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Figure 1: We introduce an effective and efficient dynamic hair reconstruction method via strand
gaussians. Specifically, we made several modifications to promote sparsity-driven efficient opti-
mization approaches. Given multi-view videos, our algorithm faithfully reconstructs the hair strand
structure and appearance, achieving photorealistic rendering quality that is comparable to state-of-
the-art methods such as 4DGS and Gaussian-Avatar, while enjoying significant speed-up.

ABSTRACT

Reconstructing dynamic human hair is a crucial way to acquire high quality 3D
assets that empowers downstream tasks such as human avatars and animation.
Recently, several research works propose using strand gaussians to model human
hair, leading to superior reconstruction quality. However, their optimization al-
gorithms admit significant computational burden and typically take hours to days
reconstruct dynamic human hair from multi-view videos. We propose an efficient
and effective optimization method that is significantly faster compared to state-of-
the-art dynamic human hair reconstruction methods, while achieving comparable
reconstruction quality. The performance of our algorithm is demonstrated both
qualitatively and quantitatively on the public NeRSemble dataset.

1 INTRODUCTION

Reconstructing dynamic human hair is a core task for acquiring high-quality and natural hair assets,
which is crucial for modeling 3D talking heads or human avatars. Traditional methods model human
hairs with geometric primitives Paris et al.| (2004); Wei et al.| (2005)); Nam et al.| (2019), which admit
limited rendering quality. More recently, researchers propose using unstructured neural represen-
tations (e.g., NeRF and gaussian splattings), which ignores the inherent strand structure of human
hair, making it difficult to animate the reconstructed human hair. In light of this, multiple research

works [Luo et al.| (2024)); [Zakharov et al.| (2024)) propose using strand gaussians to represent human

hair, which achieves superior rendering quality while maintaining the strand structure.

However, dynamic human hair reconstruction typically involves optimization procedures that work
on high-resolution videos from tens or hundreds of cameras, which can take hours to days to process
on a single GPU. In this work, we propose a series of acceleration techniques that enjoy orders of
magnitude speed-up without sacrificing reconstruction quality.

Gaussian-based representation typically requires a large number of gaussians to accurately capture
the geometry and dynamics of objects. The complicated dynamic densification strategy makes it
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difficult to design acceleration strategy. In addition, strand gaussian representation imposes more
constraints between gaussians, adding an extra layer of complexity.

In this work, we propose using the sparsity-driven approach to accelerate the reconstruction of dy-
namic human hair. In short, we make several adjustment to the previous strand gaussian representa-
tion to promote decoupling, so that a large fraction of non-active variables can be faithfully detected
and isolated for a large fraction of the optimization procedure.

Looking at the rendering equation [Kerbl et al.| (2023)) of a specific camera pixel p

i—1
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where «; and ¢; is the final opacity and color of Gaussian. The accumulated transmittance term
T; requires a sorting of all gaussians that intersect with the camera ray through p, which makes
decoupling individual Gaussians difficult. Inspired by the sort-free representation proposed by Hou
et al.| (2024), we propose to replace the accumulated transmittance term with pixel-wise weighting
function that blends the color of gaussians according to their depth. An immediate advantage of this
modification is that once the weighting function is fixed, gaussians can be optimized independently.

We also observe that previous strand gaussian-based approaches spend a large fraction of time on
globally align the hair strands. Therefore, we apply a coarse-to-fine optimization strategy that grad-
ually densify the hair strands, significantly accelerating the convergence of the global alignment
phase. Bringing the optimization to a local adjustment regime.

In the local optimization regime, hair strand structure and pixel-wise weighting function admit less
changes and can be fixed for most of the time, suggesting that individual gaussians are independent
and can be treated as point gaussians. Hence, we design an active set method that maintains the
active gaussians. By leveraging the inherent sparsity of active gaussians, we iteratively optimize a
much smaller set of active gaussians while converging on the same number of iterations, leading to
a significant acceleration.

To sum up, our contributions are:

* We propose a novel dynamic human hair reconstruction methods via strand gaussians,
which to our knowledge is the first such method in the community.

* We propose multiple modifications to different stages of the optimization procedure, aiming
to promote sparsity-driven efficient optimization techniques.

* Our acceleration techniques greatly improve the computation efficiency without significant
loss of reconstruction quality. We achieved approximately a 5x speedup in static scenes
and about a 1.5x speedup in dynamic scenes compared to our non-optimized version.

2 RELATED WORKS

2.1 STATIC HAIR RECONSTRUCTION

Hair modeling has been recognized as a challenge in human avatar reconstruction, with repre-
sentations including geometric primitives, neural/volumetric representation. For geometric prim-
itives, [Paris et al.| (2004); [Wei et al.[(2005); Nam et al.| (2019)) utilize a sequence of line segments to
represent hair. Additionally, Takimoto et al.[(2024) uses guiding hair and differentiable rendering to
reconstruct internal hair flow. However, hair reconstruction with geometric representations remains
challenging when dealing with various hairstyles.

Some researches have employ neural representation to reconstruct hair. |Kuang et al.| (2022); [Wu
et al.| (2022) utilizes a neural implicit representation to query the hair geometry and generate hair
strands. In contrast, volumetric/point representation provides a way for hair modeling. [Rosu et al.
(2022) compresses the geometric and appearance information of hair into scalp texture and decoded
scalp texture into explicit hair representation. Furthermore, Sklyarova et al.| (2023) employes both
volumetric and strand-based representations to reconstruct hair. The 3DGS [Kerbl et al.| (2023) in-
troduces Gaussian volumes, providing an explicit representation for hair modeling. [Zakharov et al.
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(2024) decodes the implicit hair texture representation into 3D Gaussians. |Luo et al.|(2024) repre-
sents hair as a sequence of cylindrical 3D Gaussian primitives explicitly. However, the complexity
of hair motion makes it challenging to directly transfer static models to dynamic scene.

2.2 DYNAMIC HAIR RECONSTRUCTION

Dynamic hair reconstruction compresses hair deformation from videos. Xu et al.| (2014) combines
optical flow and the orientation map to represent the motion of the hair. [Liang et al.|(2018) retrieves
and matches hair deformations from a hair database based on morphable model (3DMM) [Blanz &
Vetter| (1999). Similarly, [Winberg et al.|(2022) utilize head mesh deformations to estimate the rigid
transformation of hair and further refine it. Wang et al.| (2022) utilize a hybrid neural volumetric
representation to modeling hair motion from the optical flow. Wang et al.[(2023) design a variational
auto-encoder (VAE) network to predict the implicit hair representation in time sequences. Explicit
3D Gaussian representations allow neural networks to directly predict the deformation compare with
the implicit representations. [Wang et al.| (2024a)) employes 3D Gaussians to represent the hair and
use a multilayer perceptron (MLP) network to predict non-rigid deformations of hair motion. |Qian
et al.| (2024) binds the hair representation in flame mesh. However, the representation using only
3D Gaussians is insufficient to accurately model the motion of complex hairstyles. Therefore, it is
essential to model hair deformation with explicit 3D Gaussians representation.

2.3 ACCELERATION

Recent researches have demonstrate that the 3DGS pipeline can be significantly accelerated. Some
works focus on reducing the number of Gaussians |Rota Bulo et al.| (2025); Fang & Wang| (2024));
Kheradmand et al.| (2024); [Lee et al.| (2024); Hanson et al.| (2024). C3DGS [Lee et al.| (2024) in-
troduces a learnable mask to eliminate Gaussians that contribute minimally to the final rendering
quality, Speedy-Splat Hanson et al.| (2024) applies both soft and hard pruning techniques for ac-
celerating. Other works |Girish et al.| (2025)); [Fan et al.| (2023); Wang et al.| (2024b); Mallick et al.
(2024) aim to minimize computational overhead and memory consumption through Gaussian prun-
ing, quantization, and efficient training strategies. EAGLES Girish et al.| (2025) adopts quantized
embeddings to reduce per-point memory usage and employs a coarse-to-fine training strategy. AdR-
Gaussian Wang et al.| (2024b)) accelerates 3DGS by culling of Gaussian-tile pairs with low opacity.
Additionally, Taming 3DGS Mallick et al.|(2024) combines with per-splat parallelized backpropaga-
tion to enable efficient training. DashGaussian |Chen et al.|(2025)) proposes a resolution scheduling
method which fits 3DGS to higher level of frequency in the optimization phase. Above researches
are mainly focus on point-based Gaussians, while there are hardly any research in strand Gaussians.

3 PRELIMINARY

In this section, we introduce the problem setting of dynamic hair reconstruction; the strand gaussian
representation and its rendering equation; and the data preparation pipeline.

Problem Setting. Given multi-view videos F = {F},..., Fis} from M views, where each F; €
RT*HXWXC is a stack of T image frames from a single-view video, H, W, C are height, width and
RGB channels, we aim to reconstruct the geometry and appearance of human hair. Following the
strand gaussian representation from [Luo et al.|(2024), we denote the geometry and appearance of
each hair strand as G; and A;, respectively. The geometrgy of a hair strand is represented by a series
of gaussians G; = {gi x|k = 1,..., K}, where g; . : R® — R is a spatial density function:
gin(z) = e,%(w,“)Tz—l(m,H)7 2)
where p and X are the center position and covariance matrix. The covariance matrix X =
RSSTRT is derived from the rotation matrix R and diagonal scaling matrix S = diag(d, d, s),
where d = 10~ represents the hair radius and s represents the hair length. To satisfy the geometric
constraint so that strand Gaussians are connected, the strand Gaussians satisfy the constraints:
1 1
pi + isidi = fit1 — §3i+1di+1a 3)

where d; is the third column of R, encoding the hair orientation direction. For convenience, we
define the endpoints of gaussians p; 1 = p; + %sidi. From the root of the hair on the scalp pg, we
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Figure 2: Our dynamic hair reconstruction algorithm takes multi-view videos and optimize for dy-
namic hair via strand gaussian representation. We bind the strand gaussians to scalp of FLAME face
mesh. Our hair model consists of a strand gaussian generation module that generate a coarse set of
guiding hair strands, followed by a refinement module that finetunes the interpolated hair strands for
better rendering quality. In addition, we adopt the sort-free rendering module and other modifica-
tions to significantly accelerate the computation.

can accumulate each strand gaussian to generate the hair strand. The appearance of the hair strand is
represented by a vector A; that consists of several attributes, including the opacity o;; € R™ and the

RGB color of each view direction encoded with degree-3 spherical harmonics (SH) h; € R¥ 3,

Rendering Strand Gaussian. Following the rendering equation of 3DGS |[Kerbl et al.| (2023), we
project the gaussian onto image space. The 2D covariance matrix can be derived by

Y =JwEswTjT, 4)

where J is the Jacobian matrix of the affine approximation of the projective transformation, and W
is the view transformation matrix. The rendering equation is similar as |1, where ¢; € R? is the
learned color. o is the final opacity which denoted as:

1 _
ot =ai- (3 (el - )" =7 @l - ) B

where @} and p are projected and center position in 2D space, and «; is the opacity.

Hair Perception. Dynamic hair reconstruction requires additional perception information to ensure
an accurate reconstruction of strand orientations. Therefore, we adopt perception model Yao et al.
(2024) to segment the hair regions for each video frame, resulting in a binary mask M}, € [0, 1]7>W,
We also adopt the Gabor filter method from [Zakharov et al.| (2024) to compute pixel-wise hair
orientation and confidence, denoted as Oy € R7*W*2 and O, € RE*W | respectively.

Dynamic Head Reconstruction. To disentangle the head motion and hair motion, we adopt
FLAME Liet al.|(2017) to track the head poses over each time steps, resulting in a template mesh M,
with predefined scalp region at each time step. During the reconstruction procedure, we fix the head
pose and grow hair strands from root points on the scalp to ensure an accurate hair reconstruction.

4 APPROACH

In this section, we first introduce in Section 4.1 a novel dynamic hair reconstruction algorithm via
strand Gaussians, which is adapted from state-of-the-art static hair reconstruction methods. We then
describe in Section[d.2]and Section[d.3]the optimization procedure and our acceleration method that
significantly improves the efficiency of the optimization procedure, respectively.
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4.1 DYNAMIC HAIR RECONSTRUCTION VIA STRAND GAUSSIANS

Inspired by the graphics industry to reduce the number of strands, we explicitly model a set of
coarse-grained optimizeable guiding hairs and densify them via interpolation. This strategy imposes
smoothness prior and greatly improves computation efficiency. Our hair model consists of two
components: 1) the strand generation module and 2) the refinement module. We will elaborate each
of the modules and describe the optimization procedure of dynamic hair reconstruction.

Strand Generation Module. To represent strand-wise geometry, appearance, and dynamics, we
work on a spatial-temporal space that combines the discretized scalp UV space and T time steps with
a total dimensionality |U| x |V'| x T'. To avoid optimizing a 4D tensor as large as |U| x |V| x T x D,
we use the K -Plane [Fridovich-Keil et al.|(2023) technique that combines pairwise position-encoded
features into strand-wise feature vectors C'(u, v, t) € RP¢. Specifically, we have

C(U, v, t) = Cuv(uv ’U) o vt(vv t) o ut(ua t) (6)

where o is element-wise multiplication, C, € RIUXIVIXDe r e RIVIXTXDc anq ¢, €
R|U\><T><Dc

While previous works such as [Zakharov et al.| (2024) and [Rosu et al.| (2022) propose to process C'
via a UNet architecture. We argue that such approaches unnecessarily entangle variables, making
it difficult to employ sparsity-driven optimization techniques. Instead, we propose to independently
process each strand-wise feature C'(u, v, t) using a MLP, resulting in strand-wise feature L; € RP~.

We adopt the strand geometry decoder and its pretrained weights from [Zakharov et al.| (2024) to
decode the strand geometry G;. Specifically, the geometry decoding network takes the first %
channels from the strand-wise feature L; and output the displacements {d;|j = 1, ..., K} of each
strand defined in equation[3] During optimization, the strand geometry decoder is frozen to implic-

itly impose a data-driven strand geometry prior and improve the optimization stability.

We also design a similar network for decoding strand appearance, which takes the last % chan-
nels from L; and outputs the spherical harmonic coefficients {h; € R*|j = 1,..., K} and the
confidence {y; € RT|j = 1,..., K} of the detected orientation from data preprocessing.

To improve the smoothness of hair strands and reduce computational complexity, we densify the
guiding hair strands by bilinear interpolation on the scalp UV space.

Refinement Module. While strand-based gaussians impose strong structural priors of human hairs,
they typically admit a gap in the reconstruction quality due to over-smoothing on the strand geometry
and the guiding hair strand interpolation mechanism. To mitigate this issue, we propose to add an
additional refinement module to the strand gaussians that allows each interpolated strand to slightly
vary in geometry and appearance. Specifically, we introduce a set of delta variables on the strand
position Av; ; and on the spherical harmonics coefficient vector Ah; for all interpolated hair strands.

4.2 OPTIMIZATION

The optimization procedure of our dynamic hair reconstruction algorithm is divided into the coarse
and the refine stage. We adopt the traditional 3DGS |Kerbl et al.| (2023) objectives £1 and Lssim,
which focuses on the rendering difference. To enforce the hair strand structure and appearance, we
introduce the silhouette loss £, 4 5% [Zakharov et al.|(2024) to constraint that the 2D projection of hair
strands matches the predicted hair segmentation mask. We also use the hair orientation direction de-
tected on images (see Hair Perception in Section 3 to regularize the 3D strand orientation direction
d;. To this end, we project each 3D orientation direction to pixel P and define the orientation loss

Np i—1
Lori=Y_ Y _Tidlai—0u(P)|, Ti=][(1-0¢}), D
P 1=1

j=1

where d? is the projected 2D orientation, similar to equation

Coarse Optimization Stage. During the coarse stage, we disable the refinement module and focus
on optimizing the strand generation module. The coarse optimization stage ends when the descent
amount of the objective function at a certain resolution is smaller than a predefined threshold e.



Under review as a conference paper at ICLR 2026

To improve stability of the optimization procedure, we add a smooth regularization term Lgyoom as
N L-1

Lsmooth = Z Z”Ui,jJrl - vi,j”» Vij+1 = Pij+1 — Pij (8)

i=0 j=1

The optimization objective function in coarse stage is

»Ccoa:se = »Cl + »CSSIM + »Cmask + »Cori + »Csmooth (9)

Refine Optimization Stage. Strand gaussians from the converging state of coarse optimization
exhibits reasonably good strand geometry and position, yet there is still a gap on the rendering
quality. The refine optimization stage freezes the strand gaussian generation module and finetunes
the strand geometry and appearance by introducing the delta strand positions Av; ; and the delta
appearance represented by spherical harmonics coefficients Ah;. We impose regularization terms
on the norm the delta variables and end up with an optimization objective for refine stage as

‘Creﬁne = £1 + £SSIM + Emask} + ﬁori + )\UHAUHQ + )\hHAh”Q (10)

4.3 ACCELERATION FOR DYNAMIC HAIR RECONSTRUCTION

We propose three modifications to the dynamic hair reconstruction algorithm introduced in Sec-
tion4.T|and[4.2] aiming to employ sparsity-driven efficient optimization techniques from traditional
machine learning optimization theory. The major motivation of all three modifications is to make
gaussian variables decoupled from each other, so that sparsity-driven approaches can freeze the
non-active gaussian variables and focus on a much smaller number of active ones.

Sort-Free Rendering. First, by looking at the rendering equation [I| We observe that for non-
transparent objects, the accumulated transmittance term 7' takes exponentially small value for the
occluded gaussians, leading to unnecessary coupling of variables. Inspired by the Sort-Free Gaus-
sians Splatting |[Hou et al.| (2024), we design a weighting module that takes a camera ray direction r
and a depth value d of a specific gaussian and outputs the weight w(r, d) to replace the accumulated

Zi w('fivd'i)c'i

transmittance term 7', leading to a new rendering equation C' = S wird) When the weighting

module is fixed, the optimization of ¢; can be decoupled.

Coarse-to-Fine Optimization. During the coarse optimization stage, it is difficult to decouple
gaussian variables as they are related by the strand structure and the motion. Therefore, we adapt
the classic coarse-to-fine optimization technique to accelerate this stage. We start with 256 guiding
hair strands on a discretized scalp UV space with |[U| = |V'| = 16. Once the optimization converges
with an objective value larger than €, we double |U| and |V| and restart the coarse optimization. The
coarse-to-fine strategy leads to roughly 1.5x speed-up in the coarse stage.

Active Set Optimization. With the previous modifications, we employ the active set strategy in the
late phase of the coarse stage and the entire refine stage by detecting active strands and gaussians,
respectively. For non-active strands and gaussians. We use pre-render technique to store the render-
ing images of all non-active variables. Thanks to the Sort-Free rendering, the final rendering image
is simply the addition of pre-rendered image and the rendering result of active strands and gaussians.
In the coarse stage, the active set strategy leads to 1.2x-1.5x speed-up. In the refine stage, the active
set strategy leads to 3x-4x speed-up in the static scene and 1.6x speed-up in the dynamic scene.

5 EXPERIMENTS

We presents an experimental evaluation of proposed approach, including comparable evaluation by
novel view synthesis and the ablation study.

5.1 EXPERIMENTAL SETUP

Dataset. We use the NeRSemble Kirschstein et al.| (2023) dataset for training and evaluation. The
recordings in NeRSemble are captured simultaneously from multiple viewpoints and include move-
ments of various parts of face. For each subject, we select 16 viewpoints that cover the hair regions
and downsample the images to a resolution of 550 x 802, which is one-quarter of the original size.
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Baselines. We consider two categories of baselines for static and dynamic hair reconstruction. For
static hair reconstruction, we quantitatively evaluate our method with point-based Gaussian methods
(3DGS [Kerbl et al.| (2023) and AdR-Gaussian Wang et al.| (2024b)) and a strand Gaussian method
(Gaussian-Haircut[Zakharov et al.| (2024))). For dynamic hair reconstruction, we evaluate our method
with four baselines: PointAvatarZheng et al.| (2023), 4DGS (2024), GaussianAvatars

(2024)), and Gaussian-Head-Avatars Xu et al.| (2024)). PointAvatar adopts a differentiable ren-
dering with a deformable point-based avatar representation. The last three are point-based Gaussian

methods. 4DGS optimizes point-based Gaussians in dynamic scenes, while GaussianAvatars and
Gaussian-Head-Avatars using point-based Gaussians with dynamic head representations.

Metrics. We adopt the evaluation metrics used in Kerbl et al.|(2023)), including LPIPS, SSIM, and
PSNR computed within the hair region, to assess rendering quality. The calculation of our region-
specific PSNR is provided in equation [TT] Notably, we exclude the facial region when computing
metrics within the hair area to more accurately evaluate the quality of hair reconstruction.

MAX? 1
PSNR = 101log,, (MSEI) . MSE= - > (R - GT; ;) (11)
(1,7)eM

where R and GT are rendered and ground truth image, M is the assemble that pixel coordinates in
hair region, containing /N pixels. We record the average training time to assess the efficiency.

Computational Resources. All experiments are executed on a single NVIDIA H800 GPU with 80
GB GPU memory.

Implementation Details. The detailed implementation settings are described in the Appendix [A]

5.2 EVALUATION & COMPARISON

Our comparisons consist of two parts: Static hair reconstruction and Dynamic hair reconstruction.

Static Hair Reconstruction. We utilize the images from 15 viewpoints for training, and randomly
select one of the remaining viewpoints as the test view. This random selection is repeated three
times, and the final performance is reported as the average over the three runs. We compared our
method with existing baselines: 3DGS [KerbI et al.|(2023), AdR-Gaussian[Wang et al.| (2024b), and
Gaussian-Haircut[Zakharov et al.|(2024). The results of subject 304 in NeRSemble are presented in
Figurg3]and TabldI] In terms of appearance, point-based Gaussian methods exhibit superior perfor-
mance, while Gaussian-Haircut Zakharov et al.| (2024) and our method achieve visually comparable
results. However, due to imprecise hair geometry, point-based Gaussian methods tend to produce
locally blurry regions, as illustrated in Figure 3]

Table 1: Results of static hair reconstruction quantitative comparison

Category Method PSNR(NVS) 1T SSIM(NVS)t LPIPS(NVS) | runtime(s) |
Point 3DGS [Kerbl et al.|(2023] 24.96 0.8955 0.0823 259.0
AdR-Gaussian|Wang et al.|(2024b 24.88 0.8949 0.0771 212.3
Strand  Gaussian-Haircut|Zakharov et al.|(2024 23.70 0.8746 0.0860 7184
Ours 24.52 0.8472 0.0876 1793

Ground truth

Figure 3: The comparing results of hair rendering on novel view for static methods. From left to
right represents the ground truth, the results of 3DGS, AdR-Gaussian, Gaussian-Haircut, our method
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For efficiency evaluation, we measure the average training runtime. Benefiting from the simplicity
of the point-based representation, 3DGS and AdR-Gaussian|[Wang et al.| (2024b))
demonstrate better training efficiency. Nonetheless, the strand Gaussian representation excels in
dynamic hair reconstruction, as it better incorporates structural constraints of hair. While our method
is slower than point-based Gaussian approaches, it achieves improved training efficiency compared
to Gaussian-Haircut and delivers a fourfold acceleration, as reported in Table|[T]

Dynamic Hair Reconstruction. We conduct experiments with subject 304 in the NeRSemble

dataset [Kirschstein et al.| (2023)), comparing with four baselines: Point-Avatar [Zheng et al.| (2023)),
4DGS [Wu et al.| (2024), Gaussian-Avatar (2024), and Gaussian-Head-Avatar Xu et al.

(2024)(Note: for efficiency, we truncate the iterations times of Gaussian-Head-Avatar to limit train-
ing time). Similar to static hair reconstruction, we evaluate using both appearance and efficiency
metrics. Due to its point-based representation and fixed point size, Point-Avatar yields the worst
performance for appearance metrics. Additionally, 4DGS demonstrates inferior appearance quality
compared to Gaussian-Avatar and Gaussian-Head-Avatar, primarily because it lacks the structural
prior provided by the FLAME mesh. The FLAME mesh offers an effective initialization for dy-
namic modeling, requiring only the prediction of 3D Gaussian deformations relative to the mesh.
Consequently, both Gaussian-Avatar and Gaussian-Head-Avatar achieve better appearance quality
than 4DGS. However, they do not consistently outperform 4DGS in Figure ] as hair in these meth-
ods is constrained to the underlying mesh, limiting their ability to represent dynamic hair motion
accurately. In contrast, our strand Gaussian, which grows from the scalp mesh, enables more flex-
ible and accurate modeling of hair deformations. As shown in Table [2] and Figure 4] our method
achieves the best appearance results for dynamic hair reconstruction. Due to page limitations, the
hair reconstruction results of other subjects are provided in the Appendix [A]

Table 2: Results of dynamic hair reconstruction quantitative comparison
Category Method PSNR(NVS)?  SSIM(NVS)t LPIPS(NVS)|  runtime(s) |

Point Point-Avatar [Zheng et al.|(2023 17.65 0.8102 0.1687 4825

4DGS Wﬁ@ 18.36 0.8595 0.1519 3727

Gaussian-Avatar|Qian et al.| 21.14 0.8881 0.1018 12836

Gaussian-Head-Avatar|Xu et al. |( 21.76 0.8753 0.1271 11620

Strand Ours 24.28 0.8790 0.0964 4397
Ground truth Gaussian-Avatar Point-Avatar 4DGS Gaussian-Head-Avatar Ours

000000
AN

AN

Figure 4: The comparing results of hair rendering on novel view for dynamic methods. From left
to right represents the ground truth, the results of Gaussian-Avatar, Point-Avatar, 4DGS, Gaussian-
Head-Avatar, and our method

We incorporate a sparsity-driven module, which yields faster performance than Point-Avatar,
Gaussian-Avatar, and Gaussian-Head-Avatar, with only a marginal slowdown compared to 4DGS.
However, it is challenging to determine whether the observed appearance quality arises from the
method itself or from extended training duration. We present the PSNR-over-time curve with one
viewpoint in Figure 5] where the y-axis represents PSNR and the x-axis denotes time. As shown in
Figure[5] our method achieves the best performance among the four baselines.

8
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Figure 5: Dynamic hair reconstruction quantitative comparison on PSNR and training time

5.3 ABLATION STUDY

We evaluate three components of our method to validate their efficiency and effectiveness.

K -Plane Module in UV Grid Space. We replace the K-Plane module with position-encoded coor-
dinates in UV space across 7' time steps to evaluate our method. The evaluation results for different
time steps are shown in the left sub-table of Table[3] The appearance quality achieved by our method
with the K-Plane module is clearly superior, as the position-encoded coordinates in UV space and
T time steps fail to capture temporal information across the sequence.

Refinement Module. We evaluate the effectiveness of the refinement module. We remove the re-
finement module and measure the resulting appearance quality. The evaluation results are presented
in the right sub-table of Table (3| As shown, the appearance quality is significantly improved when
the refinement module, while it enables more accurate modeling of the temporal deformation of hair.

Sparsity-driven Acceleration. We adopt a coarse-to-fine strategy combined with scalp-grid spar-
sity, while keeping the maximum grid resolution unchanged in coarse stage. In refine stage, we
employ a pre-rendering technique to accelerate the rendering process. As the number of training im-
ages is too large to pre-render all frames in dynamic scene, we render Gaussians only in the active
set. For the inactive Gaussians, we fix the gradients during backpropagation to further reduce com-
putational overhead. As illustrated in in Figure[6] our sparsity-driven design leads to approximately
an 50% improvement in training efficiency for static scene and 60% for dynamic scene.

Table 3: Ablation study results on K -Plane module in grid space (left) and refinement module (right)

Grid PSNR(NVS)T  SSIM(NVS)} LPIPS(NVS)| Refinement PSNR(NVS)}  SSIM(NVS)!  LPIPS(NVS)|
x 20.40 0.8705 0.1077 x 24.94 0.8998 0.0779
v 2387(+347) 0.8933 (+0.0228) 0.0845 (-0.0232) v 25.27(+0.33)  0.9037(+0.0039)  0.0737(-0.0042)

26
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Figure 6: The results of ablation study on sparsity-driven acceleration. The left shows the static
reconstruction while the right shows the dynamic reconstruction

6 CONCLUSION AND LIMITATIONS

Conclusion. In this work, we present the first to our knowledge dynamic hair reconstruction method
via strand gaussian representation. In addition, we made multiple modifications to promote the
sparsity-driven approaches, which significantly improves the computation efficiency.

Limitations. The current acceleration techniques have limited effect for the coarse stage optimiza-
tion since the initialization for hair strand geometry are poor. We thus believe that by improving the
hair perception model or employing large reconstruction model for human hairs, the total compu-
tation time of the coarse optimization stage can be greatly reduced, leading to much better relative
improvement on the computation time for our proposed acceleration techniques.
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8 REPRODUCIBILITY STATEMENT

We affirm that the experiments reported in this work are reproducible. To facilitate verification and
replication of our results, we have provided the implementation details in Appendix |A|and source
code in the supplementary materials. The included code allows reviewers to reproduce the main
experiments and confirm the conclusions presented in this manuscript.
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A APPENDIX

Brief Introduction.The appendix is structured into three main sections: experiment settings, sup-
plementary experiments, and experimental statistical analysis. The main contents are as follows:

Experiment Settings. We use Adam [Kingma & Ba| (2017) for parameter optimization. We set
the learning rate to 10~ for the spatial-temporal feature query network and appearance decoder in
coarse stage, 1.6 x 1076 for the position and keep the same learning rates as 3DGS [Kerbl et al.
(2023) in refine stage. We set the loss weight 0.1 to orientation, 0.1 to mask, and 0.05 for hair
smoothness. We train the 20000 iterations for coarse stage and 10000 iterations for refine stage. In
the first 10000 iterations, we conduct coarse-to-fine method and last 10000 for active set method.
Additionally, we conduct the active method in the whole refine stage. In our method, the number of
hair strands is set to 20,000, with each strand consisting of 100 nodes, corresponding to 99 Strand
Gaussians per strand. The root nodes of our hair strands are generated from the scalp, which is
derived from fixed index positions on the FLAME|Li et al.|(2017) mesh.

Supplementary Experiments. We evaluate both static and dynamic hair reconstruction using two
additional subjects from the NeRSemble dataset.

In static hair reconstruction, the results of subject 199 in NeRSemble are shown in Figure /| while
Figure [§] presents the results for subject 214. The enlarged local regions of the images demonstrate
that strand Gaussians provide a more effective representation of hair appearance.

In dynamic hair reconstruction, the results for one participant are shown in Figure [9] whereas Fig-
ure[I0| presents the results for the other. The results of dynamic hair reconstruction demonstrate that
strand Gaussians effectively maintain structural consistency throughout motion, leading to improved
performance in both geometric accuracy and appearance representation.

In the previous section, we present experimental results on subject 304, 199 and 214. Addition-
ally, we provide quantitative appearance experimental results of dynamic hair reconstruction for
three more subjects 104, 226 and 293 in Table 4] and three more viewpoints 222200038, 222200042
and 221501007 in Table 5| In the experiment, we compare our method with two top-performing
baselines: Gaussian-Avatar and Gaussian-Head-Avatar.

Table 4: Results of dynamic hair reconstruction quantitative comparison with more subjects

Subject Method PSNR(NVS)T SSIM(NVS)T LPIPS(NVS)|
104 Gaussian-Avatar [Qian et al.|(2024) 22.65 0.9501 0.0903
104 Gaussian-Head-Avatar |Xu et al.|(2024) 22.19 0.9388 0.1154
104 Ours 23.88 0.9025 0.0893
226 Gaussian-Avatar|Qian et al.|(2024) 20.29 0.9114 0.0909
226 Gaussian-Head-Avatar Xu et al.[(2024) 20.59 0.9055 0.1254
226 Ours 21.62 0.9063 0.0774
293 Gaussian-Avatar|Qian et al.|(2024) 25.61 0.9659 0.0376
293 Gaussian-Head-Avatar |Xu et al.|(2024) 26.16 0.9629 0.0555
293 Ours 26.79 0.9691 0.0321

B STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, We employed a Large Language Model (LLM) to assist with
language refinement. The model was used exclusively for purposes of improving grammar, clar-
ity, and stylistic coherence. No substantive modifications were made to the research content, data
analysis, or conclusions.

All intellectual contributions, including the conceptual framework, methodology, data collection,
analysis, and interpretation of results, are solely our own responsibility. The use of the LLM does
not diminish the originality, independence, or academic integrity of this work.
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Table 5: Results of dynamic hair reconstruction quantitative comparison with more viewpoints for
subject 304

viewpoints Method PSNR(NVS)T SSIM(NVS)T LPIPS(NVS)J)
222200038 Gaussian-Avatar Qian et al.|(2024) 23.55 0.9236 0.0947
222200038 Gaussian-Head-Avatar|Xu et al.|(2024) 22.70 0.9165 0.1077
222200038 Ours 24.19 0.9282 0.0715
222200042 Gaussian-Avatar Qian et al.|(2024) 20.81 0.8719 0.1243
222200042  Gaussian-Head-Avatar|Xu et al.|[(2024) 21.70 0.8721 0.1524
222200042 Ours 21.76 0.8777 0.1049
221501007 Gaussian-Avatar Qian et al.|(2024) 20.27 0.8850 0.1560
221501007 Gaussian-Head-Avatar|Xu et al.|[(2024) 22.13 0.8888 0.1264
221501007 Ours 22.81 0.8906 0.1112
3DGS AdR-Gaussian Gaussian-Haircut Ours
Ground truth PSNR: 28.51 PSNR: 28.59 PSNR: 24.55 PSNR: 25.41
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Figure 7: The comparing results of static methods for subject 199. From left to right represents
the ground truth, the results of 3DGS, AdR-Gaussian, Gaussian-Haircut, our method. For better
displayment, we increase brightness for partial enlarged images

3DGS AdR-Gaussian Gaussian-Haircut Ours
PSNR: 24.51 PSNR: 24.53 PSNR: 23.90 PSNR: 24.60

Ground truth

Figure 8: The comparing results of static methods for subject 214. From left to right represents
the ground truth, the results of 3DGS, AdR-Gaussian, Gaussian-Haircut, our method. For better
displayment, we increase brightness for partial enlarged images
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Ground truth Gaussian-Avatar Point-Avatar 4DGS Gaussian-Head-Avatar Ours
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Figure 9: The comparing results of dynamic methods for subject 199. From left to right represents
the ground truth, the results of Gaussian-Avatar, Point-Avatar, 4DGS, Gaussian-Head-Avatar, and
our method. For better displayment, we increase brightness for partial enlarged images

Ground truth Gaussian-Avatar Point-Avatar 4DGS Gaussian-Head-Avatar  Ours

NA

PSNR: 20.92 PSNR: 22.59 PSNR: 20.44 PSNR: 24.75
NA

PSNR: 23.69 PSNR: 22.31 PSNR: 20.88 PSNR: 26.39
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PSNR: 17.94 PSNR: 24.61

PSNR: 24.34 PSNR: 22.83

Figure 10: The comparing results of dynamic methods for subject 214. From left to right represents
the ground truth, the results of Gaussian-Avatar, Point-Avatar, 4DGS, Gaussian-Head-Avatar, and
our method. NA indicates that the methods (4DGS) failed in this reconstruction task. For better
displayment, we increase brightness for partial enlarged images
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