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Abstract

Pre-trained vision-language models (VLMs),
such as CLIP, have demonstrated impressive
capability in visual tasks, but their fine-tuning
often suffers from bias in class-imbalanced
scene. Recent works have introduced large
language models (LLMs) to enhance VLM
fine-tuning with supplementing semantic in-
formation. However, they often overlook in-
herent class imbalance in VLMs’ pre-training,
which may lead to bias accumulation in down-
stream tasks. To address this problem, this
paper proposes a Multi-dimensional Dynamic
Prompt Routing (MDPR) framework. MDPR
constructs a comprehensive knowledge base
for classes, spanning five visual-semantic di-
mensions. During fine-tuning, the dynamic
routing mechanism aligns global visual classes,
retrieves optimal prompts, and balances fine-
grained semantics, yielding stable predictions
through logits fusion. Extensive experiments
on long-tailed benchmarks, including CIFAR-
LT, ImageNet-LT, and Places-LT, demonstrate
that MDPR achieves comparable results with
current SOTA methods. Ablation studies fur-
ther confirm the effectiveness of our semantic
library for tail classes, and show that our dy-
namic routing incurs minimal computational
overhead, making MDPR a flexible and effi-
cient enhancement for VLM fine-tuning under
data imbalance.

1 Introduction

Pretrained Vision-Language Models (VLMs), such
as CLIP (Radford et al., 2021), have demonstrated
remarkable capabilities in visual tasks by leverag-
ing cross-modal knowledge with tuning techniques
(Khattak et al., 2023; Zhou et al., 2022a). However,
the fine-tuning of VLM under imbalanced down-
stream data exhibits significant bias (Wang et al.,
2024), i.e., models favor many-sampled class opti-
mization while under-performing on few-sampled
classes, as shown in Figure 1(b) and (c). Lately,
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Figure 1: Illustration of how MDPR alleviate the bias.
To address the (a) unknown imbalance in the pre-
training of VLMs and (b) the long-tailed distribution in
downstream data, which jointly lead the (c) accuracy
bias in fine-tuning, (d) MDPR constructs comprehensive
knowledge using offline LLM generation, and designs a
dynamic prompt routing mechanism to enhancing fine-
tuning methods with de-biasing the predictions.

Large language Models (LLMs) are introduced to
enhance VLM tuning, which faces two fundamen-
tal questions: (1) What semantic information from
LLMs is effective in alleviating distributional bias?
(2) How to leverage augmented information during
the fine-tuning process?

To address VLMs’ performance bottlenecks in
data-scarce scenarios, prior works leverage LLMs
for class-level semantic enhancement, sample syn-
thesis, and open-world concept expansion. For
semantic enhancement, LLMs generate discrimi-
native prompts to improve inter-class separability
(Zheng et al., 2024). For sample synthesis, LTGC
(Zhao et al., 2024) guides diffusion models to syn-
thesize tail-class samples. For concept expansion,
PerVL (Cohen et al., 2022) and Custom Diffusion
(Kumari et al., 2023) enable open-set generaliza-
tion via text descriptions. However, these methods
often overlook intrinsic VLMs’ biases, leading to



cumulative bias during fine-tuning, and rely on
static prompts or costly generative models, lim-
iting adaptability. This necessitates an efficient
framework for dynamic LLM-VLM interaction in
fine-tuning.

To enhance the effectiveness of LLM knowl-
edge in fine-tuning VLMs under imbalanced distri-
butions, we propose Multi-dimensional Dynamic
Prompt Routing (MDPR), as illustrated in Figure
1(d). Specifically, to address the implicit imbalance
present during the VLM pre-training phase, MDPR
firstly introduces a multi-dimensional prompt con-
struction strategy. During training, it leverages
zero-shot VLMs to extract and construct a prompt
pool for each class, capturing five distinct dimen-
sions: general appearance, fine-grained appear-
ance, functionality, contextual information, and
differential features. This multi-faceted prompt
design helps mitigate prior biases for classes. Sub-
sequently, in the dynamic prompt routing stage, it
further alleviates the impact of imbalanced data
by implementing global visual-class alignment, dy-
namic routing-based visual-prompt matching, and
fine-grained semantic balancing. This process gen-
erates predictions from multiple perspectives, and
robust results are achieved through a logit fusion
mechanism. As an effective enhancement archi-
tecture, the proposed MDPR can be flexibly in-
tegrated with various VLM fine-tuning methods.
The codes are available in https://anonymous.
4open.science/r/MDPR-328C/README . md.

To evaluate the effectiveness of the proposed
MDPR, we conducted extensive experiments on
three long-tailed visual recognition benchmarks,
namely CIFAR-100-LT, ImageNet-LT, and Places-
LT. The experimental results demonstrate that
MDPR, through the comprehensive prompt con-
struction and dynamic routing mechanisms, effec-
tively mitigates class imbalance biases in both pre-
trained models and downstream data, achieving
robust performance improvements across head and
tail classes while maintaining high compatibility
with existing fine-tuning frameworks. The primary
contributions of this work are:

* We propose a plug-and-play framework for
VLM’s fine-tuning, termed MDPR, which
addresses the challenge of joint imbalance
through dynamic prompt routing, achieving
efficient performance enhancement.

* We propose a multi-dimensional prompt con-
struction approach, which systematically en-

hances the semantic understanding of VLMs
by integrating five semantic dimensions, sig-
nificantly mitigating inherent biases in pre-
trained models.

* We validate the versatility of MDPR with dif-
ferent tuning methods, and it improves perfor-
mance across three benchmarks with minimal
additional parameters or time, particularly en-
hancing recognition of tail classes.

2 Related Works

2.1 Pretrained Model Fine-tuning under
Long-tailed Distribution

Long-tailed data distributions challenge pretrained
model fine-tuning, often leading to a bias to-
wards head classes and impairing generalization
to tail classes. Traditional strategies such as
re-balancing (Shi et al., 2024; Tan et al., 2020;
Cui et al., 2019), information augmentation (Xu
et al.,, 2023; Li et al., 2024), and Mixture-of-
Experts (MoE) models (Fedus et al., 2022; Zhang
et al., 2023) offer foundational solutions. More
recently, novel fine-tuning approaches for mul-
timodal pretrained models have been explored.
Cross-modal collaborative fine-tuning enhances
minority class representations via visual-semantic
contrastive learning and feature alignment (Chen
et al.,, 2024). Parameter-efficient fine-tuning
(PEFT) techniques, including adapter tuning (Kim
et al., 2024) and prompt tuning (Dong et al., 2022),
aim to adjust for minority classes with minimal
backbone alteration, mitigating overfitting. Further-
more, knowledge transfer and distillation lever-
age priors from large pretrained models, employing
teacher-student paradigms or cross-domain trans-
fer to bolster tail class robustness (Rangwani et al.,
2024).While these fine-tuning strategies address
long-tailed distributions from various angles, many
focus on re-weighting samples/losses or adapting
model parameters. In contrast, MDPR introduces
an explicit, structured semantic knowledge base
and a dynamic routing mechanism, offering a com-
plementary pathway to directly enhance the seman-
tic understanding and discriminative capability for
classes, especially those in the tail.

2.2 LLM-Enhanced Visual Representation
Learning with Limited Samples

Large Language Models (LLMs) have enriched vi-
sual learning in data-scarce scenarios like few-shot
and long-tailed recognition. Research primarily
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explores three directions: Category semantic en-
hancement. For fine-grained or underspecified la-
bels, LLaMP (Zheng et al., 2024) employs LLMs to
generate descriptive prompts, improving inter-class
separability. ArGue (Tian et al., 2024) integrates
visual attributes and common sense semantics to
guide prompt refinement. These methods typically
yield a single, albeit enhanced, textual representa-
tion per class. MDPR, however, constructs a multi-
dimensional prompt pool for each class, capturing
diverse semantic facets, and dynamically selects
from this pool based on image context, offering
greater representational richness and adaptability.
Sample generation. In imbalanced settings, LLMs
produce detailed descriptions to steer text-to-image
(T2I) models for synthesizing tail-class samples,
as in LTGC (Zhao et al., 2024). While effective
for data augmentation, such approaches often incur
significant computational overhead from generative
models and may not directly enhance the VLM’s in-
trinsic understanding. MDPR, instead, focuses on
efficiently enriching the VLM with pre-computed
semantic knowledge, rather than relying on exter-
nal sample generation. Concept expansion. LLMs
facilitate modeling novel concepts in open-world
settings. PerVL (Cohen et al., 2022) uses LLMs
to generate personalized descriptions, extending
VLM vocabularies. These methods primarily target
open-set generalization or T2I generation. MDPR,
while also leveraging LLM-derived knowledge, is
specifically designed as a plug-and-play module
to improve fine-tuning performance on closed-set,
long-tailed recognition tasks by dynamically rout-
ing pre-defined, multi-faceted class semantics.

3 Method

3.1 Overview

To alleviate biases in the fine-tuning of VLMs,
the proposed Multi-dimensional Dynamic Prompt
Routing (MDPR) routes a visual-semantic knowl-
edge base to enhance representation learning. Fig-
ure 2 shows the framework of MDPR, which com-
prises two synergistic modules: 1) The multi-
dimensional prompt construction module generates
a comprehensive knowledge base by designing five-
dimensional prompts for LLM. 2) The dynamic
prompt routing module enhances the utilization of
the knowledge and provides de-biasing predictions.
MDPR could serve as a flexible plug-and-play mod-
ule, capable of seamless integration into existing
fine-tuning methods.

3.2 Multi-dimensional Prompt Construction

To address potential inherent class biases in pre-
trained VLMs, MDPR designs a class-specific
prompt knowledge base spanning multiple seman-
tic dimensions. The knowledge base endows VLMs
with deeper understanding of classes, especially for
distinguishing similar classes or prior tail classes
in pre-training data.

3.2.1 Visual-Language Prompt Design

Since a single class name often fails to capture
the complex visual attributes of certain class, es-
pecially rare or nuanced concepts in real-world
data. Recent works (Tan et al., 2024; Zheng et al.,
2024) have explored using prompts that incorporate
knowledge from LLMs or word knowledge to en-
hance visual representation learning. Based on this
line of research, we conduct a review of existing
prompting strategies and make a five-dimensional
classification of prompts.

Moreover, considering the prior bias inherent in
VLMs, we introduce an additional prompt dimen-
sion termed differential features. Given a dataset
with C classes, we first construct a confusion ma-
trix K using CLIP’s zero-shot predictions on the
training set. For each class, the most frequently
confused class is selected as the target for generat-
ing differential features, which may reflect biases
in the model’s pretraining distribution. To this end,
the knowledge we includes following dimensions:
General Appearance (GA): Typical visual fea-
tures of the class, such as color, shape, and size
(Tian et al., 2022; Tan et al., 2024).

Fine-grained Appearance (FA): Focuses on more
specific local details and textures crucial for distin-
guishing sub-class or similar objects (Zheng et al.,
2024; Tan et al., 2024; Zhao et al., 2024).
Functionality (FT): Articulates the primary func-
tion, purpose, or role of the class object in specific
activities (Tian et al., 2024).

Contextual Information (CI): Depicts the com-
mon background environments, associated objects,
or typical scenarios where the class object is usu-
ally found (Tian et al., 2024; Zhao et al., 2024).
Differential Features (DF): Highlights unique
characteristics by contrasting the class with one
or more easily confusable similar classes.

For each class ¢, we obtain a set of prompts
P. = {pcﬁv};/ﬁ{”, covering V., prompts. The de-
tailed prompt generation procedure and the choice
of LLM are elaborated in Appendix B.
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Figure 2: The framework of MDPR, which consists of two stages. The offline Multi-dimensional Prompt Con-
struction builds a knowledge-base for enhancing semantics. The online Dynamic Prompt Routing aggregation the
pre-learned knowledge for debias the predictions. Here we use CoOp (Zhou et al., 2022b) for an example.

3.2.2 Knowledge Base Construction

The generated prompts are diverse from classes to
dimensions, we then send the prompts to VLMs for
organizing a class-specific knowledge base. The
text encoder Ej(-) of a frozen CLIP encodes p,.,
for v-th dimension prompt of class ¢ into a d-
dimensional feature f7" = Et(pw), where d is
the latent dimension of CLIP.

The encoded features combine as multi-
dimensional prompt features f, € R¢>*Vaim>d_To
obtain a more general class-level semantic repre-
sentation, the Vj;,,, dimensional prompt features

f;" are averaged to fy,, € RY:

1 Vaim
c cv

fong = 77— ; £ (1)
To introduce a beneficial inductive bias during
dynamic routing and to guide the learning of at-
tention weights, we construct a prior alignment
matrix M € RE*Vaim  An element M|c, v] repre-
sents the prior importance of the v-th dimensional
prompt for class c. This importance is defined
by the similarity between the encoded v-th dimen-
sional prompt f,"" and the encoding of a standard
generic prompt for that class (e.g., "a photo of a

[class name c]"):

Mie,v] = Sim(fg’”, E(prompt(c))) (2)
3.3 Dynamic Prompt Routing

The Dynamic Prompt Routing (DPR) module de-
signs relevant semantic information from the pre-
constructed multi-dimensional prompts for each

class, conditioned on the visual context of the input
image. This process generates fine-grained, class-
aware semantic representations for tail classes.

3.3.1 Image-attentive Semantic Extraction

The aim of this stage is to learn an instance-aware,
dynamically adjusted semantic representation for
visual inputs. In a long-tailed visual recognition
dataset D = {X, Y}, for an image x;, € X labeled
Yp, its d-dimensional visual features f;, = F;(xp)
are extracted by the image encoder Fj;(-) of pre-
trained CLIP.

The learned fl-b underlines certain aspects of the
semantics of class, a class-specific multi-head atten-
tion (C-MHA) module computes attention weights
and forms attentive semantic features. For an image
xp in class ¢, the C-MHA outputs W for routing
and attentive semantic features f7;, which can be
formulated as:

5 Wi = C-MHA(fy, f, , ) 3)

This C-MHA allows the model to dynamically
focus on the most discriminative semantic aspects
for each class conditioned on the image. In practice,
we accelerate this procedure by a matrix manner,
and collect the weights W, and f.;, for image
across classes.

3.3.2 Semantic-enhanced Class Prediction

Leveraging the image features f;;, and the attentive
semantic representations f,.;, we formally compute
semantic logits ¥, for classification. For an image



b and class c, the ¥, is defined as:
Jib=5" <f7“b> fib> “4)

where s is a learnable temperature parameter. The
logits ¥ directly reflect the model’s confidence
in assigning an image to each class based on the
dynamically aggregated semantic information.

Correspondingly, we introduce a dynamic se-
mantic loss (Lsm) to supervise this classification
branch. This loss holds comparable importance to
the base VLM’s classification loss (L) and jointly
drives the primary classification task:

Lsem = CLA(Zsem> Y) 5)

where y represents the ground-truth labels, and
Compensated Cross Entropy refers to loss function
designed for imbalanced data (Shi et al., 2024).

To resist the bias accumulation under long-tailed
scene, we introduce a regularization loss Ly, =
ApaLpa + AkaLlka, Where Ap, and Ay, are weights of
losses. The L, and Ly, target the attention routing
strategy and the quality of the generated dynamic
semantic representations, respectively:

Prior Alignment Loss for Routing Strategy Opti-
mization (Lp,):  This loss aims to guide the learn-
ing of weights W . using the prior alignment matrix
M, and M]c, v] signifies the prior importance of
the v-th semantic dimension for class c.

It encourages the learned attention distribution
to align with this desirable prior distribution, which
may be more balanced or incorporate domain
knowledge, thereby optimizing the information
routing strategy:

C
Loy = éz (1 — Sim(w?, M[c, :])) (6)
c=1

This alignment helps the model to focus on se-
mantically crucial dimensions, mitigating the influ-
ence of statistical biases in the data during dynamic
routing.

Knowledge Alignment Loss for Representation
Quality Enhancement (Lyx,): To improve the
stability and generalization of the instance-aware
dynamic semantic features f,.;, via knowledge dis-
tillation. DPR encourages the distribution of the
dynamic semantic features for the ground-truth
class v, (after a learnable linear projection Proj(-))
to align with the distribution of the averaged se-
mantic features for that class £, (i.e., £25¢[yp, :].

passed through the same projection layer) in a high-
dimensional space:

Lya = KL (Proj(fy, Proj(£2s,lus. 1))~ (D)
where KL(-, -) denotes the KL divergence.

3.4 Training Strategy

The training objective of the MDPR framework is
to optimize the entire model end-to-end, enabling
it to effectively leverage the multi-dimensional se-
mantic knowledge base through dynamic routing
for superior performance on imbalanced down-
stream visual tasks. The multi-task loss synergis-
tically optimizes the representational capacity of
the base VLM and the semantic enhancement and
regularization mechanisms of the MDPR module.

3.4.1 Learnable Parameters

During the training process, the following parame-
ters are subject to optimization:
Base VLM Framework Parameters: Depend-
ing on the chosen base VLM fine-tuning paradigm
(e.g., CoOp or MaPLe), this may include its learn-
able prompt parameters (e.g., CoOp’s context vec-
tors ctx, MaPLe’s multi-level prompt parameters).
MDPR Module Parameters: This encompasses
the parameters of the C-MHA, and the parameters
of the learnable linear projection layer Proj(-).
The pre-computed multi-dimensional prompt
features f,,, class-level averaged semantic features
f.04, and the prior alignment matrix M serve as
fixed inputs during the training phase and are not
updated.

3.4.2 Optimization

The MDPR model is optimized by minimizing the
sum of losses. The total loss function Ly is for-
mulated as:

Etotal = Abaseﬁbase + )\semﬁsem + Ereg (8)

where Apase and Agep are the weights of losses, and
Abase 18 typically set to 1.0.

3.5 Logits-fused Inference

During inference, MDPR combines the predictions
from the base VLM framework and the dynamic
semantic routing pathway to yield final predic-
tions. Given the class name-based logits ¥, and
the routing-based logits ¥4, the final fused logits
Y fuse are computed as:

yfuse:(l_ﬁ)'ycb_‘_ﬁ'yrb (9)



Dataset #Class IR #Train #Test
10 19,573
CIFAR-100-LT 100 50 12,608 10,000
100 10,847
ImageNet-LT 1,000 256 115,846 50,000
Places-LT 365 996 62,500 7,300

Table 1: Statistics of long-tailed datasets, where "#"
means the number of item.

where 8 € [0, 1] is a hyperparameter balancing the
two sources, typically set to 0.5 in our experiments
(Section 4.2.2). This fusion allows MDPR to bene-
fit from both the general representations of the base
VLM and the instance-specific insights from the
DPR module.

4 Experiments

To comprehensively evaluate the efficacy of MDPR,
we conduct extensive experiments on three long-
tailed image recognition benchmarks.

4.1 Datasets

Our experiments are conducted on three widely
adopted long-tailed image recognition benchmarks:
CIFAR-100-LT (Cao et al., 2019), ImageNet-LT
(Liu et al., 2019), and Places-LT (Liu et al., 2019).
Detailed statistics for these datasets are presented
in Table 1.

4.2 Experimental Settings
4.2.1 Evaluation Metrics

Following the evaluation protocol proposed in (Liu
et al., 2019), we report accuracies of all classes and
three class subsets: Many-classes (>100 images),
Medium-classes (20-100 images), and Few-classes
(<20 images). This detailed breakdown allows for
a more nuanced understanding of model behavior
across varying class data densities.

4.2.2 Implementation Details

Base VLM Framework and Backbone:
The MDPR is implemented and evaluated
on top of two prominent prompt learning
frameworks: CoOp (Zhou et al., 2022b) and
MaPLe (Khattak et al., 2023). These are re-
ferred to as MDPR-CoOp/Ours(CoOp) and
MDPR-MaPLe/Ours(MaPLe), respectively. All
experiments except the CPRL (Yan et al., 2024)
utilize the pre-trained CLIP ViT-B/16 model as the
visual backbone.

Training Hyperparameters: All models are
trained using the AdamW optimizer with a weight

decay of 1 x 10~%. The initial learning rate is set to
1 x 1073, decayed using a cosine annealing sched-
ule over 20 epochs. A batch size of 128 is used for
all datasets. The loss weights Apase; Asems Aupd, Akl
in Equation (8) are determined through systematic
tuning, with Apase fixed at 1.0. The weights for
Lsem and Ly are linearly warmed up from 0 to
their target values over the first 5 epochs. The logit
fusion coefficient 3 (for combining Zpase and Zgem
during inference, see Equation A.1.5 is set to 0.5
by default. All experiments were conducted on a
single NVIDIA RTX 3090 GPU. Further details
on hyperparameter tuning ranges, final selected
values, and the KL temperature 7" are provided in
Appendix A.1.

4.3 Comparison Results

To comprehensively evaluate the MDPR frame-
work’s effectiveness in addressing long-tailed dis-
tributions, this section presents a comparative per-
formance analysis against a range of representa-
tive methods on CIFAR-100-LT, ImageNet-LT, and
Places-LT. The compared methods include Zero-
Shot CLIP (ZS CLIP) (Radford et al., 2021), main-
stream VLM prompt tuning approaches such as
CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al.,
2022a), and MaPLe (Khattak et al., 2023), and re-
cent VLM enhancement or long-tail recognition
techniques (e.g., TextRefiner (Xie et al., 2025),
CPRL (Yan et al., 2024), Candle(Shi et al., 2024)).
All experiments were conducted under fair condi-
tions. MDPR integrated with CoOp and MaPLe
is denoted as Ours (CoOp) and Ours (MaPLe).
Detailed classification accuracies are in Tables 2
and 3

The proposed MDPR framework substan-
tially enhances base VLM fine-tuning perfor-
mance, achieving consistent and significant
gains across all class groups and scenarios, par-
ticularly reaching SOTA levels for Few-shot
classes on multiple benchmarks. For instance,
on the challenging CIFAR-100-LT (IR=100), Ours
(CoOp) and Ours (MaPLe) improve Few-shot ac-
curacy from CoOp’s 46.53% and MaPLe’s 58.43%
to 57.40% and 67.17%, respectively. On larger
datasets like ImageNet-LT and Places-LT, MDPR
also demonstrates strong efficacy; notably, Ours
(MaPLe) boosts Few-shot accuracy on Places-LT
by over 22 p.p. compared to MaPLe, securing top
performance in Overall, Medium-shot, and Few-
shot metrics on several datasets. These results ro-
bustly validate that MDPR, via structured multi-



Model IR=10 IR=50 IR=100
All Many Med | All Many Med Few All Many Med Few

CLIP-ViT-B/16 ICML’21) | 59.50 61.09 5597 | 59.50 64.05 57.27 5422 | 59.50 61.83 59.74 56.50
CoOp (LICV’22) 70.88 75.06 6158 | 65.70 79.63 58.44 50.50 | 64.34 79.43 6451 46.53
CoCoOp (CVPR’22) 7229 76775 6235 | 6638 80.20 60.20 49.00 | 63.90 80.69 65.20 42.80
Maple (CVPR’23) 81.98 8458 76.19 | 77.09 87.34 7198 6539 | 74.09 88.14 73.46 58.43
TextRefiner (AAAI’25) 7422 7812 6555 | 67.70 81.83  62.51 4733 | 6432 83.00 66.03 40.53
CPRL (MM’24) 81.75 8497 7458 | 71.16 86.61 6522 49.50 | 68.20 88.74 7197 39.83
Candle (KDD’24) 7577 76771  73.68 | 73.14 77.15 70.17 70.78 | 7242 76.14 72.54 67.93
Ours (CoOp) 76.25 7851 71.23 | 7244 8176 6793 61.50 | 70.33 81.17 70.57 57.40
Ours (Maple) 84.73 8632 81.19 | 81.38 88.68 76.90 7494 | 79.25 87.60 81.26 67.17

Table 2: Comparison results on CIFAR-100-LT dataset, where best results are bolded and suboptimal results are
underlined. According to the split standard of dataset, CIFAR-100-LT with IR=10 contains no few-sampled classes.

zero-shot

+base

+base+sem

+base+sem+reg

dimensional semantics and image-conditioned dy-
namic routing, effectively supplements VLMs with
discriminative information, enhancing representa-
tion learning for balanced performance on long-
tailed data.

MDPR demonstrates universality and effec-
tiveness as an enhancement module across dif-
ferent base frameworks and datasets. While
MaPLe inherently outperforms CoOp on some
datasets, MDPR consistently delivers significant
gains when combined with either framework. The
substantial Few-shot improvement MDPR brings
to MaPLe on Places-LT (over 22 p.p.) compared to
that for CoOp (approx. 18 p.p.) suggests its partic-
ular effectiveness in unlocking the potential of ad-
vanced frameworks under extreme imbalance. Fur-
thermore, unlike some specialized long-tail meth-
ods (e.g., Candle) that might excel on tail classes
for specific datasets at the cost of head/medium
class performance, MDPR promotes more balanced
improvements.

MDPR’s relative advantage tends to be more
pronounced at higher imbalance ratios. Com-
paring results on CIFAR-100-LT across increas-
ing IRs shows that while all methods’ absolute
performance declines, MDPR’s (especially Ours
(MaPLe)) improvement margin over baselines of-
ten widens. This further substantiates the crucial
role of MDPR’s multi-dimensional semantic under-
standing and dynamic routing in tackling extreme
data imbalance.

4.4 Ablation Study

Our algorithm achieves performance gains through
stacking multi-dimensional semantic prompts and
regularization modules. To assess their con-
tributions, we compared zero-shot CLIP, base
MaPLe(base), MaPLe with semantic prompts
(base+Sem), and full MDPR (base+sem-reg)

All Many Med Few Al

I Many Med Few All Many Med Few

(a) CIFAR-100-LT (b) ImageNet-LT (c) Places-LT

Figure 3: Ablation results across datasets. Results of
other IR of CIFAR-100-LT see in Appendix B.

on CIFAR-100-LT (IR=50), ImageNet-LT, and
Places-LT. As shown in Figure 4, performance im-
proves progressively with each module. Adding
semantic prompts (base+sem) significantly boosts
tail-class accuracy, e.g., Few on Places-LT from
28.73% to 48.39% (+19.66%). Regularization
(base+sem+reg) further raises Few to 50.99% and
slightly improves head and mid classes (e.g., Many
to 79.42% on ImageNet-LT). Semantic prompts
substantially mitigate tail-class bias via comprehen-
sive semantic representations, while regularization
enhances prediction consistency across head, mid,
and tail classes by stabilizing dynamic routing.

4.5 In-depth Analysis of Knowledge-base
Construction

An ablation study on the multi-dimensional se-
mantic knowledge base using Ours (CoOp) on
Places-LT (Table 4) reveals each dimension’s dis-
tinct contribution. Removing the Differential Fea-
tures (DF) dimension caused the largest overall
accuracy drop, highlighting the critical role of dis-
tinguishing unique characteristics via comparison
with similar classes. The removal of Contextual
Information (CI) or General Appearance (GA) also
significantly impacted performance, underscoring
the importance of scene understanding and fun-
damental visual features.In contrast, lacking Fine-
grained Appearance (FA) or Functionality (FT) had
a smaller, yet noticeable, negative effect, confirm-



Model ImageNet-LT Places-LT
All Many Med Few All Many Med Few

CLIP-ViT-B/16 (ICML’21) 62.95 63.96 62.08 63.15 38.40 35.49 37.97 4477
CoOp (ICV’22) 68.69 74.82 65.75 61.75 40.73 53.10 35.58 29.72
CoCoOp (CVPR’22) - - - - 41.12 52.95 35.84 31.39
Maple (CVPR’23) 69.02 77.20 64.90 60.37 41.37 54.33 36.45 28.73
TextRefiner (AAAI’25) 66.74 81.75 62.45 39.40 38.01 52.76 32.79 22.79
Candle (KDD’24) 71.28 76.38 69.55 62.91 45.81 46.97 45.42 44.56
Ours (CoOp) 74.57 77.67 73.42 69.87 48.89 49.45 48.72 47.96
Ours (Maple) 75.57 79.42 74.02 70.04 50.94 50.32 51.42 50.99

Table 3: Comparison results on ImageNet-LT dataset and Places-LT dataset, where best results are bolded and

suboptimal results are underlined. The

ing the supplementary value of specific visual de-
tails and object function information. Notably, all
dimensions positively contributed to few-shot class
recognition; removing any single dimension de-
creased few-shot accuracy by 1.3% to 2%, with CI
removal having the most pronounced effect.
These findings demonstrate that a comprehen-
sive, multi-dimensional knowledge base with com-
plementary semantic dimensions is essential for
MDPR to effectively address long-tailed distribu-
tions and enhance learning of data-scarce classes.

Knowledge All Many Mid Few
All 48.89 4945 48.72 48.24
w/o GA 4723 4824 46.70 46.58
w/o FA 4788 48.67 4753 47.24
w/o FT 47.87 49.10 47.04 4748
w/o CI 4728 4940 46.05 46.21
w/o DF 46.82 48.11 45.74 46.92

Table 4: Different knowledge base on Places-LT.

4.6 Comparative Analysis of Model Efficiency

To assess the practical applicability of our pro-
posed MDPR framework, this section briefly ana-
lyzes the additional parameter count and its impact
on training efficiency. As summarized in Table 5,
our MDPR module introduces approximately 1.1M
trainable parameters. This increment is substan-
tially smaller than the total parameter count of the
CLIP ViT-B/16 backbone (representing less than
0.74% of the backbone’s parameters), positioning
MDPR within the realm of parameter-efficient fine-
tuning. For training on the ImageNet-LT dataset,
integrating MDPR results in a slight increase in
per-epoch training time of approximately 14 sec-
onds for the CoOp baseline and 114 seconds for
the MaPLe baseline.

In summary, while MDPR introduces a modest

in results means out of memory in our devices.

number of additional parameters and a slight in-
crease in computation, these are well-justified by
the significant performance gains, particularly in
recognizing few-shot classes. The marginal over-
head is especially low when MDPR is integrated
with more complex frameworks like MaPLe, under-
scoring its practicality as an efficient enhancement
module for VLMs addressing imbalanced data.

. CoOp MaPLe
Metric CoOp +MDPR MaPLe +MDPR
Param (M)  0.008 1.108 3.6 4.7
Time (s) 1115 1229 1361 1375

Table 5: Trainable Parameters (Param) and Training
Time per Epoch (Time) on ImageNet-LT.

5 Conclusion

Addressing the class bias in fine-tuning vision-
language models under long-tailed distributions,
we propose the Multi-dimensional Dynamic
Prompt Routing (MDPR) framework. Unlike tra-
ditional static prompt or high-cost sample gen-
eration methods, MDPR leverages a structured
multi-dimensional semantic knowledge base and
an image-driven dynamic routing mechanism to
efficiently mitigate biases from pre-training and
downstream data. First, MDPR constructs a
five-dimensional prompt pool, providing compre-
hensive class understanding to counter prior bi-
ases. Second, an image-guided dynamic rout-
ing module, combined with regularization, gen-
erates instance-adaptive class representations by
optimizing routing and representation stability. Ex-
periments on CIFAR-100-LT, ImageNet-LT, and
Places-LT demonstrate that MDPR significantly en-
hances tail-class performance while balancing head
and medium-class robustness, achieving SOTA
or highly competitive results. As a lightweight
plug-and-play module, MDPR offers an effective
paradigm for open-world long-tailed recognition.



Limitations

First, the effectiveness of MDPR has been pri-
marily validated on the CLIP ViT-B/16 backbone
integrated with CoOp and MaPLe. Its general-
izability and performance on larger-scale or dif-
ferent VLM architectures require further examina-
tion in future work. Second, MDPR’s prediction
balancing, while benefiting from the rich multi-
dimensional semantic library, still partially relies
on known class distribution information from the
training set. This dependency might limit its ro-
bustness in real-world scenarios with unknown or
dynamic class distributions. Future research could
explore integrating methods like causal inference to
enhance adaptability to open environments. Third,
the current multi-dimensional semantic knowledge
base is constructed offline for predefined classes,
potentially posing scalability challenges in incre-
mental or open-set learning scenarios requiring
rapid adaptation to new classes or domains. Future
work could draw from continual learning principles
to explore mechanisms for dynamic construction
and updating of the semantic knowledge base.
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A Appendix
A.1 Detailed Hyperparameter Settings

This section provides a comprehensive overview of
the hyperparameter settings used for training our

MDPR models and the baseline VLM frameworks,
supplementing the details in Section 4.2.2 of the
main paper. All experiments were conducted on a
single NVIDIA RTX 3090 GPU.

A.1.1 Common Training Settings

The following settings were applied to all trained
models (both baselines and our MDPR variants)
unless specified otherwise:

* Optimizer: AdamW (Loshchilov and Hutter,
2017).

« Weight Decay: 1 x 10~%.

* Base Learning Rate (for prompts and
MDPR modules): 1 x 1073,

* Learning Rate Schedule: Cosine annealing
schedule.

* Total Training Epochs: 20.
* Batch Size: 128 for all datasets.

* Visual Backbone: Pre-trained CLIP ViT-
B/16 (Radford et al., 2021) for all experi-
ments. The backbone parameters were kept
frozen during fine-tuning of CoOp, MaPLe,
and their MDPR-enhanced counterparts, con-
sistent with standard prompt tuning practices.

A.1.2 Base VLM Framework Parameters

When MDPR is integrated, the parameters of the
underlying base VLM frameworks were set as fol-
lows:

CoOp (Zhou et al., 2022b):

e Number of Context Tokens (/V.;): 16.
¢ Class Token Position: “end”.

¢ Context Initialization: Random initialization
(standard for CoOp).

MaPLe (Khattak et al., 2023):

e Number of Context Tokens (/V.,): 2 for
both visual and language shallow prompts.

* Deep Prompt Depth (Vision & Language):
9 layers for both vision and language en-
coders.

e Context Initialization: Random initializa-
tion.



A.1.3 MDPR Module Parameters

The specific parameters for our MDPR module
were configured as:

* Semantic Prompt Embedding Dimension
(d): 512 (consistent with CLIP ViT-B/16 text
encoder output).

¢ Multi-Head Attention (MHA) in DPR:

— Number of Attention Heads: 8.
— Dropout Rate (during training): 0.1.

* KL Projection Layer (Proj(-)): This linear
layer projects features from d = 512 to an
intermediate dimension of 128 before KL di-
vergence calculation.

A.1.4 Loss Weights and Temperatures

The weights for the individual loss components in
the total loss function (Equation 8 in the main pa-
per: Etotal = )\baseﬁbase + ASemﬁsem + )\updﬁupd +
Ax1Lx) and the KL distillation temperature T" were
determined through systematic tuning on a valida-
tion split (e.g., a subset of the training data or a
dedicated validation set if available).

* Apase: Fixed at 1.0 for all experiments to give
primary importance to the base VLM’s objec-
tive.

* Tuning Strategy for Asem, Aupa, Au1, 7: A
two-stage tuning process was generally fol-
lowed:

1. Stage 1 (Tuning Asem): Auypa and Ay
were initially set to 0.  Agm was
tuned by exploring values in the set
{0.1,0.5,1.0,2.0}. Preliminary exper-
iments on CIFAR-100-LT (IR=100) sug-
gested the following as strong starting
points, which were then validated or
slightly adjusted for other datasets:

— For MDPR-CoOp: Agem = 0.1.
— For MDPR-MaPLe: A, = 1.0.

2. Stage 2 (Joint Tuning Aypg, A, 1):
With the selected Asem, Aupa Was tuned
from the set {0.01,0.05,0.1,0.5,1.0},
A from {0.001, 0.005,0.01,0.05,0.1},
and the KL distillation temperature T’
from {1.0, 2.0, 5.0}.

* Loss Weight Warm-up: The weights for
Lsem and Ly (i.e., Asem and Ayy) were linearly
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warmed up from O to their target tuned values
over the first 5 training epochs. This strategy
was found to stabilize early training.

A.1.5 Inference Settings

* Logit Fusion Coefficient (3): The coefficient
B in the logit fusion equation ( Zgny = (1 —
B)Zvase + BZsem) Was set to 0.5 by default for
all reported results. This implies an equal
contribution from the base VLM’s predictions
and the MDPR’s dynamic semantic pathway
predictions.

Language Model Selection for Prompt
Generation

visual features:

Provide a concise English phrase describ-
ing the key visual appearance features of a
"{class-name}".

Focus on what it looks like (e.g., shape,
color, texture, notable parts).

The phrase should be approximately {target-
word-count} words and suitable to complete
the sentence: "A {class-name} typically ap-
pears as { YOUR PHRASE HERE}."
Output ONLY the descriptive phrase. Do
NOT include "A {class-name} typically ap-
pears as".

Descriptive phrase for "{class-name}":
functional-use: Provide a concise English
phrase describing the primary function or
purpose of a "{class-name}".

Focus on what it is used for.

The phrase should be approximately {target-
word-count} words and suitable to complete
the sentence: "A {class-name} is used for
[YOUR PHRASE HERE]."

Output ONLY the descriptive phrase. Do
NOT include "A {class-name} is used for".
Descriptive phrase for "{class-name}":
contextual-scene: Provide a concise En-
glish phrase describing the common en-
vironments or contexts where a "{class-
name}" is typically found.

Focus on its usual surroundings or scenar-
10S.

The phrase should be approximately {target-
word-count} words and suitable to complete
the sentence: "A {class-name} is commonly
found in [YOUR PHRASE HERE]."
Output ONLY the descriptive phrase. Do




NOT include "A {class-name} is commonly
found in".

Descriptive phrase for "{class-name}":
differential-comparison: Describe the key
visual differences of a "{class-name}" when
compared to a "{confusing-class-name}".
Focus on features that distinguish a "{class-
name}" from a "{confusing-class-name}".
The description should be in English, con-
cise, and approximately target-word-count
words.

Output ONLY the descriptive phrase itself,
suitable for completing the sentence: "Un-
like a {confusing-class-name}, a {class-
name} has [YOUR PHRASE HERE]."
Output ONLY the descriptive phrase of
differences. Do NOT include "Unlike
a {confusing-class-name}, a {class-name}
has".

Descriptive phrase of differences for
"class-name" compared to "confusing-class-
name":

fine-grained-attribute: Provide a concise
English phrase describing one or two highly
distinctive or fine-grained visual attributes
of a "{class-name}" that make it unique or
easily identifiable.

Focus on specific, detailed characteristics.
The description should be in English, con-
cise, and approximately target-word-count
words.

Output ONLY the descriptive phrase itself,
suitable for completing the sentence: "A dis-
tinctive feature of a {class-name} is [YOUR
PHRASE HERE]."

Output ONLY the descriptive phrase of the
attribute(s). Do NOT include "A distinctive
feature of a {class-name} is".

Descriptive phrase of attribute(s) for
"{class-name}":

\. J

For generating the multi-dimensional semantic
prompts required by MDPR, we evaluated sev-
eral Large Language Models (LLMs), including
Qwen2.5, LLaMa4, and DeepSeek-V3. The eval-
uation primarily considered the statistical proper-
ties of the semantic similarities (forming the prior
alignment matrix M) between the CLIP-encoded
LLM-generated prompts and generic class descrip-
tions. Considering a comprehensive comparison of
key metrics (summarized in Table 6) and a qualita-
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Figure 4: Ablation results across datasets.

tive assessment of the generated text, we selected
Qwen2.5 for prompt generation due to its favor-
able overall performance in semantic alignment
and distributional stability.

Table 6: Key statistics for the prior alignment matrix M
(semantic similarities) from prompts by different LLMs
on CIFAR-100.

LLM Mean Std Median
Qwen2.5 0.8371 0.0370  0.8452
LLaMa4 0.8360 0.0371 0.8457
DeepSeek-V3  0.8354 0.0373  0.8438

Algorithm 1 Multi-dimensional Dynamic Prompt
Routing (MDPR)

Require: Training set D = {(zp, v) }2_,
Ensure: Trained model ¢

1: Initialize CLIP with pre-trained weights
CLIP

2: Build confusion matrix K «<—— D

3: Generate prompts P, LM (K, prompts)
4: Compute M € RE*5 L p,

5: Encode f, € ROx5xd LLIP P.

6: for xp, y;, do in D, Compute fi, = ¢y (xp)
7: Calculate y ., constrained by Lpage

8: Initialize f,;, and W,

9: for classc = 1to C do
10: £o, Wi = C-MHA(ff, £5, fg)
11: Calculate Lo
12: Append £, to £, W7 to W,
13: end for
14: Calculate .., Constraint Leep,
15: Optimize Liotal
16: Update ¢ < ¢ — nV 4 Lotal
17: end for
18: return ¢




