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ABSTRACT

Understanding how machine learning models generalize to new environments is
critical to their safe deployment. Recent work has proposed a variety of complexity
measures that directly predict or theoretically bound the generalization capacity
of a model. However, these methods rely on a strong set of assumptions that in
practice are not always satisfied. Motivated by the limited settings in which existing
measures can be applied, we propose a novel complexity measure based on the
local manifold smoothness of a classifier. We define local manifold smoothness as a
classifier’s output sensitivity to perturbations in the manifold neighborhood around
a given test point. Intuitively, a classifier that is less sensitive to these perturbations
should generalize better. To estimate smoothness we sample points using data
augmentation and measure the fraction of these points classified into the majority
class. Our method only requires selecting a data augmentation method and makes
no other assumptions about the model or data distributions, meaning it can be
applied even in out-of-domain (OOD) settings where existing methods cannot. In
experiments on robustness benchmarks in image classification, sentiment analysis,
and natural language inference, we demonstrate a strong and robust correlation
between our manifold smoothness measure and actual OOD generalization on over
4,000 models evaluated on over 100 train/test domain pairs.

1 INTRODUCTION

As deep neural networks find increasing use in safety-critical domains such as autonomous driving
(Gupta et al., 2021) and healthcare (Wiens et al., 2019), it is important to develop methods to
understand how these models generalize to new environments. Although models have been shown
empirically to generalize in many settings (Hendrycks et al., 2020a; Allen-Zhu et al., 2018; Neyshabur
et al., 2017a) , they also exhibit numerous failure cases. For example, models have been shown to
overfit to a dataset’s meta characteristics (Recht et al., 2019) or arbitrarily corrupted labels (Zhang
et al., 2016), learn spurious correlations (Liang & Zou, 2022), and change their predictions even with
small adversarial perturbations (Goodfellow et al., 2014; Papernot et al., 2017). Many methods have
been proposed to mitigate these issues, but precisely characterizing the generalization properties of a
model in diverse settings remains an open problem.

Directly estimating the generalization of a trained model on test data is one approach to this prob-
lem (Deng & Zheng, 2021; Jiang et al., 2021; Deng et al., 2021; Garg et al., 2022). However, these
methods are typically calculated based on the output predictive distribution of a model, which can
become poorly calibrated in out-of-domain (OOD) settings (Morteza & Li, 2022). Complexity
measures are one potential set of tools to better fundamentally understand model generalization.
Typically, these measures aim to theoretically bound generalization capacity (Vapnik & Chervonenkis,
1971; Bartlett & Mendelson, 2003; McAllester, 1999; Neyshabur et al., 2017a; Dziugaite & Roy,
2017; Neyshabur et al., 2015b) or directly predict generalization (Keskar et al., 2016; Liang et al.,
2019; Neyshabur et al., 2015a; Schiff et al., 2021; Jiang et al., 2019), and are useful in reasoning
about a model beyond its performance on a specific known test set. However, these methods often
rely on a strong set of assumptions such as matching train/test distributions, labelled test data (Schiff
et al., 2021), access to model weights (Neyshabur et al., 2015b; Bartlett et al., 2017; Neyshabur et al.,
2017b), model gradients (Jiang et al., 2019), and training data (Keskar et al., 2016). In real world
settings we are often given access only to a black box model and unlabeled data sampled from an
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unknown distribution. In these cases where it is potentially more important to have robust measures
of model complexity, existing complexity measures cannot be used.

Figure 1: As the manifold neighborhood
NM(x) around a test point x grows, the deci-
sion space is partitioned into a distinct set of
decision regions. Smoother classifiers (right)
have decision spaces that are less sensitive in
this neighborhood and should generalize bet-
ter compared to less smooth classifiers (left).

In this paper we propose a local manifold smoothness
complexity measure that provides a generalization
metric when existing complexity measures cannot be
calculated. Our smoothness measure is defined as
the sensitivity of a classifier’s output to local per-
turbations along the data manifold. We expect a
smoother classifier that is less sensitive in this man-
ifold neighborhood to generalize better than a less
smooth classifier that is more sensitive in the same
neighborhood. Empirically, we generate samples in
the local manifold neighborhood using data augmen-
tation, and define sensitivity as the fraction classified
into the most commonly predicted class among these
samples. Since our method depends only on the exis-
tence of a data augmentation method, it can be used
in a wide range of experimental settings.

We investigate the correlation of a model’s local manifold smoothness with its capacity to generalize,
defined as the model’s performance on unseen data. We focus on experimental settings with OOD
dataset shifts (Taori et al., 2020), where test data is sampled from a distribution different from the
training distribution. We select common OOD benchmarks in image classification (Krizhevsky, 2009;
Lu et al., 2020; Recht et al., 2018; Deng, 2012; Darlow et al., 2018; Netzer et al., 2011; Arjovsky
et al., 2019), sentiment analysis (Ni et al., 2019), and natural language inference (Williams et al.,
2018) and train a large pool of over 4,000 models with varying architectures and generalization
properties on these datasets. Generating samples using well-established data augmentation methods
(Ng et al., 2020; Cubuk et al., 2020; Wei & Zou, 2019; Xie et al., 2019) for each task and data domain,
we evaluate the quality of our measure on over 100 pairs of training/test domains.

Specifically, given a pool of models trained with data from a single training domain, we evaluate
the correlation of our measure with generalization on in-domain data (ID τ ) and out-of-domain
data (Micro/Macro τ ). In settings where we have access to additional labeled test data from other
domains and can make direct predictions of OOD generalization, we evaluate the Pearson R2 and
mean absolute error of these predictions. Finally, we evaluate the correlation of models trained with
different architectures (Arch τ ) as well as on extreme OOD data from specialized domains. We find
that our smoothness measure outperforms baselines in all combinations of experimental setting and
evaluation metrics, save one. To our knowledge, our measure is the only complexity measure that is
applicable in common machine learning robustness evaluation settings, and provides the first analysis
of a complexity measure in natural language tasks as well as OOD settings.

2 RELATED WORK

Measures of Complexity Traditional methods of analyzing the generalization bounds of neural
networks use theoretical measures of complexity. VC dimension (Vapnik & Chervonenkis, 1971)
and Rademacher complexity (Bartlett & Mendelson, 2003) can be used to bound the generalization
of particular function classes, although they are often vacuous at the scale of deep neural networks
(Dziugaite & Roy, 2017). The PAC-Bayes framework (McAllester, 1999; Neyshabur et al., 2017a;
Dziugaite & Roy, 2017; Garg et al., 2021) can be used to build tighter generalization bounds by
considering the "sharpness" of the local minima. Norm-based measures (Neyshabur et al., 2015b;
Bartlett et al., 2017; Neyshabur et al., 2017b) bound generalization by considering different norms
of the weights of learned networks. More recent analyses have focused on empirically motivated
measures such as the sharpness of minima in parameter space Keskar et al. (2016), Fisher-Rao norm
Liang et al. (2019), distance from initialization (Nagarajan & Kolter, 2019), path norm (Neyshabur
et al., 2015a), layer margin distributions (Jiang et al., 2019), and perturbation response curves
Schiff et al. (2021). Most similar to our method is Aithal K et al. (2021), who use robustness to
augmentations as a complexity measure. However, our method considers all neighborhood examples
equally and does not require manual weight tuning, while their method utilizes the unaugmented
example as a ground truth and requires tuning of augmentation penalties.
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Predicting Generalization Recent work has focused on correlating complexity measures with and
directly predicting in-domain generalization (Jiang et al., 2020). However, in real world settings, test
and training distributions often differ (Koh et al., 2021). Although some generalization bounds have
been derived for these OOD settings (Garg et al., 2021; Ben-David et al., 2007; Zhang et al., 2019),
they rely on access to the test data distribution. A separate line of work aims to directly predict OOD
generalization from unlabelled test data. These methods either predict the correctness on individual
examples (Deng & Zheng, 2021; Jiang et al., 2021; Deng et al., 2021) or directly estimate the total
error (Garg et al., 2022; Guillory et al., 2021; Chen* et al., 2021; Chuang et al., 2020; Vedantam
et al., 2021). Although these methods work well in practice, they do not provide any insight into the
underlying mechanism of generalization since they act only on the output layer of the network.

Measuring Function Smoothness The simplest way to measure the smoothness of a function
f : X → Y is through its differentiability class. However, this is not a very useful inductive bias for
a model since differentiability is local and metric dependent. One alternative measure is Lipschitz
continuity. Enforcing this property on neural networks is commonly done by restricting the learned
function class with spectral regularization (Yoshida & Miyato, 2017), spectral normalization (Miyato
et al., 2018), and other norm based regularization methods on layer weights (Bartlett et al., 2017;
Neyshabur et al., 2017a; Foret et al., 2020). Other methods regularize the the norm of gradients with
respect to the the inputs of the network (Elsayed et al., 2018; Arbel et al., 2018; Gulrajani et al.,
2017). A key component of smoothness regularization is where and how it is enforced. Enforcing
global properties such as Lipschitz continuity in regions where there is no data can restrict the learned
function unnecessarily (Rosca et al., 2020). In addition, if the data lies on a low-dimensional manifold,
then smoothness should only be regularized with respect to this manifold, rather than the entire space.

Intrinsic Dimensionality and Manifold Regularization Recent work has proven estimation error
bounds for deep ReLU networks in Hölder(Schmidt-Hieber, 2019; Nakada & Imaizumi, 2020; Chen
et al., 2019), Besov, mixed smooth Besov(Suzuki, 2018), and anisotropic Besov (Suzuki & Nitanda,
2021) function spaces based on their intrinsic dimensionality and smoothness. However, it is still
unclear how to measure the intrinsic dimensionality or smoothness of functions on complex manifold
spaces. Separate work aims to implicitly learn the manifold to improve models by encouraging
invariance to local changes (Rifai et al., 2011), augmentation graphs (HaoChen et al., 2021), similar
neighbors (Luo et al., 2018), or interpolation between points (Verma et al., 2019) on the manifold.

3 MANIFOLD SMOOTHNESS MEASURE

In this section we introduce our manifold smoothness measure. We start by motivating our local
smoothness definition, then describe how our measure is estimated in practice using samples from a
neighborhood distribution. Finally we describe how we evaluate the quality of our measure.

3.1 MOTIVATION

Consider a classification task from an input space M ∈ X where M is a manifold of lower
dimensionality that lies in an input space X with higher dimensionality (Chapelle et al., 2006), to an
output space Y with k classes. We are given a model f : X → Y trained on an in-domain training
dataset Di = {(x1

i , y
1
i ), . . . , (x

n
i , y

n
i )} sampled from a distribution Pi(X ,Y), and an out-of-domain

test dataset Do = {(x1
o, y

1
o), . . . , (x

m
o , ymo )} sampled from a distribution Po(X ,Y). We assume

further that domains are covariate shifted such that P (Y|X ) does not change between domains and
that Pi(X ) and Po(X ) are defined only on the manifold M. Consider a point x ∈ Do that belongs to
class j. We define the manifold neighborhood NM(x, r) as the set of points in M that are at most
a distance r away from x as measured in the original space X . As r increases, the decision space
within NM becomes partitioned into a set of distinct decision regions for each class. For a given r,
we define the neighborhood decision distribution as

pj(x) =
|{x′ ∈ NM : f(x′) = j}|

|NM|
, (1)

and define our smoothness measure as

µ(f, x) = max
j∈Y

pj(x). (2)
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Figure 2: To estimate our smoothness measure we generate a set of nearby examples for every test
example using a neighborhood distribution q. This set of examples is then evaluated using each
classifier. We expect classifiers with more sampled points classified in the most common class to
generalize better to the given test set.

Intuitively, this measure captures the sensitivity of a classifier’s output within the manifold neighbor-
hood of x. As shown in Figure 1, a smoother classifier will be less sensitive and will predict the same
class for most of the points in the neighborhood. In contrast, a less smooth clasifier will be more
sensitive and will predict different classes for different points in the neighborhood. We assume that
test domains are sufficiently close to training domains so that our smoothness can be calibrated to
make non-constant prediction. In practice, we will perform OOD evaluations to probe this limitation.
Although dataset distance is difficult to quantify in high dimensional input spaces, in practice we find
that even on extreme OOD settings our method still produces strong results.

3.2 ESTIMATING NEIGHBORHOOD SMOOTHNESS

Calculating our smoothness measure exactly is intractable since we do not have access to the true
manifold M. Instead, we assume access to a conditional distribution q(x′|x) from which we can
sample points from the manifold neighborhood NM(x) = {x′ ∼ q(x′|x)}. In this paper we consider
distributions q(x′|x) defined by data augmentation transformations. We modify the size of the
neighborhood by making q(x′|x) more or less noisy. We estimate our smoothness measure for a
given point x as the fraction of points sampled from q(x′|x) classified as the dominant label

µ(f, x) = Ex′∼q(x′|x)1 (f(x
′) = ŷ(f, x)) , (3)

where

ŷ(f, x) = argmax
j∈Y

Ex′′∼q(x′′|x)1 (f(x
′′) = j) (4)

is the dominant label. The average smoothness across the entire dataset Do is then 1
m

∑m
j=1 µ(f, x

j
o).

Since exactly calculating the expectation in Eqns. 3 and 4 is intractable, we estimate it as shown in
figure 2. For a given test example x, we first generate n samples from the neighborhood distribution
q(x′|x). Next, we evaluate the classifier at each sampled point x′ and calculate ŷ as the most
commonly predicted class. µ is then the fraction of sampled points that our classifier labels as ŷ.

Our smoothness measure is simple to calculate and makes no assumptions about the model or the
distribution from which test data was sampled. In addition, since our measure relies only on the
augmentation method q(x′|x) chosen and does not use labels from the test data, it is applicable
in many settings where existing complexity measures cannot be calculated, including common
robustness evaluation settings.

3.3 EVALUATION METRICS

Given a set of domains defined by distributions {P1, P2, . . . Pn} and a set of datasets {Di ∼ Pi}ni=1
sampled from these domains, we train a set of models Fi = {f1

i , f
2
i , . . . , f

m
i } on each dataset Di.

We evaluate all models fk
i ∈ Fi on all OOD test datasets Do : o ̸= i, generating a set of smoothness

and generalization values (µk
io, g

k
io). We define generalization as the top-1 accuracy of fk

i on Do.

We evaluate our measure first by predicting the generalization of a given model to an OOD test set.
Specifically, we select an OOD test set Do and an in-domain training set Di : i ̸= o and predict the
OOD generalization gkio of a model fk

i trained on Di and evaluated on Do from its smoothness value
µk
io. To generate these predictions we use a linear model ĝ = aµ+b where a, b ∈ R are the parameters

of our model. To estimate our parameters a and b, we select a pool of models {fk
j ∈ Fj : j ̸= i, o}

that are trained on all remaining datasets. Each model fk
j in this pool is evaluated on the OOD dataset
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Do to give us a set of pairs {(µk
jo, g

k
jo)}. We then find a, b by minimizing the mean squared error

(a∗, b∗) = argmina,b
∑

j,k(aµ
k
jo + b− gkjo)

2 on all models in the pool.

We use the learned parameters to make generalization predictions ĝkio = aµk
io + b for every model

fk
i ∈ Fi on Do and measure the coefficient of determination R2 (Glantz et al., 1990). We also

measure the residuals of our linear model by calculating the mean absolute error (MAE) between our
predictions and the actual generalization. For every pair of training domain i and OOD test domain o,
we evaluate R2 and MAE then average each metric across all pairs.

We also consider the rank correlation between our smoothness measure and actual generalization.
Specifically, for a pair of models fi, fj with measure and generalization pairs (µi, gi) and (µj , gj),
we want gi > gj if µi > µj . We use Kendall’s rank τ coefficient (Kendall, 1938) to measure how
consistent these sets of rankings are. We measure four different τ values:

ID τ This metric evaluates the correlation of our measure with in-domain generalization. We select
a training dataset Di and consider pairs {(µk

ii, g
k
ii)} generated from the set of models Fi trained on

Di. τ values are averaged across all training domains.

Macro τ This metric evaluates the correlation of our measure individually on each training/OOD
test domain pair. We select a training dataset Di and a OOD test dataset Do and consider pairs
{(µk

io, g
k
io)} generated from the set of models Fi trained on Di. τ values are averaged across all pairs

of training and OOD test domains.

Micro τ This metric evaluates the correlation of our measure on a given OOD test domain across
models trained on all other domains. We select a single OOD test domain Do and consider pairs
{(µk

io, g
k
io)} generated from the set of models {fk

i ∈ Fi : i ̸= o} trained on all other datasets
{Di : i ̸= o}. τ values are averaged across all test domains.

Arch τ This metric evaluates the correlation of our measure on models trained with different
architectures. Arch τ is calculated similar to Micro τ , except Fi now includes models from all
architectures. τ values are averaged across all test domains.

4 EXPERIMENTAL SETUP

Empirically evaluating the quality of a complexity measure is difficult and requires careful experimen-
tal design. Typically, evaluation is done by generating a large pool of models with sufficiently varied
generalization properties, but if we generate these models by varying only a few hyperparameters, our
observed correlation may be an artifact of these factors affecting both generalization and our measure.
To this end, we follow a similar experimental setup to Jiang et al. (2019).

4.1 DATA

For our experiments we focus on three tasks: image classification as well as sentiment analysis on
single sentences and natural language inference on sentence pairs.

Image Classification For image classification we construct two sets of domains, one comprised of
CIFAR10 (Krizhevsky, 2009), CINIC10 (Darlow et al., 2018), CIFAR10.1(Recht et al., 2018), and
CIFAR10.2(Lu et al., 2020), as well as one comprised of SVHN (Netzer et al., 2011), MNIST (Deng,
2012), and Colored MNIST (Arjovsky et al., 2019). Domains in each set share the same set of output
classes.

Sentiment Analysis (SA) We use the Amazon reviews dataset (Ni et al., 2019) which contains
product reviews from Amazon. Following Hendrycks et al. (2020b) and Ng et al. (2020), we split the
dataset into 10 different domains based on review category. For all domains and datasets, models are
trained to predict a review’s star rating from 1 to 5.

Natural Language Inference (NLI) We use the MNLI (Williams et al., 2018) dataset, a corpus
of NLI data from 10 distinct genres of written and spoken English. We train on the 5 genres with
training data and evaluate on all 10 genres. Models are given two sentences, a premise and hypothesis,
and predict whether the hypothesis is entailed by, is neutral to, or contradicts the premise.

5



Under review as a conference paper at ICLR 2023

4.2 DEFINING THE NEIGHBORHOOD

There are many different ways to define the neighborhood distribution q(x′|x) from which we
sample. Each choice implicitly also defines the underlying manifold with respect to which we meaure
smoothness. One natural choice is to utilize data augmentations, since these are transformations
over which we want our classifiers to be smooth. We compare two methods for data augmentation
for image classification: RandAugment (Cubuk et al., 2020) which combines various augmentation
methods at random, and random patch erasing (Zhong et al., 2020) which removes randomly sized
patches from the image. We call smoothness measures based on these two augmentations MS-
RandAug and MS-Erase respectively. We also consider three methods for data augmentation on
natural language: SSMBA (Ng et al., 2020) which generates examples in a manifold neighborhood
using a denoising autoencoder, EDA (Wei & Zou, 2019) which applies random word level operations,
and backtranslation (BT) (Rico Sennrich, 2016; Xie et al., 2019) which translates back and forth from
a pivot language. We call smoothness measures based on these three augmentations MS-SSMBA,
MS-EDA, and MS-BT respectively. For all experiments we generate n = 10 samples for each
example, although ablations in section 5.3 show that our method is relatively robust to the specific
number of samples generated. We provide further details on implementations and noise levels for all
methods in the Appendix A.5.

4.3 MODEL AND HYPERPARAMETER SPACE

For image classification, we use models trained for the tasks 1, 2, 4, 5, and 9 from the Predicting
Generalization in Deep Learning competition (PGDL) (Jiang et al., 2020) as well as models from
Jiang et al. (2019), which covers Network in Network (NiN) (Lin et al., 2013), VGG (Simonyan &
Zisserman, 2015), ResNet (He et al., 2015), and CNN models trained on CIFAR10, CINIC10, and
SVHN. On natural language tasks we consider CNN (Kim, 2014; Mou et al., 2016) and RoBERTa
(Liu et al., 2019) based models. On natural language models we apply label noise by randomly
replacing a fraction of training labels with uniform samples from the label space. We argue that
label noise is not an artificial training setting as stated in Jiang et al. (2019) but rather a method of
entropy regularization (Pereyra et al., 2017; Xie et al., 2016) which prevents models from becoming
overconfident and decreases smoothness.

In order to control for the varying convergence rates and learning capacities of our different models,
we follow Jiang et al. (2019) and early stop the training of models when they reach a given training
cross entropy loss (usually around 99% training accuracy), or if they reach the max number of training
epochs. We discard all models which do not converge within this time. The total number of models
trained and converged in each pool as well as details on hyperparameter variations for each task and
model provided in Table 3. We include further details on model training, the hyperparameter space,
and specific choices in hyperparameters in Appendix A.4, A.2, and A.3.

4.4 BASELINES

As a baseline comparison against our selected neighborhood distributions, we consider horizontal
flips and crops for image classification and random replacement on a percentage of tokens for natural
language tasks. We call these baselines MS-FC and MS-Random. Since our experimental setting
makes so few assumptions, there are very few complexity measures that we can compare against. We
consider complexity measures that require only model weights, specifically the Spectral (Yoshida &
Miyato, 2017; Neyshabur et al., 2017b) and Frobenius (Neyshabur et al., 2015b) norms. However, in
our experiments we find close to 0 or negative correlation for these measures, so we do not report
their performance.

We also compare our method against output based methods that directly predict OOD generalization.
We use ATC-MC and ATC-NE Garg et al. (2022) as our two baselines, which calculate a threshold
on validation data based on max confidence and negative entropy scores respectively. To calculate
metrics on these methods we treat the generated accuracy predictions as a score. To calculate ID τ
values we select a threshold value based on validation data then calculate predicted accuracy values
on test data from the same domain.
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Measure R2 MAE Macro τ ID τ Arch τ

MS-RandAug 0.880 3.43 0.750 0.784 0.837
MS-Erase 0.466 5.23 0.333 0.394 0.299

MS-FC 0.387 5.32 0.273 0.290 0.683
ATC-NE 0.649 4.06 0.561 0.717 0.689
ATC-MC 0.647 4.01 0.564 0.705 0.685

(a) Results on image classification. Results are averaged across all model architectures and datasets.

CNN RoBERTa

Measure R2 MAE Macro τ Micro τ ID τ R2 MAE Macro τ Micro τ ID τ Arch τ

MS-SSMBA 0.662 1.93 0.677 0.689 0.629 0.972 1.29 0.832 0.829 0.838 0.588
MS-EDA 0.641 2.04 0.664 0.649 0.611 0.968 1.45 0.830 0.810 0.830 0.512
MS-BT 0.550 2.99 0.592 0.501 0.538 0.961 1.47 0.813 0.801 0.801 0.523

MS-Random 0.409 2.64 0.544 0.554 0.439 0.967 1.27 0.821 0.816 0.822 0.537
ATC-NE 0.760 2.47 0.514 0.633 0.467 0.852 2.38 0.707 0.691 0.749 0.660
ATC-MC 0.761 2.46 0.517 0.634 0.467 0.869 2.26 0.722 0.705 0.749 0.663

(b) Results on sentiment analysis (SA) datasets.

CNN RoBERTa

Measure R2 MAE Macro τ Micro τ ID τ R2 MAE Macro τ Micro τ ID τ Arch τ

MS-SSMBA 0.575 2.09 0.570 0.534 0.704 0.933 1.19 0.750 0.730 0.771 0.301
MS-EDA 0.577 2.04 0.581 0.511 0.709 0.941 1.26 0.789 0.757 0.799 0.572
MS-BT 0.509 2.11 0.470 0.449 0.584 0.944 1.07 0.759 0.740 0.778 0.563

MS-Random 0.451 2.20 0.452 0.428 0.570 0.890 1.70 0.688 0.647 0.710 0.401
ATC-NE 0.576 2.52 0.568 0.446 0.705 0.737 2.22 0.557 0.541 0.739 0.635
ATC-MC 0.576 2.52 0.568 0.446 0.706 0.769 2.10 0.581 0.567 0.748 0.636

(c) Results on natural language inference (NLI) datasets

Table 1: Evaluation metrics measuring the correlation of our smoothness measure with OOD gener-
alization. The best performing measures for each metric are bolded. On all tasks, our smoothness
measure achieves strong generalization and beats baseline methods in almost all metrics. Full tables
for R2, Macro τ , Micro τ , and ID τ on individual train/test domains are in Appendix C

5 RESULTS

5.1 CORRELATION WITH OOD GENERALIZATION

We first present results analyzing the correlation of our proposed manifold smoothness measure with
OOD generalization in Table 1. We report R2, MAE, Macro τ , Micro τ , ID τ , and Arch τ as detailed
in Section 3.3. We omit results on Spectral and Frobenius norm measures as they are close to 0 or
negative for all metrics. We do not report Micro τ values for image classification models since each
model type is trained on only one domain.

Image Classification Results on image classification tasks are presented in Table 1a and are
averaged across all dataset domains and architectures. Our MS-RandAug significantly outperforms
ATC based methods and all other measures on all metrics. MS-RandAug also exhibits only a small
decrease in correlation when moving from in-domain (ID τ ) to OOD datasets (Macro τ ), compared
to ATC methods which suffer a much larger drop. Interestingly, patch erasing and flip and crops fail
to achieve strong correlations, indicating that they may poorly reflect the true image manifold.

Sentiment Analysis (SA) Results on Sentiment Analysis tasks are presented in Table 1b. In
experiments on both architectures, our smoothness measures achieves strong correlation with OOD
generalization on almost all metrics and beats all baselines. Of the neighborhoods tested, MS-SSMBA
performs the best across both architectures. On cross architecture analysis, we observe strong Arch τ
for our neighborhood measures, although they are outperformed by both ATC methods. We observe
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CNN RoBERTa

Measure R2 Micro τ R2 Micro τ

MS-SSMBA 0.584 0.566 0.941 0.816
MS-EDA 0.575 0.567 0.884 0.715
MS-BT 0.538 0.470 0.906 0.766

MS-Random 0.277 0.373 0.918 0.776
ATC-NE 0.271 0.495 0.329 0.356
ATC-MC 0.295 0.506 0.437 0.436

(a) Results on the Drugs.com dataset.

CNN RoBERTa

Measure R2 Micro τ R2 Micro τ

MS-SSMBA 0.083 0.080 0.691 0.463
MS-EDA 0.202 0.110 0.739 0.540
MS-BT 0.213 0.247 0.730 0.527

MS-Random 0.096 0.102 0.030 0.012
ATC-NE 0.077 -0.107 0.719 0.345
ATC-MC 0.076 -0.106 0.734 0.354

(b) Results on the MedNLI dataset.

Table 2: Evaluation metrics measuring the correlation of our smoothness measure with generalization
on extreme OOD datasets. MS-* methods beat baselines on both tasks, with RoBERTa models
exhibiting only a slight degradation in correlation compared to more typical OOD settings.

particularly strong correlation on RoBERTa models, with a nearly perfectly linear R2 value of 0.972
and large Micro τ of 0.829. We hypothesize that this is due to the pretrained initialization of RoBERTa
models, which gives a strong inductive bias towards learning a space aligned with the one in which
we measure smoothness. In contrast, CNN models are trained from random initializations and may
not learn as closely aligned a space.

Natural Language Inference (NLI) Results on Natural Language Inference tasks are presented
in Table 1c. Similar to our sentiment analysis results, our manifold smoothness measures achieve
strong correlation with OOD generalization on both architectures and beat all baselines. Correlations
in general on NLI are lower than those of sentiment analysis, perhaps because the sentence pair data
manifold is more complex and difficult to learn compared to the single sentence data manifold. This
also explains why we observe no single best performing neighborhood, as defining the distribution
q(x′|x) for sentence pairs is much more difficult. As in sentiment analysis experiments we observe
exceptionally high correlation on RoBERTa models, for which we offer a similar hypothesis as above.
On cross architecture analysis, we again observe strong correlation for our smoothness measures that
outperform both ATC methods.

5.2 EXTREME OOD GENERALIZATION

We now consider more extreme generalization to data domains with specialized and knowledge
intensive data. We consider only natural language tasks as it is difficult to find a sufficiently
specialized image classification dataset that maintains the same output classes. For sentiment analysis
we use the Drugs.com review dataset (Gräßer et al., 2018), and for natural language inference we
use MedNLI (Romanov & Shivade), an NLI dataset generated from clinical notes and patient history.
Both these datasets contain sentences with highly specific medical terms and phrases not seen in any
of our training domains. All models from all original training domains are evaluated on each of these
extreme OOD domains, and we report R2 and Micro τ . Results are shown in Table 2

On the Drugs.com dataset, we observe only a small decrease in correlation for smoothness methods.
However, ATC methods begin to fail here, with Micro τ on RoBERTa models dropping significantly
from 0.706 to 0.356. This suggests that models become poorly calibrated in extreme OOD settings,
making output based OOD prediction methods fragile. On MedNLI we observe a much larger drop
in correlation for both model types. For CNN models, most of our measures fail to correlate at all,
and ATC methods degrade so much they became anti correlated with generalization. For RoBERTa
models we observe only minor drops in correlation for all measures. Surprisingly, ATC R2 values
actually increase compared to our original experiments, although Micro τ decreases. For both tasks
MS-Random exhibits almost no correlation with OOD generalization. This suggests that the choice
of neighborhood becomes much more important as we move farther from our training domain.

5.3 SMOOTHNESS ESTIMATION ABLATIONS

In this section we examine factors that may affect the quality of the smoothness estimation generated
from our measure. Since rerunning all of our experiments is too costly, we focus on evaluating CNN
models trained on the sentiment analysis task. Specifically, we evaluate only on Amazon reviews of
toys using a pool of CNN models trained on all other domains.
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Figure 3: Micro τ for our smoothness measure calculated with varying ablations on CNN models
evaluated on Amazon toy reviews.

Test Dataset Size: Does our manifold smoothness measure still correlate well when the test dataset
is small? We randomly and iteratively subsample our test dataset of 2000 examples to reduce our
dataset size down to 10 examples. We then measure our models’ smoothness on each subsampled
dataset and calculate the Micro τ on all models. Results are shown in Figure 3a. We find that for
all neighborhoods, smaller datasets lead to noisier smoothness estimates and lower correlation. As
dataset size increases, correlation increases as well.

Number of Samples Generated: How many examples do we need to sample from our neighborhood
in order to generate a reliable smoothness estimate? We generate a varying number of samples for
each test example, from a minimum of a single example to a maximum of 100 examples, then estimate
our smoothness measure with each set of samples and calculate the micro τ . Results are shown in
Figure 3b. We find that our measure is surprisingly robust to the number of samples, with only a
small difference between 100 samples and 1 sample. For all measures, correlation slightly increases
as the number of samples increases and we achieve a better estimation of the true smoothness value.

Neighborhood Size: Does the quality of our measure depend on how large of a neighborhood we
sample from? We define the neighborhood size as the level of noise in our neighborhood distribution
q(x′|x), since a noisier distribution will generate points farther from x. For our experiments we use
MS-SSMBA and vary the corruption percentage from a minimum of 5% to a maximum of 85%.
After generating sets of neighborhood examples from each distribution, we estimate our models’
smoothness on each one and calculate the micro τ on all models. Results are shown in Figure 3c.
We find that as we begin to increase the neighborhood size, correlation begins to increase as well.
Correlation quickly reaches a maximum, then decreases as we continue to increase our neighborhood
size. However, even at a 85% corruption, our method is quite robust and achieves a micro τ of 0.416.

6 DISCUSSION

In this paper, motivated by the limited settings in which existing complexity measures can be applied,
we develop a local manifold smoothness measure that can be applied even when test distributions are
unknown and model training data, weights, and gradients are unavailable. We evaluate our method
on image classification, sentiment analysis, and natural language inference datasets, calculating
a variety of correlation metrics on both in-domain and out-of-domain test sets. Across all tasks
and experimental settings, we find that our smoothness measure outperforms baseline methods in
all metrics except one. However, our method has several limitations. We cannot compare against
other complexity measures since they can’t be applied in our OOD experimental settings. Local
manifold smoothness also depends on access to a neighborhood distribution q(x′|x) from which we
can sample. In settings where q(x′|x) is difficult to define, our method may not be applicable or
provide inappropriately high estimates, so practitioners must be careful to verify their estimates on a
labelled test set. In addition, our smoothness measure may fail in sufficiently OOD settings where a
model may become poorly calibrated or constant, although we find in practice even extreme OOD
settings are similar enough for our measure to perform well. The relationship between smoothness
and generalization is also not perfectly linear, as a maximally smooth constant classifier cannot
achieve maximal generalization. In future work we plan to explore applying smoothness as a method
for OOD detection.
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Model Dataset
Training
Domain

Batch
Size Depth Width Dropout

Weight
Decay

Label
Noise

Learning
Rate

Batch
Norm Seed

Data
Aug # Trained # Converged

CNN Amazon 10 3 3 3 3 3 — — — — — 2430 2418
MNLI 5 3 3 3 2 — 3 — — — — 910 796

RoBERTa Amazon 10 3 — — 2 3 3 — — — — 540 332
MNLI 5 3 — — 2 3 3 — — — — 270 213

NiN SVHN — 3 3 — 3 2 — — — — — 54 54
CIFAR10 — 2 2 2 2 2 — — — — — 32 32

VGG CIFAR10 — 3 3 — 3 2 — — — — — 54 54
ResNet CIFAR10 — — — 3 — 3 — 2 2 3 2 216 216
CNN CINIC10 — 2 2 4 — 2 — 2 2 — — 128 128

Table 3: Number of possible hyperparameter values for each architecture and task. Fields denoted
with a — indicate that this hyperparameter is fixed or not applicable. We also list the total number of
models trained and converged in each model pool. In total we evaluate 4,027 models.

A EXPERIMENTAL SETUP

In this section we present full details of our experimental setup, including data preprocessing and
specifics on model architecture and hyperparameter space. All models are trained on a single
RTX6000 GPU.

A.1 DATA PREPROCESSING

Image classification datasets are preprocessed by normalizing pixel values and resizing to 32 × 32 if
necessary. We use the same preprocessing steps for sentiment analysis and NLI experiments. All
data is first tokenized using a GPT-2 style tokenizer and BPE vocabulary provided by fairseq
(Ott et al., 2019). This BPE vocabulary consists of 50263 types. Corresponding labels are encoded
using a label dictionary consisting of as many types as there are classes. Input text and labels are then
binarized for model training.

A.2 MODEL ARCHITECTURE

Our image classification models are Network in Network (NiN) (Lin et al., 2013), VGG (Simonyan
& Zisserman, 2015), and CNN models. Training and hyperparemeter details for these models are
provided in Jiang et al. (2020).

Our CNN models are based on the architecture in Kim (2014). Our input embeddings are 512
dimensional, which we treat as our channel dimension. Our base model applies a set of three one
dimensional convolutions of kernel size 3, 4, and 5 with 256 output channels. We modulate the
number of stacked convolutions (depth) as well as the channel size (width). Each convolution
generates a separate representation that is max pooled across the sequence and concatenated together.
We feed this representation into a MLP classifier with a single hidden layer of 512 dimensions. We
apply dropout of 0.2 to our inputs and MLP classifier.

Our RoBERTa models use a pre-trained RoBERTaBASE model provided by fairseq. Classification
token embeddings are fed into an MLP classifier with a single hidden layer of 512 dimensions.
All models are written within the fairseq framework (Ott et al., 2019) and trained on a single
RTX6000 or T4 GPU.

A.3 MODEL HYPERPARAMETERS

Hyperparameter values for image classification models are provided in Jiang et al. (2020).
For natural language models we vary the following hyperparameters: training domain, batch
size, depth, width, dropout, weight decay, and label noise. For training domains, on senti-
ment analysis we choose between books, clothing, home, kindle, movies, pets,
sports, tech, tools, toys. For training domains on NLI, we choose between slate,
government, fiction, telephone, travel. NLI datasets include additional test sets
oup, nineeleven, facetoface, verbatim, letters. Possible values for all other
hyperparameters are provided in Table 4
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CNN RoBERTa

Hyperparameter SA NLI SA NLI

Batch Size {32, 64, 128} {32, 64, 128 } {8, 16, 32} {8, 16, 32}
Depth {1, 2, 3 } {1, 2, 3 } 1 1
Width {128, 256, 512} {128, 256, 512 } 768 768
Dropout {0.0, 0.25, 0.5} {0.0, 0.25} {0.0, 0.1} {0.0, 0.1}
Weight Decay {0.0, 0.0001, 0.0005} 0.0 {0.0, 0.0001, 0.0005} {0.0, 0.0001, 0.0005}
Label Noise 0.0 {0.0, 0.2, 0.4} {0.0, 0.2, 0.4} {0.0, 0.2, 0.4}

Table 4: Possible hyperparameter values for each architecture and task.

A.4 MODEL TRAINING

All models are trained with the Adam optimizer (Kingma & Ba, 2014) with β = (0.9, 0.98) and ϵ =
1× 10−6. CNN models are trained with learning rate 1× 10−3 and RoBERTa models are trained
with learning rate 1× 10−5. We use a inverse square root learning rate scheduler to anneal learning
rate over training. We early stop CNN models on sentiment analysis at 0.04 cross entropy and on NLI
at 0.03 cross entropy. We early stop RoBERTa models on sentiment analysis at 0.05 cross entropy
and on NLI at 0.3 cross entropy. Training details for image classification models are provided in
Jiang et al. (2020).

A.5 NEIGHBORHOOD HYPERPARAMETERS

We select hyperparameters for our neighborhood distributions based on best practices provided in
their respective papers. For RandAugment we use a magnitude parameter of 15 and augment only
once. For FlipCrop we flip the image horizontally with probability 50% and generate a crop with a
lower bound of 8% of total image area and an aspect ratio between 3/4 and 4/3. Images are resized to
32 × 32 after cropping. For Erase we select a region to erase with a maximum size of 33% of the
total image area and an aspect ratio between 1/3 and 10/3.

For SSMBA, we select 15% of tokens to corrupt, leaving 10% of them unmasked, randomly replacing
10% of them, and masking the remaining 80%. We reconstruct these corrutped sentences with a
RoBERTa base model (Liu et al., 2019). For EDA, we apply all operations on 10% of tokens. For
backtranslation, we use English to German and German to English models provided in (Ng et al.,
2019). For our random baseline, we randomly replace 15% of tokens.

B ADDITIONAL EXPERIMENTS

B.1 NORM-BASED COMPLEXITY MEASURES

Following (Jiang et al., 2019), we calculate our spectral norm measure as Πd
i=1||Wi||22 and Frobenius

norm measure Πd
i=1||Wi||2F . We do not list results on these measures as the correlations are often

negative or 0.

B.2 CROSS-DOMAIN CORRELATION

In this set of experiments we measure the correlation between smoothness and generalization values
of a single model trained on a single training domain evaluated across different OOD test domains.
For image classification experiments we specify both the training domain and model architecture. For
natural language experiments we call these the CNN τ and Roberta τ when averaged respectively
across CNN and RoBERTa models and training domains. Results are presented in Table 5b.

For image classification tasks MS-RandAug achieves strong correlation on all models and datasets.
However, for natural language tasks, our smoothness measure performs quite poorly on both models,
although they still outperforms ATC baselines. We hypothesize different regions of the input space
may have different optimal levels of smoothness that achieve the lowest generalization error. Our
value of interest is then not the absolute smoothness, but the relative smoothness compared to this
optimal value. These values are the same when comparing different models evaluated on the same
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Train Domain (Model)

Measure SVHN (NiN) CIFAR10 (NiN) CIFAR10 (VGG) CINIC10 (CNN)

MS-RandAug 0.641 0.491 0.784 0.747
MS-Erase -0.139 0.216 -0.150 0.564

MS-FC -0.304 0.011 0.557 0.382
ATC-NE 0.635 0.478 0.531 0.668
ATC-MC 0.676 0.444 0.530 0.660

(a) Results on image classification tasks.

Task Measure CNN τ RoBERTa τ

SA

MS-SSMBA 0.360 0.010
MS-EDA 0.431 0.266
MS-BT 0.505 0.245

MS-Random 0.570 0.150
ATC-NE 0.543 0.228
ATC-MC 0.539 0.224

NLI

MS-SSMBA 0.022 0.260
MS-EDA 0.102 0.335
MS-BT 0.089 0.333

MS-Random 0.226 0.440
ATC-NE 0.219 0.231
ATC-MC 0.223 0.239

(b) Results on natural language tasks.

Table 5: Correlation metrics evaluating the ability of our smoothness measure to predict OOD
generalization across test datasets. Our smoothness measures achieves strong correlation in image
classification tasks but fails in natural language tasks.

domain, but are not the same for the same model evaluated on different domains, making correlating
across domains difficult. On the natural image manifold where domains are more well behaved and
uniform compared to the natural language manifold, the relative smoothness may not differ much
between domains allowing us to correlate our measure across domains.
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B.3 NEGATIVE ENTROPY RESULTS

A full table of results including metrics calculated on smoothness measured with negative entropy is
provided in Table 6. We refer to measures calculated with entropy as MSE-SSMBA, MSE-EDA,
MSE-BT, and MSE-Random. For most metrics, MSE-* methods perform similarly or slightly
worse.

CNN RoBERTa

Task Measure R2 MAE Macro τ Micro τ R2 MAE Macro τ Micro τ

SA

MS-SSMBA 0.662 1.93 0.677 0.689 0.972 1.29 0.832 0.829
MS-EDA 0.641 2.04 0.664 0.649 0.968 1.45 0.830 0.810
MS-BT 0.550 2.99 0.592 0.501 0.961 1.47 0.813 0.801
MS-Random 0.409 2.64 0.544 0.554 0.967 1.27 0.821 0.816

MSE-SSMBA 0.595 2.53 0.708 0.713 0.971 1.32 0.830 0.824
MSE-EDA 0.534 2.71 0.698 0.674 0.965 1.55 0.825 0.801
MSE-BT 0.471 3.59 0.618 0.541 0.961 1.46 0.813 0.799
MSE-Random 0.283 3.37 0.570 0.552 0.964 1.34 0.818 0.809

ATC-NE 0.530 3.80 0.506 0.642 0.849 3.59 0.684 0.706
ATC-MC 0.528 3.76 0.507 0.642 0.863 3.54 0.698 0.716

NLI

MS-SSMBA 0.575 2.09 0.570 0.534 0.933 1.19 0.750 0.730
MS-EDA 0.577 2.04 0.581 0.511 0.941 1.26 0.789 0.757
MS-BT 0.509 2.11 0.470 0.449 0.944 1.07 0.759 0.740
MS-Random 0.451 2.20 0.452 0.428 0.890 1.70 0.688 0.647

MSE-SSMBA 0.588 2.20 0.579 0.520 0.941 1.39 0.738 0.711
MSE-EDA 0.606 2.11 0.597 0.512 0.937 1.48 0.767 0.732
MSE-BT 0.536 2.27 0.480 0.422 0.954 1.12 0.764 0.750
MSE-Random 0.457 2.36 0.451 0.397 0.904 1.79 0.665 0.591

ATC-NE 0.378 3.57 0.430 0.294 0.673 2.35 0.536 0.52
ATC-MC 0.382 3.57 0.433 0.297 0.718 2.21 0.570 0.556

Table 6: Correlation metrics evaluating the quality of our smoothness measure on two tasks, sentiment
analysis and natural language inference, and two architectures, CNN and RoBERTa. Details on metric
calculations and baselines are provided in sections 3.3 and 4.4. This full table of results includes
metrics calculated with our negative entropy smoothness measure as well.
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C FULL RESULTS

We provide a breakdown of results on the correlation metrics R2 (Tables 7, 8, 9, 10, 11, 12), macro τ
(Tables 13, 14, 15, 16, 17, 18, micro τ (Tables 19, 20), and ID τ (Tables 21, 22, 23) for each set of
datasets and models.

Test Domain

Model Train Domain Measure SVHN Colored MNIST MNIST

NiN SVHN

MS-RandAug — 0.785 0.744
MS-Erase — 0.088 0.218

MS-FC — 0.134 0.283
ATC-NE — 0.506 0.725
ATC-MC — 0.615 0.769

Table 7: Full R2 metrics for all test domains for image classification models on SVHN, Colored
MNIST, and MNIST.

Test Domain

Model Train Domain Measure CIFAR10 CINIC10 CIFAR10.1 CIFAR10.2

NiN CIFAR10

MS-RandAug — 0.898 0.927 0.876
MS-Erase — 0.404 0.526 0.547

MS-FC — 0.109 0.028 0.000
ATC-NE — 0.237 0.575 0.435
ATC-MC — 0.252 0.538 0.390

ResNet CIFAR10

MS-RandAug — 0.816 0.844 0.853
MS-Erase — 0.807 0.812 0.783

MS-FC — 0.726 0.628 0.660
ATC-NE — 0.736 0.782 0.693
ATC-MC — 0.702 0.760 0.680

VGG CIFAR10

MS-RandAug — 0.969 0.950 0.929
MS-Erase — 0.096 0.100 0.104

MS-FC — 0.637 0.524 0.487
ATC-NE — 0.557 0.774 0.724
ATC-MC — 0.559 0.764 0.709

CNN CINIC10

MS-RandAug 0.922 — 0.876 0.865
MS-Erase 0.603 — 0.504 0.548

MS-FC 0.416 — 0.397 0.395
ATC-NE 0.869 — 0.750 0.724
ATC-MC 0.868 — 0.741 0.716

Table 8: Full R2 metrics for all test domains for image classification models on CIFAR10, CINIC10,
CIFAR10.1, and CIFAR10.2.
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Test Domain

Train Domain Measure books clothing home kindle movies pets sports tech tools toys

books

MS-SSMBA — 0.688 0.771 0.752 0.683 0.823 0.762 0.697 0.711 0.729
MS-EDA — 0.720 0.725 0.699 0.689 0.810 0.693 0.663 0.727 0.805
MS-BT — 0.560 0.663 0.639 0.593 0.675 0.602 0.591 0.592 0.658

MS-Random — 0.413 0.418 0.331 0.343 0.479 0.373 0.304 0.401 0.496
ATC-NE — 0.765 0.859 0.828 0.777 0.834 0.834 0.791 0.814 0.872
ATC-MC — 0.759 0.854 0.821 0.771 0.828 0.830 0.790 0.808 0.871

clothing

MS-SSMBA 0.517 — 0.601 0.531 0.525 0.535 0.566 0.484 0.549 0.631
MS-EDA 0.409 — 0.419 0.452 0.408 0.395 0.457 0.388 0.486 0.534
MS-BT 0.234 — 0.164 0.267 0.273 0.121 0.191 0.164 0.193 0.355

MS-Random 0.236 — 0.237 0.223 0.250 0.212 0.213 0.156 0.246 0.335
ATC-NE 0.480 — 0.673 0.478 0.467 0.466 0.739 0.299 0.772 0.847
ATC-MC 0.477 — 0.675 0.477 0.466 0.474 0.742 0.300 0.772 0.848

home

MS-SSMBA 0.533 0.545 — 0.524 0.511 0.665 0.648 0.576 0.604 0.592
MS-EDA 0.412 0.554 — 0.451 0.433 0.586 0.496 0.417 0.525 0.657
MS-BT 0.313 0.260 — 0.327 0.316 0.346 0.366 0.304 0.385 0.408

MS-Random 0.273 0.260 — 0.236 0.325 0.286 0.299 0.270 0.282 0.370
ATC-NE 0.608 0.861 — 0.675 0.618 0.838 0.838 0.720 0.863 0.894
ATC-MC 0.612 0.861 — 0.679 0.626 0.838 0.839 0.719 0.863 0.895

kindle

MS-SSMBA 0.645 0.680 0.650 — 0.626 0.765 0.659 0.551 0.556 0.634
MS-EDA 0.722 0.688 0.695 — 0.662 0.785 0.690 0.658 0.623 0.783
MS-BT 0.655 0.674 0.684 — 0.625 0.745 0.704 0.695 0.649 0.735

MS-Random 0.325 0.364 0.253 — 0.269 0.442 0.292 0.244 0.274 0.445
ATC-NE 0.747 0.659 0.701 — 0.690 0.792 0.717 0.505 0.610 0.776
ATC-MC 0.759 0.642 0.699 — 0.687 0.784 0.708 0.507 0.594 0.765

movies

MS-SSMBA 0.541 0.640 0.658 0.615 — 0.633 0.656 0.583 0.653 0.741
MS-EDA 0.542 0.662 0.571 0.676 — 0.629 0.594 0.574 0.636 0.789
MS-BT 0.602 0.679 0.677 0.653 — 0.723 0.739 0.700 0.709 0.754

MS-Random 0.194 0.276 0.281 0.279 — 0.228 0.316 0.216 0.316 0.369
ATC-NE 0.698 0.719 0.708 0.668 — 0.718 0.707 0.611 0.752 0.818
ATC-MC 0.707 0.725 0.713 0.664 — 0.732 0.711 0.624 0.755 0.820

pets

MS-SSMBA 0.458 0.543 0.578 0.529 0.548 — 0.606 0.528 0.590 0.721
MS-EDA 0.426 0.552 0.554 0.467 0.513 — 0.546 0.463 0.549 0.677
MS-BT 0.485 0.523 0.477 0.549 0.563 — 0.581 0.550 0.580 0.587

MS-Random 0.260 0.333 0.284 0.302 0.320 — 0.304 0.271 0.345 0.432
ATC-NE 0.641 0.851 0.849 0.651 0.680 — 0.825 0.591 0.812 0.883
ATC-MC 0.644 0.846 0.848 0.648 0.683 — 0.824 0.589 0.810 0.883

sports

MS-SSMBA 0.499 0.530 0.569 0.524 0.463 0.573 — 0.517 0.590 0.721
MS-EDA 0.464 0.514 0.460 0.489 0.381 0.508 — 0.448 0.541 0.594
MS-BT 0.406 0.295 0.334 0.383 0.381 0.325 — 0.331 0.393 0.411

MS-Random 0.283 0.173 0.212 0.256 0.219 0.239 — 0.204 0.231 0.331
ATC-NE 0.712 0.900 0.926 0.744 0.656 0.891 — 0.828 0.931 0.953
ATC-MC 0.723 0.897 0.926 0.754 0.665 0.896 — 0.833 0.933 0.952

tech

MS-SSMBA 0.610 0.508 0.635 0.620 0.596 0.604 0.636 — 0.545 0.848
MS-EDA 0.550 0.475 0.519 0.603 0.608 0.581 0.587 — 0.532 0.649
MS-BT 0.588 0.447 0.572 0.632 0.597 0.558 0.603 — 0.523 0.648

MS-Random 0.340 0.241 0.262 0.307 0.337 0.285 0.291 — 0.200 0.432
ATC-NE 0.766 0.820 0.904 0.791 0.817 0.866 0.874 — 0.882 0.893
ATC-MC 0.771 0.823 0.904 0.794 0.817 0.864 0.875 — 0.882 0.893

tools

MS-SSMBA 0.554 0.505 0.548 0.556 0.605 0.651 0.606 0.577 — 0.660
MS-EDA 0.466 0.413 0.460 0.459 0.589 0.587 0.512 0.465 — 0.593
MS-BT 0.451 0.385 0.447 0.476 0.482 0.501 0.483 0.484 — 0.462

MS-Random 0.323 0.241 0.204 0.306 0.399 0.316 0.253 0.227 — 0.297
ATC-NE 0.661 0.875 0.901 0.679 0.719 0.867 0.908 0.795 — 0.916
ATC-MC 0.670 0.874 0.903 0.684 0.729 0.866 0.909 0.801 — 0.916

toys

MS-SSMBA 0.625 0.693 0.656 0.620 0.643 0.661 0.708 0.618 0.650 —
MS-EDA 0.473 0.582 0.487 0.481 0.498 0.552 0.535 0.429 0.528 —
MS-BT 0.311 0.408 0.331 0.351 0.324 0.355 0.420 0.334 0.357 —

MS-Random 0.272 0.307 0.234 0.254 0.286 0.257 0.301 0.215 0.248 —
ATC-NE 0.686 0.936 0.855 0.742 0.712 0.838 0.885 0.561 0.866 —
ATC-MC 0.691 0.935 0.858 0.742 0.718 0.843 0.886 0.574 0.869 —

Table 9: Full R2 metrics for all pairs of training and test domains for CNN models trained on AWS.
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Test Domain

Train Domain Measure books clothing home kindle movies pets sports tech tools toys

books

MS-SSMBA — 0.973 0.983 0.987 0.963 0.973 0.985 0.985 0.977 0.968
MS-EDA — 0.961 0.970 0.982 0.966 0.966 0.970 0.957 0.978 0.981
MS-BT — 0.946 0.979 0.985 0.961 0.972 0.972 0.975 0.970 0.955

MS-Random — 0.956 0.970 0.981 0.958 0.967 0.970 0.973 0.952 0.961
ATC-NE — 0.845 0.861 0.957 0.927 0.940 0.852 0.925 0.853 0.876
ATC-MC — 0.838 0.842 0.947 0.924 0.929 0.840 0.927 0.845 0.876

clothing

MS-SSMBA 0.944 — 0.974 0.942 0.980 0.981 0.984 0.973 0.969 0.978
MS-EDA 0.974 — 0.970 0.922 0.955 0.978 0.961 0.971 0.953 0.972
MS-BT 0.944 — 0.977 0.921 0.971 0.983 0.982 0.980 0.970 0.993

MS-Random 0.950 — 0.965 0.933 0.982 0.977 0.985 0.981 0.974 0.973
ATC-NE 0.792 — 0.934 0.764 0.913 0.939 0.933 0.846 0.914 0.973
ATC-MC 0.801 — 0.945 0.789 0.917 0.948 0.933 0.887 0.926 0.971

home

MS-SSMBA 0.973 0.972 — 0.976 0.972 0.979 0.976 0.980 0.972 0.984
MS-EDA 0.961 0.975 — 0.967 0.959 0.960 0.949 0.917 0.963 0.979
MS-BT 0.947 0.958 — 0.944 0.947 0.948 0.977 0.972 0.971 0.974

MS-Random 0.978 0.976 — 0.970 0.967 0.975 0.973 0.964 0.975 0.983
ATC-NE 0.878 0.959 — 0.958 0.908 0.930 0.962 0.860 0.928 0.951
ATC-MC 0.885 0.960 — 0.963 0.913 0.945 0.964 0.872 0.938 0.952

kindle

MS-SSMBA 0.992 0.963 0.966 — 0.961 0.957 0.963 0.971 0.943 0.984
MS-EDA 0.983 0.968 0.951 — 0.966 0.962 0.953 0.974 0.963 0.969
MS-BT 0.973 0.947 0.975 — 0.954 0.949 0.954 0.973 0.923 0.973

MS-Random 0.979 0.946 0.956 — 0.967 0.961 0.946 0.970 0.934 0.975
ATC-NE 0.931 0.380 0.510 — 0.861 0.162 0.260 0.424 0.179 0.608
ATC-MC 0.930 0.534 0.623 — 0.871 0.294 0.392 0.551 0.316 0.672

movies

MS-SSMBA 0.984 0.976 0.969 0.981 — 0.962 0.983 0.958 0.961 0.971
MS-EDA 0.974 0.975 0.947 0.985 — 0.928 0.977 0.950 0.972 0.969
MS-BT 0.971 0.952 0.965 0.965 — 0.951 0.970 0.957 0.950 0.977

MS-Random 0.981 0.969 0.954 0.971 — 0.958 0.969 0.957 0.958 0.962
ATC-NE 0.948 0.864 0.902 0.949 — 0.746 0.908 0.813 0.817 0.917
ATC-MC 0.949 0.893 0.928 0.948 — 0.802 0.929 0.861 0.859 0.926

pets

MS-SSMBA 0.943 0.974 0.981 0.945 0.942 — 0.979 0.982 0.978 0.969
MS-EDA 0.965 0.980 0.985 0.958 0.952 — 0.983 0.975 0.976 0.983
MS-BT 0.936 0.971 0.974 0.931 0.926 — 0.980 0.963 0.979 0.977

MS-Random 0.941 0.976 0.971 0.925 0.931 — 0.976 0.968 0.976 0.979
ATC-NE 0.594 0.967 0.900 0.577 0.862 — 0.947 0.959 0.929 0.882
ATC-MC 0.611 0.968 0.909 0.589 0.851 — 0.955 0.959 0.939 0.894

sports

MS-SSMBA 0.979 0.982 0.994 0.980 0.979 0.970 — 0.982 0.984 0.978
MS-EDA 0.979 0.987 0.986 0.960 0.984 0.985 — 0.985 0.986 0.987
MS-BT 0.966 0.977 0.989 0.949 0.969 0.979 — 0.986 0.984 0.988

MS-Random 0.981 0.979 0.994 0.978 0.980 0.978 — 0.985 0.985 0.984
ATC-NE 0.655 0.945 0.963 0.688 0.850 0.890 — 0.938 0.969 0.957
ATC-MC 0.705 0.951 0.965 0.722 0.882 0.905 — 0.944 0.972 0.953

tech

MS-SSMBA 0.944 0.979 0.977 0.947 0.967 0.958 0.975 — 0.990 0.981
MS-EDA 0.917 0.969 0.971 0.925 0.953 0.937 0.967 — 0.963 0.972
MS-BT 0.894 0.982 0.987 0.924 0.937 0.933 0.978 — 0.987 0.972

MS-Random 0.929 0.959 0.977 0.918 0.952 0.944 0.963 — 0.984 0.971
ATC-NE 0.937 0.939 0.983 0.933 0.946 0.961 0.961 — 0.974 0.981
ATC-MC 0.941 0.941 0.980 0.928 0.955 0.958 0.963 — 0.971 0.982

tools

MS-SSMBA 0.977 0.988 0.975 0.967 0.971 0.986 0.985 0.978 — 0.983
MS-EDA 0.975 0.985 0.978 0.969 0.980 0.986 0.988 0.975 — 0.982
MS-BT 0.940 0.976 0.970 0.941 0.944 0.969 0.978 0.948 — 0.975

MS-Random 0.963 0.985 0.978 0.954 0.963 0.988 0.984 0.977 — 0.987
ATC-NE 0.857 0.945 0.964 0.883 0.865 0.925 0.964 0.963 — 0.922
ATC-MC 0.868 0.941 0.965 0.887 0.876 0.936 0.967 0.971 — 0.919

toys

MS-SSMBA 0.955 0.971 0.985 0.980 0.961 0.966 0.988 0.978 0.971 —
MS-EDA 0.965 0.968 0.984 0.970 0.985 0.973 0.981 0.975 0.983 —
MS-BT 0.890 0.946 0.959 0.944 0.925 0.935 0.965 0.943 0.934 —

MS-Random 0.959 0.970 0.979 0.960 0.965 0.967 0.977 0.978 0.974 —
ATC-NE 0.883 0.878 0.885 0.763 0.906 0.798 0.938 0.815 0.899 —
ATC-MC 0.889 0.897 0.895 0.754 0.920 0.818 0.947 0.833 0.914 —

Table 10: Full R2 metrics for all pairs of training and test domains for BERT models trained on AWS.
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Test Domain

Train Domain Measure slate verbatim facetoface oup nineeleven fiction telephone travel letters government

slate

MS-SSMBA — 0.457 0.760 0.544 0.642 0.706 0.727 0.585 0.640 0.714
MS-EDA — 0.574 0.723 0.565 0.620 0.708 0.731 0.549 0.595 0.706
MS-BT — 0.862 0.920 0.942 0.930 0.913 0.878 0.936 0.949 0.940

MS-Random — 0.242 0.336 0.501 0.415 0.121 0.170 0.301 0.652 0.470
ATC-NE — 0.681 0.677 0.594 0.599 0.741 0.669 0.664 0.661 0.773
ATC-MC — 0.682 0.675 0.590 0.600 0.737 0.670 0.665 0.661 0.771

fiction

MS-SSMBA 0.581 0.492 0.765 0.451 0.530 — 0.683 0.499 0.502 0.614
MS-EDA 0.657 0.601 0.728 0.620 0.530 — 0.676 0.527 0.508 0.642
MS-BT 0.889 0.887 0.917 0.950 0.921 — 0.863 0.928 0.935 0.941

MS-Random 0.360 0.414 0.459 0.666 0.531 — 0.188 0.464 0.680 0.631
ATC-NE 0.530 0.425 0.718 0.323 0.536 — 0.556 0.425 0.597 0.522
ATC-MC 0.525 0.418 0.719 0.326 0.534 — 0.555 0.422 0.592 0.521

telephone

MS-SSMBA 0.539 0.453 0.826 0.429 0.480 0.647 — 0.436 0.559 0.439
MS-EDA 0.677 0.636 0.804 0.492 0.639 0.819 — 0.557 0.653 0.568
MS-BT 0.882 0.901 0.928 0.936 0.927 0.912 — 0.937 0.916 0.919

MS-Random 0.332 0.498 0.488 0.584 0.538 0.310 — 0.586 0.677 0.576
ATC-NE 0.557 0.518 0.762 0.527 0.467 0.695 — 0.368 0.554 0.468
ATC-MC 0.561 0.518 0.762 0.524 0.467 0.698 — 0.372 0.560 0.470

travel

MS-SSMBA 0.503 0.506 0.588 0.419 0.501 0.543 0.597 — 0.670 0.507
MS-EDA 0.444 0.429 0.502 0.388 0.342 0.532 0.478 — 0.438 0.377
MS-BT 0.806 0.799 0.861 0.916 0.889 0.828 0.802 — 0.923 0.907

MS-Random 0.315 0.333 0.385 0.643 0.516 0.182 0.224 — 0.690 0.626
ATC-NE 0.561 0.516 0.498 0.686 0.546 0.581 0.606 — 0.585 0.598
ATC-MC 0.563 0.517 0.503 0.690 0.544 0.588 0.611 — 0.582 0.607

government

MS-SSMBA 0.592 0.497 0.618 0.572 0.596 0.648 0.593 0.539 0.676 —
MS-EDA 0.577 0.574 0.550 0.476 0.618 0.600 0.491 0.518 0.526 —
MS-BT 0.818 0.812 0.859 0.909 0.893 0.813 0.809 0.909 0.917 —

MS-Random 0.010 0.083 0.207 0.306 0.279 0.011 0.027 0.123 0.360 —
ATC-NE 0.663 0.405 0.564 0.722 0.337 0.634 0.630 0.509 0.653 —
ATC-MC 0.666 0.405 0.574 0.721 0.341 0.633 0.636 0.509 0.654 —

Table 11: Full R2 metrics for all pairs of training and test domains for CNN models trained on MNLI.

Test Domain

Train Domain Measure slate verbatim facetoface oup nineeleven fiction telephone travel letters government

slate

MS-SSMBA — 0.920 0.905 0.943 0.916 0.929 0.930 0.957 0.931 0.970
MS-EDA — 0.701 0.754 0.816 0.784 0.790 0.708 0.787 0.820 0.837
MS-BT — 0.862 0.920 0.942 0.930 0.913 0.878 0.936 0.949 0.940

MS-Random — 0.242 0.336 0.501 0.415 0.121 0.170 0.301 0.652 0.470
ATC-NE — 0.878 0.899 0.954 0.911 0.925 0.911 0.904 0.890 0.951
ATC-MC — 0.871 0.884 0.953 0.908 0.932 0.914 0.911 0.887 0.949

fiction

MS-SSMBA 0.954 0.928 0.895 0.952 0.946 — 0.952 0.975 0.946 0.954
MS-EDA 0.661 0.687 0.699 0.840 0.686 — 0.683 0.764 0.799 0.797
MS-BT 0.889 0.887 0.917 0.950 0.921 — 0.863 0.928 0.935 0.941

MS-Random 0.360 0.414 0.459 0.666 0.531 — 0.188 0.464 0.680 0.631
ATC-NE 0.808 0.585 0.881 0.726 0.939 — 0.836 0.826 0.850 0.890
ATC-MC 0.817 0.652 0.889 0.732 0.936 — 0.841 0.830 0.861 0.892

telephone

MS-SSMBA 0.943 0.962 0.948 0.953 0.917 0.954 — 0.921 0.934 0.956
MS-EDA 0.776 0.787 0.790 0.852 0.823 0.847 — 0.853 0.877 0.852
MS-BT 0.882 0.901 0.928 0.936 0.927 0.912 — 0.937 0.916 0.919

MS-Random 0.332 0.498 0.488 0.584 0.538 0.310 — 0.586 0.677 0.576
ATC-NE 0.662 0.576 0.884 0.904 0.762 0.665 — 0.771 0.856 0.889
ATC-MC 0.714 0.668 0.902 0.924 0.807 0.732 — 0.795 0.857 0.899

travel

MS-SSMBA 0.938 0.935 0.949 0.924 0.948 0.946 0.958 — 0.962 0.953
MS-EDA 0.538 0.553 0.471 0.711 0.602 0.638 0.533 — 0.755 0.699
MS-BT 0.806 0.799 0.861 0.916 0.889 0.828 0.802 — 0.923 0.907

MS-Random 0.315 0.333 0.385 0.643 0.516 0.182 0.224 — 0.690 0.626
ATC-NE 0.319 0.417 0.500 0.889 0.768 0.396 0.494 — 0.928 0.911
ATC-MC 0.412 0.506 0.591 0.906 0.789 0.525 0.572 — 0.921 0.917

government

MS-SSMBA 0.916 0.960 0.781 0.919 0.816 0.882 0.914 0.950 0.920 —
MS-EDA 0.484 0.572 0.544 0.728 0.715 0.655 0.566 0.644 0.681 —
MS-BT 0.818 0.812 0.859 0.909 0.893 0.813 0.809 0.909 0.917 —

MS-Random 0.010 0.083 0.207 0.306 0.279 0.011 0.027 0.123 0.360 —
ATC-NE 0.544 0.385 0.439 0.914 0.731 0.157 0.449 0.538 0.842 —
ATC-MC 0.624 0.481 0.478 0.919 0.797 0.243 0.505 0.576 0.856 —

Table 12: Full R2 metrics for all pairs of training and test domains for BERT models trained on
MNLI.

Test Domain

Model Train Domain Measure SVHN Colored MNIST MNIST

NiN SVHN

MS-RandAug — 0.668 0.616
MS-Erase — -0.102 -0.168

MS-FC — -0.233 -0.398
ATC-NE — 0.577 0.695
ATC-MC — 0.646 0.716

Table 13: Full macro τ metrics for all test domains for image classification models on SVHN, Colored
MNIST, and MNIST.
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Test Domain

Model Train Domain Measure CIFAR10 CINIC10 CIFAR10.1 CIFAR10.2

NiN CIFAR10

MS-RandAug — 0.785 0.830 0.783
MS-Erase — 0.385 0.485 0.499

MS-FC — 0.194 0.077 -0.037
ATC-NE — 0.250 0.543 0.484
ATC-MC — 0.319 0.514 0.446

ResNet CIFAR10

MS-RandAug — 0.706 0.722 0.742
MS-Erase — 0.723 0.727 0.699

MS-FC — 0.647 0.585 0.607
ATC-NE — 0.644 0.687 0.630
ATC-MC — 0.631 0.672 0.624

VGG CIFAR10

MS-RandAug — 0.868 0.831 0.772
MS-Erase — -0.153 -0.196 -0.215

MS-FC — 0.597 0.569 0.512
ATC-NE — 0.531 0.656 0.599
ATC-MC — 0.533 0.648 0.586

CNN CINIC10

MS-RandAug 0.756 — 0.698 0.695
MS-Erase 0.619 — 0.539 0.577

MS-FC 0.249 — 0.286 0.252
ATC-NE 0.607 — 0.510 0.447
ATC-MC 0.611 — 0.500 0.440

Table 14: Full macro τ metrics for all test domains for image classification models on CIFAR10,
CINIC10, CIFAR10.1, and CIFAR10.2.
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Test Domain

Train Domain Measure books clothing home kindle movies pets sports tech tools toys

books

MS-SSMBA — 0.708 0.741 0.687 0.678 0.754 0.738 0.738 0.721 0.669
MS-EDA — 0.722 0.738 0.640 0.685 0.756 0.688 0.709 0.719 0.725
MS-BT — 0.615 0.631 0.549 0.596 0.656 0.602 0.644 0.584 0.621

MS-Random — 0.591 0.586 0.499 0.587 0.587 0.530 0.530 0.546 0.589
ATC-NE — 0.605 0.642 0.534 0.496 0.629 0.605 0.538 0.618 0.673
ATC-MC — 0.604 0.639 0.534 0.489 0.630 0.606 0.544 0.616 0.670

clothing

MS-SSMBA 0.769 — 0.774 0.773 0.793 0.726 0.653 0.716 0.692 0.709
MS-EDA 0.681 — 0.670 0.787 0.721 0.696 0.675 0.694 0.690 0.784
MS-BT 0.574 — 0.542 0.654 0.595 0.481 0.506 0.501 0.503 0.679

MS-Random 0.623 — 0.591 0.603 0.612 0.557 0.496 0.507 0.549 0.640
ATC-NE 0.420 — 0.366 0.408 0.450 0.308 0.501 0.242 0.560 0.563
ATC-MC 0.421 — 0.363 0.409 0.451 0.315 0.498 0.239 0.558 0.563

home

MS-SSMBA 0.786 0.552 — 0.731 0.731 0.769 0.790 0.789 0.775 0.614
MS-EDA 0.734 0.659 — 0.767 0.649 0.757 0.707 0.723 0.696 0.748
MS-BT 0.670 0.498 — 0.641 0.639 0.634 0.706 0.688 0.662 0.630

MS-Random 0.700 0.549 — 0.665 0.705 0.686 0.663 0.664 0.632 0.651
ATC-NE 0.450 0.480 — 0.459 0.447 0.455 0.559 0.497 0.558 0.445
ATC-MC 0.459 0.480 — 0.460 0.452 0.458 0.557 0.495 0.557 0.448

kindle

MS-SSMBA 0.546 0.679 0.648 — 0.557 0.699 0.656 0.608 0.607 0.630
MS-EDA 0.663 0.644 0.717 — 0.637 0.743 0.699 0.676 0.643 0.696
MS-BT 0.556 0.648 0.652 — 0.562 0.686 0.683 0.668 0.643 0.674

MS-Random 0.454 0.519 0.406 — 0.428 0.555 0.434 0.415 0.415 0.535
ATC-NE 0.370 0.517 0.468 — 0.338 0.583 0.540 0.383 0.472 0.545
ATC-MC 0.388 0.512 0.469 — 0.342 0.578 0.538 0.384 0.467 0.541

movies

MS-SSMBA 0.572 0.689 0.717 0.660 — 0.732 0.741 0.675 0.714 0.749
MS-EDA 0.500 0.717 0.711 0.629 — 0.733 0.725 0.660 0.719 0.748
MS-BT 0.619 0.681 0.687 0.595 — 0.738 0.729 0.717 0.717 0.717

MS-Random 0.435 0.491 0.523 0.554 — 0.460 0.528 0.436 0.517 0.570
ATC-NE 0.436 0.605 0.623 0.398 — 0.571 0.622 0.502 0.659 0.701
ATC-MC 0.449 0.612 0.631 0.403 — 0.586 0.628 0.520 0.661 0.704

pets

MS-SSMBA 0.747 0.560 0.653 0.766 0.769 — 0.719 0.696 0.697 0.731
MS-EDA 0.762 0.684 0.682 0.794 0.773 — 0.709 0.666 0.689 0.745
MS-BT 0.741 0.550 0.625 0.751 0.776 — 0.704 0.676 0.702 0.654

MS-Random 0.619 0.575 0.572 0.696 0.662 — 0.580 0.532 0.590 0.710
ATC-NE 0.570 0.545 0.462 0.533 0.543 — 0.511 0.333 0.503 0.634
ATC-MC 0.575 0.541 0.461 0.535 0.546 — 0.510 0.332 0.502 0.632

sports

MS-SSMBA 0.774 0.561 0.657 0.812 0.764 0.683 — 0.689 0.746 0.651
MS-EDA 0.770 0.633 0.659 0.791 0.710 0.712 — 0.701 0.732 0.692
MS-BT 0.670 0.484 0.598 0.669 0.672 0.545 — 0.534 0.704 0.538

MS-Random 0.684 0.472 0.562 0.704 0.638 0.589 — 0.614 0.622 0.693
ATC-NE 0.502 0.456 0.454 0.506 0.443 0.374 — 0.397 0.565 0.577
ATC-MC 0.513 0.459 0.459 0.521 0.453 0.393 — 0.410 0.574 0.574

tech

MS-SSMBA 0.784 0.674 0.768 0.793 0.779 0.755 0.785 — 0.690 0.746
MS-EDA 0.718 0.698 0.760 0.743 0.752 0.817 0.772 — 0.726 0.781
MS-BT 0.715 0.576 0.719 0.732 0.746 0.716 0.726 — 0.687 0.683

MS-Random 0.680 0.647 0.652 0.686 0.668 0.677 0.664 — 0.553 0.742
ATC-NE 0.547 0.688 0.681 0.560 0.640 0.653 0.666 — 0.637 0.723
ATC-MC 0.553 0.690 0.678 0.567 0.639 0.650 0.664 — 0.633 0.721

tools

MS-SSMBA 0.783 0.541 0.604 0.777 0.782 0.757 0.758 0.730 — 0.682
MS-EDA 0.716 0.544 0.628 0.769 0.735 0.764 0.722 0.696 — 0.745
MS-BT 0.691 0.342 0.454 0.681 0.677 0.567 0.575 0.636 — 0.513

MS-Random 0.661 0.550 0.581 0.675 0.685 0.668 0.623 0.584 — 0.687
ATC-NE 0.621 0.472 0.480 0.647 0.648 0.536 0.598 0.448 — 0.619
ATC-MC 0.630 0.465 0.491 0.649 0.655 0.538 0.597 0.456 — 0.622

toys

MS-SSMBA 0.760 0.702 0.758 0.763 0.731 0.775 0.782 0.750 0.753 —
MS-EDA 0.689 0.678 0.661 0.757 0.646 0.736 0.711 0.661 0.700 —
MS-BT 0.582 0.604 0.683 0.626 0.610 0.695 0.723 0.660 0.658 —

MS-Random 0.629 0.660 0.575 0.661 0.609 0.605 0.599 0.543 0.582 —
ATC-NE 0.401 0.617 0.309 0.479 0.370 0.323 0.485 0.143 0.526 —
ATC-MC 0.408 0.614 0.315 0.476 0.368 0.329 0.488 0.146 0.535 —

Table 15: Full macro τ metrics for all pairs of training and test domains for CNN models trained on
AWS.
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Test Domain

Train Domain Measure books clothing home kindle movies pets sports tech tools toys

books

MS-SSMBA — 0.886 0.906 0.893 0.901 0.900 0.925 0.918 0.931 0.857
MS-EDA — 0.883 0.851 0.890 0.852 0.863 0.854 0.855 0.895 0.844
MS-BT — 0.830 0.887 0.893 0.883 0.884 0.871 0.878 0.869 0.824

MS-Random — 0.882 0.871 0.908 0.906 0.897 0.894 0.900 0.913 0.846
ATC-NE — 0.803 0.814 0.851 0.821 0.885 0.756 0.843 0.774 0.832
ATC-MC — 0.789 0.806 0.850 0.794 0.874 0.760 0.845 0.768 0.824

clothing

MS-SSMBA 0.797 — 0.882 0.714 0.773 0.826 0.881 0.826 0.883 0.824
MS-EDA 0.828 — 0.848 0.813 0.787 0.862 0.741 0.839 0.848 0.777
MS-BT 0.817 — 0.903 0.686 0.837 0.832 0.849 0.835 0.823 0.778

MS-Random 0.762 — 0.858 0.691 0.826 0.832 0.872 0.822 0.868 0.786
ATC-NE 0.729 — 0.805 0.672 0.681 0.817 0.728 0.698 0.792 0.791
ATC-MC 0.735 — 0.794 0.683 0.701 0.858 0.744 0.736 0.808 0.791

home

MS-SSMBA 0.736 0.800 — 0.786 0.780 0.868 0.896 0.876 0.888 0.885
MS-EDA 0.680 0.885 — 0.768 0.830 0.880 0.879 0.843 0.877 0.930
MS-BT 0.749 0.788 — 0.756 0.778 0.819 0.871 0.835 0.906 0.866

MS-Random 0.729 0.811 — 0.701 0.759 0.853 0.931 0.831 0.876 0.874
ATC-NE 0.691 0.788 — 0.750 0.802 0.791 0.797 0.739 0.824 0.824
ATC-MC 0.684 0.782 — 0.738 0.793 0.806 0.772 0.751 0.826 0.819

kindle

MS-SSMBA 0.735 0.850 0.885 — 0.701 0.913 0.875 0.869 0.763 0.871
MS-EDA 0.840 0.830 0.824 — 0.709 0.879 0.856 0.865 0.854 0.790
MS-BT 0.727 0.848 0.892 — 0.763 0.856 0.926 0.871 0.879 0.861

MS-Random 0.773 0.848 0.816 — 0.735 0.875 0.857 0.843 0.794 0.847
ATC-NE 0.695 0.335 0.486 — 0.644 0.211 0.274 0.426 0.238 0.589
ATC-MC 0.729 0.455 0.558 — 0.671 0.337 0.366 0.509 0.369 0.652

movies

MS-SSMBA 0.845 0.897 0.888 0.782 — 0.850 0.931 0.877 0.881 0.896
MS-EDA 0.764 0.881 0.852 0.863 — 0.859 0.901 0.863 0.882 0.938
MS-BT 0.810 0.894 0.882 0.719 — 0.837 0.894 0.864 0.872 0.870

MS-Random 0.851 0.875 0.855 0.742 — 0.850 0.905 0.864 0.861 0.874
ATC-NE 0.692 0.745 0.807 0.712 — 0.561 0.768 0.580 0.620 0.763
ATC-MC 0.698 0.770 0.847 0.722 — 0.622 0.813 0.637 0.678 0.784

pets

MS-SSMBA 0.728 0.737 0.866 0.737 0.829 — 0.883 0.867 0.859 0.773
MS-EDA 0.732 0.831 0.880 0.601 0.788 — 0.853 0.834 0.903 0.841
MS-BT 0.697 0.685 0.816 0.758 0.816 — 0.867 0.814 0.865 0.810

MS-Random 0.753 0.731 0.813 0.735 0.841 — 0.828 0.871 0.869 0.774
ATC-NE 0.623 0.740 0.719 0.553 0.737 — 0.815 0.788 0.748 0.781
ATC-MC 0.662 0.753 0.723 0.566 0.711 — 0.831 0.781 0.752 0.750

sports

MS-SSMBA 0.715 0.743 0.879 0.764 0.837 0.863 — 0.879 0.860 0.870
MS-EDA 0.757 0.731 0.807 0.673 0.798 0.786 — 0.815 0.827 0.833
MS-BT 0.728 0.753 0.766 0.664 0.826 0.832 — 0.783 0.824 0.865

MS-Random 0.735 0.702 0.816 0.728 0.808 0.802 — 0.830 0.849 0.836
ATC-NE 0.489 0.734 0.738 0.567 0.720 0.726 — 0.726 0.725 0.862
ATC-MC 0.484 0.728 0.766 0.562 0.754 0.727 — 0.725 0.741 0.860

tech

MS-SSMBA 0.784 0.763 0.845 0.710 0.769 0.853 0.755 — 0.886 0.877
MS-EDA 0.771 0.867 0.881 0.763 0.801 0.855 0.886 — 0.904 0.869
MS-BT 0.753 0.750 0.867 0.719 0.805 0.869 0.787 — 0.842 0.835

MS-Random 0.819 0.721 0.843 0.711 0.854 0.889 0.787 — 0.854 0.874
ATC-NE 0.737 0.744 0.787 0.751 0.732 0.795 0.727 — 0.830 0.863
ATC-MC 0.771 0.730 0.764 0.749 0.704 0.809 0.771 — 0.789 0.843

tools

MS-SSMBA 0.792 0.854 0.786 0.707 0.746 0.875 0.888 0.792 — 0.866
MS-EDA 0.859 0.846 0.834 0.847 0.790 0.837 0.886 0.819 — 0.894
MS-BT 0.769 0.802 0.763 0.709 0.750 0.832 0.824 0.744 — 0.856

MS-Random 0.792 0.825 0.816 0.717 0.724 0.885 0.877 0.801 — 0.845
ATC-NE 0.745 0.789 0.775 0.744 0.632 0.698 0.856 0.737 — 0.799
ATC-MC 0.749 0.798 0.772 0.745 0.634 0.737 0.876 0.777 — 0.793

toys

MS-SSMBA 0.779 0.830 0.813 0.766 0.695 0.808 0.872 0.872 0.891 —
MS-EDA 0.696 0.790 0.805 0.821 0.790 0.837 0.834 0.860 0.840 —
MS-BT 0.748 0.762 0.746 0.755 0.707 0.840 0.809 0.773 0.811 —

MS-Random 0.813 0.788 0.783 0.770 0.660 0.788 0.838 0.873 0.891 —
ATC-NE 0.656 0.469 0.743 0.550 0.628 0.515 0.792 0.703 0.771 —
ATC-MC 0.694 0.482 0.726 0.539 0.651 0.571 0.805 0.730 0.777 —

Table 16: Full macro τ metrics for all pairs of training and test domains for BERT models trained on
AWS.
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Test Domain

Train Domain Measure slate verbatim facetoface oup nineeleven fiction telephone travel letters government

slate

MS-SSMBA — 0.483 0.675 0.553 0.608 0.650 0.661 0.570 0.622 0.641
MS-EDA — 0.564 0.675 0.563 0.599 0.658 0.672 0.557 0.599 0.649
MS-BT — 0.669 0.742 0.736 0.756 0.727 0.754 0.751 0.738 0.791

MS-Random — 0.393 0.526 0.529 0.480 0.398 0.438 0.445 0.640 0.531
ATC-NE — 0.650 0.632 0.577 0.594 0.683 0.625 0.602 0.621 0.699
ATC-MC — 0.652 0.632 0.578 0.594 0.681 0.625 0.603 0.622 0.697

fiction

MS-SSMBA 0.577 0.537 0.692 0.482 0.539 — 0.629 0.520 0.546 0.598
MS-EDA 0.632 0.584 0.691 0.608 0.557 — 0.631 0.529 0.540 0.608
MS-BT 0.783 0.704 0.771 0.693 0.671 — 0.776 0.680 0.707 0.693

MS-Random 0.495 0.446 0.522 0.531 0.437 — 0.434 0.464 0.531 0.493
ATC-NE 0.538 0.461 0.630 0.428 0.513 — 0.542 0.469 0.581 0.536
ATC-MC 0.530 0.450 0.631 0.427 0.513 — 0.543 0.463 0.576 0.534

telephone

MS-SSMBA 0.567 0.503 0.736 0.493 0.507 0.608 — 0.492 0.572 0.496
MS-EDA 0.637 0.633 0.726 0.537 0.615 0.735 — 0.579 0.642 0.580
MS-BT 0.657 0.668 0.722 0.637 0.663 0.639 — 0.621 0.602 0.614

MS-Random 0.504 0.470 0.573 0.470 0.510 0.480 — 0.482 0.576 0.440
ATC-NE 0.533 0.507 0.681 0.526 0.500 0.632 — 0.453 0.564 0.491
ATC-MC 0.534 0.507 0.681 0.522 0.501 0.637 — 0.455 0.564 0.494

travel

MS-SSMBA 0.524 0.528 0.585 0.462 0.517 0.537 0.569 — 0.617 0.521
MS-EDA 0.492 0.484 0.523 0.461 0.418 0.550 0.524 — 0.507 0.458
MS-BT 0.619 0.634 0.630 0.660 0.681 0.655 0.645 — 0.713 0.699

MS-Random 0.465 0.476 0.467 0.514 0.492 0.472 0.526 — 0.569 0.497
ATC-NE 0.579 0.528 0.533 0.643 0.541 0.571 0.591 — 0.572 0.597
ATC-MC 0.576 0.528 0.534 0.642 0.536 0.573 0.594 — 0.570 0.602

government

MS-SSMBA 0.578 0.531 0.600 0.568 0.565 0.617 0.589 0.563 0.616 —
MS-EDA 0.581 0.582 0.565 0.535 0.594 0.624 0.519 0.552 0.566 —
MS-BT 0.719 0.693 0.686 0.687 0.755 0.701 0.651 0.712 0.719 —

MS-Random 0.274 0.268 0.357 0.444 0.464 0.301 0.247 0.395 0.452 —
ATC-NE 0.624 0.464 0.581 0.666 0.440 0.601 0.616 0.524 0.641 —
ATC-MC 0.621 0.465 0.583 0.667 0.446 0.602 0.616 0.522 0.642 —

Table 17: Full macro τ metrics for all pairs of training and test domains for CNN models trained on
MNLI.

Test Domain

Train Domain Measure slate verbatim facetoface oup nineeleven fiction telephone travel letters government

slate

MS-SSMBA — 0.743 0.746 0.709 0.767 0.742 0.727 0.771 0.782 0.819
MS-EDA — 0.580 0.695 0.674 0.696 0.703 0.655 0.651 0.671 0.737
MS-BT — 0.669 0.742 0.736 0.756 0.727 0.754 0.751 0.738 0.791

MS-Random — 0.393 0.526 0.529 0.480 0.398 0.438 0.445 0.640 0.531
ATC-NE — 0.689 0.768 0.786 0.728 0.752 0.761 0.744 0.743 0.766
ATC-MC — 0.684 0.761 0.794 0.730 0.761 0.789 0.765 0.744 0.785

fiction

MS-SSMBA 0.755 0.673 0.699 0.726 0.729 — 0.769 0.806 0.770 0.727
MS-EDA 0.609 0.505 0.649 0.659 0.532 — 0.608 0.554 0.624 0.629
MS-BT 0.783 0.704 0.771 0.693 0.671 — 0.776 0.680 0.707 0.693

MS-Random 0.495 0.446 0.522 0.531 0.437 — 0.434 0.464 0.531 0.493
ATC-NE 0.618 0.377 0.707 0.478 0.711 — 0.596 0.558 0.658 0.711
ATC-MC 0.631 0.422 0.702 0.513 0.707 — 0.603 0.549 0.670 0.706

telephone

MS-SSMBA 0.720 0.768 0.793 0.792 0.668 0.720 — 0.813 0.758 0.788
MS-EDA 0.670 0.667 0.706 0.617 0.718 0.795 — 0.642 0.732 0.661
MS-BT 0.657 0.668 0.722 0.637 0.663 0.639 — 0.621 0.602 0.614

MS-Random 0.504 0.470 0.573 0.470 0.510 0.480 — 0.482 0.576 0.440
ATC-NE 0.462 0.486 0.692 0.575 0.641 0.542 — 0.644 0.697 0.702
ATC-MC 0.519 0.551 0.717 0.641 0.637 0.597 — 0.665 0.684 0.708

travel

MS-SSMBA 0.700 0.806 0.737 0.676 0.744 0.707 0.848 — 0.789 0.783
MS-EDA 0.483 0.453 0.486 0.493 0.489 0.515 0.483 — 0.522 0.495
MS-BT 0.619 0.634 0.630 0.660 0.681 0.655 0.645 — 0.713 0.699

MS-Random 0.465 0.476 0.467 0.514 0.492 0.472 0.526 — 0.569 0.497
ATC-NE 0.155 0.320 0.234 0.559 0.533 0.146 0.360 — 0.633 0.630
ATC-MC 0.175 0.370 0.320 0.613 0.576 0.219 0.443 — 0.648 0.646

government

MS-SSMBA 0.769 0.777 0.727 0.652 0.640 0.783 0.784 0.805 0.754 —
MS-EDA 0.521 0.513 0.480 0.578 0.661 0.657 0.494 0.565 0.598 —
MS-BT 0.719 0.693 0.686 0.687 0.755 0.701 0.651 0.712 0.719 —

MS-Random 0.274 0.268 0.357 0.444 0.464 0.301 0.247 0.395 0.452 —
ATC-NE 0.377 0.176 0.472 0.660 0.558 0.239 0.497 0.302 0.638 —
ATC-MC 0.427 0.231 0.487 0.653 0.600 0.275 0.496 0.323 0.629 —

Table 18: Full macro τ metrics for all pairs of training and test domains for BERT models trained on
MNLI.
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Test Domain

Model Measure books clothing home kindle movies pets sports tech tools toys

CNN

MS-SSMBA 0.677 0.688 0.758 0.641 0.691 0.786 0.784 0.758 0.722 0.683
MS-EDA 0.637 0.672 0.704 0.612 0.658 0.746 0.739 0.680 0.703 0.711
MS-BT 0.601 0.532 0.572 0.509 0.521 0.509 0.587 0.536 0.571 0.529

MS-Random 0.485 0.542 0.501 0.522 0.440 0.491 0.650 0.477 0.507 0.550
ATC-NE 0.406 0.727 0.728 0.362 0.499 0.722 0.726 0.679 0.730 0.752
ATC-MC 0.410 0.726 0.729 0.359 0.500 0.724 0.727 0.681 0.730 0.752

BERT

MS-SSMBA 0.790 0.850 0.868 0.664 0.899 0.864 0.855 0.874 0.880 0.845
MS-EDA 0.739 0.848 0.825 0.731 0.793 0.836 0.825 0.828 0.837 0.841
MS-BT 0.702 0.845 0.830 0.668 0.792 0.839 0.843 0.813 0.819 0.858

MS-Random 0.839 0.841 0.891 0.694 0.864 0.834 0.747 0.825 0.850 0.831
ATC-NE 0.613 0.721 0.712 0.618 0.695 0.666 0.733 0.693 0.708 0.755
ATC-MC 0.621 0.735 0.730 0.616 0.711 0.691 0.749 0.710 0.726 0.764

Table 19: Full micro τ metrics for all test domains for CNN and BERT models trained on AWS.

Test Domain

Model Measure slate verbatim facetoface oup nineeleven fiction telephone travel letters government

CNN

MS-SSMBA 0.540 0.493 0.562 0.493 0.527 0.431 0.607 0.544 0.579 0.563
MS-EDA 0.560 0.555 0.427 0.520 0.488 0.435 0.499 0.552 0.532 0.542
MS-BT 0.698 0.684 0.611 0.713 0.713 0.595 0.676 0.714 0.697 0.722

MS-Random 0.448 0.417 0.427 0.503 0.472 0.324 0.395 0.450 0.550 0.509
ATC-NE 0.461 0.413 0.549 0.427 0.350 0.517 0.531 0.307 0.497 0.404
ATC-MC 0.460 0.411 0.550 0.429 0.351 0.517 0.532 0.307 0.496 0.404

BERT

MS-SSMBA 0.782 0.710 0.742 0.652 0.724 0.756 0.779 0.691 0.768 0.700
MS-EDA 0.563 0.556 0.481 0.622 0.586 0.545 0.529 0.607 0.607 0.630
MS-BT 0.698 0.684 0.611 0.713 0.713 0.595 0.676 0.714 0.697 0.722

MS-Random 0.448 0.417 0.427 0.503 0.472 0.324 0.395 0.450 0.550 0.509
ATC-NE 0.375 0.389 0.660 0.606 0.593 0.414 0.523 0.511 0.655 0.687
ATC-MC 0.405 0.434 0.676 0.632 0.614 0.466 0.554 0.530 0.663 0.693

Table 20: Full micro τ metrics for all test domains for CNN and BERT models trained on MNLI.

Train Domain (Model)

Measure SVHN (NiN) CIFAR10 (NiN) CIFAR10 (ResNet) CIFAR10 (VGG) CINIC10 (CNN)

MS-RandAug 0.733 0.797 0.746 0.869 0.759
MS-Erase 0.324 0.409 0.708 -0.183 0.606

MS-FC -0.033 -0.015 0.568 0.628 0.289
ATC-NE 0.859 0.648 0.757 0.773 0.548
ATC-MC 0.843 0.605 0.756 0.767 0.553

Table 21: Full in-domain τ metrics for all test domains for image classification models and datasets.

Train Domain

Model Measure books clothing home kindle movies pets sports tech tools toys

CNN

MS-SSMBA 0.646 0.613 0.643 0.577 0.597 0.591 0.703 0.648 0.643 0.620
MS-EDA 0.653 0.558 0.615 0.660 0.447 0.666 0.708 0.646 0.663 0.565
MS-BT 0.569 0.449 0.582 0.537 0.626 0.605 0.568 0.653 0.640 0.652

MS-Random 0.560 0.557 0.559 0.559 0.593 0.596 0.572 0.545 0.566 0.615
ATC-NE 0.575 0.413 0.561 0.478 0.294 0.464 0.539 0.561 0.446 0.341
ATC-MC 0.566 0.405 0.558 0.478 0.300 0.461 0.540 0.569 0.451 0.338

BERT

MS-SSMBA 0.735 0.874 0.868 0.693 0.780 0.871 0.884 0.851 0.851 0.884
MS-EDA 0.875 0.788 0.814 0.700 0.870 0.894 0.818 0.858 0.882 0.810
MS-BT 0.801 0.811 0.857 0.638 0.835 0.813 0.860 0.846 0.803 0.750

MS-Random 0.839 0.841 0.891 0.694 0.864 0.834 0.747 0.825 0.850 0.831
ATC-NE 0.733 0.724 0.822 0.640 0.721 0.711 0.778 0.783 0.799 0.783
ATC-MC 0.742 0.746 0.813 0.630 0.730 0.725 0.814 0.780 0.774 0.739

Table 22: Full in-domain τ metrics for all test domains for CNN and BERT models trained on AWS.
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Train Domain

Model Measure slate fiction telephone travel government

CNN

MS-SSMBA 0.664 0.655 0.753 0.692 0.758
MS-EDA 0.629 0.723 0.786 0.652 0.755
MS-BT 0.751 0.765 0.637 0.786 0.826

MS-Random 0.437 0.471 0.546 0.570 0.491
ATC-NE 0.704 0.662 0.719 0.715 0.722
ATC-MC 0.703 0.660 0.722 0.716 0.728

BERT

MS-SSMBA 0.713 0.754 0.766 0.785 0.839
MS-EDA 0.608 0.664 0.781 0.575 0.726
MS-BT 0.751 0.765 0.637 0.786 0.826

MS-Random 0.437 0.471 0.546 0.570 0.491
ATC-NE 0.722 0.796 0.740 0.737 0.701
ATC-MC 0.745 0.791 0.791 0.719 0.696

Table 23: Full in-domain τ metrics for all train domains for CNN and BERT models trained on
MNLI.
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