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Abstract001

Pre-trained vision-language models (VLMs),002
such as CLIP, have demonstrated impressive003
capability in visual tasks, but their fine-tuning004
often suffers from bias in class-imbalanced005
scene. Recent works have introduced large006
language models (LLMs) to enhance VLM007
fine-tuning with supplementing semantic in-008
formation. However, they often overlook in-009
herent class imbalance in VLMs’ pre-training,010
which may lead to bias accumulation in down-011
stream tasks. To address this problem, this012
paper proposes a Multi-dimensional Dynamic013
Prompt Routing (MDPR) framework. MDPR014
constructs a comprehensive knowledge base015
for classes, spanning five visual-semantic di-016
mensions. During fine-tuning, the dynamic017
routing mechanism aligns global visual classes,018
retrieves optimal prompts, and balances fine-019
grained semantics, yielding stable predictions020
through logits fusion. Extensive experiments021
on long-tailed benchmarks, including CIFAR-022
LT, ImageNet-LT, and Places-LT, demonstrate023
that MDPR achieves comparable results with024
current SOTA methods. Ablation studies fur-025
ther confirm the effectiveness of our semantic026
library for tail classes, and show that our dy-027
namic routing incurs minimal computational028
overhead, making MDPR a flexible and effi-029
cient enhancement for VLM fine-tuning under030
data imbalance.031

1 Introduction032

Pretrained Vision-Language Models (VLMs), such033

as CLIP (Radford et al., 2021), have demonstrated034

remarkable capabilities in visual tasks by leverag-035

ing cross-modal knowledge with tuning techniques036

(Khattak et al., 2023; Zhou et al., 2022a). However,037

the fine-tuning of VLM under imbalanced down-038

stream data exhibits significant bias (Wang et al.,039

2024), i.e., models favor many-sampled class opti-040

mization while under-performing on few-sampled041

classes, as shown in Figure 1(b) and (c). Lately,042
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Figure 1: Illustration of how MDPR alleviate the bias.
To address the (a) unknown imbalance in the pre-
training of VLMs and (b) the long-tailed distribution in
downstream data, which jointly lead the (c) accuracy
bias in fine-tuning, (d) MDPR constructs comprehensive
knowledge using offline LLM generation, and designs a
dynamic prompt routing mechanism to enhancing fine-
tuning methods with de-biasing the predictions.

Large language Models (LLMs) are introduced to 043

enhance VLM tuning, which faces two fundamen- 044

tal questions: (1) What semantic information from 045

LLMs is effective in alleviating distributional bias? 046

(2) How to leverage augmented information during 047

the fine-tuning process? 048

To address VLMs’ performance bottlenecks in 049

data-scarce scenarios, prior works leverage LLMs 050

for class-level semantic enhancement, sample syn- 051

thesis, and open-world concept expansion. For 052

semantic enhancement, LLMs generate discrimi- 053

native prompts to improve inter-class separability 054

(Zheng et al., 2024). For sample synthesis, LTGC 055

(Zhao et al., 2024) guides diffusion models to syn- 056

thesize tail-class samples. For concept expansion, 057

PerVL (Cohen et al., 2022) and Custom Diffusion 058

(Kumari et al., 2023) enable open-set generaliza- 059

tion via text descriptions. However, these methods 060

often overlook intrinsic VLMs’ biases, leading to 061
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cumulative bias during fine-tuning, and rely on062

static prompts or costly generative models, lim-063

iting adaptability. This necessitates an efficient064

framework for dynamic LLM-VLM interaction in065

fine-tuning.066

To enhance the effectiveness of LLM knowl-067

edge in fine-tuning VLMs under imbalanced distri-068

butions, we propose Multi-dimensional Dynamic069

Prompt Routing (MDPR), as illustrated in Figure070

1(d). Specifically, to address the implicit imbalance071

present during the VLM pre-training phase, MDPR072

firstly introduces a multi-dimensional prompt con-073

struction strategy. During training, it leverages074

zero-shot VLMs to extract and construct a prompt075

pool for each class, capturing five distinct dimen-076

sions: general appearance, fine-grained appear-077

ance, functionality, contextual information, and078

differential features. This multi-faceted prompt079

design helps mitigate prior biases for classes. Sub-080

sequently, in the dynamic prompt routing stage, it081

further alleviates the impact of imbalanced data082

by implementing global visual-class alignment, dy-083

namic routing-based visual-prompt matching, and084

fine-grained semantic balancing. This process gen-085

erates predictions from multiple perspectives, and086

robust results are achieved through a logit fusion087

mechanism. As an effective enhancement archi-088

tecture, the proposed MDPR can be flexibly in-089

tegrated with various VLM fine-tuning methods.090

The codes are available in https://anonymous.091

4open.science/r/MDPR-328C/README.md.092

To evaluate the effectiveness of the proposed093

MDPR, we conducted extensive experiments on094

three long-tailed visual recognition benchmarks,095

namely CIFAR-100-LT, ImageNet-LT, and Places-096

LT. The experimental results demonstrate that097

MDPR, through the comprehensive prompt con-098

struction and dynamic routing mechanisms, effec-099

tively mitigates class imbalance biases in both pre-100

trained models and downstream data, achieving101

robust performance improvements across head and102

tail classes while maintaining high compatibility103

with existing fine-tuning frameworks. The primary104

contributions of this work are:105

• We propose a plug-and-play framework for106

VLM’s fine-tuning, termed MDPR, which107

addresses the challenge of joint imbalance108

through dynamic prompt routing, achieving109

efficient performance enhancement.110

• We propose a multi-dimensional prompt con-111

struction approach, which systematically en-112

hances the semantic understanding of VLMs 113

by integrating five semantic dimensions, sig- 114

nificantly mitigating inherent biases in pre- 115

trained models. 116

• We validate the versatility of MDPR with dif- 117

ferent tuning methods, and it improves perfor- 118

mance across three benchmarks with minimal 119

additional parameters or time, particularly en- 120

hancing recognition of tail classes. 121

2 Related Works 122

2.1 Pretrained Model Fine-tuning under 123

Long-tailed Distribution 124

Long-tailed data distributions challenge pretrained 125

model fine-tuning, often leading to a bias to- 126

wards head classes and impairing generalization 127

to tail classes. Traditional strategies such as 128

re-balancing (Shi et al., 2024; Tan et al., 2020; 129

Cui et al., 2019), information augmentation (Xu 130

et al., 2023; Li et al., 2024), and Mixture-of- 131

Experts (MoE) models (Fedus et al., 2022; Zhang 132

et al., 2023) offer foundational solutions. More 133

recently, novel fine-tuning approaches for mul- 134

timodal pretrained models have been explored. 135

Cross-modal collaborative fine-tuning enhances 136

minority class representations via visual-semantic 137

contrastive learning and feature alignment (Chen 138

et al., 2024). Parameter-efficient fine-tuning 139

(PEFT) techniques, including adapter tuning (Kim 140

et al., 2024) and prompt tuning (Dong et al., 2022), 141

aim to adjust for minority classes with minimal 142

backbone alteration, mitigating overfitting. Further- 143

more, knowledge transfer and distillation lever- 144

age priors from large pretrained models, employing 145

teacher-student paradigms or cross-domain trans- 146

fer to bolster tail class robustness (Rangwani et al., 147

2024).While these fine-tuning strategies address 148

long-tailed distributions from various angles, many 149

focus on re-weighting samples/losses or adapting 150

model parameters. In contrast, MDPR introduces 151

an explicit, structured semantic knowledge base 152

and a dynamic routing mechanism, offering a com- 153

plementary pathway to directly enhance the seman- 154

tic understanding and discriminative capability for 155

classes, especially those in the tail. 156

2.2 LLM-Enhanced Visual Representation 157

Learning with Limited Samples 158

Large Language Models (LLMs) have enriched vi- 159

sual learning in data-scarce scenarios like few-shot 160

and long-tailed recognition. Research primarily 161
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explores three directions: Category semantic en-162

hancement. For fine-grained or underspecified la-163

bels, LLaMP (Zheng et al., 2024) employs LLMs to164

generate descriptive prompts, improving inter-class165

separability. ArGue (Tian et al., 2024) integrates166

visual attributes and common sense semantics to167

guide prompt refinement. These methods typically168

yield a single, albeit enhanced, textual representa-169

tion per class. MDPR, however, constructs a multi-170

dimensional prompt pool for each class, capturing171

diverse semantic facets, and dynamically selects172

from this pool based on image context, offering173

greater representational richness and adaptability.174

Sample generation. In imbalanced settings, LLMs175

produce detailed descriptions to steer text-to-image176

(T2I) models for synthesizing tail-class samples,177

as in LTGC (Zhao et al., 2024). While effective178

for data augmentation, such approaches often incur179

significant computational overhead from generative180

models and may not directly enhance the VLM’s in-181

trinsic understanding. MDPR, instead, focuses on182

efficiently enriching the VLM with pre-computed183

semantic knowledge, rather than relying on exter-184

nal sample generation. Concept expansion. LLMs185

facilitate modeling novel concepts in open-world186

settings. PerVL (Cohen et al., 2022) uses LLMs187

to generate personalized descriptions, extending188

VLM vocabularies. These methods primarily target189

open-set generalization or T2I generation. MDPR,190

while also leveraging LLM-derived knowledge, is191

specifically designed as a plug-and-play module192

to improve fine-tuning performance on closed-set,193

long-tailed recognition tasks by dynamically rout-194

ing pre-defined, multi-faceted class semantics.195

3 Method196

3.1 Overview197

To alleviate biases in the fine-tuning of VLMs,198

the proposed Multi-dimensional Dynamic Prompt199

Routing (MDPR) routes a visual-semantic knowl-200

edge base to enhance representation learning. Fig-201

ure 2 shows the framework of MDPR, which com-202

prises two synergistic modules: 1) The multi-203

dimensional prompt construction module generates204

a comprehensive knowledge base by designing five-205

dimensional prompts for LLM. 2) The dynamic206

prompt routing module enhances the utilization of207

the knowledge and provides de-biasing predictions.208

MDPR could serve as a flexible plug-and-play mod-209

ule, capable of seamless integration into existing210

fine-tuning methods.211

3.2 Multi-dimensional Prompt Construction 212

To address potential inherent class biases in pre- 213

trained VLMs, MDPR designs a class-specific 214

prompt knowledge base spanning multiple seman- 215

tic dimensions. The knowledge base endows VLMs 216

with deeper understanding of classes, especially for 217

distinguishing similar classes or prior tail classes 218

in pre-training data. 219

3.2.1 Visual-Language Prompt Design 220

Since a single class name often fails to capture 221

the complex visual attributes of certain class, es- 222

pecially rare or nuanced concepts in real-world 223

data. Recent works (Tan et al., 2024; Zheng et al., 224

2024) have explored using prompts that incorporate 225

knowledge from LLMs or word knowledge to en- 226

hance visual representation learning. Based on this 227

line of research, we conduct a review of existing 228

prompting strategies and make a five-dimensional 229

classification of prompts. 230

Moreover, considering the prior bias inherent in 231

VLMs, we introduce an additional prompt dimen- 232

sion termed differential features. Given a dataset 233

with C classes, we first construct a confusion ma- 234

trix K using CLIP’s zero-shot predictions on the 235

training set. For each class, the most frequently 236

confused class is selected as the target for generat- 237

ing differential features, which may reflect biases 238

in the model’s pretraining distribution. To this end, 239

the knowledge we includes following dimensions: 240

General Appearance (GA): Typical visual fea- 241

tures of the class, such as color, shape, and size 242

(Tian et al., 2022; Tan et al., 2024). 243

Fine-grained Appearance (FA): Focuses on more 244

specific local details and textures crucial for distin- 245

guishing sub-class or similar objects (Zheng et al., 246

2024; Tan et al., 2024; Zhao et al., 2024). 247

Functionality (FT): Articulates the primary func- 248

tion, purpose, or role of the class object in specific 249

activities (Tian et al., 2024). 250

Contextual Information (CI): Depicts the com- 251

mon background environments, associated objects, 252

or typical scenarios where the class object is usu- 253

ally found (Tian et al., 2024; Zhao et al., 2024). 254

Differential Features (DF): Highlights unique 255

characteristics by contrasting the class with one 256

or more easily confusable similar classes. 257

For each class c, we obtain a set of prompts 258

Pc = {pc,v}
Vdim
v=1 , covering Vdim prompts. The de- 259

tailed prompt generation procedure and the choice 260

of LLM are elaborated in Appendix B. 261
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Figure 2: The framework of MDPR, which consists of two stages. The offline Multi-dimensional Prompt Con-
struction builds a knowledge-base for enhancing semantics. The online Dynamic Prompt Routing aggregation the
pre-learned knowledge for debias the predictions. Here we use CoOp (Zhou et al., 2022b) for an example.

3.2.2 Knowledge Base Construction262

The generated prompts are diverse from classes to263

dimensions, we then send the prompts to VLMs for264

organizing a class-specific knowledge base. The265

text encoder Et(·) of a frozen CLIP encodes pc,v266

for v-th dimension prompt of class c into a d-267

dimensional feature f cvp = Et(pc,v), where d is268

the latent dimension of CLIP.269

The encoded features combine as multi-270

dimensional prompt features fp ∈ RC×Vdim×d. To271

obtain a more general class-level semantic repre-272

sentation, the Vdim dimensional prompt features273

f cvp are averaged to f cavg ∈ Rd:274

f cavg =
1

Vdim

Vdim∑
v=1

f cvp (1)275

To introduce a beneficial inductive bias during276

dynamic routing and to guide the learning of at-277

tention weights, we construct a prior alignment278

matrix M ∈ RC×Vdim . An element M[c, v] repre-279

sents the prior importance of the v-th dimensional280

prompt for class c. This importance is defined281

by the similarity between the encoded v-th dimen-282

sional prompt f c,vp and the encoding of a standard283

generic prompt for that class (e.g., "a photo of a284

[class name c]"):285

M[c, v] = Sim(f c,vp , Et(prompt(c))) (2)286

3.3 Dynamic Prompt Routing287

The Dynamic Prompt Routing (DPR) module de-288

signs relevant semantic information from the pre-289

constructed multi-dimensional prompts for each290

class, conditioned on the visual context of the input 291

image. This process generates fine-grained, class- 292

aware semantic representations for tail classes. 293

3.3.1 Image-attentive Semantic Extraction 294

The aim of this stage is to learn an instance-aware, 295

dynamically adjusted semantic representation for 296

visual inputs. In a long-tailed visual recognition 297

dataset D = {X,Y }, for an image xb ∈ X labeled 298

yb, its d-dimensional visual features fib = Ei(xb) 299

are extracted by the image encoder Ei(·) of pre- 300

trained CLIP. 301

The learned f bi underlines certain aspects of the 302

semantics of class, a class-specific multi-head atten- 303

tion (C-MHA) module computes attention weights 304

and forms attentive semantic features. For an image 305

xb in class c, the C-MHA outputs Wc
r for routing 306

and attentive semantic features f crb, which can be 307

formulated as: 308

f crb,W
c
r = C-MHA(fib, f

c
p , , f

c
p) (3) 309

This C-MHA allows the model to dynamically 310

focus on the most discriminative semantic aspects 311

for each class conditioned on the image. In practice, 312

we accelerate this procedure by a matrix manner, 313

and collect the weights Wr and frb for image xb 314

across classes. 315

3.3.2 Semantic-enhanced Class Prediction 316

Leveraging the image features fib and the attentive 317

semantic representations frb, we formally compute 318

semantic logits ŷrb for classification. For an image 319
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b and class c, the ŷrb is defined as:320

ŷrb = s · ⟨frb, fib⟩ (4)321

where s is a learnable temperature parameter. The322

logits ŷrb directly reflect the model’s confidence323

in assigning an image to each class based on the324

dynamically aggregated semantic information.325

Correspondingly, we introduce a dynamic se-326

mantic loss (Lsem) to supervise this classification327

branch. This loss holds comparable importance to328

the base VLM’s classification loss (Lce) and jointly329

drives the primary classification task:330

Lsem = CLA(zsem,y) (5)331

where y represents the ground-truth labels, and332

Compensated Cross Entropy refers to loss function333

designed for imbalanced data (Shi et al., 2024).334

To resist the bias accumulation under long-tailed335

scene, we introduce a regularization loss Lreg =336

λpaLpa +λkaLka, where λpa and λka are weights of337

losses. The Lpa and Lka target the attention routing338

strategy and the quality of the generated dynamic339

semantic representations, respectively:340

Prior Alignment Loss for Routing Strategy Opti-341

mization (Lpa): This loss aims to guide the learn-342

ing of weights Wr using the prior alignment matrix343

M, and M[c, v] signifies the prior importance of344

the v-th semantic dimension for class c.345

It encourages the learned attention distribution346

to align with this desirable prior distribution, which347

may be more balanced or incorporate domain348

knowledge, thereby optimizing the information349

routing strategy:350

Lpa =
1

C

C∑
c=1

(
1− Sim(w

(c)
r ,M[c, :])

)
(6)351

This alignment helps the model to focus on se-352

mantically crucial dimensions, mitigating the influ-353

ence of statistical biases in the data during dynamic354

routing.355

Knowledge Alignment Loss for Representation356

Quality Enhancement (Lka): To improve the357

stability and generalization of the instance-aware358

dynamic semantic features frb via knowledge dis-359

tillation. DPR encourages the distribution of the360

dynamic semantic features for the ground-truth361

class yb (after a learnable linear projection Proj(·))362

to align with the distribution of the averaged se-363

mantic features for that class fybavg (i.e., fybavg[yb, :],364

passed through the same projection layer) in a high- 365

dimensional space: 366

Lka = KL
(
Proj(frb,Proj(f

yb
avg[yb, :]))

)
(7) 367

where KL(·, ·) denotes the KL divergence. 368

3.4 Training Strategy 369

The training objective of the MDPR framework is 370

to optimize the entire model end-to-end, enabling 371

it to effectively leverage the multi-dimensional se- 372

mantic knowledge base through dynamic routing 373

for superior performance on imbalanced down- 374

stream visual tasks. The multi-task loss synergis- 375

tically optimizes the representational capacity of 376

the base VLM and the semantic enhancement and 377

regularization mechanisms of the MDPR module. 378

3.4.1 Learnable Parameters 379

During the training process, the following parame- 380

ters are subject to optimization: 381

Base VLM Framework Parameters: Depend- 382

ing on the chosen base VLM fine-tuning paradigm 383

(e.g., CoOp or MaPLe), this may include its learn- 384

able prompt parameters (e.g., CoOp’s context vec- 385

tors ctx, MaPLe’s multi-level prompt parameters). 386

MDPR Module Parameters: This encompasses 387

the parameters of the C-MHA, and the parameters 388

of the learnable linear projection layer Proj(·). 389

The pre-computed multi-dimensional prompt 390

features fp, class-level averaged semantic features 391

favg, and the prior alignment matrix M serve as 392

fixed inputs during the training phase and are not 393

updated. 394

3.4.2 Optimization 395

The MDPR model is optimized by minimizing the 396

sum of losses. The total loss function Ltotal is for- 397

mulated as: 398

Ltotal = λbaseLbase + λsemLsem + Lreg (8) 399

where λbase and λsem are the weights of losses, and 400

λbase is typically set to 1.0. 401

3.5 Logits-fused Inference 402

During inference, MDPR combines the predictions 403

from the base VLM framework and the dynamic 404

semantic routing pathway to yield final predic- 405

tions. Given the class name-based logits ŷcb and 406

the routing-based logits ŷrb, the final fused logits 407

ŷfuse are computed as: 408

ŷfuse = (1− β) · ŷcb + β · ŷrb (9) 409
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Dataset #Class IR #Train #Test

CIFAR-100-LT 100
10 19,573

10,00050 12,608
100 10,847

ImageNet-LT 1,000 256 115,846 50,000
Places-LT 365 996 62,500 7,300

Table 1: Statistics of long-tailed datasets, where "#"
means the number of item.

where β ∈ [0, 1] is a hyperparameter balancing the410

two sources, typically set to 0.5 in our experiments411

(Section 4.2.2). This fusion allows MDPR to bene-412

fit from both the general representations of the base413

VLM and the instance-specific insights from the414

DPR module.415

4 Experiments416

To comprehensively evaluate the efficacy of MDPR,417

we conduct extensive experiments on three long-418

tailed image recognition benchmarks.419

4.1 Datasets420

Our experiments are conducted on three widely421

adopted long-tailed image recognition benchmarks:422

CIFAR-100-LT (Cao et al., 2019), ImageNet-LT423

(Liu et al., 2019), and Places-LT (Liu et al., 2019).424

Detailed statistics for these datasets are presented425

in Table 1.426

4.2 Experimental Settings427

4.2.1 Evaluation Metrics428

Following the evaluation protocol proposed in (Liu429

et al., 2019), we report accuracies of all classes and430

three class subsets: Many-classes (>100 images),431

Medium-classes (20-100 images), and Few-classes432

(<20 images). This detailed breakdown allows for433

a more nuanced understanding of model behavior434

across varying class data densities.435

4.2.2 Implementation Details436

Base VLM Framework and Backbone:437

The MDPR is implemented and evaluated438

on top of two prominent prompt learning439

frameworks: CoOp (Zhou et al., 2022b) and440

MaPLe (Khattak et al., 2023). These are re-441

ferred to as MDPR-CoOp/Ours(CoOp) and442

MDPR-MaPLe/Ours(MaPLe), respectively. All443

experiments except the CPRL (Yan et al., 2024)444

utilize the pre-trained CLIP ViT-B/16 model as the445

visual backbone.446

Training Hyperparameters: All models are447

trained using the AdamW optimizer with a weight448

decay of 1×10−4. The initial learning rate is set to 449

1× 10−3, decayed using a cosine annealing sched- 450

ule over 20 epochs. A batch size of 128 is used for 451

all datasets. The loss weights λbase, λsem, λupd, λkl 452

in Equation (8) are determined through systematic 453

tuning, with λbase fixed at 1.0. The weights for 454

Lsem and Lkl are linearly warmed up from 0 to 455

their target values over the first 5 epochs. The logit 456

fusion coefficient β (for combining zbase and zsem 457

during inference, see Equation A.1.5 is set to 0.5 458

by default. All experiments were conducted on a 459

single NVIDIA RTX 3090 GPU. Further details 460

on hyperparameter tuning ranges, final selected 461

values, and the KL temperature T are provided in 462

Appendix A.1. 463

4.3 Comparison Results 464

To comprehensively evaluate the MDPR frame- 465

work’s effectiveness in addressing long-tailed dis- 466

tributions, this section presents a comparative per- 467

formance analysis against a range of representa- 468

tive methods on CIFAR-100-LT, ImageNet-LT, and 469

Places-LT. The compared methods include Zero- 470

Shot CLIP (ZS CLIP) (Radford et al., 2021), main- 471

stream VLM prompt tuning approaches such as 472

CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 473

2022a), and MaPLe (Khattak et al., 2023), and re- 474

cent VLM enhancement or long-tail recognition 475

techniques (e.g., TextRefiner (Xie et al., 2025), 476

CPRL (Yan et al., 2024), Candle(Shi et al., 2024)). 477

All experiments were conducted under fair condi- 478

tions. MDPR integrated with CoOp and MaPLe 479

is denoted as Ours (CoOp) and Ours (MaPLe). 480

Detailed classification accuracies are in Tables 2 481

and 3 482

The proposed MDPR framework substan- 483

tially enhances base VLM fine-tuning perfor- 484

mance, achieving consistent and significant 485

gains across all class groups and scenarios, par- 486

ticularly reaching SOTA levels for Few-shot 487

classes on multiple benchmarks. For instance, 488

on the challenging CIFAR-100-LT (IR=100), Ours 489

(CoOp) and Ours (MaPLe) improve Few-shot ac- 490

curacy from CoOp’s 46.53% and MaPLe’s 58.43% 491

to 57.40% and 67.17%, respectively. On larger 492

datasets like ImageNet-LT and Places-LT, MDPR 493

also demonstrates strong efficacy; notably, Ours 494

(MaPLe) boosts Few-shot accuracy on Places-LT 495

by over 22 p.p. compared to MaPLe, securing top 496

performance in Overall, Medium-shot, and Few- 497

shot metrics on several datasets. These results ro- 498

bustly validate that MDPR, via structured multi- 499
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Model IR=10 IR=50 IR=100
All Many Med All Many Med Few All Many Med Few

CLIP-ViT-B/16 (ICML’21) 59.50 61.09 55.97 59.50 64.05 57.27 54.22 59.50 61.83 59.74 56.50
CoOp (IJCV’22) 70.88 75.06 61.58 65.70 79.63 58.44 50.50 64.34 79.43 64.51 46.53
CoCoOp (CVPR’22) 72.29 76.75 62.35 66.38 80.20 60.20 49.00 63.90 80.69 65.20 42.80
Maple (CVPR’23) 81.98 84.58 76.19 77.09 87.34 71.98 65.39 74.09 88.14 73.46 58.43
TextRefiner (AAAI’25) 74.22 78.12 65.55 67.70 81.83 62.51 47.33 64.32 83.00 66.03 40.53
CPRL (MM’24) 81.75 84.97 74.58 71.16 86.61 65.22 49.50 68.20 88.74 71.97 39.83
Candle (KDD’24) 75.77 76.71 73.68 73.14 77.15 70.17 70.78 72.42 76.14 72.54 67.93
Ours (CoOp) 76.25 78.51 71.23 72.44 81.76 67.93 61.50 70.33 81.17 70.57 57.40
Ours (Maple) 84.73 86.32 81.19 81.38 88.68 76.90 74.94 79.25 87.60 81.26 67.17

Table 2: Comparison results on CIFAR-100-LT dataset, where best results are bolded and suboptimal results are
underlined. According to the split standard of dataset, CIFAR-100-LT with IR=10 contains no few-sampled classes.

dimensional semantics and image-conditioned dy-500

namic routing, effectively supplements VLMs with501

discriminative information, enhancing representa-502

tion learning for balanced performance on long-503

tailed data.504

MDPR demonstrates universality and effec-505

tiveness as an enhancement module across dif-506

ferent base frameworks and datasets. While507

MaPLe inherently outperforms CoOp on some508

datasets, MDPR consistently delivers significant509

gains when combined with either framework. The510

substantial Few-shot improvement MDPR brings511

to MaPLe on Places-LT (over 22 p.p.) compared to512

that for CoOp (approx. 18 p.p.) suggests its partic-513

ular effectiveness in unlocking the potential of ad-514

vanced frameworks under extreme imbalance. Fur-515

thermore, unlike some specialized long-tail meth-516

ods (e.g., Candle) that might excel on tail classes517

for specific datasets at the cost of head/medium518

class performance, MDPR promotes more balanced519

improvements.520

MDPR’s relative advantage tends to be more521

pronounced at higher imbalance ratios. Com-522

paring results on CIFAR-100-LT across increas-523

ing IRs shows that while all methods’ absolute524

performance declines, MDPR’s (especially Ours525

(MaPLe)) improvement margin over baselines of-526

ten widens. This further substantiates the crucial527

role of MDPR’s multi-dimensional semantic under-528

standing and dynamic routing in tackling extreme529

data imbalance.530

4.4 Ablation Study531

Our algorithm achieves performance gains through532

stacking multi-dimensional semantic prompts and533

regularization modules. To assess their con-534

tributions, we compared zero-shot CLIP, base535

MaPLe(base), MaPLe with semantic prompts536

(base+Sem), and full MDPR (base+sem+reg)537

1
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Figure 3: Ablation results across datasets. Results of
other IR of CIFAR-100-LT see in Appendix B.

on CIFAR-100-LT (IR=50), ImageNet-LT, and 538

Places-LT. As shown in Figure 4, performance im- 539

proves progressively with each module. Adding 540

semantic prompts (base+sem) significantly boosts 541

tail-class accuracy, e.g., Few on Places-LT from 542

28.73% to 48.39% (+19.66%). Regularization 543

(base+sem+reg) further raises Few to 50.99% and 544

slightly improves head and mid classes (e.g., Many 545

to 79.42% on ImageNet-LT). Semantic prompts 546

substantially mitigate tail-class bias via comprehen- 547

sive semantic representations, while regularization 548

enhances prediction consistency across head, mid, 549

and tail classes by stabilizing dynamic routing. 550

4.5 In-depth Analysis of Knowledge-base 551

Construction 552

An ablation study on the multi-dimensional se- 553

mantic knowledge base using Ours (CoOp) on 554

Places-LT (Table 4) reveals each dimension’s dis- 555

tinct contribution. Removing the Differential Fea- 556

tures (DF) dimension caused the largest overall 557

accuracy drop, highlighting the critical role of dis- 558

tinguishing unique characteristics via comparison 559

with similar classes. The removal of Contextual 560

Information (CI) or General Appearance (GA) also 561

significantly impacted performance, underscoring 562

the importance of scene understanding and fun- 563

damental visual features.In contrast, lacking Fine- 564

grained Appearance (FA) or Functionality (FT) had 565

a smaller, yet noticeable, negative effect, confirm- 566
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Model ImageNet-LT Places-LT
All Many Med Few All Many Med Few

CLIP-ViT-B/16 (ICML’21) 62.95 63.96 62.08 63.15 38.40 35.49 37.97 44.77
CoOp (IJCV’22) 68.69 74.82 65.75 61.75 40.73 53.10 35.58 29.72
CoCoOp (CVPR’22) - - - - 41.12 52.95 35.84 31.39
Maple (CVPR’23) 69.02 77.20 64.90 60.37 41.37 54.33 36.45 28.73
TextRefiner (AAAI’25) 66.74 81.75 62.45 39.40 38.01 52.76 32.79 22.79
Candle (KDD’24) 71.28 76.38 69.55 62.91 45.81 46.97 45.42 44.56
Ours (CoOp) 74.57 77.67 73.42 69.87 48.89 49.45 48.72 47.96
Ours (Maple) 75.57 79.42 74.02 70.04 50.94 50.32 51.42 50.99

Table 3: Comparison results on ImageNet-LT dataset and Places-LT dataset, where best results are bolded and
suboptimal results are underlined. The "-" in results means out of memory in our devices.

ing the supplementary value of specific visual de-567

tails and object function information. Notably, all568

dimensions positively contributed to few-shot class569

recognition; removing any single dimension de-570

creased few-shot accuracy by 1.3% to 2%, with CI571

removal having the most pronounced effect.572

These findings demonstrate that a comprehen-573

sive, multi-dimensional knowledge base with com-574

plementary semantic dimensions is essential for575

MDPR to effectively address long-tailed distribu-576

tions and enhance learning of data-scarce classes.577

Knowledge All Many Mid Few
All 48.89 49.45 48.72 48.24
w/o GA 47.23 48.24 46.70 46.58
w/o FA 47.88 48.67 47.53 47.24
w/o FT 47.87 49.10 47.04 47.48
w/o CI 47.28 49.40 46.05 46.21
w/o DF 46.82 48.11 45.74 46.92

Table 4: Different knowledge base on Places-LT.

4.6 Comparative Analysis of Model Efficiency578

To assess the practical applicability of our pro-579

posed MDPR framework, this section briefly ana-580

lyzes the additional parameter count and its impact581

on training efficiency. As summarized in Table 5,582

our MDPR module introduces approximately 1.1M583

trainable parameters. This increment is substan-584

tially smaller than the total parameter count of the585

CLIP ViT-B/16 backbone (representing less than586

0.74% of the backbone’s parameters), positioning587

MDPR within the realm of parameter-efficient fine-588

tuning. For training on the ImageNet-LT dataset,589

integrating MDPR results in a slight increase in590

per-epoch training time of approximately 14 sec-591

onds for the CoOp baseline and 114 seconds for592

the MaPLe baseline.593

In summary, while MDPR introduces a modest594

number of additional parameters and a slight in- 595

crease in computation, these are well-justified by 596

the significant performance gains, particularly in 597

recognizing few-shot classes. The marginal over- 598

head is especially low when MDPR is integrated 599

with more complex frameworks like MaPLe, under- 600

scoring its practicality as an efficient enhancement 601

module for VLMs addressing imbalanced data. 602

Metric CoOp CoOp MaPLe MaPLe
+MDPR +MDPR

Param (M) 0.008 1.108 3.6 4.7
Time (s) 1115 1229 1361 1375

Table 5: Trainable Parameters (Param) and Training
Time per Epoch (Time) on ImageNet-LT.

5 Conclusion 603

Addressing the class bias in fine-tuning vision- 604

language models under long-tailed distributions, 605

we propose the Multi-dimensional Dynamic 606

Prompt Routing (MDPR) framework. Unlike tra- 607

ditional static prompt or high-cost sample gen- 608

eration methods, MDPR leverages a structured 609

multi-dimensional semantic knowledge base and 610

an image-driven dynamic routing mechanism to 611

efficiently mitigate biases from pre-training and 612

downstream data. First, MDPR constructs a 613

five-dimensional prompt pool, providing compre- 614

hensive class understanding to counter prior bi- 615

ases. Second, an image-guided dynamic rout- 616

ing module, combined with regularization, gen- 617

erates instance-adaptive class representations by 618

optimizing routing and representation stability. Ex- 619

periments on CIFAR-100-LT, ImageNet-LT, and 620

Places-LT demonstrate that MDPR significantly en- 621

hances tail-class performance while balancing head 622

and medium-class robustness, achieving SOTA 623

or highly competitive results. As a lightweight 624

plug-and-play module, MDPR offers an effective 625

paradigm for open-world long-tailed recognition. 626
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Limitations627

First, the effectiveness of MDPR has been pri-628

marily validated on the CLIP ViT-B/16 backbone629

integrated with CoOp and MaPLe. Its general-630

izability and performance on larger-scale or dif-631

ferent VLM architectures require further examina-632

tion in future work. Second, MDPR’s prediction633

balancing, while benefiting from the rich multi-634

dimensional semantic library, still partially relies635

on known class distribution information from the636

training set. This dependency might limit its ro-637

bustness in real-world scenarios with unknown or638

dynamic class distributions. Future research could639

explore integrating methods like causal inference to640

enhance adaptability to open environments. Third,641

the current multi-dimensional semantic knowledge642

base is constructed offline for predefined classes,643

potentially posing scalability challenges in incre-644

mental or open-set learning scenarios requiring645

rapid adaptation to new classes or domains. Future646

work could draw from continual learning principles647

to explore mechanisms for dynamic construction648

and updating of the semantic knowledge base.649
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A Appendix780

A.1 Detailed Hyperparameter Settings781

This section provides a comprehensive overview of782

the hyperparameter settings used for training our783

MDPR models and the baseline VLM frameworks, 784

supplementing the details in Section 4.2.2 of the 785

main paper. All experiments were conducted on a 786

single NVIDIA RTX 3090 GPU. 787

A.1.1 Common Training Settings 788

The following settings were applied to all trained 789

models (both baselines and our MDPR variants) 790

unless specified otherwise: 791

• Optimizer: AdamW (Loshchilov and Hutter, 792

2017). 793

• Weight Decay: 1× 10−4. 794

• Base Learning Rate (for prompts and 795

MDPR modules): 1× 10−3. 796

• Learning Rate Schedule: Cosine annealing 797

schedule. 798

• Total Training Epochs: 20. 799

• Batch Size: 128 for all datasets. 800

• Visual Backbone: Pre-trained CLIP ViT- 801

B/16 (Radford et al., 2021) for all experi- 802

ments. The backbone parameters were kept 803

frozen during fine-tuning of CoOp, MaPLe, 804

and their MDPR-enhanced counterparts, con- 805

sistent with standard prompt tuning practices. 806

A.1.2 Base VLM Framework Parameters 807

When MDPR is integrated, the parameters of the 808

underlying base VLM frameworks were set as fol- 809

lows: 810

CoOp (Zhou et al., 2022b): 811

• Number of Context Tokens (Nctx): 16. 812

• Class Token Position: “end”. 813

• Context Initialization: Random initialization 814

(standard for CoOp). 815

MaPLe (Khattak et al., 2023): 816

• Number of Context Tokens (Nctx): 2 for 817

both visual and language shallow prompts. 818

• Deep Prompt Depth (Vision & Language): 819

9 layers for both vision and language en- 820

coders. 821

• Context Initialization: Random initializa- 822

tion. 823
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A.1.3 MDPR Module Parameters824

The specific parameters for our MDPR module825

were configured as:826

• Semantic Prompt Embedding Dimension827

(d): 512 (consistent with CLIP ViT-B/16 text828

encoder output).829

• Multi-Head Attention (MHA) in DPR:830

– Number of Attention Heads: 8.831

– Dropout Rate (during training): 0.1.832

• KL Projection Layer (Proj(·)): This linear833

layer projects features from d = 512 to an834

intermediate dimension of 128 before KL di-835

vergence calculation.836

A.1.4 Loss Weights and Temperatures837

The weights for the individual loss components in838

the total loss function (Equation 8 in the main pa-839

per: Ltotal = λbaseLbase + λsemLsem + λupdLupd +840

λklLkl) and the KL distillation temperature T were841

determined through systematic tuning on a valida-842

tion split (e.g., a subset of the training data or a843

dedicated validation set if available).844

• λbase: Fixed at 1.0 for all experiments to give845

primary importance to the base VLM’s objec-846

tive.847

• Tuning Strategy for λsem, λupd, λkl, T : A848

two-stage tuning process was generally fol-849

lowed:850

1. Stage 1 (Tuning λsem): λupd and λkl851

were initially set to 0. λsem was852

tuned by exploring values in the set853

{0.1, 0.5, 1.0, 2.0}. Preliminary exper-854

iments on CIFAR-100-LT (IR=100) sug-855

gested the following as strong starting856

points, which were then validated or857

slightly adjusted for other datasets:858

– For MDPR-CoOp: λsem = 0.1.859

– For MDPR-MaPLe: λsem = 1.0.860

2. Stage 2 (Joint Tuning λupd, λkl, T ):861

With the selected λsem, λupd was tuned862

from the set {0.01, 0.05, 0.1, 0.5, 1.0},863

λkl from {0.001, 0.005, 0.01, 0.05, 0.1},864

and the KL distillation temperature T865

from {1.0, 2.0, 5.0}.866

• Loss Weight Warm-up: The weights for867

Lsem and Lkl (i.e., λsem and λkl) were linearly868

warmed up from 0 to their target tuned values 869

over the first 5 training epochs. This strategy 870

was found to stabilize early training. 871

A.1.5 Inference Settings 872

• Logit Fusion Coefficient (β): The coefficient 873

β in the logit fusion equation ( zfinal = (1 − 874

β)zbase + βzsem) was set to 0.5 by default for 875

all reported results. This implies an equal 876

contribution from the base VLM’s predictions 877

and the MDPR’s dynamic semantic pathway 878

predictions. 879

B Language Model Selection for Prompt 880

Generation 881

visual features:
Provide a concise English phrase describ-
ing the key visual appearance features of a
"{class-name}".
Focus on what it looks like (e.g., shape,
color, texture, notable parts).
The phrase should be approximately {target-
word-count} words and suitable to complete
the sentence: "A {class-name} typically ap-
pears as {YOUR PHRASE HERE}."
Output ONLY the descriptive phrase. Do
NOT include "A {class-name} typically ap-
pears as".
Descriptive phrase for "{class-name}":
functional-use: Provide a concise English
phrase describing the primary function or
purpose of a "{class-name}".
Focus on what it is used for.
The phrase should be approximately {target-
word-count} words and suitable to complete
the sentence: "A {class-name} is used for
[YOUR PHRASE HERE]."
Output ONLY the descriptive phrase. Do
NOT include "A {class-name} is used for".
Descriptive phrase for "{class-name}":
contextual-scene: Provide a concise En-
glish phrase describing the common en-
vironments or contexts where a "{class-
name}" is typically found.
Focus on its usual surroundings or scenar-
ios.
The phrase should be approximately {target-
word-count} words and suitable to complete
the sentence: "A {class-name} is commonly
found in [YOUR PHRASE HERE]."
Output ONLY the descriptive phrase. Do

882
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NOT include "A {class-name} is commonly
found in".
Descriptive phrase for "{class-name}":
differential-comparison: Describe the key
visual differences of a "{class-name}" when
compared to a "{confusing-class-name}".
Focus on features that distinguish a "{class-
name}" from a "{confusing-class-name}".
The description should be in English, con-
cise, and approximately target-word-count
words.
Output ONLY the descriptive phrase itself,
suitable for completing the sentence: "Un-
like a {confusing-class-name}, a {class-
name} has [YOUR PHRASE HERE]."
Output ONLY the descriptive phrase of
differences. Do NOT include "Unlike
a {confusing-class-name}, a {class-name}
has".
Descriptive phrase of differences for
"class-name" compared to "confusing-class-
name":
fine-grained-attribute: Provide a concise
English phrase describing one or two highly
distinctive or fine-grained visual attributes
of a "{class-name}" that make it unique or
easily identifiable.
Focus on specific, detailed characteristics.
The description should be in English, con-
cise, and approximately target-word-count
words.
Output ONLY the descriptive phrase itself,
suitable for completing the sentence: "A dis-
tinctive feature of a {class-name} is [YOUR
PHRASE HERE]."
Output ONLY the descriptive phrase of the
attribute(s). Do NOT include "A distinctive
feature of a {class-name} is".
Descriptive phrase of attribute(s) for
"{class-name}":

883

For generating the multi-dimensional semantic884

prompts required by MDPR, we evaluated sev-885

eral Large Language Models (LLMs), including886

Qwen2.5, LLaMa4, and DeepSeek-V3. The eval-887

uation primarily considered the statistical proper-888

ties of the semantic similarities (forming the prior889

alignment matrix M) between the CLIP-encoded890

LLM-generated prompts and generic class descrip-891

tions. Considering a comprehensive comparison of892

key metrics (summarized in Table 6) and a qualita-893
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Figure 4: Ablation results across datasets.

tive assessment of the generated text, we selected 894

Qwen2.5 for prompt generation due to its favor- 895

able overall performance in semantic alignment 896

and distributional stability. 897

Table 6: Key statistics for the prior alignment matrix M
(semantic similarities) from prompts by different LLMs
on CIFAR-100.

LLM Mean Std Median
Qwen2.5 0.8371 0.0370 0.8452
LLaMa4 0.8360 0.0371 0.8457
DeepSeek-V3 0.8354 0.0373 0.8438

Algorithm 1 Multi-dimensional Dynamic Prompt
Routing (MDPR)

Require: Training set D = {(xb, yb)}Bb=1

Ensure: Trained model ϕ
1: Initialize CLIP with pre-trained weights
2: Build confusion matrix K

CLIP←−−− D
3: Generate prompts Pc

LLM←−−− (K, prompts)
4: Compute M ∈ RC×5 CLIP←−−− Pc
5: Encode fp ∈ RC×5×d CLIP←−−− Pc
6: for xb, yb do in D, Compute fib = ϕv(xb)
7: Calculate ŷcb, constrained by Lbase
8: Initialize frb and Wr

9: for class c = 1 to C do
10: f crb,W

c
r = C-MHA(f cib, f

c
p , f

c
p)

11: Calculate Lreg
12: Append f crb to frb, Wc

r to Wr

13: end for
14: Calculate ŷrb, Constraint Lsem
15: Optimize Ltotal
16: Update ϕ← ϕ− η∇ϕLtotal
17: end for
18: return ϕ
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