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Abstract
Multilingual large language models (LLMs)001
have greatly increased the ceiling of perfor-002
mance on non-English tasks. However, the003
mechanisms behind multilingualism in these004
LLMs are poorly understood. Of particular005
interest is the degree to which internal repre-006
sentations are shared between languages. Re-007
cent work on neuron analysis of LLMs has fo-008
cused on the monolingual case, and the limited009
work on the multilingual case has not consid-010
ered the interaction between tasks and linguis-011
tic representations. In our work, we investi-012
gate how neuron activation is shared across013
languages by categorizing neurons into four014
distinct groups according to their responses015
across different languages for a particular in-016
put: all-shared, partial-shared, specific, and017
non-activated. This categorization is combined018
with a study of neuron attribution, i.e. the im-019
portance of a neuron w.r.t an output. Our anal-020
ysis reveals the following insights: (i) the lin-021
guistic sharing patterns are strongly affected by022
the type of task, but neuron behavior changes023
across different inputs even for the same task;024
(ii) all-shared neurons play a key role in gen-025
erating correct responses; (iii) boosting mul-026
tilingual alignment by increasing all-shared027
neurons can enhance accuracy on multilingual028
tasks. We will release the code to foster re-029
search in this area.030

1 Introduction031

The black-box nature of large language models032

(LLMs) has given rise to an area of research which033

aims to interpret the internal mechanism of the034

Transformer architecture (Elhage et al., 2021a; Yu035

et al., 2023). In order to investigate specific aspects036

of model behavior, previous studies choose to focus037

on specific model components to encourage inter-038

pretability. Differently from e.g. attention heads in039

the Transformer layers which are responsible for040

moving information from one token to another to-041

ken (Elhage et al., 2021b), feed-forward networks042

Figure 1: A comparison of neuron analysis with differ-
ent role designs in multilingual settings with the same
semantic input, in which we define four types of neu-
rons in one layer of LLM. English input “The capital
of France is” corresponds to its Spanish and French
counterparts “La capital de Francia es” (Spanish), “La
capitale de la France est” (French).

(FFNs) are more likely to represent semantic fea- 043

tures (Black et al., 2022). The FFN consists of 044

two linear layers and an activation function is ap- 045

plied between them. A neuron inside the FFNs 046

is defined as a linear transformation of an input 047

representation followed by a non-linear activation 048

(Tang et al., 2024). Geva et al. (2020, 2022); Fer- 049

rando et al. (2023) have earlier demonstrated the 050

importance of neurons in the FFNs for encoding 051

factual and linguistic knowledge. Furthermore, var- 052

ious neuron analytic methods have been developed 053

to prune inactive neurons, i.e. those which have 054

activation value less than or equal to zero (Zhang 055

et al., 2022; Li et al., 2023; Voita et al., 2023). 056

While the above-mentioned methods analyze 057

neuron behaviors based on the activation state (ac- 058

tive or inactive means activation value > 0 vs. ≤ 0) 059

in a monolingual setting, there is still a lack of un- 060

derstanding regarding how neurons behave across 061

various tasks in a multilingual setting. As shown 062

in Figure 1, different sets of neurons are activated 063

when an LLM is presented with corresponding in- 064
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puts in different languages. An inactive neuron065

in response to an English input is often activated066

and influential in response to an input in another067

language. It remains unclear how LLMs actually068

manage to learn multilingual representations. One069

typical example is that we may need to explore070

sets of neurons responsible for generating the out-071

put “Paris”1 when presented with the English input072

“The capital of France is” and its Spanish counter-073

part “La capital de Francia es”.074

In a similar line of reasoning, Bhattacharya and075

Bojar (2023) explored the behavior of language-076

specific and language-agnostic (shared between077

two languages) neurons and their distribution over078

layers of a model. They concluded that the lay-079

ers close to the model’s input and output exhibit080

more language-specific behavior. However, their081

results are restricted to the English-Czech. Due to082

the potential variation in neuron behavior of differ-083

ent language types and the reasoning and memory084

abilities of different multilingual tasks, we argue085

that there is a need for further exploration.086

Our research aims to establish a more fine-087

grained classification of neurons, enabling a more088

detailed analysis of LLM behavior in reason-089

ing style tasks (XNLI), fact-retrieval based tasks090

(fact probing), and explicitly multilingual question-091

answer tasks (knowledge editing). As shown in Fig-092

ure 1, we reformulate the activation state of neurons093

for a particular input and its corresponding trans-094

lations in 10 languages to four distinctive types to095

represent multilingual behaviors. All-shared neu-096

rons are neurons that remain active for all inputs097

regardless of language. Partial-shared neurons are098

activated only for inputs in certain languages. Spe-099

cific neurons are activated exclusively for inputs100

in one language. Non-activated neurons are not101

activated at all for any input.102

We perform neuron analysis addressing two re-103

search questions: (a) what are the behaviors of the104

four types of neurons in various multilingual tasks?105

(b) What attribution (Dhamdhere et al., 2019) does106

each type have in multilingual generation tasks,107

meaning which neurons are responsible for a pre-108

diction?109

We examine the percentage of each type of neu-110

ron and neuron attributions in the multilingual tasks.111

We discover that the pattern of four types of neu-112

rons is determined by the tasks they encountered,113

and that the behavior of a neuron changes with114

1“Paris” is identical in both English, Spanish and French

different inputs for the same task, indicating the 115

potential implications of pruning neurons. 116

Furthermore, we demonstrate the importance of 117

all-shared neurons in generating the correct output 118

from the neuron attribution study. Converting other 119

types of neurons to all-shared neurons improves 120

the accuracy of an LLM in multilingual tasks. 121

Our main contributions are listed below: 122

• Fine-grained neuron analysis: We define 123

four categories of neurons and use these to 124

analyze neuron behaviors in various types of 125

tasks across 10 languages. We reveal that rea- 126

soning style tasks (e.g. XNLI) involve more 127

all-shared neurons than fact-retrieval based 128

tasks (e.g. fact probing) which utilize more 129

specific neurons. 130

• Neuron attribution: By studying the contri- 131

bution of neurons to the output of multilingual 132

tasks, we are the first to reveal the importance 133

of all-shared neurons within FFNs in multi- 134

lingual tasks. For instance, for the XNLI task, 135

the all-shared neurons comprise less than 30% 136

of the neurons, but they contribute 91.6% to 137

the generation of the correct responses in the 138

German test set. 139

• Multilingual alignment: We demonstrate 140

that increasing the percentage of all-shared 141

neurons (by converting other types of neurons) 142

can significantly enhance the accuracy of an 143

LLM in multilingual tasks. 144

2 Related Work 145

Prior interpretability studies focused on understand- 146

ing attention heads, while others have analyzed 147

neuron behaviors. Several studies on LLMs have 148

advanced our understanding of how neurons ac- 149

quire task-specific knowledge. For instance, Fer- 150

rando et al. (2023); Dai et al. (2022); Geva et al. 151

(2020, 2022) investigated how FFN blocks func- 152

tion as key-value memories and proved that factual 153

knowledge is stored in the neurons. Research work 154

on the sparsity of neurons in FFN blocks disclosed 155

many neurons are inactive in various tasks (Zhang 156

et al., 2022; Li et al., 2023). Voita et al. (2023) 157

located these “dead” neurons in the lower part of 158

the model (close to inputs) in the English scenario. 159

Despite the insights obtained, these studies are fo- 160

cused exclusively on a monolingual setting. 161

For multilingual model analysis, Bhattacharya 162

and Bojar (2023); Tang et al. (2024); Tan et al. 163
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(2024) classified neurons in an FFN block to164

language-specific and language-agnostic based on165

the threshold, which presumed that a neuron’s be-166

havior remained consistent across examples. How-167

ever, they do not consider the potential adaptation168

of neurons under various language types and se-169

mantics brought forth by inputs from various mul-170

tilingual tasks. We investigate neurons’ behaviors171

across multiple languages and tasks to this end.172

3 Definitions173

3.1 Neurons in FFN Blocks174

Every feed-forward block at layer l involves two175

linear transformations separated by a point-wise176

activation function. Biases are omitted for the sake177

of clarity:178

FFN l(xl) = Act(W l
Kxl)W l

V (1)179

where W l
K ,W l

V ∈ Rdm×d are linear parameter180

matrices, and Act(·) is a non-linear activation func-181

tion, where rows in W l
K and columns in W l

V are182

viewed as d-dimensional keys kl and values vl, re-183

spectively. We define the behavior of a neuron to be184

the output of function immediately after the elemen-185

twise nonlinearity. dm is the count of neurons. And186

the output of neurons Al := Act(W l
Kxl) ∈ Rdm187

determines the weighting of the corresponding val-188

ues in W l
V .189

For i-th neuron and corresponding key kli, value190

vli and activation value Al
i, we can express this191

relationship using the following formulation:192

FFN l(xl) =

dm∑
i=1

Act(xl · kl
i)v

l
i =

dm∑
i=1

Al
iv

l
i (2)193

When such a neuron is activated Al
i > 0, so194

it updates the residual stream by pulling out the195

corresponding value vli.196

3.2 Contribution Score and Effective Score of197

Neurons198

Inspired by Geva et al. (2022), in order to judge199

the importance of neurons in generating answers,200

we analyze their contributions to the output. The201

contribution score of a neuron to an FFN output is:202

Cl
i :=

|Al
i| ||vli||∑dm

j=1 |Al
j | ||vlj ||

(3)203

which is the proportion of its weight to the sum204

of weights of all neurons in the FFN block. |Al
i| is205

the absolute value of activation value and ||vli|| is206

the L2-norm of value vli.207

Whenever a neuron is activated, the associated208

column of the values (scaled by the neuron’s value)209

is incorporated into the residual stream. The prod- 210

uct of the value of the activated neuron Al
i and the 211

corresponding vli is then transformed linearly and 212

mapped to the vocabulary. 213

Following Geva et al. (2022); Voita et al. (2023), 214

projecting the neuron to the vocabulary using em- 215

bedding matrix Er·Al
iv

l
i can be viewed as obtaining 216

the effective score given by the i-th neuron to the 217

output reference token r for a given input. Specifi- 218

cally, a larger Er ·Al
iv

l
i has a higher probability to 219

produce a gold answer (r). A negative Er · Al
iv

l
i 220

reduces the probability in generating r. In this way, 221

we can quantify the effect of a neuron on the output 222

distribution. We give detailed descriptions about 223

the neuron projection to the vocabulary space in 224

Appendix A.1. 225

3.3 Definition of Four Types of Neurons 226

For the set of all neurons N l in the l−th layer, the 227

activation value of one neuron n in one language 228

lang is Al
lang. Note that some activation functions 229

(e.g. GeLU) can result in negative activation values. 230

The definition of all-shared neurons is: 231

N l
all :=

langs⋂
lang

{
n ∈ N l : Al

lang > 0
}

(4) 232

where langs is the sets of testing languages and 233

Nall means these neurons are activated in all lan- 234

guages. For non-activated neurons which have 235

activation value less than or equal to zero in all 236

languages, the definition is: 237

N l
non :=

langs⋂
lang

{
n ∈ N l : Alang ≤ 0

}
(5) 238

Specific neurons are neurons only activated in 239

one specific language. They can be denoted using: 240

N
l
specific :=

langs⋃
langk1

(
{
n ∈ N

l
: Alangk1

> 0
} langs⋂

langk
k ̸=k1

{
n ∈ N

l
: Alangk

≤ 0
}
)

(6) 241

The remaining neurons are partial-shared neu- 242

rons as they are activated by inputs from multiple 243

languages, but not all languages at the same time: 244

N l
partial = N l −N l

all −N l
non −N l

specific (7) 245

Unlike Bhattacharya and Bojar (2023); Tang 246

et al. (2024), which exclusively on sub-word ac- 247

tivation statistics and thus capture incomplete se- 248

mantics, we examine the activation state of the last 249

token. For each input text with tokens x1, x2, ...xS , 250

we use the activation state xS to investigate the 251

behavior of neurons, as that is when the LLM per- 252

forms the prediction task. 253
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4 Experimental Setting254

4.1 Multilingual Tasks255

We perform analysis on neurons in FFN blocks256

of various LLMs, harnessing their multilingual ca-257

pabilities in three diverse tasks which consist of258

multilingual parallel sentences. They are:259

Natural Language Inference. XNLI (Con-260

neau et al., 2018) is a multilingual natural lan-261

guages inference dataset. Each test sample con-262

sists of a premise and a hypothesis, requiring an263

LLM to determine whether a hypothesis is entailed,264

contradicted, or neutral conditioned on the premise.265

Fact Probing. LLMs are used to predict fac-266

tual answers in response to corresponding probing267

prompts. A multilingual factual knowledge dataset268

(mParaRel (Fierro and Søgaard, 2022)) capturing269

38 binary relations (e.g., X born-in Y) is used in the270

analysis.271

Cross-lingual Knowledge Editing (KE).272

MzsRE (Wang et al., 2023) is a multilingual273

question-answering dataset. It provides counterfac-274

tual edited knowledge in the context and requires275

an LLM to produce the corresponding answer ac-276

cording to the context. We evaluate LLMs in two277

cross-lingual KE scenarios: 1) EN (Edit) → ALL278

(test): edit in English and test in other languages279

and 2) ALL (Edit) → EN (test): edit in other lan-280

guages and test in English.281

These tasks cover 10 diverse languages, includ-282

ing English (en), German (de), Spanish (es), French283

(fr), Portuguese (pt), Russian (ru), Thai (th), Turk-284

ish (tr), Vietnamese (vi), and Chinese (zh). Prompts285

are detailed in Appendix A.2.286

4.2 Base LLMs287

We mainly analyze the behavior of neurons in288

a foundation multilingual LLM BLOOM (Scao289

et al., 2022) and an instruction-finetuned model290

BLOOMZ (Muennighoff et al., 2023). We also in-291

clude the analysis of other decoder-only models:292

XGLM (Lin et al., 2022), LLAMA2-7b-chat (Tou-293

vron et al., 2023), and an encoder-decoder294

model mT0 (Muennighoff et al., 2023) in the Ap-295

pendix A.3.2.296

5 Behaviors of Four Types of Neurons297

For each task we use parallel test texts from ten298

languages as inputs, and record the activation state299

of each neuron. Subsequently, we calculate the300

percentage of the four types of neurons compared301

to the total neurons.302

We use BLOOMZ as the backbone LLM to in- 303

vestigate the behaviors of four types of neurons, 304

and the results of three tasks are shown in Fig- 305

ures 2-4 respectively. The supplemental analysis 306

of cross-lingual KE (ALL (Edit) → EN (test)) task 307

is shown in Figure 11 (Appendix A.3.1). 308

5.1 Neuron Behaviors Across Tasks 309
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Figure 2: Neuron behavior pattern in the XNLI task.
The left sub-figure shows the percentage of the four
types of neurons across transformer layers (aka “by
neuron type”). The right sub-figure shows aggregated
behaviors of the activated neurons for each language
across transformer layers (aka “by language”).

5.1.1 Behavior Pattern of Four Types of 310

Neurons 311

It can be observed from Figures 2-3 (left sub- 312

figures) that there are more non-activated neurons 313

on the whole than other types. However, the neu- 314

ron behavior is strongly task-related as the pat- 315

tern observed in the fact probing task differs sig- 316

nificantly from the other two tasks. In the fact 317

probing task, there are more partial-shared neu- 318

rons (yellow line in Figure 4), whereas the other 319

tasks involve far more all-shared neurons (green 320

line in Figures 2-3). 321
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Figure 3: Neuron behavior pattern in the cross-lingual
KE (EN (Edit) → ALL (test)) task.

4



5 10 15 20 25 30
0

20

40

60

80
by neuron type

non-activated
specific
all-shared
partial-shared

5 10 15 20 25 30
0

10

20

30

40

by language

en
de
es
fr

ru
th
tr

vi
zh
pt

Layers

Pe
rc

en
ta

ge

Figure 4: Neuron behavior pattern in the fact probing
task.

For the neuron behaviors across layers, lower322

layers exhibit a higher prevalence of all-shared323

neurons compared to specific neurons and partial-324

shared neurons in XNLI and KE. The number of325

all-shared neurons peaks at a certain layer followed326

by a continuous decreasing pattern in these two327

tasks. Fewer all-shared neurons in the upper lay-328

ers implies language-specific characteristics are329

retained there. Similarly, partial-shared neurons330

accumulate in the lower layer and it tends to out-331

number all other neurons moving towards upper332

layers in all tasks. It could be observed that nearly333

99% of the neurons are non-activated in the first334

layer for XNLI and KE tasks, which may be as-335

sociated with the prompts, where the last token336

of input is punctuation (e.g., “?”). However, this337

phenomenon appears to be specific to BLOOMZ338

compared to other LLMs (Appendix A.3.2). We339

also investigate the impact of the number of lan-340

guages on the percentage of four types of neurons341

in Appendix A.3.3. The comparison in Figure 16342

indicates that the number of languages slightly af-343

fects the all-shared neurons.344

5.1.2 Consistent Neuron Behavior Pattern345

The percentage of activated neurons for each lan-346

guage exhibits a consistent pattern, as shown in347

Figures 2-4 (right sub-figures). At lower layers348

of an LLM, the number of activated neurons in-349

creases significantly, reaches the peak at around350

the 6-th layer, and then declines. It is not until at351

an upper layer (i.e., 28-th layer) that the number352

of active neurons commences to pick up its early353

increasing trend. Such a resurgence continues until354

it reaches the final layer of the LLM. It is a surprise355

to discover that the number of activated neurons is356

not influenced by the language of the inputs. This357

indicates neurons in an LLM exhibit similar pat-358

terns across languages. 359
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Figure 5: Behavior-repeating neurons in the fact prob-
ing task across the entire testset. “overlap” indicates
the percentage of neurons that keep the same behaviors
across all examples in the testset. “average” indicates
the percentage of neurons for an input, which is aver-
aged over the entire testset.

5.1.3 Neurons Behaviors Across Examples 360

As shown in Figures 2-4, the analysis is conducted 361

by exploring the activation state under the same 362

input and the corresponding translations in 10 lan- 363

guages. In this experiment, we now investigate 364

how neurons behave across all examples for the 365

fact probing task. Here, the objective is to under- 366

stand if neurons that are specific to a designated 367

behavior maintain this behavior across test sam- 368

ples representing different semantics. The results 369

are shown in Figure 5 and in Appendix A.3.4 (for 370

other tasks). To our surprise, almost no neuron 371

(identified by its index) repeats its behavior (e.g., 372

the “specific”) across all examples. Different from 373

the previous studies, which assumed that a neuron 374

behaved consistently across examples, we reveal 375

that the behavior of a neuron is determined by 376

the semantics of the inputs encountered, even 377

within the same task. 378

5.1.4 “Dead” Neuron Mystery 379

In the multilingual scenario, non-activated neurons 380

comprise a significant portion, with more than 50% 381

of neurons having a zero or negative activation 382

value across layers for multilingual inputs (blue 383

line in the left sub-figures) in Figures 2-4. 384

Do these “dead” neurons stay inactive in all 385

test samples? In Figure 5 we see that less than 10% 386

of non-activated neurons remain inactive. There 387
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is only a small proportion of persistently inactive388

neurons, which reflects the distributed nature of389

knowledge representation for LLMs. The majority390

of neurons are activated at some point depending on391

the input provided. That is why we should execute392

caution when pruning neurons, as we may damage393

the overall performance of an LLM.394
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Figure 6: Neurons remaining “dead” in response to all
tokens in an input sentence for the fact probing task.

Do non-activated neurons remain “dead” in395

response to each token in an input sentence? Pre-396

viously, we performed analysis for the last token397

of an input. We analyze the behavior-repeating of398

non-activated neurons across tokens here for an399

input. Specifically, for each input sequence with400

tokens x1, x2, ..., xS , we record non-activated neu-401

rons of each token, w.r.t the intersection of index.402

A neuron is counted when it stays inactive for every403

token of one test input sequence. As shown in Fig-404

ure 6, less than 0.8% non-activated neurons remain405

“dead” for each token of input, further emphasizing406

the behavior-repeating of a neuron.407
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Figure 7: Neuron behavior pattern in the XNLI task
with the BLOOM backbone.

5.2 Influence of Instruction Finetuning408

Does instruction finetuning (IFT) have an impact409

on neuron behaviors? We compare the percentage410

of the four designated types of neurons of BLOOM411

and its IFT counterpart BLOOMZ.412

The results from the XNLI task are shown in413

Figure 7 and Appendix A.3.5 (from other tasks).414

Compared to the results from BLOOMZ in Fig- 415

ure 2, all-shared neurons are under-represented in 416

BLOOM (20% of BLOOM vs. 30% of BLOOMZ). 417

Meanwhile, more partial-shared neurons are ob- 418

served in BLOOM. IFT enhances the percentage 419

of all-shared neurons and reduces the number of 420

partial-shared neurons. We regard the increase of 421

the number of all-shared neurons as an effect of 422

multilingual representation alignment. It appears 423

that IFT contributes to multilingual alignment 424

based on the effects observed from this experi- 425

ment. Whether this effect can be generalized to 426

other LLMs and the rationale behind such effect 427

warrants a future study. 428

Furthermore, we conduct ablation studies to in- 429

vestigate the impact of two key factors on the neu- 430

ron behaviors: the size of the backbone model 431

(Appendix A.3.6) and the number of multilin- 432

gual demonstrations in the few-shot setting (Ap- 433

pendix A.3.7). 434

6 Neuron Attributions 435

In the preceding experiments, we examined the 436

proportions of the four types of neurons across 437

layers, tasks, and languages. In this section, we 438

examine the relative contributions of each neuron 439

type to task performance. 440

6.1 Neuron Contribution Score 441

As discussed in Section 3.2, the contribution score 442

C l
i of a neuron refers to its relative weight com- 443

pared to the total sum of weights of all neurons, 444

indicating the influence of each neuron on outputs. 445

We examine the proportion of the four types of neu- 446

rons among the top 5% contribution score under 447

inputs in each language. The proportions of neu- 448

rons in the cross-lingual KE task are depicted in 449

Figure 8 (and the overall results of 10 languages 450

are shown in Figure 27 in Appendix A.4.1). 451

It can be observed that all-shared neurons are 452

the top contributing neurons to the outputs at 453

every layer, regardless of their language inputs. 454

This highlights their importance in the neural net- 455

work. The group of partial-shared neurons is the 456

second most influential group, demonstrating their 457

impacts across the latter half of the model. It is 458

not surprising that the specific neurons group has 459

limited influence on cross-lingual KE outputs as 460

they feature in a particular language type of inputs. 461

Furthermore, we evaluate the contribution pro- 462

portion in the XNLI task, as depicted in Figure 26 463
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Figure 8: Contribution proportion of four types of neu-
rons based on the cross-lingual KE (EN (Edit) → ALL
(test)) task.

(Appendix A.4.1). Here, all-shared neurons con-464

stitute the highest proportion; however, partial-465

shared neurons show less influence compared to466

that observed in the cross-lingual KE task.467
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Figure 9: Average and sum contribution score of the
four types of neurons.

In order to more comprehensively analyze the468

overall contribution of four types of neurons, we ex-469

tend the analysis from the top 5% to accommodate470

all neurons in this study. We analyze the average471

and the sum of contribution scores of all neurons in472

four categories. As shown in Figure 9, the average473

contribution of all-shared neurons significantly ex-474

ceeds that of the other three types. In terms of the475

total contribution score, all-shared neurons in the476

upper layers achieve a value equal to that of non-477

activated neurons in Figure 9(a), despite having a478

significantly lower count than non-activated neu-479

rons (<10% vs. 80% in Figure 2). In the fact prob-480

ing task, partial-shared neurons score the highest,481

while all-shared neurons score the lowest, primar- 482

ily due to their respective counts (>20% vs. <1% in 483

Figure 4). In summary, all-shared neurons play a 484

significant role in contributing to multiple tasks. 485

Future studies on neuron activation should consider 486

their contribution as well as their frequency. 487

language neuron type max min avg

en

all-shared 1.85 -0.94 0.07
partial-shared 0.22 -0.16 0.00
specific 0.02 -0.02 0.00
non-activated 0.04 -0.03 0.00

de

all-shared 1.03 -0.60 0.02
partial-shared 0.13 -0.13 0.00
specific 0.07 -0.03 0.00
non-activated 0.02 -0.01 0.00

Table 1: Maximum, minimum, average effective score
of four types of neurons on the cross-lingual KE task.

6.2 Neuron Effective Score 488

Since each neuron encodes information, we can ex- 489

plore their contributions to the correct answer. As 490

discussed in Section 3.2, the projection to vocabu- 491

lary Er ·Al
iv

l
i can be viewed as the effective score 492

given by the i-th neuron to the output reference 493

token r for a given input. 494

In the cross-lingual KE (EN (Edit) → ALL (test)) 495

task, we calculate the effective score of each type 496

of neuron with the BLOOMZ backbone. The max- 497

imum, minimum, and average scores are shown 498

in Table 1 (the overall results of ten languages 499

are shown in Table 4), and the maximum effec- 500

tive scores across layers are shown in Figure 10. 501

All-shared neurons achieve the highest maximum 502

score and the lowest minimum score, indicating 503

they are pushed (or eliminated) strongly by the ac- 504

tivation function. In contrast to all-shared neurons 505

and partial-shared neurons, where the maximum 506

scores are substantially higher than the minimum 507

scores (1.85 vs. -0.94 and 0.22 vs. -0.16 in En- 508

glish), for specific neurons and non-activated neu- 509

rons, the score has a smaller span (± 0.07), sug- 510

gesting all-shared neurons have greater influence 511

on the output distribution. 512

As shown in Figure 10, the maximum effective 513

score of all-shared neurons significantly exceeds 514

that of the other three types. Moreover, all-shared 515

neurons aggregate at the first layer and upper lay- 516

ers. This observation confirms a recent finding 517

that early layers detect shallow patterns and up- 518

per layers are characterized by semantic patterns 519

(Ferrando et al., 2023), supporting the notion that 520

all-shared neurons play a key role in generating 521

prediction. Details of effective score analysis in 522

other tasks are depicted in Appendix A.4.2. 523
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Figure 10: Maximum effective score of four types of
neurons across layers based on the cross-lingual KE
task.

accuracy en de es fr ru th tr vi zh
baseline 53.8 41.8 50.3 49.0 47.6 40.9 34.9 50.5 51.1
w/o. all-shared 16.7 3.50 10.1 10.0 6.6 9.0 1.4 12.1 14.5
w/o. specific 53.7 41.7 50.3 48.9 47.4 40.6 35.3 50.4 49.3
w/o. partial-shared 52.9 40.4 49.7 47.6 49.2 40.3 36.1 50.0 50.0

Table 2: The accuracy when deactivating all-shared
neurons, specific neurons, and partial-shared neurons,
respectively. “w/o.” stands for “without”.

6.3 Effects on Accuracy524

We have investigated neuron attribution using the525

contribution score and effective score, which are526

based on the internal states of an LLM. Direct im-527

pacts of neurons on the output performance (i.e.,528

accuracy) provide insights from a pragmatic per-529

spective. We explore the change of accuracy by530

intentionally deactivating three distinct types of531

neurons. This is performed by precisely identify-532

ing the type of neurons for an input and setting their533

activation values to zero. Take the XNLI task as an534

example, we record the results of an LLM with de-535

activated neurons in Table 2. The most significant536

decrease in accuracy is observed when the all-537

shared neurons are deactivated (e.g. 91.6% de-538

crease in the German testset). Deactivating specific539

and partial-shared neurons also negatively impacts540

the accuracy, but at a smaller magnitude when com-541

pared to the effect by all-shared neurons. We also542

prove the importance of all-shared neurons with543

the LLAMA backbone in Table 5 (Appendix A.5.1).544

In order to prove the key role of all-shared neurons545

across tasks, we conduct the ablation experiments546

on the cross-lingual KE task in Appendix A.5.2. 547

accuracy en de es fr ru th tr vi zh
baseline 53.8 41.8 50.3 49.0 47.6 40.9 34.9 50.5 51.1
co. specific 53.0 42.7 50.8 50.1 46.9 40.1 34.4 51.0 51.3
co. partial-shared 53.2 41.8 51.0 49.3 49.4 41.5 36.8 50.7 51.2
co. specific and
partial-shared 52.6 42.1 51.6 49.4 48.2 41.7 36.4 50.7 51.7

Table 3: The accuracy when converting specific neurons,
and partial-shared neurons to all-shared neurons type.
“co.” (covert) means setting the activation value of in-
active portions of neuron types to above the activation
threshold.

We are intrigued by the possibility of enhanc- 548

ing an LLM’s performance by simply converting 549

specific neurons and partial-shared neurons to all- 550

shared neurons. To achieve this, we set the activa- 551

tion value of the inactive portion of these two types 552

of neurons to just above the activation threshold. 553

The results shown in Table 3 indicate that increas- 554

ing the number of all-shared neurons improves 555

the accuracy of an LLM in most cases. The results 556

are consistent with the finding in Section 5.2 where 557

IFT model BLOOMZ with better performance has 558

more all-shared neurons than foundation model 559

BLOOM. The occasional drawbacks in some cases 560

(i.e., “en”) require an in-depth study of the inter- 561

nal mechanism of an LLM involving more neuron 562

components. We leave this to a future study. 563

7 Conclusion 564

In this paper, we propose a novel approach for 565

analyzing neurons in FFN blocks by categorizing 566

them into four distinct types: all-shared neurons, 567

partial-shared neurons, specific neurons and non- 568

activated neurons. We conduct a detailed analysis 569

of LLM behaviors in multilingual tasks. Experi- 570

mental results disclose novel insights relating to 571

neuron behaviors: 1) We demonstrate that a neu- 572

ron’s activation pattern is influenced by the tasks 573

it encounters, and even the behavior of a neuron 574

changes with different inputs for the same task. 2) 575

We show the importance of all-shared neurons in 576

output generation in multilingual tasks from the 577

neuron attribution study. 3) We prove that mul- 578

tilingual alignment can significantly enhance the 579

accuracy of an LLM in multilingual tasks by in- 580

creasing the percentage of all-shared neurons (i.e., 581

via converting other types of neurons or via IFT). 582

Future work will focus on exploring internal ac- 583

tivation mechanisms underpinning the observed 584

importance of all-shared neurons and multilingual 585

alignment across a wider range of tasks and LLMs. 586

8



Limitations587

In this paper, we develop a method to analyze neu-588

ron behaviors in detail by categorizing them into589

four distinct neuron types w.r.t the degree of their590

responses to input languages. Although this en-591

ables a fine granularity neuron analysis on LLM592

backbones across various linguistic characteristics593

and task complexity, the scope of the experiments594

can be extended to accommodate larger LLMs with595

large amounts of parameters (i.e., BLOOMZ-176b)596

on a more comprehensive range of tasks. While this597

study demonstrates that the number of languages598

slightly impacts the percentage of all-shared neu-599

rons, it is limited to 10 languages. Exploring the600

effects of incorporating a larger number of lan-601

guages into the proposed method warrants further602

investigation. All-shared neurons in FFN blocks603

are identified to be of great importance, but how604

and why they work is still a mystery to disclose.605

Other network components, for example, induction606

heads, are not in the scope of this analysis.607
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A Example Appendix 786

A.1 Detailed Interpretation of Projection in 787

Vocabulary Space 788

There is a residual connection in the each layer of 789

transformer, where the hidden state is: 790

hl = xl + FFN l(xl) (8) 791

In order to analyze the behaviors of neurons, we 792

explore how the output distribution in the vocab- 793

ulary space changes when the representation xl 794

(before the FFN update) is added with the output of 795

neurons Al
iv

l
i. With the embedding matrix E, we 796

map each vector into the vocabulary space ν. For 797

each token w, the probability is calculate with the 798

softmax function: 799

p(w|xl +Al
iv

l
i, E)

=
exp(Ew · xl + Ew ·Al

iv
l
i)

Z(E(xl +Al
iv

l
i))

∝ exp(Ew · xl) · exp(Ew ·Al
iv

l
i)

(9) 800
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where Ew is the embedding of w, and Z(·) is the801

constant softmax normalization factor. The Ew · xl802

can be viewed as a static score of w that is indepen-803

dent of the input to the model. Thus, the projection804

Ew · Al
iv

l
i induces a ranking over the vocabulary.805

So we use the projection as effective score to detect806

the responsibility of neurons.807

A.2 Prompts808

For the fact probing task, we use the P36 sub-809

testset, which describe facts of entities in a relation810

of “capital”. The prompt is framed as “ The capital811

of {X} is ” where “{X}” is the subject (sovereign812

state) and LLMs are required to predict the object813

(capital city). We keep at least three paraphrase814

prompts from mParaRel for each language to en-815

sure a level of diversity.816

For the Natural Language Inference task, we817

frame the prompt as “ Take the following as truth:818

{premise} Then the following statement: ‘{hypoth-819

esis}’ is ‘true’, ‘false’, or ‘inconclusive’? ”820

For the cross-lingual KE task, we format the821

prompt as “ {context} Question: {question} An-822

swer: ”. The same language is used for the ques-823

tions and the answers, but the context is in a differ-824

ent language.825

A.3 Supplemental Results of Neuron Behavior826

Analysis827

A.3.1 Neuron behaviors in additional828

cross-lingual KE task829

We already show the neuron behaviors in in cross-830

lingual KE (EN (edit) → ALL (test)) task in Sec-831

tion 5.1.1. We supply the analysis in the cross-832

lingual KE (ALL (edit) → EN (test)) task in Fig-833

ure 11.834
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Figure 11: Neuron behavior pattern in cross-lingual KE
(ALL (edit) → EN (test)) task.

A.3.2 Neurons Behaviors across LLMs 835
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Figure 12: Neuron behavior pattern in the XNLI task
with XGLM backbone.
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Figure 13: Neuron behavior pattern in the XNLI task
with LLAMA2-7b-chat backbone.

Do the above-mentioned neuron behaviors 836

change over different LLMs? We further study the 837

neuron behaviors in other decoder-only multilin- 838

gual LLMs (XGLM and LLAMA2) and an encoder- 839

decoder multilingual LLM mT0. For the XNLI 840

task, the results of XGLM and LLAMA2-7b-chat 841

backbones are captured in Figure 12 and Figure 13, 842

and the results of mT0-encoder and mT0-decoder 843

are shown in Figure 14 and Figure 15. Further- 844

more, the percentage of four types of neurons for 845

inputs in each language on each LLM demonstrates 846

the similar pattern, indicating that neurons remain 847

consistent behaviors across LLM backbones. 848

The number of active neurons increase in the 849

lower layers, followed by a decrease moving on- 850

wards and a rise in the upper layers, despite the 851

absolution values are different from those obtained 852

for BLOOMZ. Moreover, it could be observed that 853

encoder in mT0 involves more all-shared neurons 854

compared to the proportion in decoder. 855
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Figure 14: Neuron behavior pattern in the XNLI task in
mT0-encoder.

5 10 15 20 25
0

20

40

60

80

by neuron type

non-activated
specific
all-shared
partial-shared

5 10 15 20 25

20

40

60

80

100
by language

en
de
es

fr
ru
th

tr
vi
zh

Layers

Pe
rc

en
ta

ge

Figure 15: Neuron behavior pattern in the XNLI task in
mT0-decoder.

A.3.3 Influence of the Quantity of Languages856

We design an ablation study to investigate the in-857

fluence of the number of languages (i.e., in a series858

of 3, 5, 7, 9). The results of the XNLI task in re-859

sponse to the quantitative change in languages are860

illustrated in Figure 16. The rise in the number of861

languages is associated with an observable increase862

in the percentage of partial-shared neurons and a863

slight decrease in the percentage of all-shared neu-864

rons. This suggests that the quantity of languages865

has a minor impact on the all-shared neurons.866

A.3.4 Neurons Behaviors Across Examples for867

Other Tasks868

We conduct additional experiments on the XNLI869

task and cross-lingual KE (EN (edit) → ALL (test))870

task to investigate the behavior repeating for neu-871

rons. The results shown in Figures 17- 18 are con-872

sistent with the results of the fact probing task,873

where only a few neurons maintain the same behav-874

iors across all examples in the testset.875
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Figure 16: Effects of the number of languages based on
the XNLI task.

A.3.5 Activation percentage of BLOOM 876

The results analyzed base on the foundation model 877

BLOOM of fact probing task and cross-lingual KE 878

task are shown in Figures 19 - 21. 879

A.3.6 Influence of Model Scale 880

We investigate neuron behaviors across the 881

BLOOMZ series with 0.56b, 1b, 3b, 7.1b parame- 882

ters in a XNLI task. As shown in the results cap- 883

tured in Figure 22, no identifiable pattern differ- 884

ence can be observed to indicate a scale law ef- 885

fect. However, the scale of the model is limited, 886

potentially leading to unreliable results in this ex- 887

periment. More non-activated neurons in the upper 888

layers of BLOOMZ-7.1b may reflect on a higher 889

level of sparsity for a larger LLM (consistent with 890

Voita et al. (2023); Li et al. (2023)). 891

A.3.7 Neuron Behaviors in Few-shot 892

In-context Learning 893

According to Wang et al. (2023), in-context learn- 894

ing (ICL) can improve the performance of an LLM 895

under the guidance of few-shot examples in a cross- 896

lingual KE task. We further explore the impact 897

of few-shot examples on neuron behaviors. We 898

compare the results of an LLM with 0-shot, 2-shot, 899

4-shot, 6-shot examples in a cross-lingual KE (EN 900

(edit) → ALL (test)) task. Four types of neurons 901

in scope have almost identical behaviors across 902

various few-shot examples (Figure 23). Although 903

in-context examples lead to no observable neu- 904

ron behavioral changes, more examples lead to 905

better performances. Could ICL lead to a better 906
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Figure 17: Behavior-repeating neurons in XNLI task
across the entire testset.

neuron activation composition instead of invoking907

more neurons? We leave this to a future study.908

A.3.8 Activation Value across Layers909

According to Eq. 1, neurons with larger activa-910

tion values tend to contribute more to the output.911

By visualizing neuron activation for a series of912

thresholds [0, 0.1, 0.2, 0.3, 0.4, 0.5], we can scru-913

tinize the relative importance of various types of914

activated neurons. The percentage of various types915

of activated neurons for each activation threshold916

in the XNLI task are shown in Figure 24. When ap-917

plying a threshold (>0), there are fewer all-shared,918

partial-shared, and specific neurons left in the lower919

layers (layers 0-10) compared to using a lower920

threshold (i.e., = 0). Under the same threshold921

scenario, more activated neurons appear in the sec-922

ond half of the model (layers 15-30). It is worth923

noting these neurons have a higher activation value924

than neurons activated from a lower threshold (i.e.,925

= 0). Considering both the percentage of activated926

neurons and their corresponding activation value,927

it becomes apparent that the neurons in the upper928

layers contribute more to the output performance.929

A.4 Supplemental Results of Neuron930

Attribution931

A.4.1 Contribution Score of Different Tasks932

The contribution score of the four types of neu-933

rons evaluated on the fact probing task, XNLI task,934

cross-lingual KE task are shown in Figures 25 - 28.935

5 10 15 20 25 30
0

10

20

All-shared

5 10 15 20 25 30
0

5

10

15

20

Partial-shared

5 10 15 20 25 30
0

2

4

6

8

Specific

5 10 15 20 25 30
0

25

50

75

100
Non-activated

Layers

Pe
rc

en
ta

ge

overlap average

Figure 18: Behavior-repeating neurons in cross-lingual
KE (EN (edit) → ALL (test)) task across the entire
testset.
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Figure 19: Neuron behavior pattern in the fact probing
task with BLOOM backbone.

A.4.2 Effective Score of Different Tasks 936

The maximum, minimum, and average effective 937

scores of four types of neurons in 10 languages 938

evaluated on the cross-lingual KE (EN (edit) → 939

ALL (test)) task are shown in Table 4. The maxi- 940

mum effective of four types of neurons across lay- 941

ers evaluated on the fact probing task, XNLI task, 942

cross-lingual KE (ALL (edit) → EN (test)) task are 943

shown in Figures 29 - 31. 944

A.5 Supplemental Results of Effects on 945

Accuracy 946

A.5.1 Effects with LLAMA Backbone 947

In order to further prove the importance of all- 948

shared neurons across LLMs, we conduct the ex- 949
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all-shared partial-shared specific non-activated
max min mean max min mean max min mean max min mean

en 1.85 -0.94 0.07 0.22 -0.16 0.00 0.02 -0.02 0.00 0.04 -0.03 0.00
de 1.03 -0.60 0.02 0.13 -0.13 0.00 0.07 -0.03 0.00 0.02 -0.01 0.00
es 1.15 -0.84 0.02 0.12 -0.11 0.00 0.01 -0.01 0.00 0.02 -0.02 0.00
fr 1.06 -0.78 0.01 0.15 -0.11 0.00 0.03 -0.04 0.00 0.02 -0.02 0.00
ru 0.70 -0.45 0.00 0.24 -0.13 0.00 0.08 -0.03 0.00 0.01 -0.01 0.00
th 0.50 -0.90 0.00 0.17 -0.10 0.00 0.03 -0.05 0.00 0.01 -0.01 0.00
tr 0.82 -0.51 0.03 0.12 -0.12 0.00 0.04 -0.03 0.00 0.02 -0.02 0.00
vi 0.86 -0.68 0.01 0.15 -0.11 0.00 0.04 -0.04 0.00 0.02 -0.02 0.00
zh 0.52 -0.42 0.00 0.17 -0.20 0.00 0.08 -0.07 0.00 0.02 -0.01 0.00
pt 1.14 -0.83 0.02 0.11 -0.15 0.00 0.02 -0.02 0.00 0.02 -0.02 0.00

Table 4: Maximum, minimum, average effective score of the four types of neurons on the cross-lingual KE (EN
(edit) → ALL (test)) task.
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Figure 20: Neuron behavior pattern in the cross-lingual
KE (ALL (edit) → EN (test)) task with BLOOM back-
bone.

accuracy en de es fr ru th tr vi zh
baseline 59.1 47.6 50.1 47.0 49.1 41.4 40.2 51.6 46.1
w/o. all-shared 3.0 3.6 4.4 1.9 4.7 6.9 3.6 13.5 4.8
w/o. specific 59.2 47.3 49.9 47.0 49.1 41.9 40.1 51.4 46.2
w/o. partial-shared 59.1 48.4 51.5 47.9 49.7 42.9 41.5 50.8 48.0

Table 5: The effects of accuracy on the XNLI task
with LLAMA2-7b-chat backbone, when deactivating
all-shared neurons, specific neurons, and partial-shared
neurons, respectively. “w/o.” stands for “without”.

periments with deactivating neurons on the XNLI950

task with LLAMA2-7b-chat backbone. The results951

in Table 5 show that there is more significant effect952

when all-shared neurons are deactivated. It demon-953

strates that all-shared neurons play a key role in954

predicting correct answers across LLMs.955

A.5.2 Effects on the Cross-lingual KE Task956

We further explore the influence of deactivating957

all-shared neurons, specific neurons, and partial-958

shared neurons on the cross-lingual KE (EN (edit)959

→ ALL (test)) task with BLOOMZ backbone. The960

results in Table 6 are consistent with the results of961

XNLI task in Table 2, demonstrating the critical962

role of all-shared neurons for generating correct963
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Figure 21: Neuron behavior pattern in the cross-lingual
KE (EN (edit) → ALL (test)) task with BLOOM back-
bone.

output. 964
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accuracy en de es fr pt th tr ru vi zh
baseline 96.23 46.84 36.88 40.38 35.80 4.71 28.13 0.67 40.92 10.63
w/o. all-shared 15.21 9.69 5.52 4.98 7.67 0.54 2.42 0.00 7.67 2.96
w/o. specific 96.23 46.84 36.74 40.24 35.53 4.71 29.21 0.67 40.65 11.84
w/o. partial-shared 68.78 44.95 35.40 37.01 34.19 5.11 25.44 0.67 39.84 8.48

Table 6: The effects of accuracy on the cross-lingual KE (EN (edit) → ALL (test)) task with BLOOMZ backbone,
when deactivating all-shared neurons, specific neurons, and partial-shared neurons, respectively. “w/o.” stands for
“without”.
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Figure 22: Neuron behavior pattern in a XNLI task with
the model size as 0.56b, 1b, 3b, 7b.
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Figure 23: Neuron behavior pattern in cross-lingual KE
(EN (edit) → ALL (test)) task with BLOOMZ backbone
under the in-context learning.
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Figure 24: Neuron behaviors in a XNLI task
with BLOOMZ backbone under the threshold in
[0, 0.1, 0.2, 0.3, 0.4, 0.5].
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Figure 25: Contribution proportion of four types of neurons based on the fact probing task with BLOOMZ backbone.
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Figure 26: Contribution proportion of four types of neurons based on the XNLI task with BLOOMZ backbone.

16



0 5 10 15 20 25 30
0

20

40

60

80

100

en

0 5 10 15 20 25 30
0

20

40

60

80

100
de

0 5 10 15 20 25 30
0

20

40

60

80

100
es

0 5 10 15 20 25 30
0

20

40

60

80

100
fr

0 5 10 15 20 25 30
0

20

40

60

80

100
ru

0 5 10 15 20 25 30
0

20

40

60

80

100

th

0 5 10 15 20 25 30
0

20

40

60

80

100
tr

0 5 10 15 20 25 30
0

20

40

60

80

100
vi

0 5 10 15 20 25 30
0

20

40

60

80

100
zh

0 5 10 15 20 25 30
0

20

40

60

80

100
pt

Layers

Co
nt

ri
bu

ti
on

 R
at

io

All-shared Neuron Partial-shared Neuron Specific Neuron Non-activated Neuron

Figure 27: Contribution proportion of four types of neurons based on the cross-lingual KE (EN (edit) → ALL (test))
task with BLOOMZ backbone.
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Figure 28: Contribution proportion of four types of neurons based on the cross-lingual KE (ALL (edit) → EN (test))
task with BLOOMZ backbone.
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Figure 29: Effective score of four types of neurons based
on the fact probing task with BLOOMZ backbone.
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Figure 30: Effective score of four types of neurons based
on the XNLI task with BLOOMZ backbone.
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Figure 31: Effective score of four types of neurons based
on the cross-lingual KE (ALL (edit) → EN (test)) task
with BLOOMZ backbone.
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