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Abstract

Large language models (LLM) have recently001
shown the extraordinary ability to perform un-002
seen tasks based on few-shot examples pro-003
vided as text, also known as in-context learn-004
ing (ICL). While recent work has attempted to005
understand the mechanisms driving ICL, few006
have explored training strategies that incen-007
tivize these models to generalize to multiple008
tasks. Multi-task learning (MTL) for general-009
ist models is a promising direction that offers010
transfer learning potential, enabling large pa-011
rameterized models to be trained from simpler,012
related tasks. In this work, we investigate the013
combination of MTL with ICL to build models014
that efficiently learn tasks while being robust to015
out-of-distribution examples. We propose sev-016
eral effective curriculum learning strategies that017
allow ICL models to achieve higher data effi-018
ciency and more stable convergence. Our exper-019
iments 1 reveal that ICL models can effectively020
learn difficult tasks by training on progressively021
harder tasks while mixing in prior tasks, de-022
noted as mixed curriculum in this work.023

1 Introduction024

Recently, the emergence of in-context-learning ca-025

pabilities in LLMs has revolutionized the field of026

NLP (Wei et al., 2022a). By pre-training with next-027

word predictions, these models can be prompted028

with few-shot examples and make accurate in-029

context predictions during inference (Brown et al.,030

2020). The ICL capability demonstrated even by031

smaller Transformer models presents an alterna-032

tive way to understand LLMs (Dong et al., 2023;033

Li et al., 2023a; Lu et al., 2023). To empirically034

understand this phenomenon, Garg et al. (2022)035

focus on learning a single function class in-context036

by a Transformer model. Their model achieves037

competitive normalized mean-squared error (MSE)038

compared to the optimal ordinary least squares es-039

1Code and models will be released on acceptance

timator when performing in-context linear regres- 040

sion. Nevertheless, these models sometimes fail to 041

converge and often struggle to generalize to more 042

challenging function classes. While the follow-up 043

studies (Akyürek et al., 2023; Von Oswald et al., 044

2023; Yang et al., 2023) have extensively analyzed 045

how these models conduct ICL, little work exists 046

exploring how training on multiple function classes 047

can enable transformer models to generalize and 048

perform ICL more efficiently. As we believe that 049

these generalist models are typically designed to 050

perform multiple tasks, there is a pressing need to 051

study the multi-task ICL capability of these models, 052

which is still missing in the literature. 053

From prior multi-task training (MTR) stud- 054

ies (Zhang et al., 2023; Ruder, 2017; Weiss et al., 055

2016), models can be trained on multiple related 056

tasks to improve their performance on individual 057

tasks. Despite its popularity, multi-task learning 058

has been difficult to understand in Transformer 059

models when trained on natural language, most 060

likely due to the difficulty of ranking and schedul- 061

ing language tasks (Crawshaw, 2020). However, 062

the newly introduced framework of learning func- 063

tion classes in context (Garg et al., 2022) provides 064

an easier way to study this multi-task training 065

paradigm. For example, for a polynomial func- 066

tion class, its difficulty can be scaled by changing 067

its degree (e.g., linear to quadratic), or changing 068

the input distribution (e.g., standard Gaussian to 069

Gaussian distribution with decaying eigenvalues). 070

This allows us to understand the ICL capabilities to 071

transfer across similar function classes from multi- 072

task training. Motivated by this, we conduct a 073

systematic analysis by training a Transformer on 074

varying function class families and input distribu- 075

tions in a multi-task manner to examine if the same 076

principles from MTR carry over into ICL. 077

During training, we explore different curriculum 078

learning strategies to schedule the ICL tasks of mul- 079

tiple function classes: (mixed, sequential, random) 080
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(§2.3). For benchmarking, we train another set of081

models only on a single function class family fol-082

lowing (Garg et al., 2022). We quantitatively and083

qualitatively compare our models trained with and084

without curriculum across all tasks and analyze the085

normalized mean-squared error (MSE) and atten-086

tion matrices (§3). Our experiments show that cur-087

riculum learning is more data-efficient, achieving088

comparable performance to single-task models us-089

ing only 1/9 of the training data. These curriculum090

models can also obtain an optimal MSE in func-091

tion classes where none of the single-task models092

converge.093

2 Methods094

2.1 Problem Definition095

Following Garg et al. (2022), we define the prob-096

lem of ICL as passing in an n-shot sequence097

(x1, f(x1), x2, f(x2), . . . , xn, f(xn), xn+1) to the098

Transformer and generating an output for f(xn+1),099

where the examples have not been seen during train-100

ing. We refer to this n-shot prediction problem,101

where input is given in pairs, as in-context learn-102

ing.103

We consider a data-generating process where d-104

dimensional covariates are drawn xi ∼ Dx and a105

function f ∼ F where Dx is any arbitrary distri-106

bution and F is the class of functions related to107

single-index normalized Hermite polynomials.108

2.2 Tasks109

We explore two types of separate tasks: learning a110

function class and learning a data distribution (in111

Appendix). We consider a single-index function:112

f(x) = φ(⟨x,w⟩).113

Function Class Learning We look at the class114

of functions derived from normalized probabilist’s115

Hermite polynomial, 1√
n!
Hen(x) which satisfies116

orthogonality. This is useful as it guarantees that117

the function values of all tasks are uncorrelated.118

For each task, we sample w uniformly from the119

unit sphere. We define K = 3 polynomial function120

classes as follows: denoting t = ⟨x,w⟩, we pick121

φ ∈ {φlinear, φquadratic, φcubic} for three function122

classes F1, F2, F3 respectively.123

φlinear(t) = t,124

φquadratic(t) =
1√
2
(t+

1√
2
(t2 − 1))125

φcubic(t) =
1√
3
(t+

1√
2
(t2 − 1) +

1√
6
(t3 − 3t))126

2.3 Curriculum Learning 127

We define the total training steps T to be 500,000, 128

where the t-th training step ranges from t = 129

1, 2, . . . , T . Our curriculum learning strategy (Se- 130

quential, Mixed, Random) is used to allocate our K 131

tasks across training time. In this paper, we explore 132

K = 3 function classes defined earlier. 133

Sequential Curriculum Given T total training 134

steps, we split the training steps into K partitions. 135

Within the k-th partition of training steps, we train 136

the model on learning a function from the k-th 137

function class, in order of increasing difficulty: 138

f ∼


F1 0 ≤ t ≤ T

3

F2
n
3 ≤ t ≤ 2T

3

F3
2T
3 ≤ t

139

Mixed Curriculum Given T total training steps, 140

we again split the training steps into K partitions. 141

Let ξ be (uniformly) drawn from {1, 2} and ζ be 142

(uniformly) drawn from {1, 2, 3}. We select tasks 143

from the previous k partitions with equal probabil- 144

ity (1 denotes the indicator function): 145

f ∼


F1 0 ≤ t ≤ T

3∑2
s=1 1(ξ = s)Fs

T
3 ≤ t ≤ 2T

3∑3
s=1 1(ζ = s)Fs

2n
3 ≤ t

146

Random Curriculum At each training step t, 147

randomly sample from the list of K tasks with 148

distribution equal probability: 149

f ∼
3∑

s=1

1(ζ = s)Fs, 0 ≤ t ≤ T 150

2.4 Attention Analysis 151

To understand how single and multi-task models 152

learn, we analyze the Transformer’s self-attention 153

weights. Specifically, we mask out the attention 154

matrices for each head to filter out the self-attention 155

scores between each f(xi) token and its corre- 156

sponding xi token. To summarize the head’s in- 157

clination to attend to previous tokens, we aggregate 158

these scores by taking the mean across all f(xi) 159

tokens. We then do this for all attention heads in 160

all layers and plot this as a head-by-layer heatmap. 161

We define a “retrospective head” as an attention 162

head that has a lighter value in the heatmap, indi- 163

cating that this specific head learns to attend to the 164

previous input token when constructing a represen- 165

tation for the current token, a natural pattern that 166

encourages understanding of the input pairs. 167
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3 Results168

Figure 1: Comparison of moving average of all three cur-
riculum learning strategies when evaluated on quadratic
function class dataset during test time. The mixed cur-
riculum is the only model that is able to achieve an accu-
rate normalized MSE. The random curriculum performs
comparatively worse, whereas the sequential curriculum
performs substantially worse (y-axis is limited in order
for mixed and random curricula to be differentiated).

Curriculum Strategy Comparison Figure 1169

shows that the mixed curriculum outperforms both170

the random and sequential curriculum when eval-171

uating all models on a quadratic function class172

dataset during test time. We find that the mixed173

curriculum strategy provides the most benefit to-174

wards learning multiple tasks. This is further vali-175

dated in Supplementary Figure 5, which shows that176

the mixed curriculum is most stable over all tasks,177

achieving an accurate solution after sufficient few-178

shot examples (20/80/90-shot examples for Lin-179

ear/Quadratic/Cubic respectively). We hypothesize180

this is due to stable periods of training, where the181

model is able to adapt to the given function class,182

whereas the random curriculum does not have such183

a schedule. Additionally, mixed curriculum likely184

outperforms sequential curriculum because includ-185

ing tasks from previous training blocks mitigates186

catastrophic forgetting (Zhai et al., 2023). There-187

fore, we stick with the mixed curriculum model in188

the following experiments.189

Qualitative Attention Analysis Figure 2 dis-190

plays how masking 7 retrospective heads (as de-191

fined in §2.4) causes a significant increase in192

normalized MSE compared to 7 non-retrospective193

heads in the mixed curriculum model. Using our194

attention analysis in Supplementary Figure 4, we195

identify retrospective heads as those with yellow196

values, whereas non-retrospective heads are high-197

lighted with dark purple values. This supports the198

theory that specific heads may be reasonable for the 199

ICL abilities of these models (Olsson et al., 2022). 200

Additionally, we find that the same attention heads 201

have high scores across related tasks, indicating 202

that these models are conducting approximations, 203

rather than learning the true tasks. 204

Curriculum Learning Convergence Figure 3 205

reveals 60% of mixed curriculum models converge, 206

whereas 0% of the single-task models trained on 207

quadratic function classes converge. Specifically, 208

these models do not achieve optimal (below 1) nor- 209

malized MSE during training time and at test time. 210

We believe curriculum learning aids in this task, as 211

we allow the model to warm up the training with the 212

objective (calculate f(x) from x) on easier tasks. 213

In contrast, the poor performance of the single-task 214

models may be explained by their cryptic attention 215

patterns (Supp Fig. 2). These findings help us 216

understand how curriculum learning can be used 217

to learn difficult function classes that are otherwise 218

unlearable by single-task models. 219

Curriculum Learning Data Efficiency Figure 220

4 illustrates the performance of a single-task model 221

and a mixed curriculum model during training 222

when evaluated on a cubic function class valida- 223

tion dataset. Our experiments uncover that the 224

mixed curriculum model can improve data effi- 225

ciency, learning harder tasks with fewer examples. 226

The mixed curriculum model is pre-trained on 1/9 227

of the training examples seen by the single-task 228

cubic model, yet the mixed curriculum model has 229

better performance on the validation set. Pulling 230

from qualitative attention analysis, we hypothesize 231

that the mixed curriculum model is able to use 232

its approximate understanding of the linear and 233

quadratic function classes to improve the initial 234

normalized MSE of a cubic function class. This 235

explains why the cubic model starts at 450 nor- 236

malized MSE, whereas the mixed model starts at 237

200 normalized MSE. When analyzing both mod- 238

els at test time (Supp Fig. 3, 5) the mixed model 239

has comparable performance to the single-task cu- 240

bic model. These findings suggest that curriculum 241

learning can assist data efficiency by making use 242

of transfer learning from easier tasks. 243

4 Discussion 244

In this paper, we examine how different curriculum 245

learning strategies affect Transformer’s in-context 246

learning capability. We first introduce the three 247
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Figure 2: Masking retrospective heads (bottom row) causes significant increase in normalized MSE compared to
non-retrospective heads (top row) in the mixed curriculum model.

Mixed models
Single task models

Figure 3: Comparison of the moving average of five dif-
ferent seeded single-task (blue-purple) and curriculum
models (orange-red) evaluated on a quadratic function
class dataset during test time. Mixed models are able
to learn quadratic function classes whereas the single
task models are unable to, indicated by the spikes and
upward trend in normalized MSE.

types of curriculum (mixed, random, sequential)248

along with the two tasks (function class learning249

and distribution learning). We then compare these250

curriculum models against models that we only251

train on a single specific task and evaluate them252

across related tasks. This reveals that the mixed253

curriculum provides the best results, as well as254

increases data efficiency and model convergence.255
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100

200

300

400

N
or

m
al

iz
ed

 M
SE

Validation MSE During Training

Single task model
Mixed model

Figure 4: Comparison of moving average normalized
MSE of a single-task cubic model to a mixed curricu-
lum model during training. Data points are generated
by evaluating the model on a separate validation set
of cubic function examples. The mixed curriculum
model is initialized with a checkpoint trained on linear
and quadratic function examples, while the single-task
model is initialized with random weights.

Through our analysis of attention, we show that 256

these multi-task models had high attention scores 257

across related tasks in the same heads, and that if 258

we mask these heads during test time, the accuracy 259

of these models drop drastically, indicating that spe- 260

cific heads are responsible for ICL. These results 261

provide an important insight into how we can better 262

pre-train LLMs to in-context-learn efficiently. 263
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Limitations264

Our work investigates ICL on standard function265

classes which can be mathematically defined, how-266

ever it may be difficult to extend our work to natural267

language tasks as they are hard to define. The ex-268

tensibility of our work to natural language tasks269

therefore remains an open question. We make270

use of three well-known scheduling methods, how-271

ever, more effective curriculum learning scheduling272

strategies should be investigated. We work with273

a relatively small model, thus our results may not274

be transferable to larger models such as Llama-2275

or GPT-4 and we work with noiseless data which276

may inflate the accuracy. Lastly, we acknowledge277

that in-context learning can be inconsistent (mod-278

els only learn approximations for tasks and have279

varying performance across seeds) and should not280

be used in high-risk situations.281
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Appendix459

A Experimental Settings460

We train on the GPT-2 model (22.4 million param-461

eters) with 12 heads, 8 layers, and an embedding462

size of 256 over 500,000 steps, where each batch463

size is 64. Each batch consists of 100 (xi, f(xi))464

pairs (we expect higher order polynomials to re-465

quire more in-context examples to converge). Dur-466

ing training, we evaluate each model every 2,000467

steps on a validation set with size of 32,000. Dur-468

ing test time evaluation, we evaluate each model on469

64 randomly selected examples. We train GPT-2470

using a A100-SXM4-80GB provided by the Center471

for High Throughput Computing (2006).472

B Distribution Learning473

In addition to different function classes, we explore474

training data generated from different distributions,475

given that recent literature has shown that these476

models do not perform well under distributional477

shifts (Garg et al., 2022; Yadlowsky et al., 2023).478

Particularly, we sample inputs xi from (i) Gaussian479

distributions, (ii) skewed Gaussian distributions480

(decaying eigenvalues), and (iii) student-t distri-481

butions (df=4). Attention matrices (Supp Fig. 6482

and 8) and normalized MSE (Supp Fig. 7 and483

9) across tasks may be found for both single-task484

and curriculum-based models in the Supplementary485

Materials.486

C Instruction Prompting487

We explore two sets of instruction prompting ar-488

chitectures: one-hot encoded vectors and preset489

instruction vectors. The goal of instruction prompt-490

ing was to evaluate whether our objective could491

benefit from instruction prompting the way lan-492

guage translation or other NLP tasks do.493

C.1 One Hot Encoded Vectors (OHEI)494

After generating our (xi, f(xi)) pairs, we append495

a single one hot encoded vector, p, to the begin-496

ning of the sequence, with the one hot encoding497

corresponds to the “task”:498

p =


p0 = 1 φ = φ1

p1 = 1 φ = φ2

p2 = 1 φ = φ3

499

We then apply a linear transformation to trans- 500

form the concatenation into the dimension of our 501

transformer, 256. 502

C.2 Preset Instruction Vectors (PI) 503

After we use a linear transformation to transform 504

our (xi, f(xi)) pairs to the input dimension of 505

our transformer,256, we append a unique vector, 506

p ∼ N (0, Id), that has been sampled from an 507

isotropic Gaussian distribution. This “instruction 508

vector” remains constant throughout the training 509

of all models, but remains different for each of the 510

different tasks. 511

C.3 Instruction prompting remains unclear 512

Supplementary figure 1 shows the comparison 513

of a mixed curriculum model with no instruction 514

prompting, to the two instruction prompting archi- 515

tectures listed above, evaluated over all function 516

class tasks. Applications of the one hot encoded in- 517

struction (OHEI) vector to the mixed model causes 518

minimal improvement, whereas application of the 519

preset instruction (PI) vector to the mixed model 520

worsens model performance in the quadratic and 521

cubic function class evaluation during test time. 522

We believe the former has minimal effect in perfor- 523

mance as the one-hot encoded vectors may just be 524

seen as noise, whereas the latter most likely wors- 525

ens the ability of the model to learn the task as it 526

may be seen as an extreme version of noise (i.e. it 527

disrupts the flow of xi, f(xi) confusing the model). 528

Overall, we believe that instruction tokens may not 529

be tractable in this setting due to the difficult of 530

learning a 20-dimensional instruction. 531

D Related Work 532

In-context Learning In-context learning has 533

been around for a few years now (Dong et al., 534

2023), and many papers have analyzed in-context 535

learning with natural language (Min et al., 2022b; 536

Xie et al., 2022; Min et al., 2022a). It wasn’t until 537

Garg et al. (2022) that papers started analyzing ICL 538

through the paradigm of function class learning. 539

Garg et al. (2022) released a paper that showed that 540

transformers could learn linear regression close to 541

the OLS estimator, and other more complex func- 542

tion classes with respectable accuracy. However, 543

they found that some function classes were hard to 544

learn or did not converge (e.g. skewed gaussian). 545

Yadlowsky et al. (2023) looked at a framework 546

similar to Garg et al. (2022), where they explored 547

training models on a mixture of function classes 548
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however they do not explore curriculum strategies.549

Many papers also explore how in-context learning550

works, with current literature pointing to it being551

a fuzzy gradient descent, (Akyürek et al., 2023;552

Von Oswald et al., 2023; Yang et al., 2023). Ad-553

ditional theoretical work studies how transformers554

can implement near-optimal regression algorithms555

and describe stability conditions for ICL (Li et al.,556

2023b).557

Attention Analysis Until Vaswani et al. (2017),558

attention was not widely used in neural networks,559

however Transformers have revolutionized our ca-560

pabilities of performing tasks in a variety of fields.561

Given the power behind attention, we wanted to562

figure out a way to analyze it, similar to what has563

been done in previous work (Clark et al., 2019).564

(Olsson et al., 2022; Elhage et al., 2021) found that565

specific heads, specified as "induction heads", were566

responsible for the in-context-learning ability of567

transformers, both in large and small transform-568

ers. To measure this, they created their own metric.569

Interested in seeing if specific heads attended to570

specific tasks in a multi-task framework, we de-571

cided to visualize the attention matrix. (Vig and572

Belinkov, 2019) showed a simple and easy way to573

visualize attention, that was interpretable. We used574

this as a proxy to develop our own analyses of the575

attention matrices. Other recent work focuses on576

summarizing attention flow through transformer577

models from input embeddings to later layers with578

attention rollout (Abnar and Zuidema, 2020).579

Instruction prompting Prompting has been580

widely used in natural language tasks to improve581

accuracy and tends to be robust to variations dur-582

ing test time (Liu et al., 2023). Wei et al. (2023)583

showed that models of different architectures re-584

sponded differently to instruction tokens, with the585

formatting of the instruction effecting multi-task586

settings. Yin et al. (2023) showed that provid-587

ing key information in tasks in a common for-588

mat improved the ability of the model to learn the589

task. Recently frameworks have emerged which590

prompt LLMs with intermediate reasoning steps591

to elicit better reasoning capabilities (Wei et al.,592

2022b), known as Chain of Thought (CoT) prompt-593

ing. (Besta et al., 2023) and (Yao et al., 2023) ex-594

tend CoT prompting to consider multiple reasoning595

paths to improve performance. Future work may596

consider using these methods to improve in-context597

learning in the multi-task setting.598
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Supplementary Materials 599
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Figure 1: Normalized MSE over number of in-context examples for mixed curriculum model, mixed curriculum
model with one hot encoded instruction (OHEI) vector and mixed curriculum model with preset instruction (PI)
vector. Solid line represents the moving average (window=10) whereas the dashed line is the actual value. Scientific
notation is used for the y-axis.
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Figure 2: Attention analysis for single-task function learning models.
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Figure 3: Normalized MSE over number of in-context examples for single-task function learning models. Solid line
represents the moving average (window=10) whereas the dashed line is the actual value. Scientific notation is used
for the y-axis.
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Figure 4: Attention analysis for curriculum function learning model.
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Figure 5: Normalized MSE over number of in-context examples for curriculum function learning models. Solid line
represents the moving average (window = 10) whereas the dashed line is the actual value. Scientific notation is used
for the y-axis.
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Figure 6: Attention analysis for single-task distribution learning models.
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Figure 7: Normalized MSE over number of in-context examples for single-task distribution learning models. Solid
line represents the moving average (window = 10) whereas the dashed line is the actual value. Scientific notation is
used for the y-axis.
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Figure 8: Attention analysis for curriculum distribution learning.
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Figure 9: Normalized MSE over number of in-context examples for curriculum distribution learning models. Solid
line represents the moving average (window = 10) whereas the dashed line is the actual value. Scientific notation is
used for the y-axis.
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