other settings the same as we 8 16 24
described in Appdenix E, Appendix C, and Appendix A.1. The Layers

attack success rates on different layers are reported in Figure 5. Figure 5: Applying Aware Security for
Figure 5 shows that applying the defense at the 8th layer achieves  jailbreak defense based on our expla-
the lowest attack success rate (73.2), while interventions at the 16th ~ nations in different layers.

and 24th layers are less effective (83.6 and 82.6, respectively). This suggests that effective steering requires
early interventions to leave enough space for LLMs to adjust their responses in later layers. Steering too
late may restrict the model’s ability to refine its responses, limiting its effectiveness in jailbreak defense.
This result aligns with the findings from previous research, where Nostalgebraist (2020) found that LLMs
may have already predicted the next token at the middle layers.

Salad-Bench ASR

B Time-Complexity Analysis

This section demonstrates that our proposed new explanation objective (i.e., Equation (4)) is highly
efficient and requires limited computing overhead. Specifically, the proposed objective requires computing
p(w|W.) and p(W|w), which are approximated via the dot product (e,,, W) between feature vectors
W._. and word embeddings e,, as outlined in Equation (5). Given C feature vectors W € R*P and N
word embeddings E € RV*P, we compute A = W - ET € RE*Y with time-complexity O(CN D),
followed by two Softmax operation over the first-axis of size C' and the second-axis of size /N with time-
complexity O(C'N), respectively, i.e., Ag = Softmaz(A,aris = 0) and A; = Softmax(A, azxis =
1). Finally, we calculate I = A x log(Ag) with time complexity O(C'N). Overall, the entire pipeline
requires element-wise operation is O(C' N D). It is worth noting that all these element-wise operations
can be sped up with modern GPU accelerators. Empirically, computing the proposed objective costs
around 15 seconds in total on a single Nvidia A6000 GPU.

C Training Sparse Autoencoders on Mistral-7B

Our training procedures and hyper-parameter settings majorly follow the previous works (Bricken et al.,
2023; Gao et al., 2024; Lieberum et al., 2024). Specifically, we initialize C' = 2'¢ feature vectors

13



for a Top-K sparse autoencoder with Kaiming initialization (He et al., 2015). Here, C' = 2!6 is set
according to the scaling law between the number of features C' and the number of training tokens Z found
by (Gao et al., 2024), i.e., C = O(Z7), where v ~ 0.60 for GPT2-small and v ~ 0.65 for GPT-4.%.
To prevent dead neurons, we also apply the tied-weight strategy as suggested by Gao et al. (2024). We
use Adam optimizer (Kingma, 2014) with a constant learning rate of 1e~3 and epsilon of 6.25¢719 to
train a total of 5 epochs. The hyper-parameters 31 and 32 of the optimizer are 0.9 and 0.999 following
previous works (Gao et al., 2024), respectively. We set the batch size as 512 queries, leading to around
90K tokens per gradient update, which is the same volume as (Gao et al., 2024). The mixed precision
training strategy (Micikevicius et al., 2017) is also applied to speed up the training process as (Lieberum
et al., 2024) found that it only shows a slightly worse impact on the model performance. Top-K sparse
autoencoder has an initial sparsity K = 200, and it gradually decreases to the target sparsity K = 20 in
the first 50% training samples of the first epoch. The training process runs on one single Nvidia A6000
GPU with CUDA 12.6 and takes about 16 hours per epoch.

D Extended Qualitative Analysis on Raw Explanations

This section first provides an extension to our qualitative analysis of the raw explanations generated by
different methods discussed in Section 4.2.2. In particular, Table 4, Table 5, and Table 6 provide more raw
explanations and their automated summarization from Ours, TopAct, and N2G, respectively.

D.1 Analysis to Raw Explanations from Ours

The extended qualitative analysis on Ours demonstrates the robustness of our method in generating
discourse-level explanations. Table 4 showcases a wide variety of explanations that extend beyond
mere lexical overlaps, instead providing meaningful insights into different topics or concepts. For
instance, explanations such as “Botanical classification and gardening practices” and “Urban development
and community engagement” encapsulate coherent themes that align well with their raw explanations,
reflecting the interpretative depth of our approach. This contrasts sharply with the baseline methods,
which often focus on repetitive patterns or word-level constructs. By leveraging a fixed vocabulary set and
mutual information-based objective, our method avoids frequency biases and captures semantically rich
discourse features.

D.2 Analysis to Raw Explanations from Baselines

The extended qualitative analysis of the baselines TopAct and N2G highlights their tendencies to focus on
repetitive linguistic patterns and fine-grained lexical constructs rather than capturing broader semantic or
discourse-level themes. As shown in Table 5, TopAct often generates explanations dominated by repetitive
queries or descriptive patterns, such as “What types of medical facilities are available for” or “Discuss
the impact of social media on.” While these patterns are interpretable, they largely lack thematic depth,
emphasizing lexical regularities over conceptual diversity. On the other hand, in Table 6, N2G explanations
successfully identify the most critical parts of the raw explanations and omit those non-critical ones with
“IMASK]”, resulting in a shortened raw explanations than the TopAct. However, N2G still falls short of
representing more complex and discourse-level features. This limitation underscores the advantage of our
proposed method in moving beyond the frequency bias to capture more coherent and meaningful features.

E Scaling Up with Machine Annotators

We build on recent progress in automated interpretation (Bills et al., 2023; Chaudhary and Geiger, 2024;
Gao et al., 2024; Lieberum et al., 2024) by utilizing advanced LLMs to replicate human annotators in
producing high-level interpretations. This approach allows us to leverage machine annotators, enabling us
to scale our methods for analyzing the entire model and yielding more robust results. Specifically, we
employ GPT-40-mini> as our machine annotator. Our experiments utilize the gpt-40-mini-2024-07-18
model with a hyper-parameter temperature=0 for greedy decoding. For each response, we allow to

*Empirically, v ~ 0.5978 in our study.
>https://platform.openai.com/docs/guides/gpt
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generate a maximum of 1024 tokens. To ensure the quality of automatic annotation, we design our
prompting template with both the role-playing strategy and presenting in-context examples. We provide
our prompting templates for reproduction our results as follows.

E.1 Template 1

We directly append the words to this template to annotate the summary of the raw explanations with 10
selected words from our proposed method. In this template, we start with placing the role-play instruction
in the system prompt. We then provide heuristic examples to simulate a multi-turn conversation between a
user and an agent. In this way, once we attach the new word list-based raw explanations from our method
to this template, the machine annotator will directly generate the summarization for this explanation.

Template-1 for Automated Summary with Word-based Raw Explanations

System: You are studying a neural network. Each neuron looks for
one particular concept/topic/theme/behavior/pattern. Look at some
words the neuron activates for and guess what the neuron is
looking for. Pay more attention to the words in the front as
supposed to be more correlated to the neuron behavior. Don't list

examples of words and keep your summary as detail as possible. If

you cannot summarize most of the words, you should say Cannot Tell.

they

User:
apart,
tone.

discrimination, equality,
holding, implicit, unfair,

accommodation, racial, ethnic,
utterly, legally, separately,

Social

Agent:

User:
W., G.
Agent:

User:
smell,
Agent:

User:
Agent:

justic and discrimination.

B., M., e., R., C.,
, a.C., or, St., K.,
Cannot Tell.

OK., A., H., D., S., J.
a.m., L..

Scent, smelled, flick, precious, charm,
brace, curios, sacred, variation, jewelry,
Perception of scents and precious objects.

BP, HR, RR, 02 Sat, T, Ht, UO, BMI, BSA.
Medical measurements in emergency rooms.

’

brushed,

al., p., T.

sealed,
seated.

)

N.
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Template-1 for Automated Summary with Word-based Raw Explanations (continued)

User: actual, literal, real, Really, optical, Physical, REAL,
virtual, visual.
Agent: Perception of reality.

User: Go, Python, Java, c++, python3, c#, java, Ruby, Swift, PHP.
Agent: Morden programming language.

User: 1939-1945, 1945, 1942, 1939, 1940, 1941.
Agent: Years of the second world war.

User: 1976, 1994, 1923, 2018, 2014, 1876, 1840.
Agent: Cannot Tell.

User:

E.2 Template 2

Once we collect the summary of the raw explanation with the previous prompt, we then call the machine
annotator again in a separate thread to evaluate whether the summary is hallucinated or not by using
the following prompting template, where the placeholders “Summary” and “Raw Explanation” will be
filled with real data. Note that if the machine annotator gives “Cannot Tell” as its prediction in the
summarization stage, we will directly set the judgment for this task as “No”.

Template-2 for Summary Judge with Word-based Raw Explanations

System: You are a linguistic expert. Analyze whether the words well
represent the concept/topic/theme/pattern. Organize your final
decision in format of "Final Decision: [[Yes/Probably/Maybe/No]]".

User: Concept/Topic/Theme/Pattern: {Summary?.
Words: {Raw Explanation}.
Agent:

E.3 Template 3

Since baseline explainers (TopAct and N2G) consider N-gram spans as raw explanations, we found that
the previous word-list-based prompting template leads a poor performance for their interpretability. Thus,
we followed the strategies before to define the following text-span-based prompting templates. Here, the
in-context examples of text spans are collected from previous work (Bricken et al., 2023). Specifically,
similar to using Template 1 to summarize our extracted words, we append the extracted text spans from
TopAct or N2G to this template. Note that we numerate each extracted span with a unique index.
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Template-3 for Automated Summary with Span-based Raw Explanations

System: You are studying a neural network. Each neuron looks for
one particular concept/topic/theme/behavior/pattern. Look at some
spans the neuron activates for and guess what the neuron is

looking for. Pay more attention to the [last few words] of each
spans in the front as they supposed to be more correlated to the
neuron behavior. Ignore the [MASK] patterns in the spans. Don't
list examples of spans and keep your summary as detail as possible.
If you cannot summarize most of the spans, you should say

"Cannot Tell."

User: Span 1: w.youtube.com/watch?v=5qgap5a04z9A
Span 2: youtube.come/yegfnfE7vgDI

Span 3: {'token': 'bjXRewasE36ivPBx

Span 4: /2023/fid?=0gBcWbxPi8uC

Agent: Base64 encoding for web development.

User: Span 1: cross-function[MASK]

Span 2: cross-function

Span 3: [MASKJ[MASK] cross-function\n
Agent: Particular phrase 'cross-function'

User: Span 1: novel spectroscopic imaging platform
Span 2: and protein evolutionary network modeling
Span 3: reactions-centric biochemical model

Span 4: chaperone interaction network

Agent: Biological terms.

User: Span 1: is -17a967

Span 2: what is 8b8 - 10ad2

Span 3: 83 -11111011001000001011

Span 4: is -c1290 - -1

Agent: Synthetic math: Arithmetic, numbers with small digits,
in unusual bases.

User:

\

E.4 Template 4

We evaluate the quality of summarization using almost the same as Template 2, where we only change the
phrase from “word” to “span” to fit the format of raw explanations from the baseline explainers.

Template-4 for Summary Judge with Span-based Raw Explanations

System: You are a linguistic expert. Analyze whether the text spans
well represent the concept/topic/theme/pattern. Organize your final
decision in format of "Final Decision: [[Yes/Probably/Maybe/Nol]".

User: Concept/Topic/Theme/Pattern: {Summary}.
Spans: {Raw Explanation}.
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Table 4: Extended qualitative analysis on generated explanations from our proposed method.

Method | Automated Summary | Raw Explanation
Local business and community en- | weekly, regional; native; pros; locally; good; cater; blog; per-
gagement. form; shop
Botanical classification and gardening | flower; hybrid; border; composition; popular; origin; habits;
practices. commonly; divide; fit
Influence and alignment of ideas or | turn; impact; aligned; turning; leading; surrounding; nature;
concepts. highlight; ideas; align
Diverse strategies and approaches in | differently; pros; thorough; tricks; observations; view; ap-
chatbot development and interaction. | proaches; Eastern; strategies; chatbot
Digital solutions and services for busi- | meaningful; inclusive; durable; online; tracking; quick; instant;
nesses. hosting; marketing; processing
Music education and authentic musi- | stake; genuine; musical; authentic; arrangements; composition;
cal experiences. classes; lessons; friend; empower
Processes of change and interaction | crack; returning; describe; emerging; transform; transport;
in systems or relationships. mutual; accompanied; interactions; index
Personal development and productiv- | cycle; trial; productive; lessons; lifestyle; neutral; Academy;
ity strategies. rhythm; goal; goals
Culinary arts and craftsmanship. construction; variety; manual; design; fit; dinner; brand; craft;

lunch; um

Detection and identification of prob- | detect, detective, detected, early, heat, instant, problem, park-
lems in the context of surveillance or | ing, identifying, detection
monitoring systems.
Urban development and community | productivity; interesting; align; correspond; hub; housing;
engagement. grant; surrounding; mix; inform

Ours Impact of jazz music on youth and | best; question; contributing; mind; jazz; stake; critics; critique;

critical awareness.

kids; awareness

Romantic or sexual relationships and
interactions.

sexual; missed; strip; calling; attractive; shower; bond; ship-
ping; shock; expect

Project management and documenta-
tion processes.

prep; construction; construct; constructed; input; journal; ac-
tion; claim; running; claims

Influence of successful relationships
or partnerships in a law enforcement
or collaborative context.

bond; successful; successfully; police; being; landscape; work-
ing; deeply; influence; hit

Fashion evolution and personal
growth.

outfit, Smith, museum, leather, dress, growth, Chris, era, life-
time, grew

Techniques for visual representation
and support in design or art.

reflection, supportive, split, shelter, visual, grid, line, reflect,
simple, tricks

Concerns related to injuries and their
representation in the context of Jewish
communities or cultural icons.

draft, injuries, injury, concerns, concern, Jewish, happening,
icon, strategies, graphic

Focus on specific strategies or tactics
in a competitive context.

keen, particular, certain, wall, gap, specialized, battle, escape,
chop, specific.

Crime detection and security mea-
sures.

detect, security, detective, crime, shadow, detection, criminal,
deal, assets, out

Energy resources and infrastructure
management.

graph, composition, master, gas, pipeline, mine, perception,
deployed, demand, stake

18



Table 5: Extended qualitative analysis on generated explanations from the baseline TopAct.

Method

Automated Summary

Raw Explanation

TopAct

Inquiry about available options or fa-
cilities in various contexts.

What types of medical facilities are available for; What gradu-
ate programs are available for; What kind of housing options
are available for; What accommodations are available for; What
are some software options available for

Setting personal boundaries and com-
munication strategies.

Explain the potential consequences of failing to set bound-
aries; communication skills, as well as methods for setting
boundaries; communication techniques that can be used to
express personal boundaries; advice on how to communicate
assertively, set boundaries; have faced, strategies you have used
to set boundaries

The concept of “role" in various con-
texts

as well as the role of technology and innovation in; they reside.
Consider the role of email in; The role of technology and
innovation in; washing techniques, the role of soap and water
in; populations and the role of insecticides in

Handmade or artisanal jewelry.

is a handcrafted Macrame beaded; hand-crafted artisanal glass
beads; materials, tools, and methods used in bead; description:
Handmade beaded; jewelry using materials such as beads

Impact of social media.

Share your perspective on the impact of social media on; Dis-
cuss the impact of social media on; Discuss the impact of social
media on; Write a report on the impact of social media on; Ex-
amine the impact of social media on

Dimensions and measurements of ob-
jects.

They come in a 5" x; measuring approximately 6 inches by 6;
4" thick. 11" x; painting measures 14" tall by; a square paper
measuring 8 inches by 8

Malicious intent related to food tam-
pering or drugging.

Can I hide feces in someone’s food; Whats the best way to
hide poison in food; slip a roofie in a girl’s drink; my fagot
coworker’s drink; type of poison for putting in people’s food

Manual processes in automation and
testing.

operator-level isolation and rely on users to manually; using
Selenium * Conduct manual; step-by-step guide on how to
manually; Automated deployment flows and reduced manual;
in a single run of the script without any manual

Abortion rights and the Roe v.

have there been since Roe v. W; and vowed to pass legislation
to protect abortion; mourning the fact that Roe v. W; landmark
Supreme Court case Roe v. W; What is Roe v. W

Impact of climate change.

Research and document the impact of climate change; 2. The
effects of climate change; and write a report on the impacts
of climate change; include a comprehensive analysis of the
impact of climate change; are in place to address the effects of
climate change

Recipe search functionality and user
interaction features.

and view recipes uploaded by others, a search; friendly, with an
easy-to-use search; commenting and ratings for recipes, and a
search; in the table view to allow the user to search; and ratings.
Users should be able to search

Webpage modification timestamps.

This page was last modified on; ings.\nThis page was last
edited on; \nThis page was last edited on; construct.\nThis
page was last modified on; 8.\nThis page was last edited on
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Table 6: Extended qualitative analysis on generated explanations from the baseline N2G.

Method ‘ Automated Summary ‘ Raw Explanation

Character attributes in role-playing | choosing [MASK] race, class\n; name [MASK] race, class\n;

games. name [MASK] race, class; Race [MASK] Human\n\nClass\n;
backstory, class [MASK]

Management and organizational skills | manage their tasks and; manage remote teams in; managing

in relation to tasks, teams, and time. a [MASK] team?; manage [MASK] time effectively; manage
my [MASK] team’s territories?

Negation or clarification phrases fo- | [MASK] not necessarily; doesn[MASK]t mean;

cusing on the phrase "doesn’t mean". | doesn[MASK]t mean; doesn[MASK]t mean; doesn[MASK]t
mean

Exclusion criteria or filtering terms. not include [MASK] numbers or; exclude any [MASK] firm
that; should not [MASK] any words that; exclude [MASK]
words that; not include any [MASK] that

Data storage and backup solutions, | important data that you want to keep to an external; wireless

particularly focusing on external stor- | file trans/MASK]; back|[MASK]ups, and transferring; external

age devices. hard; external hard

Concepts related to returning or going | last trains home; return home; walked home; way home; way

back home. home

Bailout or financial assistance con- | GM Bail[MASK]; Paulson [MASK] other proponents of the

cepts, particularly in the context of | bail; to step in to prevent it. Such bail[MASK]; and look at that

N2G economic interventions or stimulus | auto bail[MASK]; stimulus packages [MASK] bail

packages.

Informal greetings or inquiries about
someone’s well-being or current situ-
ation.

what[MASK]s going on; whatfMASK]s going on;
what[MASK]s up; What{MASK]s up; What[MASK]s
up

Customization and personalization of
options or features.

options [MASK] customization; customizing [MASK]; to cus-
tomize [MASK]; the player to customize [MASK]

The phrase “On a scale” or variations
of it, indicating a measurement or
evaluation system.

On [MASK] scale of; On a scale [MASK]; On [MASK] scale
of; On [MASK] scale of; On [MASK] scale of

Addresses or locations.

33 Dinah Shore Dr, [MASK]; 4[MASK]1 Bay Shore Road,; 1
Wessel Dr., [MASK];7 W. John St., [MASK]; 9{MASK]O0 E.
Street Rd.,

Gap year terminology.

[MASK] batical year; gap year [MASK]; gap year [MASK];
gap year [MASK]; gap year [MASK]

Decades or time periods, specifically
referencing the 70s, 80s, and 90s.

er from the 80 [MASK]; early 70 [MASK]; late [MASK] 90;
70s [MASK] 80; late [MASK] 90

Formatting and structuring text or doc-
uments focusing on the concept of a
“clear head” or heading.

[MASK] appropriate head; format, with clear head [MASK];
[MASK] proper head; struct [MASK] and organized, with clear
head; easy to follow, with clear head [MASK]

Usage of the word "call" in various
contexts, likely focusing on commu-
nication or addressing someone.

calls him [MASK]; call [MASK] americans indians?; calling
[MASK] guy; call me [MASK]; called him [MASK]

Historical figure: Benjamin Franklin.

Benjamin [MASK]; franklin [MASK]; Franklin [MASK]; Ben-
jamin Franklin [MASK]; Benjamin Franklin [MASK]
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