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Abstract

Multilingual large language models (LLMs)
have greatly increased the ceiling of perfor-
mance on non-English tasks. However, the
mechanisms behind multilingualism in these
LLMs are poorly understood. Of particular
interest is the degree to which internal repre-
sentations are shared between languages. Re-
cent work on neuron analysis of LLMs has fo-
cused on the monolingual case, and the limited
work on the multilingual case has not consid-
ered the interaction between tasks and linguis-
tic representations. In our work, we investi-
gate how neuron activation is shared across
languages by categorizing neurons into four
distinct groups according to their responses
across different languages for a particular in-
put: all-shared, partial-shared, specific, and
non-activated. This categorization is combined
with a study of neuron attribution, i.e. the im-
portance of a neuron w.r.t an output. Our anal-
ysis reveals the following insights: (i) the lin-
guistic sharing patterns are strongly affected by
the type of task, but neuron behavior changes
across different inputs even for the same task;
(i) all-shared neurons play a key role in gen-
erating correct responses; (iii) boosting mul-
tilingual alignment by increasing all-shared
neurons can enhance accuracy on multilingual
tasks. We will release the code to foster re-
search in this area.

1 Introduction

The black-box nature of large language models
(LLMs) has given rise to an area of research which
aims to interpret the internal mechanism of the
Transformer architecture (Elhage et al., 2021a; Yu
et al., 2023). In order to investigate specific aspects
of model behavior, previous studies choose to focus
on specific model components to encourage inter-
pretability. Differently from e.g. attention heads in
the Transformer layers which are responsible for
moving information from one token to another to-
ken (Elhage et al., 2021b), feed-forward networks
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Figure 1: A comparison of neuron analysis with differ-
ent role designs in multilingual settings with the same
semantic input, in which we define four types of neu-
rons in one layer of LLM. English input “The capital
of France is” corresponds to its Spanish and French
counterparts “La capital de Francia es” (Spanish), “La
capitale de la France est” (French).

(FENs) are more likely to represent semantic fea-
tures (Black et al., 2022). The FFN consists of
two linear layers and an activation function is ap-
plied between them. A neuron inside the FFNs
is defined as a linear transformation of an input
representation followed by a non-linear activation
(Tang et al., 2024). Geva et al. (2020, 2022); Fer-
rando et al. (2023) have earlier demonstrated the
importance of neurons in the FFNs for encoding
factual and linguistic knowledge. Furthermore, var-
ious neuron analytic methods have been developed
to prune inactive neurons, i.e. those which have
activation value less than or equal to zero (Zhang
et al., 2022; Li et al., 2023; Voita et al., 2023).

While the above-mentioned methods analyze
neuron behaviors based on the activation state (ac-
tive or inactive means activation value > 0 vs. < 0)
in a monolingual setting, there is still a lack of un-
derstanding regarding how neurons behave across
various tasks in a multilingual setting. As shown
in Figure 1, different sets of neurons are activated
when an LLM is presented with corresponding in-



puts in different languages. An inactive neuron
in response to an English input is often activated
and influential in response to an input in another
language. It remains unclear how LLMs actually
manage to learn multilingual representations. One
typical example is that we may need to explore
sets of neurons responsible for generating the out-
put “Paris”' when presented with the English input
“The capital of France is” and its Spanish counter-
part “La capital de Francia es”.

In a similar line of reasoning, Bhattacharya and
Bojar (2023) explored the behavior of language-
specific and language-agnostic (shared between
two languages) neurons and their distribution over
layers of a model. They concluded that the lay-
ers close to the model’s input and output exhibit
more language-specific behavior. However, their
results are restricted to the English-Czech. Due to
the potential variation in neuron behavior of differ-
ent language types and the reasoning and memory
abilities of different multilingual tasks, we argue
that there is a need for further exploration.

Our research aims to establish a more fine-
grained classification of neurons, enabling a more
detailed analysis of LLM behavior in reason-
ing style tasks (XNLI), fact-retrieval based tasks
(fact probing), and explicitly multilingual question-
answer tasks (knowledge editing). As shown in Fig-
ure 1, we reformulate the activation state of neurons
for a particular input and its corresponding trans-
lations in 10 languages to four distinctive types to
represent multilingual behaviors. All-shared neu-
rons are neurons that remain active for all inputs
regardless of language. Partial-shared neurons are
activated only for inputs in certain languages. Spe-
cific neurons are activated exclusively for inputs
in one language. Non-activated neurons are not
activated at all for any input.

We perform neuron analysis addressing two re-
search questions: (a) what are the behaviors of the
four types of neurons in various multilingual tasks?
(b) What attribution (Dhamdhere et al., 2019) does
each type have in multilingual generation tasks,
meaning which neurons are responsible for a pre-
diction?

We examine the percentage of each type of neu-
ron and neuron attributions in the multilingual tasks.
We discover that the pattern of four types of neu-
rons is determined by the tasks they encountered,
and that the behavior of a neuron changes with

““Paris” is identical in both English, Spanish and French

different inputs for the same task, indicating the

potential implications of pruning neurons.
Furthermore, we demonstrate the importance of

all-shared neurons in generating the correct output

from the neuron attribution study. Converting other

types of neurons to all-shared neurons improves

the accuracy of an LLM in multilingual tasks.
Our main contributions are listed below:

* Fine-grained neuron analysis: We define
four categories of neurons and use these to
analyze neuron behaviors in various types of
tasks across 10 languages. We reveal that rea-
soning style tasks (e.g. XNLI) involve more
all-shared neurons than fact-retrieval based
tasks (e.g. fact probing) which utilize more
specific neurons.

* Neuron attribution: By studying the contri-
bution of neurons to the output of multilingual
tasks, we are the first to reveal the importance
of all-shared neurons within FFNs in multi-
lingual tasks. For instance, for the XNLI task,
the all-shared neurons comprise less than 30%
of the neurons, but they contribute 91.6% to
the generation of the correct responses in the
German test set.

* Multilingual alignment: We demonstrate
that increasing the percentage of all-shared
neurons (by converting other types of neurons)
can significantly enhance the accuracy of an
LLM in multilingual tasks.

2 Related Work

Prior interpretability studies focused on understand-
ing attention heads, while others have analyzed
neuron behaviors. Several studies on LLMs have
advanced our understanding of how neurons ac-
quire task-specific knowledge. For instance, Fer-
rando et al. (2023); Dai et al. (2022); Geva et al.
(2020, 2022) investigated how FFN blocks func-
tion as key-value memories and proved that factual
knowledge is stored in the neurons. Research work
on the sparsity of neurons in FFN blocks disclosed
many neurons are inactive in various tasks (Zhang
et al., 2022; Li et al., 2023). Voita et al. (2023)
located these “dead” neurons in the lower part of
the model (close to inputs) in the English scenario.
Despite the insights obtained, these studies are fo-
cused exclusively on a monolingual setting.

For multilingual model analysis, Bhattacharya
and Bojar (2023); Tang et al. (2024); Tan et al.



(2024) classified neurons in an FFN block to
language-specific and language-agnostic based on
the threshold, which presumed that a neuron’s be-
havior remained consistent across examples. How-
ever, they do not consider the potential adaptation
of neurons under various language types and se-
mantics brought forth by inputs from various mul-
tilingual tasks. We investigate neurons’ behaviors
across multiple languages and tasks to this end.

3 Definitions
3.1 Neurons in FFN Blocks

Every feed-forward block at layer [ involves two
linear transformations separated by a point-wise
activation function. Biases are omitted for the sake
of clarity:

FFN'(z') = Act(Wia" YWy, 1)

where W[lo W‘l/ € R% x4 are linear parameter
matrices, and Act(-) is a non-linear activation func-
tion, where rows in WIZ( and columns in W‘l/ are
viewed as d-dimensional keys k' and values v', re-
spectively. We define the behavior of a neuron to be
the output of function immediately after the elemen-
twise nonlinearity. d,, is the count of neurons. And
the output of neurons A! := Act(Wi.a!) € Rém
determines the weighting of the corresponding val-
ues in W‘l/

For ¢-th neuron and corresponding key kf value
vﬁ and activation value Aé, we can express this
relationship using the following formulation:

dm dm
FFN'(z") = Z Act(z' - kbl = Z At ?2)
i=1 i=1

When such a neuron is activated AL > 0, so
it updates the residual stream by pulling out the

corresponding value Uﬁ.

3.2 Contribution Score and Effective Score of
Neurons

Inspired by Geva et al. (2022), in order to judge
the importance of neurons in generating answers,
we analyze their contributions to the output. The
contribution score of a neuron to an FFN output is:

Chim 2l 3
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which is the proportion of its weight to the sum
of weights of all neurons in the FFN block. | Al] is
the absolute value of activation value and ||v}]| is
the L2-norm of value v}.

Whenever a neuron is activated, the associated
column of the values (scaled by the neuron’s value)

is incorporated into the residual stream. The prod-
uct of the value of the activated neuron Al and the
corresponding vf is then transformed linearly and
mapped to the vocabulary.

Following Geva et al. (2022); Voita et al. (2023),
projecting the neuron to the vocabulary using em-
bedding matrix E, 'Aévé can be viewed as obtaining
the effective score given by the ¢-th neuron to the
output reference token r for a given input. Specifi-
cally, a larger E, - Aﬁvﬁ has a higher probability to
produce a gold answer (). A negative F,. - Aévzl-
reduces the probability in generating 7. In this way,
we can quantify the effect of a neuron on the output
distribution. We give detailed descriptions about
the neuron projection to the vocabulary space in
Appendix A.1.

3.3 Definition of Four Types of Neurons

For the set of all neurons N' in the [—th layer, the
activation value of one neuron n in one language
lang is A} - Note that some activation functions
(e.g. GeLU) can result in negative activation values.
The definition of all-shared neurons is:

langs
Ney:= [) {n€N": Algny >0} )

lang

where langs is the sets of testing languages and
N, means these neurons are activated in all lan-
guages. For non-activated neurons which have
activation value less than or equal to zero in all
languages, the definition is:

langs

m {TL € Nl : Alang < O} (5)

lang

Specific neurons are neurons only activated in
one specific language. They can be denoted using:

l
Nnon =

langs
l —
specific "
langpy
langs (6)

({n € N': Alangy, >0} [ {n€N": Aang, <0}
piy

The remaining neurons are partial-shared neu-
rons as they are activated by inputs from multiple
languages, but not all languages at the same time:

1 l l 1 l
Npartial =N - Na,ll - Nnon - Nspecific (7)

Unlike Bhattacharya and Bojar (2023); Tang
et al. (2024), which exclusively on sub-word ac-
tivation statistics and thus capture incomplete se-
mantics, we examine the activation state of the last
token. For each input text with tokens z1, x2, ...zg,
we use the activation state xg to investigate the
behavior of neurons, as that is when the LLM per-
forms the prediction task.



4 Experimental Setting
4.1 Multilingual Tasks

We perform analysis on neurons in FFN blocks
of various LLMs, harnessing their multilingual ca-
pabilities in three diverse tasks which consist of
multilingual parallel sentences. They are:

Natural Language Inference. XNLI (Con-
neau et al., 2018) is a multilingual natural lan-
guages inference dataset. Each test sample con-
sists of a premise and a hypothesis, requiring an
LLM to determine whether a hypothesis is entailed,
contradicted, or neutral conditioned on the premise.

Fact Probing. LLMs are used to predict fac-
tual answers in response to corresponding probing
prompts. A multilingual factual knowledge dataset
(mParaRel (Fierro and Sggaard, 2022)) capturing
38 binary relations (e.g., X born-in Y) is used in the
analysis.

Cross-lingual Knowledge Editing (KE).
MzsRE (Wang et al., 2023) is a multilingual
question-answering dataset. It provides counterfac-
tual edited knowledge in the context and requires
an LLM to produce the corresponding answer ac-
cording to the context. We evaluate LLLMs in two
cross-lingual KE scenarios: 1) EN (Edit) -+ ALL
(test): edit in English and test in other languages
and 2) ALL (Edit) — EN (test): edit in other lan-
guages and test in English.

These tasks cover 10 diverse languages, includ-
ing English (en), German (de), Spanish (es), French
(fr), Portuguese (pt), Russian (ru), Thai (th), Turk-
ish (tr), Vietnamese (vi), and Chinese (zh). Prompts
are detailed in Appendix A.2.

4.2 Base LLMs

We mainly analyze the behavior of neurons in
a foundation multilingual LLM BLOOM (Scao
et al., 2022) and an instruction-finetuned model
BLOOMZ (Muennighoff et al., 2023). We also in-
clude the analysis of other decoder-only models:
XGLM (Lin et al., 2022), LLAMA2-7b-chat (Tou-
vron et al., 2023), and an encoder-decoder
model mT@ (Muennighoff et al., 2023) in the Ap-
pendix A.3.2.

5 Behaviors of Four Types of Neurons

For each task we use parallel test texts from ten
languages as inputs, and record the activation state
of each neuron. Subsequently, we calculate the
percentage of the four types of neurons compared
to the total neurons.

We use BLOOMZ as the backbone LLM to in-
vestigate the behaviors of four types of neurons,
and the results of three tasks are shown in Fig-
ures 2-4 respectively. The supplemental analysis
of cross-lingual KE (ALL (Edit) — EN (test)) task
is shown in Figure 11 (Appendix A.3.1).

5.1 Neuron Behaviors Across Tasks
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Figure 2: Neuron behavior pattern in the XNLI task.
The left sub-figure shows the percentage of the four
types of neurons across transformer layers (aka “by
neuron type”). The right sub-figure shows aggregated
behaviors of the activated neurons for each language
across transformer layers (aka “by language”).

5.1.1 Behavior Pattern of Four Types of
Neurons

It can be observed from Figures 2-3 (left sub-
figures) that there are more non-activated neurons
on the whole than other types. However, the neu-
ron behavior is strongly task-related as the pat-
tern observed in the fact probing task differs sig-
nificantly from the other two tasks. In the fact
probing task, there are more partial-shared neu-
rons (yellow line in Figure 4), whereas the other
tasks involve far more all-shared neurons (green
line in Figures 2-3).
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Figure 3: Neuron behavior pattern in the cross-lingual
KE (EN (Edit) — ALL (test)) task.
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Figure 4: Neuron behavior pattern in the fact probing
task.

For the neuron behaviors across layers, lower
layers exhibit a higher prevalence of all-shared
neurons compared to specific neurons and partial-
shared neurons in XNLI and KE. The number of
all-shared neurons peaks at a certain layer followed
by a continuous decreasing pattern in these two
tasks. Fewer all-shared neurons in the upper lay-
ers implies language-specific characteristics are
retained there. Similarly, partial-shared neurons
accumulate in the lower layer and it tends to out-
number all other neurons moving towards upper
layers in all tasks. It could be observed that nearly
99% of the neurons are non-activated in the first
layer for XNLI and KE tasks, which may be as-
sociated with the prompts, where the last token
of input is punctuation (e.g., “?”). However, this
phenomenon appears to be specific to BLOOMZ
compared to other LLMs (Appendix A.3.2). We
also investigate the impact of the number of lan-
guages on the percentage of four types of neurons
in Appendix A.3.3. The comparison in Figure 16
indicates that the number of languages slightly af-
fects the all-shared neurons.

5.1.2 Consistent Neuron Behavior Pattern

The percentage of activated neurons for each lan-
guage exhibits a consistent pattern, as shown in
Figures 2-4 (right sub-figures). At lower layers
of an LLM, the number of activated neurons in-
creases significantly, reaches the peak at around
the 6-th layer, and then declines. It is not until at
an upper layer (i.e., 28-th layer) that the number
of active neurons commences to pick up its early
increasing trend. Such a resurgence continues until
it reaches the final layer of the LLM. It is a surprise
to discover that the number of activated neurons is
not influenced by the language of the inputs. This
indicates neurons in an LLLM exhibit similar pat-

terns across languages.
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Figure 5: Behavior-repeating neurons in the fact prob-
ing task across the entire testset. “overlap” indicates
the percentage of neurons that keep the same behaviors
across all examples in the testset. “average” indicates
the percentage of neurons for an input, which is aver-
aged over the entire testset.

5.1.3 Neurons Behaviors Across Examples

As shown in Figures 2-4, the analysis is conducted
by exploring the activation state under the same
input and the corresponding translations in 10 lan-
guages. In this experiment, we now investigate
how neurons behave across all examples for the
fact probing task. Here, the objective is to under-
stand if neurons that are specific to a designated
behavior maintain this behavior across test sam-
ples representing different semantics. The results
are shown in Figure 5 and in Appendix A.3.4 (for
other tasks). To our surprise, almost no neuron
(identified by its index) repeats its behavior (e.g.,
the “specific”) across all examples. Different from
the previous studies, which assumed that a neuron
behaved consistently across examples, we reveal
that the behavior of a neuron is determined by
the semantics of the inputs encountered, even
within the same task.

5.14

In the multilingual scenario, non-activated neurons
comprise a significant portion, with more than 50%
of neurons having a zero or negative activation
value across layers for multilingual inputs (blue
line in the left sub-figures) in Figures 2-4.

Do these ‘““dead” neurons stay inactive in all
test samples? In Figure 5 we see that less than 10%
of non-activated neurons remain inactive. There

“Dead” Neuron Mystery



is only a small proportion of persistently inactive
neurons, which reflects the distributed nature of
knowledge representation for LLMs. The majority
of neurons are activated at some point depending on
the input provided. That is why we should execute
caution when pruning neurons, as we may damage
the overall performance of an LLM.
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Figure 6: Neurons remaining “dead” in response to all
tokens in an input sentence for the fact probing task.

Do non-activated neurons remain “dead” in
response to each token in an input sentence? Pre-
viously, we performed analysis for the last token
of an input. We analyze the behavior-repeating of
non-activated neurons across tokens here for an
input. Specifically, for each input sequence with
tokens x1, x9, ..., g, we record non-activated neu-
rons of each token, w.r.t the intersection of index.
A neuron is counted when it stays inactive for every
token of one test input sequence. As shown in Fig-
ure 6, less than 0.8% non-activated neurons remain
“dead” for each token of input, further emphasizing
the behavior-repeating of a neuron.
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Figure 7: Neuron behavior pattern in the XNLI task
with the BLOOM backbone.

5.2 Influence of Instruction Finetuning

Does instruction finetuning (IFT) have an impact
on neuron behaviors? We compare the percentage
of the four designated types of neurons of BLOOM
and its IFT counterpart BLOOMZ.

The results from the XNLI task are shown in
Figure 7 and Appendix A.3.5 (from other tasks).

Compared to the results from BLOOMZ in Fig-
ure 2, all-shared neurons are under-represented in
BLOOM (20% of BLOOM vs. 30% of BLOOMZ).
Meanwhile, more partial-shared neurons are ob-
served in BLOOM. IFT enhances the percentage
of all-shared neurons and reduces the number of
partial-shared neurons. We regard the increase of
the number of all-shared neurons as an effect of
multilingual representation alignment. It appears
that IFT contributes to multilingual alignment
based on the effects observed from this experi-
ment. Whether this effect can be generalized to
other LLMs and the rationale behind such effect
warrants a future study.

Furthermore, we conduct ablation studies to in-
vestigate the impact of two key factors on the neu-
ron behaviors: the size of the backbone model
(Appendix A.3.6) and the number of multilin-
gual demonstrations in the few-shot setting (Ap-
pendix A.3.7).

6 Neuron Attributions

In the preceding experiments, we examined the
proportions of the four types of neurons across
layers, tasks, and languages. In this section, we
examine the relative contributions of each neuron
type to task performance.

6.1 Neuron Contribution Score

As discussed in Section 3.2, the contribution score
C! of a neuron refers to its relative weight com-
pared to the total sum of weights of all neurons,
indicating the influence of each neuron on outputs.
We examine the proportion of the four types of neu-
rons among the top 5% contribution score under
inputs in each language. The proportions of neu-
rons in the cross-lingual KE task are depicted in
Figure 8 (and the overall results of 10 languages
are shown in Figure 27 in Appendix A.4.1).

It can be observed that all-shared neurons are
the top contributing neurons to the outputs at
every layer, regardless of their language inputs.
This highlights their importance in the neural net-
work. The group of partial-shared neurons is the
second most influential group, demonstrating their
impacts across the latter half of the model. It is
not surprising that the specific neurons group has
limited influence on cross-lingual KE outputs as
they feature in a particular language type of inputs.

Furthermore, we evaluate the contribution pro-
portion in the XNLI task, as depicted in Figure 26
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Figure 8: Contribution proportion of four types of neu-
rons based on the cross-lingual KE (EN (Edit) — ALL
(test)) task.

(Appendix A.4.1). Here, all-shared neurons con-
stitute the highest proportion; however, partial-
shared neurons show less influence compared to
that observed in the cross-lingual KE task.
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Figure 9: Average and sum contribution score of the
four types of neurons.

In order to more comprehensively analyze the
overall contribution of four types of neurons, we ex-
tend the analysis from the top 5% to accommodate
all neurons in this study. We analyze the average
and the sum of contribution scores of all neurons in
four categories. As shown in Figure 9, the average
contribution of all-shared neurons significantly ex-
ceeds that of the other three types. In terms of the
total contribution score, all-shared neurons in the
upper layers achieve a value equal to that of non-
activated neurons in Figure 9(a), despite having a
significantly lower count than non-activated neu-
rons (<10% vs. 80% in Figure 2). In the fact prob-
ing task, partial-shared neurons score the highest,

while all-shared neurons score the lowest, primar-
ily due to their respective counts (>20% vs. <1% in
Figure 4). In summary, all-shared neurons play a
significant role in contributing to multiple tasks.
Future studies on neuron activation should consider
their contribution as well as their frequency.

language | neuron type max min avg
all-shared 1.85 -0.94  0.07

en partial-shared | 022  -0.16  0.00
specific 0.02 -0.02 0.00
non-activated 0.04 -0.03 0.00

all-shared 1.03  -0.60 0.02

de partial-shared | 0.13 -0.13  0.00
specific 0.07  -0.03  0.00
non-activated 0.02  -0.01 0.00

Table 1: Maximum, minimum, average effective score
of four types of neurons on the cross-lingual KE task.

6.2 Neuron Effective Score

Since each neuron encodes information, we can ex-
plore their contributions to the correct answer. As
discussed in Section 3.2, the projection to vocabu-
lary E, - Alv! can be viewed as the effective score
given by the i-th neuron to the output reference
token 7 for a given input.

In the cross-lingual KE (EN (Edit) — ALL (test))
task, we calculate the effective score of each type
of neuron with the BLOOMZ backbone. The max-
imum, minimum, and average scores are shown
in Table 1 (the overall results of ten languages
are shown in Table 4), and the maximum effec-
tive scores across layers are shown in Figure 10.
All-shared neurons achieve the highest maximum
score and the lowest minimum score, indicating
they are pushed (or eliminated) strongly by the ac-
tivation function. In contrast to all-shared neurons
and partial-shared neurons, where the maximum
scores are substantially higher than the minimum
scores (1.85 vs. -0.94 and 0.22 vs. -0.16 in En-
glish), for specific neurons and non-activated neu-
rons, the score has a smaller span (& 0.07), sug-
gesting all-shared neurons have greater influence
on the output distribution.

As shown in Figure 10, the maximum effective
score of all-shared neurons significantly exceeds
that of the other three types. Moreover, all-shared
neurons aggregate at the first layer and upper lay-
ers. This observation confirms a recent finding
that early layers detect shallow patterns and up-
per layers are characterized by semantic patterns
(Ferrando et al., 2023), supporting the notion that
all-shared neurons play a Kkey role in generating
prediction. Details of effective score analysis in
other tasks are depicted in Appendix A.4.2.
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Figure 10: Maximum effective score of four types of
neurons across layers based on the cross-lingual KE
task.

accuracy en de e fr ru th o vi zh

baseline 53.8 41.8 50.3 49.0 47.6 40.9 34.9 50.5 51.1
w/o. all-shared 16.7 3.50 10.1 10.0 6.6 9.0 14 12.1 145
w/o. specific 53.7 41.7 50.3 48.9 47.4 40.6 353 50.4 49.3
w/o. partial-shared | 52.9 40.4 49.7 47.6 49.2 40.3 36.1 50.0 50.0

Table 2: The accuracy when deactivating all-shared
neurons, specific neurons, and partial-shared neurons,
respectively. “w/0.” stands for “without”.

6.3 Effects on Accuracy

We have investigated neuron attribution using the
contribution score and effective score, which are
based on the internal states of an LLM. Direct im-
pacts of neurons on the output performance (i.e.,
accuracy) provide insights from a pragmatic per-
spective. We explore the change of accuracy by
intentionally deactivating three distinct types of
neurons. This is performed by precisely identify-
ing the type of neurons for an input and setting their
activation values to zero. Take the XNLI task as an
example, we record the results of an LLM with de-
activated neurons in Table 2. The most significant
decrease in accuracy is observed when the all-
shared neurons are deactivated (ec.g. 91.6% de-
crease in the German testset). Deactivating specific
and partial-shared neurons also negatively impacts
the accuracy, but at a smaller magnitude when com-
pared to the effect by all-shared neurons. We also
prove the importance of all-shared neurons with
the LLAMA backbone in Table 5 (Appendix A.5.1).
In order to prove the key role of all-shared neurons
across tasks, we conduct the ablation experiments

on the cross-lingual KE task in Appendix A.5.2.

accuracy en de es fr ru th tr vi zh

baseline 53.8 41.8 50.3 49.0 47.6 40.9 34.9 50.5 51.1
co. specific 53.0 42.7 50.8 50.1 46.9 40.1 34.4 51.0 51.3
co. partial-shared | 53.2 41.8 51.0 49.3 49.4 415 36.8 50.7 51.2

co. specific and 52.6 42.1 51.6 49.4 482 41.7 364 50.7 51.7
partial-shared

Table 3: The accuracy when converting specific neurons,
and partial-shared neurons to all-shared neurons type.
“co.” (covert) means setting the activation value of in-
active portions of neuron types to above the activation
threshold.

We are intrigued by the possibility of enhanc-
ing an LLM’s performance by simply converting
specific neurons and partial-shared neurons to all-
shared neurons. To achieve this, we set the activa-
tion value of the inactive portion of these two types
of neurons to just above the activation threshold.
The results shown in Table 3 indicate that increas-
ing the number of all-shared neurons improves
the accuracy of an LLM in most cases. The results
are consistent with the finding in Section 5.2 where
IFT model BLOOMZ with better performance has
more all-shared neurons than foundation model
BLOOM. The occasional drawbacks in some cases
(i.e., “en”) require an in-depth study of the inter-
nal mechanism of an LLM involving more neuron
components. We leave this to a future study.

7 Conclusion

In this paper, we propose a novel approach for
analyzing neurons in FFN blocks by categorizing
them into four distinct types: all-shared neurons,
partial-shared neurons, specific neurons and non-
activated neurons. We conduct a detailed analysis
of LLM behaviors in multilingual tasks. Experi-
mental results disclose novel insights relating to
neuron behaviors: 1) We demonstrate that a neu-
ron’s activation pattern is influenced by the tasks
it encounters, and even the behavior of a neuron
changes with different inputs for the same task. 2)
We show the importance of all-shared neurons in
output generation in multilingual tasks from the
neuron attribution study. 3) We prove that mul-
tilingual alignment can significantly enhance the
accuracy of an LLM in multilingual tasks by in-
creasing the percentage of all-shared neurons (i.e.,
via converting other types of neurons or via IFT).
Future work will focus on exploring internal ac-
tivation mechanisms underpinning the observed
importance of all-shared neurons and multilingual
alignment across a wider range of tasks and LLMs.



Limitations

In this paper, we develop a method to analyze neu-
ron behaviors in detail by categorizing them into
four distinct neuron types w.r.t the degree of their
responses to input languages. Although this en-
ables a fine granularity neuron analysis on LLM
backbones across various linguistic characteristics
and task complexity, the scope of the experiments
can be extended to accommodate larger LLMs with
large amounts of parameters (i.e., BLOOMZ-176b)
on a more comprehensive range of tasks. While this
study demonstrates that the number of languages
slightly impacts the percentage of all-shared neu-
rons, it is limited to 10 languages. Exploring the
effects of incorporating a larger number of lan-
guages into the proposed method warrants further
investigation. All-shared neurons in FFN blocks
are identified to be of great importance, but how
and why they work is still a mystery to disclose.
Other network components, for example, induction
heads, are not in the scope of this analysis.
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A Example Appendix

A.1 Detailed Interpretation of Projection in
Vocabulary Space

There is a residual connection in the each layer of
transformer, where the hidden state is:

ht =zl + FFN! (2! (8)

In order to analyze the behaviors of neurons, we

explore how the output distribution in the vocab-

ulary space changes when the representation x!

(before the FFN update) is added with the output of

neurons Aévﬁ. With the embedding matrix E, we

map each vector into the vocabulary space v. For

each token w, the probability is calculate with the
softmax function:

plwlz’ + Ajvj, E)
B exp(Ey - z+ B, - Aévé)
Z(E(xt + All))

X emp(Ew : xl) ’ exp(Ew ’ Aﬁvf)

®
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where E,, is the embedding of w, and Z(+) is the
constant softmax normalization factor. The E,, - «!
can be viewed as a static score of w that is indepen-
dent of the input to the model. Thus, the projection
By - Aﬁvﬁ induces a ranking over the vocabulary.
So we use the projection as effective score to detect
the responsibility of neurons.

A.2 Prompts

For the fact probing task, we use the P36 sub-
testset, which describe facts of entities in a relation
of “capital”. The prompt is framed as “ The capital
of {X} is ” where “{X}” is the subject (sovereign
state) and LLMs are required to predict the object
(capital city). We keep at least three paraphrase
prompts from mParaRel for each language to en-
sure a level of diversity.

For the Natural Language Inference task, we
frame the prompt as “ Take the following as truth:
{premise} Then the following statement: ‘{hypoth-
esis}’ is ‘true’, ‘false’, or ‘inconclusive’? ”

For the cross-lingual KE task, we format the
prompt as “ {context} Question: {question} An-
swer: 7. The same language is used for the ques-
tions and the answers, but the context is in a differ-
ent language.

A.3 Supplemental Results of Neuron Behavior
Analysis
A.3.1 Neuron behaviors in additional
cross-lingual KE task

We already show the neuron behaviors in in cross-
lingual KE (EN (edit) — ALL (test)) task in Sec-
tion 5.1.1. We supply the analysis in the cross-
lingual KE (ALL (edit) — EN (test)) task in Fig-
ure 11.
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Figure 11: Neuron behavior pattern in cross-lingual KE
(ALL (edit) — EN (test)) task.

11

A.3.2 Neurons Behaviors across LLMs
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Figure 12: Neuron behavior pattern in the XNLI task
with XGLM backbone.
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Figure 13: Neuron behavior pattern in the XNLI task
with LLAMAZ2-7b-chat backbone.

Do the above-mentioned neuron behaviors
change over different LLMs? We further study the
neuron behaviors in other decoder-only multilin-
gual LLMs (XGLM and LLAMA?2) and an encoder-
decoder multilingual LLM mTO0. For the XNLI
task, the results of XGLM and LLAMAZ2-7b-chat
backbones are captured in Figure 12 and Figure 13,
and the results of mT0-encoder and mTO-decoder
are shown in Figure 14 and Figure 15. Further-
more, the percentage of four types of neurons for
inputs in each language on each LLM demonstrates
the similar pattern, indicating that neurons remain
consistent behaviors across LLM backbones.

The number of active neurons increase in the
lower layers, followed by a decrease moving on-
wards and a rise in the upper layers, despite the
absolution values are different from those obtained
for BLOOMZ. Moreover, it could be observed that
encoder in mTO involves more all-shared neurons
compared to the proportion in decoder.
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Figure 14: Neuron behavior pattern in the XNLI task in
mTO0-encoder.
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Figure 15: Neuron behavior pattern in the XNLI task in
mTO-decoder.

A.3.3 Influence of the Quantity of Languages

We design an ablation study to investigate the in-
fluence of the number of languages (i.e., in a series
of 3,5,7,9). The results of the XNLI task in re-
sponse to the quantitative change in languages are
illustrated in Figure 16. The rise in the number of
languages is associated with an observable increase
in the percentage of partial-shared neurons and a
slight decrease in the percentage of all-shared neu-
rons. This suggests that the quantity of languages
has a minor impact on the all-shared neurons.

A.3.4 Neurons Behaviors Across Examples for
Other Tasks

We conduct additional experiments on the XNLI
task and cross-lingual KE (EN (edit) — ALL (test))
task to investigate the behavior repeating for neu-
rons. The results shown in Figures 17- 18 are con-
sistent with the results of the fact probing task,
where only a few neurons maintain the same behav-
iors across all examples in the testset.
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Figure 16: Effects of the number of languages based on
the XNLI task.

A.3.5 Activation percentage of BLOOM

The results analyzed base on the foundation model
BLOOM of fact probing task and cross-lingual KE
task are shown in Figures 19 - 21.

A.3.6 Influence of Model Scale

We investigate neuron behaviors across the
BLOOMZ series with 0.56b, 1b, 3b, 7.1b parame-
ters in a XNLI task. As shown in the results cap-
tured in Figure 22, no identifiable pattern differ-
ence can be observed to indicate a scale law ef-
fect. However, the scale of the model is limited,
potentially leading to unreliable results in this ex-
periment. More non-activated neurons in the upper
layers of BLOOMZ-7.1b may reflect on a higher
level of sparsity for a larger LLM (consistent with
Voita et al. (2023); Li et al. (2023)).

A.3.7 Neuron Behaviors in Few-shot
In-context Learning

According to Wang et al. (2023), in-context learn-
ing (ICL) can improve the performance of an LLM
under the guidance of few-shot examples in a cross-
lingual KE task. We further explore the impact
of few-shot examples on neuron behaviors. We
compare the results of an LLM with 0-shot, 2-shot,
4-shot, 6-shot examples in a cross-lingual KE (EN
(edit) — ALL (test)) task. Four types of neurons
in scope have almost identical behaviors across
various few-shot examples (Figure 23). Although
in-context examples lead to no observable neu-
ron behavioral changes, more examples lead to
better performances. Could ICL lead to a better
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Figure 17: Behavior-repeating neurons in XNLI task
across the entire testset.

neuron activation composition instead of invoking
more neurons? We leave this to a future study.

A.3.8 Activation Value across Layers

According to Eq. 1, neurons with larger activa-
tion values tend to contribute more to the output.
By visualizing neuron activation for a series of
thresholds [0,0.1,0.2,0.3,0.4,0.5], we can scru-
tinize the relative importance of various types of
activated neurons. The percentage of various types
of activated neurons for each activation threshold
in the XNLI task are shown in Figure 24. When ap-
plying a threshold (>0), there are fewer all-shared,
partial-shared, and specific neurons left in the lower
layers (layers 0-10) compared to using a lower
threshold (i.e., = 0). Under the same threshold
scenario, more activated neurons appear in the sec-
ond half of the model (layers 15-30). It is worth
noting these neurons have a higher activation value
than neurons activated from a lower threshold (i.e.,
= (). Considering both the percentage of activated
neurons and their corresponding activation value,
it becomes apparent that the neurons in the upper
layers contribute more to the output performance.

A.4 Supplemental Results of Neuron
Attribution
A.4.1 Contribution Score of Different Tasks

The contribution score of the four types of neu-
rons evaluated on the fact probing task, XNLI task,
cross-lingual KE task are shown in Figures 25 - 28.

13

All-shared Partial-shared
20 1
20 A 15 4
10
10
5 -
[}
g 0 T T T T T T 0 T T T T T T
t 5 10 15 20 25 30 5 10 15 20 25 30
(7]
4 Specific Non-activated
& 100 4
8_
75 A
6_
4 50 A
2 4 25 1
0 T T T T T T 0 T T T T T T
5 10 15 20 25 30 5 10 15 20 25 30
Layers

® overlap average

Figure 18: Behavior-repeating neurons in cross-lingual
KE (EN (edit) — ALL (test)) task across the entire
testset.
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Figure 19: Neuron behavior pattern in the fact probing
task with BLOOM backbone.

A.4.2 Effective Score of Different Tasks

The maximum, minimum, and average effective
scores of four types of neurons in 10 languages
evaluated on the cross-lingual KE (EN (edit) —
ALL (test)) task are shown in Table 4. The maxi-
mum effective of four types of neurons across lay-
ers evaluated on the fact probing task, XNLI task,
cross-lingual KE (ALL (edit) — EN (test)) task are
shown in Figures 29 - 31.

A.5 Supplemental Results of Effects on
Accuracy
A.5.1 Effects with LLAMA Backbone

In order to further prove the importance of all-
shared neurons across LLMs, we conduct the ex-



all-shared partial-shared specific non-activated
max min mean max min mean max min mean max min mean
en 1.85 -094 0.07 022 -0.16 0.00 0.02 -0.02 0.00 0.04  -0.03  0.00
de | 1.03 -0.60 0.02 0.13  -0.13  0.00 0.07 -0.03  0.00 0.02  -0.01 0.00
es .15 -0.84 0.02 0.12 -0.11  0.00 001 -0.01 0.00 0.02 -0.02 0.00
fr 1.06  -0.78 0.01 0.15 -0.11  0.00 0.03 -0.04 0.00 0.02 -0.02 0.00
ru | 070 -045  0.00 024  -0.13  0.00 0.08 -0.03  0.00 0.01  -0.01  0.00
th 0.50  -0.90  0.00 0.17  -0.10  0.00 003 -0.05 0.00 0.01 -0.01  0.00
tr 082 -0.51 0.03 0.12  -0.12  0.00 0.04 -0.03 0.00 0.02 -0.02 0.00
vi 086 -0.68 0.01 0.15 -0.11  0.00 0.04 -0.04 0.00 0.02 -0.02 0.00
zh | 052 -042  0.00 0.17 -0.20  0.00 0.08 -0.07  0.00 0.02 -0.01 0.00
pt .14 -0.83  0.02 0.11  -0.15  0.00 002 -0.02 0.00 0.02 -0.02 0.00

Table 4: Maximum, minimum,

(edit) — ALL (test)) task.
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Figure 20: Neuron behavior pattern in the cross-lingual
KE (ALL (edit) — EN (test)) task with BLOOM back-

bone.
accuracy en de e fr ru th tr vi zh
baseline 59.1 47.6 50.1 47.0 49.1 41.4 40.2 51.6 46.1
w/o. all-shared 30 36 44 19 47 69 3.6 135 48
w/o. specific 59.2 47.3 499 47.0 49.1 419 40.1 514 462
w/o. partial-shared | 59.1 48.4 51.5 47.9 49.7 429 41.5 50.8 48.0

Table 5: The effects of accuracy on the XNLI task
with LLAMAZ2-7b-chat backbone, when deactivating
all-shared neurons, specific neurons, and partial-shared
neurons, respectively. “w/0.” stands for “without”.

periments with deactivating neurons on the XNLI
task with LLAMAZ2-7b-chat backbone. The results
in Table 5 show that there is more significant effect
when all-shared neurons are deactivated. It demon-
strates that all-shared neurons play a key role in
predicting correct answers across LL.Ms.

A.5.2 Effects on the Cross-lingual KE Task

We further explore the influence of deactivating
all-shared neurons, specific neurons, and partial-
shared neurons on the cross-lingual KE (EN (edit)
— ALL (test)) task with BLOOMZ backbone. The
results in Table 6 are consistent with the results of
XNLI task in Table 2, demonstrating the critical
role of all-shared neurons for generating correct
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Figure 21: Neuron behavior pattern in the cross-lingual
KE (EN (edit) — ALL (test)) task with BLOOM back-
bone.

output.



accuracy en de es fr pt th tr ru vi zh

baseline 96.23 46.84 36.88 40.38 3580 4.71 28.13 0.67 4092 10.63
w/o. all-shared 1521 9.69 552 498 7.67 054 242 000 7.67 296
w/o. specific 96.23 46.84 36.74 40.24 3553 471 2921 0.67 4065 11.84
w/o. partial-shared  68.78 4495 3540 37.01 34.19 511 2544 0.67 39.84 848

Table 6: The effects of accuracy on the cross-lingual KE (EN (edit) — ALL (test)) task with BLOOMZ backbone,
when deactivating all-shared neurons, specific neurons, and partial-shared neurons, respectively. “w/0.” stands for

“without”.
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Figure 22: Neuron behavior pattern in a XNLI task with
the model size as 0.56b, 1b, 3b, 7b.
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under the in-context learning.
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Figure 25: Contribution proportion of four types of neurons based on the fact probing task with BLOOMZ backbone.
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Figure 26: Contribution proportion of four types of neurons based on the XNLI task with BLOOMZ backbone.
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Figure 27: Contribution proportion of four types of neurons based on the cross-lingual KE (EN (edit) — ALL (test))
task with BLOOMZ backbone.
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Figure 28: Contribution proportion of four types of neurons based on the cross-lingual KE (ALL (edit) — EN (test))
task with BLOOMZ backbone.
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