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Abstract

We explore the abstract reasoning abilities of text-only
and multimodal versions of GPT-4, using the ConceptARC
benchmark (Moskvichev, Odouard, and Mitchell 2023),
which is designed to evaluate robust understanding and rea-
soning with core-knowledge concepts. We extend the work
of Moskvichev et al. by evaluating GPT-4 on more detailed,
one-shot prompting (rather than simple, zero-shot prompts)
with text versions of ConceptARC tasks, and by evaluating
GPT-4V, the multimodal version of GPT-4, on zero- and one-
shot prompts using image versions of the simplest tasks. Our
experimental results support the conclusion that neither ver-
sion of GPT-4 has developed robust abstraction abilities at
humanlike levels.

Introduction
To what extent have large pre-trained language models
(LLMs) developed “emergent” capabilities for abstract rea-
soning? The defining characteristic of abstract reasoning is
the ability to induce a rule or pattern from limited data or ex-
perience and to apply this rule or pattern to new, unseen situ-
ations. Such abilities are a key aspect of human intelligence;
even very young children are adept at learning abstract rules
from just a few examples (Walker and Gopnik 2014).

Recently, various researchers have claimed that suffi-
ciently large pre-trained language models can develop emer-
gent abilities for reasoning (Wei et al. 2022), general abstract
pattern recognition (Mirchandani et al. 2023), and analogy-
making (Webb, Holyoak, and Lu 2023). However, the inter-
nal mechanisms giving rise to these abilities are not well
understood, and other researchers have cast doubt on the
claims that these systems actually form humanlike abstrac-
tions (Gendron et al. 2023), showing in many cases that
while LLMs can solve problems involving content similar to
that in their training data, they are weak in generalizing out-
side such problems (McCoy et al. 2023; Razeghi et al. 2022;
Wu et al. 2023). Some have interpreted this as evidence that
LLMs rely not on generalizable abstract reasoning but on
learning complex patterns of associations in their training
data and performing “approximate retrieval” of these pat-
terns in new situations (Kambhampati 2023).
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Abilities for creating and reasoning with abstract rep-
resentations are fundamental to robust generalization, so
it is essential to understand the extent to which LLMs
have achieved such abilities. In this paper we report on
experiments evaluating GPT-4 on tasks in ConceptARC
(Moskvichev, Odouard, and Mitchell 2023), a collection of
analogy puzzles that test general abstract reasoning capabili-
ties. We show that by providing prompts with more detailed
instructions and a simple solved example, GPT-4’s perfor-
mance on a text version of this corpus improves substan-
tially above that reported in previous work, but remains sub-
stantially below that of humans and of special-purpose algo-
rithms for solving tasks in this domain. Because humans are
given these tasks in a visual modality, it has been argued that
it would only be fair to compare humans with multimodal
(rather than text-only) LLMs. We perform this comparison
using GPT-4V, the multimodal extension of the GPT-4, and
show that this particular multimodal LLM performs substan-
tially worse than the text-only version. These results rein-
force the conclusion that a large gap in basic abstract rea-
soning still remains between humans and state-of-the-art AI
systems.

The Abstraction and Reasoning Corpus
Chollet (2019) proposed the Abstraction and Reasoning
Corpus (ARC) as a benchmark for fairly evaluating such
abilities in both humans and machines. ARC consists of
1,000 manually created analogy puzzles (‘tasks”), each of
which contains a small number (typically 2–4) demonstra-
tions of transformations on grids, and a “test input” grid. The
task for the solver is to induce the abstract rule underlying
the demonstrations and to apply that rule to the test input to
generate a transformed grid. Figure 1 gives three examples
of ARC tasks.

According to Chollet, the prior knowledge needed for
solving these tasks is a subset of the core knowledge sys-
tems hypothesized to be innate in humans (Spelke and Kin-
zler 2007)—namely, objectness, numerosity, and basic ge-
ometry and topology. Notably, Chollet intentionally omit-
ted knowledge of language or other “learned symbols” from
the required prior knowledge, which helps avoid any “ap-
proximate retrieval” and pattern matching based on prior
training data that might underlie LLMs’ apparent success
on language-based reasoning tasks. Instead, ARC is meant



Figure 1: Examples of ARC tasks from Chollet (2023). Each task has a set of demonstration input-output pairs that illustrate
an abstract grid-transformation rule, and a test input. The solver’s challenge is to generate a new grid that results from applying
the abstract rule to the test input. (Figure is from Moskvichev et al. (2023); best viewed in color.)

to capture the crux of abstract reasoning: inducing general
rules or patterns from small numbers of examples and ap-
plying these flexibly to new, previously unseen situations.

Chollet (2023) published 800 ARC tasks and kept the
remaining 200 as a “hidden” test set. 100 of these hidden
tasks were used as an test set for a challenge on the Kaggle
platform (Kaggle.com 2020). The first-place program from
the Kaggle challenge solved 21% of these hidden tasks, and
an ensemble of the first- and second-place programs solved
31%. This remains the highest-achieved accuracy on ARC
to date. The winning programs on Kaggle used program-
synthesis methods that searched over combinations of man-
ually defined, primitive grid operations in order to find com-
binations that correctly map inputs to outputs in the task
demonstrations. The authors of the winning programs ac-
knowledge that such methods are not likely to generalize
well (Wind 2020; de Miquel Bleier 2020) and ARC remains
largely unsolved by any AI methods.

Several groups have tested LLMs on subsets of ARC tasks
(Gendron et al. 2023; Mirchandani et al. 2023; Xu et al.
2023; Wang et al. 2023), using different prompting formats,
and generally found the best accuracy using straightforward
text versions of tasks to be around 10–12%. Limited studies
of human performance on subsets of ARC tasks has shown
much higher accuracies (e.g., 84% in Johnson et al. 2021).

Previous Evaluation of LLMs using the
ConceptARC Benchmark

Moskvichev et al. (2023) noted two problems with the orig-
inal ARC corpus. First, they claimed, many of the tasks are
quite difficult, even for humans, and this difficulty might be
a barrier to progress in developing AI systems that reason in
this domain. Second, and most important, ARC does not of-

fer systematic evaluation of understanding of particular core
concepts; even if a system can solve an individual ARC task,
that does not necessarily mean that the system has a ro-
bust understanding of the underlying concepts. To address
these issues, Moskvichev et al. created a new benchmark in
the ARC domain, ConceptARC, whose tasks are intention-
ally designed to be easy for humans and, moreover, whose
480 tasks are organized as systematic variations of particular
core spatial and semantic concepts, such as Top and Bottom,
Inside and Outside, Center, and Same and Different. Each
concept group contains 30 tasks, each of which instantiates
the concept in a different way, and with differing degrees of
abstraction. Moskvichev et al.’s claim was that high perfor-
mance over these various instantiations of a given concept
indicates a robust understanding of, and ability to reason ab-
stractly about, the underlying concept.

The authors gave these tasks to human participants on the
Amazon Mechanical Turk and Prolific platforms. They also
tested the two winning programs from the Kaggle ARC chal-
lenge as well as GPT-4 on all 480 tasks. They found that hu-
man performance substantially exceeded that of machines
on all concept groups in the corpus; in particular, the overall
accuracy of humans was 91%, compared to the first-place
Kaggle program’s accuracy of 52%, and GPT-4’s accuracy
of 25% (using temperature 0.5). The authors concluded that
“[t]he generally high accuracies of humans on each concept
indicates successful generalization over the different vari-
ations in each given concept group. In contrast, the much
lower accuracies of programs we tested indicates a lack of
ability to generalize over the variations in a concept group,
and thus a failure to develop the abstractions that ARC is
meant to test.”

Moskvichev et al.’s evalation of GPT-4 had two important



limitations: (1) the prompt format that they used was overly
simple and might not have communicated enough about the
task; and (2) it might not be fair to compare the performance
of humans, who are presented with a visual version of each
task, with LLMs, which are given a text-only version of the
task.

Here we address both of these limitations, through two
sets of experiments. In the first set of experiments, we eval-
uate the text-only version of GPT-4 on text versions of Con-
ceptARC tasks using a much more expressive prompt that
includes both instructions and an example of a solved task,
making this a one-shot rather than zero-shot induction prob-
lem. In the second set of experiments, we evaluate GPT-4V,
the multimodal version of GPT-4, on the visual version of
the simplest ConceptARC tasks, giving it a similar prompt
as in the first set of experiments but using images rather than
text to represent tasks.

Experiments Evaluating Text-Only GPT-4 on
ConceptARC Tasks

To evaluate the text-only version of GPT-4, we adapted the
prompt used in a recent study by Wang et al. (2023). The ex-
act prompt is given in the Supplementary Information. This
prompt provides detailed instructions about the task as well
as an example of a solved task. If GPT-4 responds with an
incorrect answer, we repeat a request for it to supply a differ-
ent answer, for a maximum of three guesses, which is stan-
dard for ARC evaluations (Kaggle.com 2020). If a correct
answer is generated within these three guesses, the task is
considered to be solved.

We used this prompting method with OpenAI’s API to
test GPT-41 on all 480 ConceptARC tasks (30 per each of
the 16 concept groups)2, first with GPT-4’s temperature set
to zero and then with temperature set to 0.5, to test the effects
of temperature on performance. The accuracies (fraction of
solved tasks within each concept group as well as fraction
of solved tasks overall) are given in Table 1, along with the
human accuracies from the Moskvichev et al. (2023) study
(details of the human studies are given in that paper). Note
that, like GPT-4, humans are given three guesses for each
task.

For GPT-4, our more detailed, one-shot prompting
method resulted in a higher accuracy overall, 0.33 for
both temperature settings, than the simple zero-shot method
used by Moskvichev et al. (2023), which reported 0.19 for
temperature zero and 0.25 for temperature 0.5. However,
GPT-4’s performance remains well below the high perfor-
mance of humans, supporting the conclusion of Moskvichev,
Odouard, and Mitchell (2023) that, even with more infor-
mative prompting, the system lacks basic abstract reasoning
abilities tested by this corpus.

1We used the version of GPT-4 (gpt-4-0613) available in
November, 2023.

2The tasks can be downloaded from https://github.com/
victorvikram/ConceptARC

Experiments Evaluating GPT-4V on Minimal
ConceptARC Tasks

We did a second set of experiments to test the hypothe-
sis that GPT-4V, the multimodal version of GPT-4, would
obtain higher performance than the text-only version. Due
to the costs of running such an experiment on the 480
tasks in ConceptARC, we decided to establish a baseline for
comparing text-only GPT-4 and GPT-4V using the minimal
tasks created by Moskvichev et al. (2023). For each of their
16 concept groups, Moskvichev et al. created three mini-
mal tasks—extremely simple instantiations of the concept3.
They used these tasks as “attention checks” in their human
studies, to make sure that human participants were paying
attention and understood the basic idea of the tasks. Partici-
pants who failed at solving two or more minimal tasks (out
of three given) were excluded from the study. Moskvichev
et al. reported that 12 out of 482 participants were excluded
on this basis.

Though it was not reported in their paper, we obtained
the data from Moskvichev et al. on human performance on
minimal tasks from all 482 participants in their study. We
included the previously excluded 12 participants because,
unlike Moskvichev et al., we are evaluating human perfor-
mance on the minimal problems, so even if two or more of
these problems were “failed” by participants, we need to in-
clude that in our evaluation here. We also ran the text-only
version of GPT-4 on these tasks, using the same prompting
method described in the previous section. As shown in Ta-
ble 2, the fraction of humans correctly solving the 48 mini-
mal tasks was 0.95, and GPT-4’s accuracies were 0.69 (tem-
perature 0) and 0.65 (temperature 0.5). The difference be-
tween GPT-4’s performance on these minimal problems and
on the non-minimal tasks (Table 1) underline the simplicity
of the minimal tasks compared to those in the regular cor-
pus.4

We explored various approaches to presenting the mini-
mal tasks to GPT-4V5: displaying all input-output pairs of a
single task within one image, using a separate image for each
input-output pair, and providing each input and each output
grid as an individual image. Only the last approach yielded
correct solutions during our preliminary investigations, and
is thus the approach we adopted. Furthermore, when pre-
sented with an image, GPT-4V was unable to consistently
translate the visual grid to a text representation, including
both color names and numeric encodings. Therefore, to mit-
igate errors involved in mapping the intended output grid to
a text representation, we requested only a natural language
description of the grid, along with its dimensions.

We aimed to quantify the influence of visual representa-

3The minimal tasks can be downloaded from https://github.
com/victorvikram/ConceptARC

4For comparison, the accuracy of the first-place Kaggle-ARC
program was 0.81 on the minimal tasks versus 0.52 on the regular
corpus.

5We used the version of GPT-4V available in November, 2023
(gpt4-vision-preview). This version does not allow a manual tem-
perature setting and the documentation does not specify the default
temperature.



Concept Humans GPT-4 Temp = 0 GPT-4 Temp = 0.5
Above and Below 0.90 0.50 0.47

Center 0.94 0.37 0.37
Clean Up 0.97 0.43 0.46

Complete Shape 0.85 0.47 0.40
Copy 0.94 0.37 0.33
Count 0.88 0.27 0.23

Extend To Boundary 0.93 0.20 0.20
Extract Objects 0.86 0.13 0.13

Filled and Not Filled 0.96 0.27 0.30
Horizontal and Vertical 0.91 0.33 0.37

Inside and Outside 0.91 0.30 0.33
Move To Boundary 0.91 0.23 0.17

Order 0.83 0.27 0.30
Same and Different 0.88 0.23 0.30
Top and Bottom 2D 0.95 0.60 0.63
Top and Bottom 3D 0.93 0.30 0.27

All concepts 0.91 0.33 0.33

Table 1: Accuracies of humans and GPT-4 (with temperature 0 and 0.5) on each concept group (30 tasks) and over all concepts
(480 tasks) in ConceptARC. The results on humans are from Moskvichev, Odouard, and Mitchell (2023).

Humans GPT-4 Temp = 0 GPT-4 Temp = 0.5 GPT-4V Zero-Shot GPT-4V One-Shot
0.95 0.69 0.65 0.25 0.23

Table 2: Accuracies of humans, GPT-4 (with Temperature 0 and 0.5), and GPT-4V (zero- and one-shot prompting) on minimal
tasks over all concepts (48 tasks) in ConceptARC.

tions on performance by maintaining consistency with our
text-only evaluation. The same prompting method and ex-
ample of a solved task was used, modified only by substi-
tuting text representations of grids with visual counterparts.
This prompt, along with the variations from the text-only
approach, are given in the Supplementary Information.

GPT-4V often included descriptions of an abstract trans-
formation rule as part of its solution. Our assessment fo-
cused exclusively on the accuracy of the model’s test output
grid descriptions. In certain cases, the model accurately de-
scribed the output grid despite identifying an incorrect ab-
stract rule, which we classified as a success. On the other
hand, we classified as failures instances in which the model
correctly identified the abstract rule but failed to accurately
describe the output grid. Note that these inconsistencies sup-
port the arguments of West et al. (2023) that LLMs’ genera-
tive abilities can be disconnected from the ability to “under-
stand” the language they generate.

The results of our experiments with GPT-4V on minimal
tasks are given in the last two columns of Table 2. The visual
one-shot prompt resulted in an accuracy of 0.23 over the 48
minimal tasks, compared with 0.69 for the (temperature 0)
text-only counterpart. Notably, several of GPT-4V’s unsuc-
cessful output grid descriptions incorporated details from the
solved example, suggesting that including an sample solved
task in the prompt may have had a negative impact on perfor-
mance. Consequently, we extended our evaluation of GPT-
4V to include a zero-shot setting.

The zero-shot prompt is also given in the Supplemen-

tary Information. Unlike the one-shot setting, the evalua-
tion was done using OpenAI’s web application. This re-
quired a slightly different prompting method, where the
model was able to respond with observations after receiv-
ing each demonstration input-output pair, and before receiv-
ing the test input grid to provide its solution. The zero-shot
prompting method resulted in an accuracy of 0.25 on mini-
mal tasks, solving one additional task compared to the one-
shot setting, and with an overlap of seven tasks successfully
solved in both settings.

While we tested GPT-4V only on minimal tasks, We ex-
pect that GPT-4V’s overall performance would be similarly
considerably worse than the text-only version on the much-
harder non-minimal-task corpus.

Conclusion
In this paper we extended work done by Moskvichev et
al. (2023) on evaluating the abstract reasoning capabilities
of GPT-4, using the ConceptARC corpus, which systemat-
ically tests abstraction abilities using basic core concepts.
Moskvichev et al. found that GPT-4 had substantially worse
performance than both humans and the first-place program
in the Kaggle-ARC challenge on these tasks. However, the
prompting method they used was overly simple, and they
experimented only with text versions of the tasks. Here, we
performed evaluations using a more informative, one-shot
prompt for text versions of tasks, and experimented with
similar zero- and one-shot prompts for the multimodal case
in which task-grids were given as images. We found that our



more informative one-shot prompt improved GPT-4’s per-
formance in the text case, but its performance remained well
below that of humans and the special-purpose Kaggle-ARC
program. We also found that giving minimal tasks as images
to the multimodal GPT-4 resulted in substantially worse per-
formance than in the text-only case. Our results support the
hypothesis that GPT-4, perhaps the most capable “general”
LLM currently available, is still not able to robustly form ab-
stractions and reason about basic core concepts in contexts
not previously seen in its training data. It is be possible that
other methods of prompting or task representation would in-
crease the performance of GPT-4 and GPT-4V; this is a topic
for future research.
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Supplementary Information
Prompts for Text-only GPT-4
In their evaluation of GPT-4, Moskvichev et al. (2023) trans-
lated ConceptARC tasks into text representations used in
prompts like the one shown in Figure 2. Here the 10 pos-
sible colors are encoded as integers, and each row of a grid
is encoded as a list of integers inside square brackets.

Figure 3 shows an example of the prompt we used
(adapted from Wang et al. (2023) in testing text-only GPT-4.
We use the format required by the OpenAI API. The sym-
bol “#” indicates comments not given in the actual prompt.
We used the same encoding for colors and grid rows as
Moskvichev et al.



Figure 2: (a) A task from the ConceptARC corpus. (b) The corresponding prompt used by Moskvichev et al. (2023) to give to
GPT-4. (From Moskvichev et al. (2023); best viewed in color.)

Prompts for GPT-4V
Figure 4 shows the adapted prompt used to test GPT-4V in
the one shot setting, for the same example used in Figure 3.
Differences from the text-only prompt are highlighted in red
text.

Figure 5 shows an example of the prompts used to test
GPT-4V in the zero-shot setting. This evaluation was con-
ducted using OpenAI’s web application and thus all mes-
sages are sent as the ‘user’ role, , interspersed with the model
providing a response after each message.



Figure 3: Example of the prompt used to test text-only GPT-4 on ConceptARC tasks. The symbol “#” indicates comments not
given in the actual prompt.



Figure 4: Example of the prompt used to test GPT-4V in the one-shot setting. The symbol “#” indicates comments not given in
the actual prompt. Red text signifies differences from the prompt used to test text-only GPT-4, as provided in Figure 3.



Figure 5: Example of the prompts used to test GPT-4V in the zero-shot setting. The symbol “#” indicates comments not given
in the actual prompt.


