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ABSTRACT

In-context learning (ICL) has emerged as a flexible paradigm, enabling large
vision-language models (LVLMs) to perform tasks by following patterns demon-
strated in context exemplars. While prior work has focused on improving ICL
performance across multimodal tasks, little attention has been paid to its poten-
tial to amplify societal stereotypes. This study aims to fill this gap by system-
atically investigating how ICL influences societal biases, with a focus on gender
bias, in LVLMs. To this end, we propose a comprehensive evaluation frame-
work comprising six ICL settings and evaluate four LVLMs across two tasks. Our
findings indicate that ICL could amplify gender bias, while female-presenting in-
context examples generally do not exacerbate bias and may even mitigate it. In
contrast, similarity-based retrieval methods, originally designed to improve ICL
performance, fail to consistently reduce gender bias in LVLMs. To mitigate gen-
der bias through ICL, we propose a provisional approach that replaces natural
in-context images with synthetic ones. This method achieves lower gender bias
while maintaining stable performance on standard quality metrics. We advocate
for the pre-deployment assessment of gender bias in the context for LVLMs and
call for the advancement of ICL strategies to promote fairness on downstream
applications.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) are one of the most popular multimodal extensions of
Large Language Models (LLMs) (Manevich & Tsarfaty, 2024). Unlike earlier frameworks (e.g.,
CLIP (Radford et al., 2021) and BLIP (Li et al., 2022)), recent LVLMs (OpenAI, 2023; Yao et al.,
2024; Bai et al., 2025) are equipped with significantly larger architectures, which are pre-trained on
a massive set of diverse datasets and usually encompassing billions of parameters. Similar to LLMs,
this upgrade in parameter size and training scale allows LVLMs to exhibit in-context learning (ICL),
the ability to adapt their output based on a few example demonstrations provided in the input through
prompt design (Brown et al., 2020), requiring no additional fine-tuning.

The key idea of ICL is analogy-driven inference (Dong et al., 2024), where models predict based on
contexts augmented with the given examples. Recently, LVLMs (Alayrac et al., 2022) are able to
take interleaved image-text data as input, allowing ICL with simultaneous visual and textual cues.
Comparing to training a model with supervised fine-tuning (SFT), leveraging ICL has the advantage
of being much simpler in utilization and cheaper in deployment, as it requires no parameter updates
but only a small number of demonstration examples, thus enables efficient adaptation to a wide
range of tasks, including image captioning (Vinyals et al., 2015), visual question answering (Antol
et al., 2015), and visual grounding (Plummer et al., 2015; Bai et al., 2023). A substantial body of
work (Brown et al., 2020; Wei et al., 2022b; Zhang et al., 2023b; Zhou et al., 2024) has explored
the potential of ICL. However, large-scale models are also prone to perpetuating harm. Prior work
has highlighted the serious gender bias of LVLMs, raising critical concerns about their real-world
impact (Bender et al., 2021; Howard et al., 2024a). Furthermore, biased context are found to exac-
erbate these issues by amplifying underlying model biases during inference (Chuang et al., 2023).
These findings naturally lead to the question: How does ICL influence gender bias in LVLMs?
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To address this question, we propose a comprehensive evaluation framework with six ICL settings,
specifically designed to examine how ICL influences LVLMs’ inferences regarding gender bias.
Using this framework, we conduct experiments on four state-of-the-art LVLMs across two tasks. Our
results demonstrate that ICL can amplify gender bias; however, this amplification may sometimes
be obscured by the internal safety filters of the models, suggested by the lower reveal rate during
image captioning. Moreover, our analysis reveals a consistent pattern: female-presenting in-context
examples exert a more positive effect on mitigating gender bias than male-presenting examples. This
is because introducing female in-context examples helps counterbalance the LVLMs’ biased priors
against females. On the contrary, similarity-based example selection methods are found not helpful
in reduction of gender bias. Having established the impact of ICL on gender bias, we further explore
bias mitigation through ICL. By replacing natural images in the context with synthetic ones while
keeping all other conditions unchanged, we observe reduced gender bias alongside with stable task
performance.

2 GENDER BIAS IN LVLMS

Task Formalization To examine how ICL influences the manifestation of gender bias in LVLMs,
we conduct experiments on two different tasks: image captioning and pronoun prediction. Both tasks
share a common structure: the input comprises both image and text, and the prediction is obtained
from the model’s generated output, either as a token sequence or as a probability distribution over
the next token.

Formally, given a datasetD = {(Ii, yi)}Ni=1 containing N image-text pairs where Ii denotes the i-th
image and yi denotes ground-truth label, a modelMD which has been trained on dataset D takes a
query image Ii from D as input and generates a sequence of tokens ŷi as output:

ŷi ← PMD (yi | Ii). (1)

Here PMD denotes the predicted probability of MD and the usage of ”←” denotes a certain de-
coding strategy, e.g., greedy search. For a LVLM M that has been pretrained and fine-tuned for
instruction-following on a variety of datasets, the model is able to directly take a query image as
input conditioned on a task-specific text prefix such as an instruction pt for task t, without requir-
ing any additional dataset-specific training on D; an output then can be sampled from the output
distribution ofM. This corresponds to the zero-shot setting, formalized as:

ŷi ← PM(yi | Ii, pt). (2)

The ICL setting enables LVLMs to incorporate demonstrations into their input and generate outputs
conditioned on them; this is regarded as the few-shot setting. Specifically, under this setting, a few
examples, usually sampled from the task datasetDt, are directly prepended to the context of LVLMs
in order to improve their performance on downstream tasks. We formalize a k-shot ICL (e.g., ICL
with k examples) as:

ŷi ← PM(yi | Skt , Ii, pt), (3)

where Skt = {(I1, y1), . . . , (Ik, yk)} denotes a sequence of in-context demonstrations sampled from
Dt. By systematically varying the in-context sequence Skt across carefully designed variants, we are
able to isolates and investigate how context modulates gender bias.

A Systematic Study of Societal Bias in ICL To reliably evaluate gender bias in LVLMs, we em-
ploy a dataset Dt consisting of natural images paired with human-provided annotations, formally
represented as Dt = {(Ii, yi, gi)}Ni=1. Here gi ∈ {male, female} denotes the binary gender at-
tribute of the i-th sample. We restrict the gender attributes to binary categories following previous
work (Zhao et al., 2017; Hendricks et al., 2018; Hirota et al., 2023). We acknowledge that this is a
simplified assumption and does not capture the full spectrum of social identities.

To examine how in-context examples affect gender bias under different ICL settings, we design four
selection strategies used for constructing a k-shot context Skt :

1. Random Sample (RS): RS constructs Skt by uniformly sampling image-text pairs from the
available samples in Dt. This selection method ensure that the selected examples follow a
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similar distribution from Dt, and has been commonly used as a baseline in prior work on
in-context example selection (Zhang et al., 2023a; Yang et al., 2024).

2. Male-only Sample (MS): MS constructs Skt for ICL by sampling only from the male-
presenting (e.g., images with clearly identifiable male figures) subset {(Ii, yi, gi), gi =
male} of Dt.

3. Female-only Sample (FS): FS constructs Skt for ICL by sampling only from the female-
presenting subset {(Ii, yi, gi), gi = female} of Dt.

4. Balanced Sample (BS): BS randomly selects an equal number (k/2) of male-presenting
and female-presenting examples. The selected examples are then interleaved in an alternat-
ing gender order to construct Skt .

This comparison framework is motivated by the hypothesis that attribute-consistent contexts can am-
plify pre-existing societal bias in LVLMs by reinforcing group-specific priors and could be weaken
under a balanced context. We compare two additional similarity-based retrieval methods introduced
in (Li et al., 2024) and (Yang et al., 2024) as our baseline:

5. Similarity-based Image-Image Retrieval (SIIR): SIIR selects k in-context image-text
pairs from Dt based on the highest image-to-image cosine similarity with the query image.
Specifically, the cosine similarity is calculated between image features obtained from a
frozen CLIP model (Radford et al., 2021).

6. Similarity-based Image-Text Retrieval (SITR): SITR computes the similarity between
the query image and all text inDt, and selects the top-k image-text pairs whose text is most
similar to the query image in the CLIP semantic space. Similar to SIIR, SITR also rank the
samples according to the cosine similarity which is calculated between textual features and
the query image features, all of which are obtained from a frozen CLIP model.

Although similarity-based retrieval methods have not been previously applied to gender bias anal-
ysis in LVLMs, they are the only few studies that explore in-context example selection for vision-
language tasks (Yang et al., 2024), and have demonstrated effectiveness in enhancing ICL perfor-
mance. These six ICL settings are illustrated in Figure 1.

3 QUANTIFY GENDER BIAS IN ICL

3.1 DATASETS

We summarize the datasets in Table 2 in Appendix B.1. Each task utilize a task-specific prefix pt
and interprets the model’s output accordingly. Details regarding the task prompt are shown in C.1.

Image Captioning: COCOBIAS We use the annotated subset of MSCOCO (Chen et al., 2015),
which contains human-annotated social attributes, released by Zhao et al. (2021); we refer to it as
COCOBIAS. It comprises 10,780 images from the MSCOCO-2014 validation split, and each image
is annotated with a binary gender label, e.g., male or female. We use YOLOv11-Large (Ultralytics,
2022) to detect persons (confidence ≥ 0.7) and count detections per image; image–caption pairs
with more than one detected person or without explicit gender words (see Appendix B.2) in the
caption are excluded. From the remaining data, we perform a stratified split leveraging the gender
labels, allocating 40% to the training set and 60% to the test set. We then down-sample the test set
to ensure equal numbers across the binary labels. In this way, the training set retains the distribution
of the original annotated set, whereas the validation set is balanced across classes.1 For image
captioning, models are required to generate textual description of the query image During evaluation,
the predicted gender attribute is inferred from the generated caption, leveraging the lists of pre-
defined feminine and masculine words (Appendix B.2).

1We apply the same procedure (e.g., splitting the data into training and test set with 40% / 60% ratio
respectively, and down-sampling the test split) to VISOGENDER to ensure that the training set preserves the
distribution of the original data, while the validation set remains balanced with respect to social attributes.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

LVLM...

Context

O
utput

LVLM
Context

O
utput

...

...

Context

LVLM

O
utput

O
utput

LVLM
Context

...

1. Random Sample 2. Male-only Sample

3. Female-only Sample 4. Balanced Sample

Female Example Female Text

Male Example Male Image

Female Image

Male Text  Query Image

LVLM

O
utput

Context

Training Set Text

CLIP

R
ankSelect

LVLM

O
utput

Training Set Images

CLIP

R
ankSelect

Context

... ...

5. Image-Image Retrieval 6. Image-Text Retrieval

Figure 1: The proposed example-selection framework consisting of six ICL settings. Here we refer
to all examples in these ICL settings as image-caption pairs; for simplicity and clarity, task-specific
instructions are not shown in this illustration. LVLM and CLIP models are frozen during the infer-
ence.

Pronoun Prediction: VISOGENDER The VISOGENDER (Hall et al., 2023) dataset contains
690 images of people in 23 occupational settings. Each image is annotated by human annotators
with binary gender labels. Using these annotations, templated captions that describe the possessive
pronoun relationship are constructed. For each occupation, two template forms are provided:

OO a single-subject image with a possessive pronoun referring to a typical professional object
(e.g., the doctor and his/her stethoscope).

OP a two-subject image with a possessive pronoun referring to a participant in a prototypical
professional relationship (e.g., the doctor and his/her patient).

Each templated caption comprises three components: an occupation term, a pronoun reflecting
the perceived gender presentation, and either an object or a participant. We denote the two cor-
responding subsets as VISOGENDER-OO (occupation–object) and VISOGENDER-OP (occupa-
tion–participant). The VISOGENDER-OP subset is generally regarded as more challenging than
VISOGENDER-OO, as it involves more complex interactions. In our experiments, we utilize all ex-
isting images from the dataset, resulting in a total of 670 samples. During inference, given a query
image (e.g., an image of a doctor) and a corresponding task-prefix pt (such as An image of a doctor
and ), We check the probability distribution over the next generated token and obtain the probabil-
ities of the pronouns his and her. The difference between these probabilities naturally reflects the
model’s preference for the gender attribute, and the pronoun with the higher predicted probability is
taken as the predicted gender.

3.2 EVALUATION METRICS

Bias Evaluation Metrics Given a protected attribute of interest, a natural strategy to quantify bias
is to compute the performance disparity between its subgroups with respect to a chosen evaluation
metric. Following Hirota et al. (2023) and Jung et al. (2024), we utilize the mismatch rates (Hen-
dricks et al., 2018) to evaluate the gender bias level, defined in Equation 4 (Jung et al., 2024).
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Here, Dm
t and Df

t denote the corresponding male-presenting and female-presenting subsets of Dt,
MRo denotes the overall misclassification rate, and MRc denotes the composite misclassification
rate derived from MRo. When evaluating a task, we use MRc and MRm − MRf as the metrics
for quantifying gender bias. A larger MRc indicates a higher overall level of gender bias, while
MRm − MRf > 0 suggests that the model is more biased toward male-associated samples, and
MRm −MRf < 0 suggests a stronger bias toward female-associated samples.

MRm =
1

|Dm
t |

|Dm
t |∑
i

1{ĝi = gi}, MRf =
1

|Df
t |

|Df
t |∑
i

1{ĝi = gi}

MRo =
1

|Dt|

|Dt|∑
i

1{ĝi = gi}, MRc =
√

MR2
o + (MRm −MRf )2 . (4)

Performance Metrics For image captioning performance evaluation, we utilize reference-based
metric BLEU-4 (Papineni et al., 2002; Post, 2018) that require human-written captions as ground-
truth references. Reference-based metrics are widely used to evaluate image captioning models,
yet they often exhibit inconsistencies with human judgments. In addition to them, we also apply a
reference-free metric, CLIP-Score (Hessel et al., 2021), which relies on the image-text matching of
the pre-trained CLIP (Radford et al., 2021). CLIP-Score has been shown to correlate more strongly
with human judgment than reference-based metrics (Hirota et al., 2023). In addition, we incorporate
the CHAIR metric (Rohrbach et al., 2018), a rule-based measure of object hallucination in caption
generation, into our evaluation. Specifically, we report ChairS, which denotes the proportion of
captions that contain hallucinated objects. A higher ChairS indicates lower truthfulness of the model.

Statistical Metrics For image captioning, we additionally report two statistics: average caption
length and reveal rate. The average caption length is the mean number of words in the generated
captions across all evaluated samples, serving as a coarse indicator of stylistic similarity to the ref-
erence captions. The reveal rate measures the proportion of samples for which the LVLM explicitly
uses a gendered expression during inference. These two statistics offer complementary context: a
caption length closer to that of the reference set suggests greater stylistic similarity, while a lower
reveal rate suggests that the LVLM tends to avoid gender-specific references by using gender-neutral
terms such as person instead of man, which reduces the observable signal for gender attribution and,
in turn, lowers the reliability of our bias estimates.

3.3 EXPERIMENT SETTINGS

LVLMs We adopt four widely used LVLMs QwenVL (Bai et al., 2023), MiniCPM-o 2.6 (Yao
et al., 2024) (MiniCPM), Qwen2.5-VL-7B-Instruct (Bai et al., 2025) (Qwen2.5VL), and Idefics3-
8B-Llama3 (Laurençon et al., 2024) (Idefics3) for our experiments; these models support interleaved
image-text inputs, making them well-suited for evaluation under multimodal ICL settings.

Inference Details Our experiments are conducted under k-shot settings, where k ∈ {0, 2, 4, 6, 8}.
All experiments adopt greedy search as the decoding strategy during LVLM inference. We repeat
the experiment for the first four ICL settings in our proposed framework five times with five inde-
pendently sampled in-context sequences Skt from the training set. For ICL settings SIIR and SITR,
since the in-context examples are retrieved deterministically, each setting is conducted only once.
More details regarding the sampling procedure is described in the Appendix C.3.

4 EXPERIMENT RESULTS AND ANALYSIS

We show the experiment results on COCOBIAS and VISOGENDER, in Figure 2 and Figure 3.

Bias Rooted in LVLMs Our results reveal that LVLMs carry their own biased perspective.
Specifically, on COCOBIAS, three out of the four models demonstrate a consistent bias toward
the female category, as reflected by MRm−MRf < 0 under the zero-shot setting. Similar pattern is
observed on VISOGENDER-OP, where all models present higher misclassification rate on female
test samples. Even without any context, LVLMs are more prone to errors on particular subgroups.
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Figure 2: Gender bias evaluation on all six ICL settings for COCOBIAS dataset. Here we report
standard gender bias metrics MRm −MRf and MRc. Revealm − Revealf denotes the reveal rate
difference between male and female test samples.

Female In-Context Examples Mitigates Gender Bias We observe that incorporating female-
only examples in the context mitigates gender bias in both COCOBIAS (Figure 2) and
VISOGENDER-OP (Figure 3b). In COCOBIAS, for QwenVL and Idefics3, both MRc and
MRm − MRf are more favorable under the FS setting than under MS setting. For MiniCPM and
Qwen2.5VL, the performance gap between MS and FS is less pronounced; nevertheless, the female-
only setting still outperforms the BS setting on both gender bias evaluation metrics for MiniCPM. On
VISOGENDER-OP, female-only in-context examples consistently lead to lower gender bias levels
across all models compared to male-only examples. Even on VISOGENDER-OO, a comparatively
simple task, the female-only setting achieves lower bias levels than the male-only counterpart. These
results suggest that the composition of in-context examples can significantly influence the degree of
gender bias across different tasks, with female-only contexts consistently showing relatively favor-
able outcomes.

Does ICL amplify gender bias? Prior work shows that skewed in-context examples can induce
biased outputs (Hirota et al., 2023). However, for LVLMs, two factors complicate this picture. First
of all, different LVLMs present different level of prior bias, suggesting by different bias performance
under zero-shot setting (for example, MRc = 0.66 for MiniCPM while MRc = 3.19 for Idefics3
on COCOBIAS), indicating different model-dependent propensities for bias amplification under
ICL. Secondly, a model’s reveal propensity moderates how strongly in-context influence appears at
the surface; for a model that is reluctant to reveal gender information, which could be a behavior
pattern reinforced during its pre-training stage (e.g., Qwen2.5VL only has a reveal rate around 35%),
introducing more in-context examples has limited influence on the model’s output, as such low
reveal rate could mask context effects on internal preferences. By contrast, for models with high
reveal rate such as QwenVL, bias amplification with larger k is pronounced: both MRc and MRm−
MRf increase with k (Figures 2). Furthermore, Figure 3a and Figure 3b reveal a clear trend: as k
increases, the bias level becomes increasingly polarized. Analyzing token-level logits, rather than
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Figure 3: Gender bias evaluation on the first four ICL settings for VISOGENDER dataset. We report
standard gender bias metrics MRm −MRf and MRc. We omit the experiments on SIIR and SITR
for this dataset, as they are not applicable under the pronoun prediction setting.

only the generated captions, provides a more direct view of the decision-time preferences from the
LVLMs and uncovers a more consistent pattern of bias amplification across models. In summary,
ICL could have a gender bias amplification effect in the model’s predictive distribution; however, this
amplification may be partly obscured at the surface level by safety filters, or low reveal tendencies
during generation.

Correct Wrong
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W
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=
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3
all male

9
7 female + 2 male

1577 8
all female

Figure 4: Error anal-
ysis between MS and
FS settings on QwenVL.
Here the random seed for
picking Skt is the same
for both settings.

What mistakes do LVLMs make? We compare the experimental
results between the MS and FS settings for QwenVL in Figure 4. Across
both settings, the LVLM tends to make more errors on female-presenting
samples. However, incorporating female in-context examples reduces
the number of mistakes made on female samples comparing to using
male in-context examples, e.g., decreasing the number from 15 to 7, as
shown in Figure 4. This further highlights the advantage of female in-
context examples and helps explain their role in mitigating gender bias
amplification. More examples can be found in the Appendix C.5.

Retrieval-based Methods are not Helpful SIIR and SITR are de-
signed to retrieve samples similar to the query image with the goal
of improving ICL performance. However, as shown in Figure 2, for
Qwen2.5VL and Idefics3, applying SIIR and SITR does not reduce gen-
der bias as k increases. For QwenVL, both methods further ampli-
fying gender bias under the ICL setting. In terms of overall perfor-
mance, retrieval-based methods also provide little benefit, as BLEU,
CLIP-Score, and ChairS remain stable (Table 1 and tables in Appendix C.6). These findings suggest
that SIIR and SITR may not serve as reliable, one-size-fits-all strategies across different LVLMs.

Invariant of Caption Quality Metrics As shown in Table 1 and Appendix C.6, the fluency of
generated image captions remains largely consistent across different values of k, with caption quality
metrics yielding similar scores. The truthfulness of the generated captions, evaluated by ChairS, is
also stable with varying values of k. On the other hand, the level of gender bias varies with k as
shown in Figure 2 and Figure 3, revealing the sensitivity of bias-related behaviors to the choice of in-
context demonstrations, and the consistency of quality-wise performance. In addition, when k ≥ 2,
the use of ICL has minimal impact on the average caption length and ChairS, regardless of the ICL
setting or the specific value of k, further suggesting that variations in caption quality or truthfulness
across different k values are unlikely to serve as reliable indicators of gender bias levels. This
underscores that relying solely on caption quality metrics to evaluate ICL in the image captioning
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task is insufficient, as such metrics fail to capture the internal changes induced by variations in
in-context examples.

5 MITIGATE GENDER BIAS THROUGH ICL

Our mitigation goal is only scoped to the ICL stage. At test time, the controllable factors in ICL are
(i) how in-context examples are selected and (ii) the content of those examples. To isolate the effect
of the visual modality, we keep the example selection methods as well as the captions unchanged
and replace original images with synthetic images. We utilize text-to-image Stable Diffusion Models
(SDMs) to generate synthetic images with textual prompts. We evaluate the first four ICL settings
described in Section 2 focusing on QwenVL and MiniCPM, since they exhibit the highest reveal
rates among all models. Specifically, given a dataset Dt consisting of N image-caption pairs, we
utilize the captions as input to a SDM to generate corresponding synthetic images, thus forming a
synthetic dataset Ds of synthetic image-caption pairs. Subsequently, we replicate the experimen-
tal procedures, except that the in-context examples are now sampled from Ds rather than Dt. We
employ two SDMs, FLUX (Black-Forest-Labs, 2024) and Stable Diffusion-3.5-Large (SD35L) (Sta-
bilityAI, 2024), to generate synthetic images. More details are in the Appendix C.4.
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Figure 5: Results of experiments using the syn-
thetic datasets. We report the MRc here.

The gender bias performance comparison is
shown in Figure 5, and the quality performance
results of ICL with synthetic images are pre-
sented in Table 6 from the Appendix C.7. Over-
all, using synthetic image-caption pairs helps
mitigate gender bias in ICL, while hardly af-
fect the generated caption quality. This effect is
more prominent when using MiniCPM, where
the MRc scores obtained from synthetic image-
caption pairs are consistently lower than those
derived from the original COCOBIAS image-
caption pairs. For QwenVL, using synthetic images with original captions also reduces gender bias,
though the effect is less pronounced compared to MiniCPM. The experimental results from the two
synthetic image–caption datasets generated from two distinct models exhibit similar trends across
varying k, suggesting that the generated images are drawn from closely aligned distributions and
thus demonstrate reproducibility across SDMs. Such superiority of using synthetic images could
stem from several factors. For example, images generated by SDMs tend to emphasize specific re-
gions or visual concepts, whereas natural images often contain broader and more complex scenes.
We also observe that in COCOBIAS, the person in a natural image is not always centrally positioned,
while in synthetic images, the generated person is more likely to appear prominently in the center.
This more focused visual composition in synthetic images may facilitate the model’s recognition of
gender-related cues.

6 RELATED WORK

Bias Mitigation in LVLMs Societal bias, such as gender bias and racial bias, has been observed
and studied across a variety of vision-and-language tasks, including image captioning (Amend et al.,
2021; Hirota et al., 2022b; Tang et al., 2021), text-to-image search (Wang et al., 2021), and visual
question answering (Hirota et al., 2022a). For instance, Janghorbani & de Melo (2023) show that
multimodal models present societal stereotype against minorities with regard to religion, national-
ity, sexual orientation, or disabilities; Hirota et al. (2024) demonstrate that LVLMs can exacerbate
gender bias and hallucination to downstream tasks. For image captioning, Hendricks et al. (2018)
show that the imbalanced problem in MSCOCO dataset (Chen et al., 2015) could lead to incorrect
captions; Zhao et al. (2021) show that both gender and skin-tone bias have an impact on the bias
level of the generated caption. The dual-modality nature of these multimodal tasks poses unique
challenges, as biases may arise from either the image, the text, or their interaction. A series of sub-
sequent studies tries to mitigate the problem (Wang et al., 2021; Berg et al., 2022; Zhang & Ré, 2022;
Howard et al., 2024b); yet methods on addressing societal bias in LVLMs are still lacking, as most
of the prior research studies Vision-Language Models (VLMs) such as CLIP (Radford et al., 2021).
Among the few existing trails that focus on debiasing LVLMs, Zhang et al. (2024) propose post-hoc
methods that calibrate the logits during the generation procedure of LVLMs; similarly, Ratzlaff
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et al. (2024) also propose a post-hoc method which utilize an inference-time steering mechanism to
control the generated output from LVLMs on-the-fly. However, the effectiveness of such post-hoc
methods has faced criticism due to their inconsistent performance across tasks, and may even fail in
certain scenarios (Niranjan et al., 2025; Yin et al., 2025).

Table 1: Performance and statistical evaluation on COCOBIAS for
QwenVL. The results for the rest of the models can be found in the Ap-
pendix C.6. ChairSm and ChairSf represent the ChairS evaluation for
male and female examples. For ∆ChairS = ChairSm − ChairSf , values
closer to zero indicate lower bias level. AvgL represents the average num-
ber of words in the caption, and CLIP denotes CLIP-Score.

ICL k BLEU ↑ CLIP ↑ AvgL Reveal↑ ChairSm ChairSf ∆ChairS

RS

0 46.01 31.77 10.54 95.65 2.74 2.86 −0.12
2 46.25 31.72 10.56 95.55 2.88 2.62 0.26
4 46.39 31.71 10.51 95.48 2.69 2.65 0.05
6 46.46 31.70 10.47 95.47 2.72 2.46 0.26
8 44.49 31.95 11.23 96.02 4.31 4.15 0.17

MS

2 46.27 31.72 10.56 95.59 2.86 2.57 0.29
4 46.35 31.73 10.52 95.54 2.67 2.60 0.07
6 46.33 31.72 10.47 95.55 2.57 2.65 −0.07
8 44.30 32.00 11.25 95.96 4.67 3.96 0.72

FS

2 46.25 31.74 10.56 95.51 2.81 2.69 0.12
4 46.48 31.71 10.53 95.52 2.65 2.69 −0.05
6 46.58 31.70 10.47 95.48 2.72 2.36 0.36
8 44.41 31.98 11.26 95.95 4.43 3.98 0.45

BS

2 46.22 31.72 10.57 95.48 2.88 2.74 0.14
4 46.33 31.73 10.54 95.51 2.65 2.65 0.00
6 46.39 31.71 10.49 95.46 2.72 2.57 0.14
8 44.05 31.98 11.29 96.20 4.53 3.62 0.91

SIIR

2 46.17 31.75 10.57 95.59 2.50 2.62 −0.12
4 45.95 31.73 10.54 95.65 2.62 2.86 −0.24
6 46.24 31.70 10.51 95.83 2.50 2.50 0.00
8 43.33 31.95 11.26 96.07 4.65 5.84 −1.19

SITR

2 46.22 31.75 10.55 95.53 3.10 2.62 0.48
4 46.18 31.71 10.52 95.47 2.50 2.74 −0.24
6 46.48 31.71 10.49 95.35 2.62 2.26 0.36
8 44.46 31.99 11.23 95.89 4.05 3.69 0.36

ICL for LVLMs
ICL is a setting (Wei
et al., 2022a) that
is originally used
in natural language
tasks (Brown et al.,
2020), defined as a
paradigm that allows
language models to
learn tasks given only
a few examples in
the form of demon-
stration (Dong et al.,
2024). Inspired by the
advances of LLMs in
ICL (Wei et al., 2022b;
Zhang et al., 2023b;
Wu et al., 2023), re-
searchers have begun
to extend the idea
to other modalities.
Some initial studies
explored ICL in purely
visual settings, where
vision models perform
visual tasks (e.g., seg-
mentation, detection)
via image inpainting,
conditioned on a few
image demonstrations
without task-specific
fine-tuning (Bar et al., 2022; Zhang et al., 2023a). More recently, with the propose of multimodal
models that are enabled with vision-language ICL (Alayrac et al., 2022; Liu et al., 2023; Zhu
et al., 2024), arguably due to their training on interleaved image-text datasets (Baldassini et al.,
2024; Laurençon et al., 2023; Li et al., 2023; Zhao et al., 2024) and massive model architectures,
increasing efforts have been devoted to enhancing the ICL performance in these LVLMs (Doveh
et al., 2024; Zhou et al., 2024). Still, the mechanisms of how ICL impacts LVLMs during the
generation procedure are not yet well understood (Baldassini et al., 2024; Li, 2025). While a few
efforts have been devoted to optimizing in-context sequences to enhance ICL performance, such as
retrieving representative examples (Yang et al., 2023; Li et al., 2024) or training a small assistant
model for sample selection and ranking (Yang et al., 2024), these approaches do not aim to mitigate
the societal biases presented in LVLMs. To the best of our knowledge, this is the first study to
analyze how LVLMs exhibit and amplify gender bias in ICL.

7 CONCLUSION AND DISCUSSION

We design a comprehensive framework to test how ICL could have an impact of the gender bias
level of LVLMs. We conduct experiments on four widely applied LVLMs and two distinct tasks.
Experiment results show that ICL could amplify gender bias, while female in-context examples
generally do not extend gender bias and may even mitigate it. Furthermore, we show that previous
methods originally designed to improve ICL performance fail to consistently reduce gender bias in
LVLMs and might even amplify it. To mitigate gender bias through ICL, we propose a provisional
approach that replaces natural in-context images with synthetic ones. This method achieves lower
gender bias while maintaining stable performance on standard quality metrics.

9
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ETHICS STATEMENT

We follow the ICLR Code of Ethics. Our evaluation is limited to binary gender labels, primarily due
to the constraints of the available datasets. We acknowledge that gender is not inherently binary and
emphasize the importance of extending future research to incorporate more inclusive gender repre-
sentations. Moreover, while our work employs SDMs to generate synthetic images, we recognize
that such models may themselves encode and propagate biases from their training data.

REPRODUCIBILITY STATEMENT

TO ensure the reproducibility of our study, we have:

1. only used publicly available dataset COCOBIAS (Zhao et al., 2021) and VISOGEN-
DER (Hall et al., 2023),

2. clearly showed the procedure of data-splitting and experiments,
3. only utilized open-source models throughout the experiments,
4. presented the parameter settings for experiments in the Appendix,
5. presented the prompts that we utilized to conduct each task.

The codes to reproduce the experiments will be released in the future.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used an LLM solely as a language editing tool to improve the clarity and fluency of the
manuscript. The LLM was not involved in research ideation, experimental design, data analysis,
or interpretation of results. All scientific contributions and experiments were conducted entirely by
the authors.

B ADDITIONAL DETAILS ON DATASETS

B.1 DATASET DETAILS

Table 2: summary of the datasets that we used in the experiments. Train Len. and Test Len. denote
the average number of words in the demonstration text. These values are omitted for VISOGEN-
DER, as it only relies on template-based constructed captions.

Dataset COCOBIAS VISOGENDER-OO VISOGENDER-OP

Attribute Male Female Male Female Male Female

Train Size 1,260 630 46 46 92 92
Test Size 839 839 69 69 126 130

Train Len. 10.73 10.75 - - - -
Test Len. 10.73 10.81 - - - -

B.2 WORD LISTS USED IN COCOBIAS

The word lists are extended from the ones used by Hirota et al. (2023).

Masculine

• man
• men
• male
• father
• gentleman
• gentlemen
• boy
• boys

• uncle
• husband
• actor
• prince
• waiter
• son
• he
• his

• him
• himself
• brother
• brothers
• guy
• guys
• emperor
• emperors

• dude

• dudes

• boyfriend

• chairman

• policeman

• policemen

• groom

Feminine

• woman
• women
• female
• lady
• ladies
• mother
• girl

• girls
• aunt
• wife
• actress
• princess
• waitress
• daughter

• she
• her
• hers
• herself
• sister
• sisters
• queen

• queens
• pregnant
• girlfriend
• chairwoman
• policewoman
• policewomen
• bride
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C FURTHER EXPERIMENT DETAILS

C.1 PROMPTS FOR PERFORMING IMAGE CAPTIONING

The prompt for image captioning task is simply Describe the image with one
sentence.. The text prefix for pronoun prediction task strictly follows the definition used in
VISOGENDER dataset (Hall et al., 2023). Please refer to the original paper for more details.

C.2 HARDWARE SETTINGS

All experiments are performed on NVIDIA A100, with each experiment running on a single
GPU. FlashAttention2 (Dao, 2024) is enabled for all models except for QwenVL.

C.3 SAMPLING DETAILS

The sampling procedure is designed such that the k-shot and (k + 2)-shot settings share the first k
examples in their respective sequences. Specifically, for a given sampling seed from range(100,
105), we first sample a sequence S20t containing 20 examples. For each value of k, we then
obtain the corresponding in-context sequence by slicing the first k elements from S20t such that
Skt = S20t [:k] .

C.4 IMAGE GENERATION DETAILS

For each model, we adopt the recommended default values for most parameters; for instance,
num inference steps is set to 28 for SD35L and 50 for FLUX. The resolution of all generated
images is fixed to 512× 512 to ensure consistency across models; the max sequence length is
set to 512 and the guidance scale is set to 3.5.

C.5 COMPARISON BETWEEN MS AND FS SETTINGS

We further show the comparison between MS and FS settings with different Skt , sampled using
different random seeds in Figure 6.
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(b) MiniCPM
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(c) Qwen2.5VL
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Figure 6: Comparison between MS and FS settings with different Skt . Here the random seed for
picking Skt is kept the same for both settings.

C.6 ALL QUALITY PERFORMANCE AND STATISTICAL EVALUATION
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Table 3: Performance and statistical evaluation on COCOBIAS for MiniCPM.

ICL k BLEU ↑ CLIP ↑ AvgL Reveal ChairSm ChairSf ∆ChairS

RS

0 21.44 33.05 18.89 84.56 6.67 5.72 0.95
2 25.74 33.37 16.63 77.38 4.98 4.48 0.55
4 26.29 33.35 16.23 74.83 5.24 4.43 0.81
6 25.96 33.22 16.56 75.49 4.74 4.39 0.41
8 26.37 33.19 16.29 75.48 5.20 4.34 0.86

MS

2 26.25 33.33 16.43 77.60 4.93 4.24 0.69
4 27.07 33.35 16.17 80.12 4.86 4.46 0.50
6 26.00 33.26 16.48 75.78 5.15 4.82 0.38
8 27.00 33.28 16.19 77.12 4.72 4.36 0.36

FS

2 25.01 33.39 16.94 77.62 5.27 4.70 0.76
4 26.06 33.32 16.60 78.12 4.79 4.65 0.67
6 26.05 33.32 16.70 78.81 4.86 4.70 0.31
8 26.90 33.25 16.25 73.00 4.67 4.62 0.43

BS

2 25.03 33.32 16.98 77.33 5.24 4.65 0.64
4 26.92 33.29 16.37 78.74 5.20 4.84 0.36
6 26.20 33.18 16.50 78.47 4.74 4.31 0.57
8 26.90 33.22 16.20 78.69 4.60 4.46 0.29

SIIR

2 24.83 33.36 16.96 77.12 5.84 4.41 1.43
4 26.78 33.31 16.51 79.08 5.13 4.89 0.24
6 26.18 33.17 16.61 77.77 4.65 5.01 0.36
8 25.53 33.10 16.55 75.33 5.24 5.48 0.24

SITR

2 24.80 33.41 16.93 77.29 5.72 4.65 1.07
4 25.85 33.37 16.52 76.70 5.72 4.29 1.43
6 26.23 33.32 16.36 78.07 5.84 4.29 1.55
8 26.64 33.26 16.26 76.76 4.65 4.53 0.12

Table 4: Performance and statistical evaluation on COCOBIAS for Qwen2.5VL.

ICL k BLEU ↑ CLIP ↑ AvgL Reveal ChairSm ChairSf ∆ChairS

RS

0 17.61 33.25 18.65 33.37 5.36 4.05 1.31
2 21.16 33.46 17.14 50.94 5.10 4.39 0.72
4 17.40 33.13 18.18 33.44 4.86 3.41 1.45
6 18.56 33.25 17.63 30.74 4.82 3.34 1.48
8 20.14 33.28 16.88 34.41 4.53 3.53 1.00

MS

2 21.08 33.46 17.27 48.20 4.74 4.43 0.31
4 17.12 33.21 18.24 36.02 4.96 3.34 1.62
6 18.34 33.21 17.84 29.69 5.13 3.38 1.74
8 20.13 33.30 16.97 34.65 4.70 3.91 0.79

FS

2 20.58 33.43 17.43 47.95 5.13 4.22 0.91
4 17.16 33.12 18.34 34.16 4.84 3.38 1.45
6 18.80 33.24 17.67 34.41 5.17 3.65 1.53
8 21.02 33.25 16.64 34.48 4.70 3.60 1.10

BS

2 20.57 33.45 17.53 49.07 4.86 4.53 0.33
4 17.48 33.13 18.36 34.64 4.98 3.55 1.43
6 18.81 33.22 17.66 35.09 4.79 3.53 1.26
8 20.24 33.30 16.86 40.01 4.98 3.74 1.24

SIIR

2 21.28 33.51 17.18 52.98 4.53 4.29 0.24
4 17.46 33.24 18.37 41.42 4.53 3.69 0.83
6 19.38 33.33 17.61 40.76 5.01 3.69 1.31
8 21.14 33.40 16.72 46.54 5.24 3.22 2.03

SITR

2 21.19 33.46 17.23 51.25 4.41 4.41 0.00
4 17.33 33.15 18.22 35.22 4.77 3.46 1.31
6 19.00 33.24 17.51 31.94 4.41 3.58 0.83
8 20.63 33.28 16.69 37.19 4.53 3.58 0.95

C.7 ICL WITH SYNTHETIC IMAGES CAPTION QUALITY PERFORMANCE
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Table 5: Performance and statistical evaluation on COCOBIAS for Idefics3.

ICL k BLEU ↑ CLIP ↑ AvgL Reveal ChairSm ChairSf ∆ChairS

RS

0 10.79 27.12 16.20 72.59 5.96 4.53 1.43
2 11.04 27.23 16.18 75.10 5.74 4.55 1.19
4 10.93 27.20 16.21 75.64 6.03 4.91 1.12
6 10.97 27.14 16.15 73.99 5.96 4.43 1.53
8 11.03 27.16 16.04 74.10 5.89 5.01 0.88

MS

2 11.06 27.21 16.21 75.86 7.15 5.36 1.79
4 11.04 27.21 16.21 74.74 5.74 4.60 1.14
6 10.92 27.17 16.17 73.93 5.70 4.53 1.17
8 11.00 27.16 16.01 73.78 5.74 4.43 1.31

FS

2 11.19 27.21 16.14 76.52 5.98 4.91 1.07
4 11.08 27.20 16.26 75.97 6.27 4.93 1.33
6 11.22 27.20 16.19 76.28 5.91 4.98 0.93
8 11.05 27.16 16.13 74.62 6.48 5.01 1.48

BS

2 11.07 27.22 16.22 77.62 5.94 5.15 0.79
4 11.04 27.22 16.20 76.32 6.13 4.98 1.14
6 10.97 27.20 16.24 76.70 6.41 5.48 0.93
8 11.05 27.17 16.18 77.21 5.84 4.89 0.95

SIIR

2 11.24 27.24 16.23 76.82 6.44 5.36 1.07
4 11.17 27.21 16.31 77.12 7.27 5.01 2.26
6 11.23 27.18 16.29 77.65 7.87 5.24 2.62
8 11.33 27.21 16.18 77.29 5.96 5.48 0.48

SITR

2 11.17 27.17 16.11 75.03 5.13 4.65 0.48
4 11.06 27.20 16.14 73.96 6.08 4.65 1.43
6 10.97 27.17 16.07 74.55 6.32 4.77 1.55
8 10.99 27.13 16.06 75.09 5.72 4.77 0.95

Table 6: Quality performance and statistical evaluation on COCOBIAS for QwenVL and MiniCPM
with synthetic images. For each ICL setting, the reported results are obtained by averaging across
different numbers of shots.

model Images ICL BLEU-4 CLIP AvgL Reveal

QwenVL

MSCOCO

RS 45.90 31.77 10.69 95.62
MS 45.82 31.79 10.70 95.66
FS 45.94 31.78 10.70 95.60
BS 45.74 31.78 10.72 95.65

FLUX

RS 46.00 31.81 10.67 95.59
MS 45.91 31.81 10.69 95.75
FS 45.91 31.81 10.69 95.50
BS 45.74 31.82 10.70 95.78

SD35L

RS 46.01 31.80 10.68 95.60
MS 45.95 31.81 10.69 95.71
FS 45.97 31.81 10.70 95.56
BS 45.83 31.81 10.71 95.82

MiniCPM

MSCOCO

RS 26.09 33.28 16.43 75.80
MS 26.58 33.30 16.32 77.65
FS 26.00 33.32 16.62 76.89
BS 26.26 33.25 16.51 78.31

FLUX

RS 21.81 33.16 17.85 67.55
MS 21.99 33.21 17.86 70.60
FS 21.80 33.17 17.90 67.74
BS 21.62 33.15 18.00 70.73

SD35L

RS 22.70 33.19 17.58 69.26
MS 22.72 33.27 17.68 72.51
FS 22.04 33.18 17.79 67.80
BS 22.06 33.15 17.86 72.26
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