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Abstract
The predictive capacity of admission tests depends on their ability to anticipate academic performance,
which is directly related to the marginal effect of test scores. However, in selection contexts, this effect
is not identifiable since academic performance is only observed for admitted students. In this paper, we
first propose a decomposition of the marginal effect based on the law of total probability, distinguishing
a within-group effect, which measures how academic performance varies with test scores within each
program, and a between-group effect, which captures how test scores explain differences in average
predictions across programs and influence admission probabilities. We then propose identification bounds
for the marginal effect based on contextual assumptions about the admission system.
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1. Introduction
Understanding the predictive capacity of university admission tests is crucial, as it reveals how strongly
test scores are related to future academic performance. This relationship is captured by the marginal
effect of scores on university performance: if changes in test scores lead to substantial changes in
university performance, the test is considered to have a high predictive capacity; conversely, if the
relationship is weak, the test has a low ability to differentiate future performance of students (see for
instance Geiser & Studley, 2002; Goldhaber et al., 2017).

When the student population can be partitioned into meaningful groups – for instance, by
academic program, institution, or demographic characteristics – the predictive capacity of a test is
typically assessed in two ways: by comparing correlation or regression coefficients – the marginal
effect in linear regression models – across groups (see for instance Ayers & Peters, 1977; Grobelny,
2018; Manzi & Carrasco, 2021). However, these approaches can obscure relevant information, as
they do not explicitly account for the structure of groups, such as the selectivity levels of academic
programs or the profiles of admitted students. To address this limitation, this study proposes a
decomposition of the marginal effect based on the law of total probability. This decomposition
distinguishes two components: the within-group effect, which measures how academic performance
varies with test scores within each program, and the between-group effect, which captures how test
scores explain differences in average predictions across programs and influence the probability of
admission to each one.
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Due to the lack of observability of the academic performance of non-selected applicants, estimating
the marginal effect in this context presents a challenge: while test scores are available for the entire pool
of applicants, academic performance is only observed for those who were admitted to the university.
From a statistical modeling perspective, the primary consequence of this missing information is that
the joint distribution of academic performance and test scores in the applicant population cannot
be fully known. As a result, the conditional distribution of academic performance given test scores
is not identifiable. Consequently, any parameter of interest related to this distribution will not be
identifiable without making any assumption (Koopmans, 1949; Manski, 1993). In particular, since
the conditional expectation of academic performance given test scores is not identified, any function
of this expectation will also be unidentified. Thus, its derivative with respect to test scores, which
defines the marginal effect, cannot be identified.

A common practice in empirical research is to work only with observed data, which is equivalent
to assuming that the missing data mechanism follows a missing at random process, also known as
the ignorability assumption (Florens & Mouchart, 1982; Hirano & Imbens, 2004; Imbens, 2000;
Manski, 2003; Rosenbaum & Rubin, 1983). This assumption implies that the conditional expectation
of academic performance given test scores is identical for both selected and non-selected applicants. If
this restriction is assumed, the conditional expectation of academic performance given test scores in
the whole population of applicants can be point-identified, which in turn allows for the identification
of the marginal effect. However, in a selection context, this assumption is unrealistic, as applicants are
selected precisely based on the belief that non-selected applicants would have performed worse than
those who were admitted (Alarcón-Bustamante et al., 2025; Grassau, 1956). Instead of imposing
strong assumptions to recover the point estimate of the marginal effect, this study employs a partial
identification approach. This approach does not seek to find a single value for the parameter of interest
but rather to bound its possible range based on weaker assumptions and observed data (Manski,
1993; Tamer, 2010). Specifically, we obtain identification bounds for the marginal effect that provide
valuable information about its magnitude and direction without assuming a priori that non-selected
applicants would behave the same as selected ones.

To illustrate the proposed approach, we use admission data from applicants to three programs
within the School of Biology at a university in Chile: Marine Biology, Biology, and Biochemistry.
We focus exclusively on students admitted through the regular selection process, in which applicants
are selected based on a linear combination of admission test scores, high school GPA, and high school
ranking. As a result, two applicants with the same Mathematics test score, for instance, may have
different admission outcomes due to differences in their prior academic performance. For example,
one applicant may be selected, and therefore we can observe their performance, despite having
the same score on this test as another applicant who was not selected, whose performance remains
unobserved. The dataset we use includes 289 observations, of which 125 correspond to selected
students who completed their first year in at least one program, and 164 to non-selected applicants.
In this study, we specifically focus on the Mathematics test score, which ranges from 150 to 850
points, and on academic performance measured through the first-year university GPA, on a 1.0 to
7.0 scale, where 4.0 is the minimum passing grade.

The paper is organized as follows: Section 2 formally presents the identification problem from
a modeling perspective. Section 3 introduces the decomposition of the marginal effect under the
ignorability assumption, providing a detailed interpretation of both the within-group and between-
group effects. Section 4 presents identification bounds for these effects under weaker assumptions
than ignorability, allowing for the construction of identification regions based on the context of the
selection problem. This section also includes the results of the estimated bounds along with a detailed
interpretation. Finally, Section 5 discusses the study’s conclusions and provides a broader discussion.
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2. Modeling framework and identification issues
Let M be the sample space of all applicants to the School of Biology. For each m ∈ M, we define
the following random variables: X(m) the scores of the mth applicant in the Mathematics selection
test; Y(m) the GPA of the mth applicant, and Z(m) = 1 the mth applicant is selected, and 0 otherwise.
By the law of total probability (Kolmogorov, 1950) the conditional expectation E(Y | X) can be
decomposed as

E(Y | X) = E(Y | X, Z = 1)P(Z = 1 | X) + E(Y | X, Z = 0)P(Z = 0 | X). (1)

In (1), E(Y | X, Z = 1) is the expected GPA, conditional on the scores for those selected applicants, and
P(Z = 1 | X) is the proportion of selected applicants given the scores. E(Y | X, Z = 0) is the expected
GPA, conditional on the scores for those non-selected applicants, which is, in fact, impossible to be
estimated because the GPA is not observed for those non-selected applicants. Thus, E(Y | X) is said
to be non-identified. The marginal effect is given by the derivative of (1), with respect to X, i.e.,

dE(Y | X)
dX

=
dE(Y | X, Z = 1)

dX
P(Z = 1 | X) + E(Y | X, Z = 1)

dP(Z = 1 | X)
dX

+

dE(Y | X, Z = 0)
dX

P(Z = 0 | X) + E(Y | X, Z = 0)
dP(Z = 0 | X)

dX
. (2)

In (2), dE(Y |X,Z=0)
dX represents the effect of test scores on the performance of non-selected applicants.

However, this effect cannot be estimated because academic performance is not observed. If selection
is assumed to be conditionally independent of academic performance given the test scores, then
E(Y | X, Z = 1) = E(Y | X, Z = 0). This assumption acts as an identification restriction (San Martín
& González, 2022), allowing the expected academic performance of selected applicants to serve as
a valid proxy for that of non-selected applicants. Thus, under this restriction, E(Y | X) becomes
point-identified, as it is equal to E(Y | X, Z = 1). This allows for the direct estimation of the marginal
effect without ambiguity. Now, let us incorporate information about the applicants’ selection status.
We introduce a new random variable, G : M → 0, 1, . . . , L, where G(m) = g if applicant m was
selected for program g (g = 1, . . . , L), and G(m) = 0 if they were not selected. Given the previously
defined role of Z, this definition implies that the set of units m ∈ M for which Z(m) = 0 —i.e., those
with unobserved outcomes— is equivalent to the set of non-selected applicants, namely those for
whom G(m) = 0. On the other hand, the set of units with Z(m) = 1 —i.e., those with observed
outcomes— corresponds to the union of all individuals selected into one of the L programs, that is,
those for whom G(m) = g for g = 1, . . . , L. For our data, we set L = 3. Without loss of generality,
we define G(m) = 1, G(m) = 2, or G(m) = 3 if they are selected for the Marine Biology, Biology, or
Biochemistry program, respectively. Thus,

E(Y | X) = E(Y | X, G = 0)P(G = 0 | X) +
3∑

g=1
E(Y | X, G = g)P(G = g | X). (3)

Taking the derivative with respect to X in (3), it is obtained that:

dE(Y | X)
dX

=
dE(Y | X, G = 0)

dX
P(G = 0 | X) +

3∑
g=1

dE(Y | X, G = g)
dX

P(G = g | X) +

E(Y | X, G = 0)
dP(G = 0 | X)

dX
+

3∑
g=1

E(Y | X, G = g)
dP(G = g | X)

dX
. (4)
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Although we have incorporated information about the applicants, the marginal effect is not identified
because it depends on both effect of test scores on university performance and the performance in
the non-selected population, namely G = 0.

2.1 Partial identifiability of the Marginal Effect

In many cases, the support of Y is inherently bounded by definition. In general, if Y is restricted to
the interval [y0(X), y1(X)], where y0(X) and y1(X) are two functions of X, such that y0(X) ≤ y1(X),
the conditional expectation in those non-selected applicants must also satisfy

y0(X) ≤ E(Y | X, G = 0) ≤ y1(X).

For example, in Chile, GPA Y is bounded between 1.0 and 7.0 (two constant functions of X),
implying that 1.0 ≤ E(Y | X, G = 0) ≤ 7.0. Although the exact value of E(Y | X, G = 0) is unknown
due to the lack of observed data for non-selected applicants, the bounded nature of Y ensures that
its conditional expectation must lie within this interval. This assumption is reasonable in settings
where the outcome variable has a known and fixed support, in which case the boundedness of the
unobserved conditional expectation becomes a direct implication of the known range of Y. However,
this is not universally applicable. For instance, when IRT models are used, sometimes it is of interest
to estimate the conditional expectation of the ability parameter given background covariates (e.g.,
comparing mathematics abilities of students conditional on sex or type of school). If some individuals
did not answer the test, their ability remains unobservable and cannot be estimated. In this case, even
if we attempt to impose bounds on the non observed conditional expectation, this is not theoretically
justifiable, since the latent ability parameter has an unbounded support by definition. In our case,
the boundedness is justified both theoretically and empirically. Nevertheless, bounding the outcome
variable Y is not sufficient to restrict the derivative of the unobserved conditional expectation, with
respect to X (Manski, 1989). In fact, the derivative of the unobserved conditional expectation is not
necessarily bounded. In such cases, even small changes in X could induce extremely large variations
in the outcome variable, causing the slope of the function to tend toward infinity. This poses a
substantive challenge for the partial identification approach, as it implies that the marginal effect may
be unbounded. To address this, in this paper we propose a set of contextually grounded assumptions
that aim to restrict the plausible range of the derivative, thereby enabling informative bounds on the
marginal effect. In practical terms, bounding the marginal effect requires formulating assumptions
under which the following inequality holds:

D0(X) ≤ dE(Y | X, G = 0)
dX

≤ D1(X),

where D0(X) and D1(X) are two functions of X, satisfying D0(X) ≤ D1(X). These functions encode
plausible lower and upper bounds on the derivative of the unobserved conditional expectation, based
on contextual knowledge of how X influences the outcome. These bounds rely jointly on beliefs
concerning both E(Y | X, G = 0) and its derivative. Taken together, these assumptions enable the
computation of partial identification bounds as expressed in (5) as follows:
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dE(Y | X)
dX

∈

[
D0(X)P(G = 0 | X) +

3∑
g=1

dE(Y | X, G = g)
dX

P(G = g | X) +

y0(X)
d+P(G = 0 | X)

dX
– y1(X)

d–P(G = 0 | X)
dX

+
3∑

g=1
E(Y | X, G = g)

dP(G = g | X)
dX

,

D1(X)P(G = 0 | X) +
3∑

g=1

dE(Y | X, G = g)
dX

P(G = g | X) + (5)

y1(X)
d+P(G = 0 | X)

dX
– y0(X)

d–P(G = 0 | X)
dX

+
3∑

g=1
E(Y | X, G = g)

dP(G = g | X)
dX

]

(see a proof in Appendix 1). Here, d+P(G=0|X)
dX and d–P(G=0|X)

dX are the positive and negative part of
dP(G=0|X)

dX , respectively. The length L(X), of the interval is given by:

L(X) = [D0(X) – D1(X)]P(G = 0 | X) + [y1(X) – y0(X)]
∣∣∣∣dP(G = 0 | X)

dX

∣∣∣∣
(see a proof in Appendix 2). These bounds provide a structured way to quantify the lack of information
in the marginal effect by integrating information about the support of Y and reasonable assumptions
about how E(Y | X, G = 0) evolves with X. Manski (1989) propose identification bounds for this
quantity by assuming that the probability of observing the outcome is an increasing function of X.
In Alarcón-Bustamante et al. (2020) identification bounds for the marginal effect were built by using
monotonicity assumptions. Alarcón-Bustamante et al. (2023) propose to use the results of Stoye
(2007) to define identification bounds for the regression coefficients in a linear regression model to
study the predictive validity of selection factors.

In what follows, we analyze the marginal effect of math scores on academic performance under
the assumption of ignorability, which not only allows for the point identification of this effect but
also provides a clear framework for interpreting the relationship between math scores and academic
performance among applicants who were selected into the system. We then explore different scenarios
for non-selected applicants to extend the analysis beyond the observed population and consider how
the effect of math scores would manifest in the entire pool of applicants. While the true effect in the
absence of ignorability cannot be known with certainty, these scenarios will allow us to establish
partial identification bounds that delineate a plausible range for the marginal effect without requiring
the assumption of conditional independence.

3. The marginal effect under ignorability
Under the ignorability assumption, we have that E(Y |X) = E(Y |X, Z = 1). Thus, the marginal effect
is given by

dE(Y |X)
dX

=
dE(Y |X, Z = 1)

dX
.

For our data, the GPAs are observed in different programs, namely G = g ∈ {1, 2, 3}. Thus,

E(Y |X, Z = 1) =
3∑

g=1
E(Y |X, Z = 1, G = g)P(G = g|X, Z = 1). (6)
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Taking the derivative with respect to X in Equation (6), and noting that under the ignorability
assumption we only have information about the selected applicants, for whom

∑3
g=1 P(G = g | X, Z =

1) = 1, we obtain:

dE(Y |X, Z = 1)
dX

=
∑

i

dE(Y |X, Z = 1, G = g)
dX

P(G = g|X, Z = 1)

+
∑
g̸=g′

[E(Y |X, Z = 1, G = g) – E(Y |X, Z = 1, G = g′)]
dP(G = g|X, Z = 1)

dX
.

In Alarcón-Bustamante et al. (2021), this quantity is referred to as the Global Marginal Effect. The
authors show that its value remains unchanged regardless of the chosen reference group, G = g′.
Therefore, the global marginal effect possesses an invariance property.

We have decomposed the global marginal effect, isolating the impact of test scores into two
distinct components, namely:

• Within-group effect

W(X) =
∑

g

dE(Y |X, Z = 1, G = g)
dX

P(G = g|X, Z = 1);

it measures how academic performance varies with test scores within each program. This within-
group effect is manifested in the average weighted effect trough the score scale, where the weights
are given by the proportion of selected applicants in each program.

• Between-group effect,

B(X) =
∑
g̸=g′

[E(Y |X, Z = 1, G = g) – E(Y |X, Z = 1, G = g′)]
dP(G = g|X, Z = 1)

dX
;

it captures how test scores explain differences in average predictions across groups and how test
scores affect the probability of observing a student in one program or another.

3.1 Results under ignorability
In this section, we present the results of this decomposition, highlighting the relative contribution of
W(X) and B(X) to the prediction of academic performance, always within the framework of the
ignorability assumption. To estimate the conditional expectations involved, we employed a linear
model, while the required probabilities were estimated using a multinomial regression. Although we
used linear regression for specifying the conditional expectations, which may not fully align with
the nature of the data, this choice was made purely for illustrative purposes.

Figure 1 illustrates the relationship between math scores, academic performance, and the distribution
of students across programs. The left panel shows that within each program, there is a positive
relationship between admission scores and GPA, indicating a within-group effect: on average, higher
scores are associated with higher academic performance. The plot in the central panel reveals that
the probability of belonging to each program changes with math scores. As scores increase, students
are more likely to belong to certain programs and less likely to be in others, suggesting the presence
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Figure 1. Results under ignorability

of a between-group effect. This redistribution of students across programs contributes to the overall
effect of math scores on GPA, as it not only affects performance within each program but also alters
the composition of students observed at different score levels. Moreover, since B(X) depends on
the differences in predicted values across programs, it is important to note that as scores increase,
these differences tend to decrease. This suggests that at the higher end of the scale, the variability in
academic performance across programs diminishes, moderating the impact of the between-group
effect. In particular, this structure of student allocation across programs directly influences the shape
of the overall relationship between test scores and academic performance. As observed in the right
panel plot, the result of the law of total probability produces a nonlinear relationship, even though the
regressions within each program were modeled as linear. This nonlinearity becomes more evident
at the upper end of the scale, where the growth of GPA with respect to math scores slows down.
This occurs because students with higher scores are more likely to belong to programs where the
slope of the relationship between test scores and performance is lower. As a result, even though the
relationship within each program is linear, the combination of these effects at the aggregate level
introduces curvature in the predicted academic performance.
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Figure 2. Results under ignorability: W(X) in the left panel; B(X) in the central panel; Global Effect in the right panel.

In Figure 2, the results of computing within and between group effect are shown. The within-group
effect, W(X), decreases as X increases, indicating that the relationship between test scores and
academic performance within each program is stronger at lower score levels but does not vanish at
higher levels. It is important to note that this interpretation is on average, as W(X) is a weighted
combination of the within-program effects, reflecting the contribution of each group according to
the distribution of students.

The between-group effect, B(X), captures how the distribution of students across programs
influences the prediction of academic performance. For lower scores, differences in expected values
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between programs are more pronounced, contributing to a positive B(X). Additionally, in this
region, students are primarily distributed between two programs (Biology and Marine Biology),
allowing for greater variability in program assignment and, consequently, a stronger impact of
changes in composition. In the middle range, where students are more evenly distributed across all
three programs, B(X) reaches its peak, reflecting the highest variability in student distribution and
performance differences across programs. However, at the upper end of the scale, the probability
of observing students in programs other than biochemistry declines considerably, reducing the
contribution of the between-group effect. Furthermore, in this region, the differences in expected
values across programs nearly vanish, further attenuating B(X). This implies that at higher score
levels, the impact of student redistribution across programs is near to be zero, as the composition
becomes more homogeneous and expected performance levels converge.

The combination of both effects, W(X) + B(X), results in a nonlinear relationship where the
global impact of math scores is highest in the middle range of the scale and decreases at higher values.
This indicates that, although math scores influence academic performance at all levels, their intensity
varies depending on the interaction between within-group and between-group effects, with greater
sensitivity in the middle range and a progressive decline at the extremes of the scale.

It is important to highlight that the within-group effect, W(X), consistently maintains a higher
magnitude across the entire scale, whereas the between-group effect, B(X), reaches its peak in the
middle of the distribution but never surpasses W(X). This suggests that, in our data, the relationship
between test scores and academic performance is stronger within programs than through changes in
the composition of students across programs. While the assignment of students between programs
contributes to performance predictions, its impact remains more limited compared to the differences
observed within each program. Therefore, math scores are a better predictor of academic performance
within each program than through their influence on the distribution of students across programs.
This suggests that variability in academic performance is primarily driven by differences within
programs, while changes in student composition based on test scores have a more limited effect.

The analysis under the ignorability assumption provided a complete interpretation of the global
effect of math scores on academic performance using only information from selected applicants.
This outcome follows directly from the assumption that selection is conditionally independent of
performance given test scores, allowing the estimation to be conducted solely within the observed
group. However, this restriction raises an important question: what assumptions can be made about
the effect of X among non-selected applicants in order to gain insights into the predictive capacity
of the test for the entire applicant population? Addressing this question requires exploring alternative
identification strategies that extend beyond the observed population. In the next section, we examine
such alternatives and propose partial identification bounds that characterize the plausible range of the
marginal effect. These assumptions are not imposed arbitrarily as abstract mathematical conditions
but are instead constructed based on the selection problem and the specific context in which the
admissions process operates.

4. Bounding the Within and Between groups effect
Rewriting Equation (4) in an equivalent form, and noting that

∑3
g=0 P(G = g | X) = 1, we obtain

that the global marginal effect can be written as follows:

dE(Y | X)
dX

=
dE(Y | X, G = 0)

dX
P(G = 0 | X) +

3∑
g=1

dE(Y | X, G = g)
dX

P(G = g | X) +

3∑
g=1

[
E(Y | X, G = g) – E(Y | X, G = 0)

] dP(G = g | X)
dX

.

https://orcid.org/0000-0003-3121-483X


Proceedings of the 89th Annual International Meeting of the Psychometric Society, Prague, Czech Republic 9

The decomposition of the marginal effect remains evident in this formulation, where the within-
group effect is given by

W(X) =
dE(Y | X, G = 0)

dX
P(G = 0 | X) +

3∑
g=1

dE(Y | X, G = g)
dX

P(G = g | X),

which is not identified since it depends on the impact of X on academic performance for non-selected
applicants. However, if it is assumed that D0(X) ≤ dE(Y |X,G=0)

dX ≤ D1(X), then

W(X) ∈

[
D0(X)P(G = 0 | X) +

3∑
g=1

dE(Y | X, G = g)
dX

P(G = g | X);

D1(X)P(G = 0 | X) +
3∑

g=1

dE(Y | X, G = g)
dX

P(G = g | X)

]
. (7)

The width of this bound is LW (X) = [D0(X) – D1(X)]P(G = 0 | X), and quantify how the lack of
information about non-selected applicants affects the estimation of W(X). Its magnitude depends on
the difference D0(X) – D1(X), which captures the uncertainty about how the expected performance
of non-selected applicants varies as a function of the mathematics score, and on the probability
P(G = 0 | X), which indicates the proportion of students with score X who were not selected. If this
probability is high or the difference in derivatives is large, the identification bound widens, reflecting
a greater impact of missing information on the estimation. Conversely, if both values are small,
the bound narrows, allowing for better precision in estimating the within-group marginal effect.
Therefore, the severity of the identification problem for W(X) is directly determined by LW (X), and
with it, what an investigator is willing to assume about how the marginal effect would have been for
non-selected applicants had they been selected.

Similarly, the between-group effect is given by:

B(X) =
3∑

g=1

[
E(Y | X, G = g) – E(Y | X, G = 0)

] dP(G = g | X)
dX

,

where non-selected applicants are used as the reference group, considering the invariance property
of the global effect. However, B(X) is also not identified, as it is based on the expected performance
of an unobserved population. However, assuming that y0(X) ≤ E(Y | X, G = 0) ≤ y1(X) and, after

some algebraic manipulation, taking into account that
3∑

g=0
P(G = g | X) = 1, we obtain:

B(X) ∈
[ 3∑

g=1

[
E(Y | X, G = g)

dP(G = g | X)
dX

–
(

y1(X)
d+P(G = g | X)

dX
– y0(X)

d–P(G = g | X)
dX

)]
;

3∑
g=1

[
E(Y | X, G = g)

dP(G = g | X)
dX

–
(

y0(X)
d+P(G = g | X)

dX
– y1(X)

d–P(G = g | X)
dX

)]]
. (8)

It is not difficult to show that the width of the bound is

LB(X) = [y1(X) – y0(X)]
∣∣∣∣dP(G = 0 | X)

dX

∣∣∣∣ .

The bound width for B(X) represents the quantification of how the lack of information affects the
estimation of the between-group effect due to the absence of data on the performance of non-selected
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applicants. This expression shows that the bound width depends on two key factors. First, the
difference y1(X) – y0(X) reflects the range of possible values that the conditional expectation of Y
in non-selected applicants could take, introducing more or less variability in the estimation of the
between-group effect. Second, the term

∣∣∣ dP(G=0|X)
dX

∣∣∣ indicates how the proportion of non-selected
applicants varies with respect to X. If this quantity is large, it means that the sample composition
changes rapidly with the math score, amplifying the uncertainty around B(X).

Consequently, the severity of the identification problem for B(X) depends on the interaction
between these two components: if the interval in which the conditional expectation lies is wide
and/or the proportion of non-selected applicants varies sharply with X, the between-group effect will
be harder to bound without assuming additional information about the performance of non-selected
applicants: a conservative assumption (CA), which provides the widest contextual bounds for both
the conditional expectation and its derivative—meaning that any plausible solution under alternative
assumptions should lie within these bounds—and an empirical contextual assumption (EA), which is
also used to construct contextual bounds for both the conditional expectation and its derivative.

4.1 Assumptions and results
Under the ignorability assumption, it was sufficient to impose a restriction on the conditional
expectation, as this allowed us to work exclusively with the selected applicants. However, when
considering scenarios for the non-selected applicants, additional restrictions are needed not only on
the conditional expectation but also on its derivative. This necessity arises because, in the absence of
ignorability, the identification of the marginal effect depends on both the expected performance of
non-selected applicants and how it varies with changes in test scores. In what follows, we propose
a set of assumptions to bound both W(X) and B(X), which together enable the construction of
identification intervals for the global marginal effect.

Assumptions for boundingW(X)
To construct bounds for W(X), it is necessary to impose restrictions on the marginal effect among non-
selected applicants. Specifically, this involves proposing functions D0(X) and D1(X) that represent
contextually plausible lower and upper bounds for the derivative of the unobserved conditional
expectation. The informativeness of the resulting bounds depends on the nature of these assumptions.

Assumption 1 (CA): A baseline belief is that higher test scores are associated with better academic
performance, implying a non-negative marginal effect. This assumption naturally extends to non-
selected applicants, as the test is designed to capture academic competencies, and there is no reason
to expect a reversal of this relationship among them. Another belief about the effect of test scores is
that the maximum possible effect of math scores on university performance is observed within the
selected population. Consequently, it follows that the effect of non-selected applicants, had they been
selected, would not be expected to exceed the maximum effect observed among those who were
admitted. Translating these beliefs into marginal effects terms, it follows that:

0 ≤ dE(Y | X, G = 0)
dX

≤ max
x

 d
dX

 3∑
g=1

E(Y | X, G = g)P(G = g | X)

∣∣∣∣∣∣
X=x

 .

These bounds can be interpreted as the most conservative plausible assumption for the marginal effect
in the non-selected population, as they rely only on the general assumption of monotonicity and the
empirical maximum observed within the selected population.

Assumption 2 (EA): Since the assumptions in this framework are contextual, empirical insights can
be used to improve the informativeness of the bounds. In this case, it is plausible that the effect of test
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scores on academic performance among non-selected applicants—had they been admitted—could
have been greater than the lowest effect observed within the selected population. That is, while
the effect remains positive, it may have exceeded the minimum identified among admitted students.
However, we do not expect it to surpass the effect observed in the most similar group among those
admitted. For our data, we define similarity based on the average math score: non-selected applicants
averaged 627 points, compared to 632 for MB, 647 for B, and 707 for BC. Given this proximity, we
consider the Marine Biology (MB) group the most comparable. Therefore, we can assume that the
marginal effect among non-selected applicants would not surpass the maximum effect observed in
the MB group (G = 1). This belief, can be mathematically translated as follows:

min
x

 d
dX

 3∑
g=1

E(Y | X, G = g)P(G = g | X)

∣∣∣∣∣∣
X=x

 ≤
dE(Y | X, G = 0)

dX
≤ max

x

{
d

dX
[
E(Y | X, G = 1)

]∣∣∣∣
X=x

}
.

Both Assumptions 1 and 2 lead to different functions D0(X) and D1(X), which in turn determine
the width and informativeness of the resulting bounds. These functions reflect the contextual beliefs
imposed on the marginal effect among the non-selected applicants. The corresponding bounds are
then computed by replacing the corresponding D0(X) and D1(X) functions into the identification
interval (7) for bounding W(X).

Assumptions for bounding B(X)
Bounding B(X) requires imposing restrictions on the expected academic performance of non-selected
applicants, conditional on their test scores. Formally, this involves specifying both y0(X) and y1(X)

Assumption 1 (CA): In the most conservative case, we rely on the known bounds of the GPA scale,
namely y0(X) = m0 and y1(X) = m1 (in the case of Chile, m0 = 1.0 and m1 = 7.0). This implies that

m0 ≤ E(Y | X, G = 0) ≤ m1.

Assumption 2 (EA): To construct more informative bounds, we incorporate contextual information
from the observed GPAs. It is plausible to assume that non-selected applicants—had they been
admitted—could have performed better, on average, than the lowest-performing student among
those selected. This implies that the expected GPA for non-selected applicants, conditional on
their test scores, may exceed the minimum GPA observed in the selected population. At the same
time, given that these applicants were not admitted, it is reasonable to assume that their expected
performance would not surpass the maximum GPA observed in the most similar group in terms
of math scores—namely, the Marine Biology (MB) group. This assumption reflects the belief that,
although some non-selected students may have had potential to perform above the weakest admitted
students, it is unlikely that their average performance would have exceeded that of the strongest
students in the most comparable program.

min{Y : G ∈ {1, 2, 3}} ≤ E(Y | X, G = 0) ≤ max{Y : G = 1}

These assumptions provide plausible values for the bounding functions y0(X) and y1(X). In this
setting, both functions are constant with respect to X, reflecting context-specific empirical beliefs
that are reasonable to impose given the selection mechanism under study. The corresponding bounds
are then computed by replacing the corresponding y0(X) and y1(X) functions into the identification
interval (8) for bounding B(X).

Results
The results presented in Figure (3) are derived from the previously established identification bounds.
These graphs analyze the probabilities of belonging to each group as a function of math scores, as
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well as the identification bounds for the within-group and between-group marginal effects, along
with the global effect.

The upper left panel illustrates how the composition of applicants varies across the score distribu-
tion, which is key to understanding the implications of selection. The remaining panels display the
identified bounds for W(X), B(X), and their sum W(X) + B(X), which represents the global marginal
effect. To highlight the impact of different restrictions, we report two sets of results corresponding to
the assumptions previously described. One set is based on Assumption 1, which adopts conservative
assumptions (CA), and the other on Assumption 2, which incorporates more contextual and empirical
assumptions (EA). For the global marginal effect (GME), the bounds are constructed as the pointwise
sum of the corresponding bounds under each assumption—i.e., the bounds under Assumption 1 for
W(X) and B(X) are summed to produce the global bounds under Assumption 1, and analogously for
Assumption 2.
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Figure 3. Estimated group membership probabilities and identification bounds W(X), B(X), and global marginal effects
under contextual (CA) and empirical-assumption (EA).

In the upper-left panel of Figure (3), the distribution of applicants’ group membership is displayed as
a function of their math score. The probability of not being selected, G = 0, is high for low scores
but gradually decreases as the score increases, approaching zero at the upper end of the scale. This
implies that for higher scores, almost all applicants are placed in one of the selected programs. It is
important to note that the probability of belonging to Biochemistry increases with the score, while
the probabilities of being in Biology or Marine Biology are relatively higher at the lower end of the
scale. Biochemistry is the program with the highest predicted GPA values, whereas Biology and
Marine Biology exhibit lower predicted values. This plays an important role in shaping the behavior
of the marginal effect both within and between groups.

In the upper-right panel of the figure, the identification bounds for W(X) are shown. The
lower bound reflects the marginal effect under the assumption that math scores have no impact
on the academic performance of non-selected applicants, had they been admitted. For low scores,
the lower bound for W(X) is close to zero under CA, as in this part of the scale the estimation is
strongly influenced by the assumption imposed on the non-selected applicants due to their high
proportion in these score levels. In contrast, for high scores, the influence of the non-selected
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applicants gradually disappears, and W(X) increasingly resembles the marginal effect observed
among the selected applicants, as the proportion of non-selected applicants at these levels is nearly
zero.

Compared to the conservative assumption (CA), the empirically anchored assumption (EA)
produces narrower and more informative bounds for W(X) across the entire score distribution. Inter-
estingly, the bounds under EA closely approximate those obtained under the ignorability assumption.
However, these conclusions are now justified through substantive, contextual reasoning. That is, if
a policy-maker is willing to assume that non-selected applicants—had they been admitted—could
have produced a marginal effect higher than the smallest observed among the selected, but not
exceeding the maximum effect observed in the most similar group (in terms of math scores), then the
within-group effect, W(X), is positive and it tends to decrease as X increases, indicating that the relationship
between test scores and academic performance within each program is stronger at lower score levels but does
not vanish at higher levels. Although numerically similar to those obtained under ignorability, these
conclusions are now grounded in contextual assumptions.

In the lower-left panel of Figure 3, the identification bounds for B(X) are presented. From the
data, it is observed that the sum of the derivatives of P(G = g | X) for g ∈ 1, 2, 3 is always positive across
the entire range of X. This implies that both the lower and upper bounds rely only on the positive
part of this sum, resulting in the use of m1 in the lower bound and m0 in the upper bound under
the conservative assumptions (CA). The use of m1 = 7.0 in the lower bound leads to all differences
being negative, as no predicted values reach 7.0 in any of the observed programs. Conversely, the
upper bound under CA, based on m0 = 1.0, results in all differences being positive. The peaks in
B(X) are found in the central part of the graph, where the highest variability in program assignment
occurs, which in turn amplifies the dispersion in the estimates of B(X). When contextual–empirical
assumptions (EA) are introduced, the width of the bounds is substantially reduced across the entire
range of X, making them more informative. Nevertheless, even under these assumptions, the sign of
B(X) cannot be identified, as the bounds continue to include zero. This limitation arises due to the
persistent lack of information regarding the performance of non-selected applicants. Incorporating
additional assumptions—derived from theoretical or empirical considerations—may allow for further
refinement of the bounds and ultimately lead to the identification of the sign of B(X) within specific
score regions.

The bottom right panel of Figure presents the identification bounds for the global effect, defined
as the sum of the identification bounds for W(X) and B(X). Under conservative assumptions (CA),
these bounds indicate that for most of the score scale, the sign of the global effect cannot be identified,
as the bounds include zero throughout. Only at the upper end of the scale (above 800 points), where
the proportion of non-selected applicants is near zero, does the sign become identifiable. However,
when combining contextual–empirical assumptions (EA) for both the conditional expectation and
the marginal effect among non-selected applicants, the bounds become substantially narrower
and more informative. In particular, under EA, the sign of the global marginal effect can be
identified across nearly the entire score range. The only exception occurs in the central region of the
scale—approximately between 700 and 750 points—where the high variability in group membership,
conditional on test scores, makes it not possible to determine whether the global effect is positive
or negative. This demonstrates that, although information about non-selected applicants remains
unobserved, adopting contextually grounded and empirically justified assumptions enhances the
informativeness of the bounds. As a result, it becomes possible to draw meaningful conclusions about
the direction and magnitude of the global marginal effect across most of the score distribution.

5. Conclusion
This paper addressed the estimation of the marginal effect of admission test scores on academic
performance in a selection context, where performance was only observed for admitted applicants. We
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proposed a decomposition of the marginal effect based on the law of total probability, distinguishing
a within-group effect, which measures the relationship between scores and performance within each
program, and a between-group effect, which captures how scores explain differences in average
predictions across programs and affect admission probabilities.

Under the ignorability assumption, we were able to interpret the decomposition of the marginal
effect using only information from admitted applicants. This interpretation follows directly from
assuming that the conditional expectation of academic performance given the test score is the same
for selected and non-selected applicants, allowing us to work exclusively with the observed sample.
In the analyzed data, we found that, within the overall effect, the within-group effect had a greater
influence than the between-group effect. This suggests that, for this group of selected applicants,
mathematics scores do not play a significant role in explaining differences in predicted GPA or in
determining whether an applicant is selected into one program or another. However, this relationship
could be reversed in other contexts, such as universities with different levels of selectivity for the
same program.

Since the ignorability assumption may not be realistic in selection contexts, we proposed identifi-
cation bounds for the marginal effect based on contextual assumptions about the admission system.
The assumptions maintained in this paper reflect possible imperfections in the selection process,
allowing for the possibility that non-selected applicants could have performed better than the lowest-
performing selected students, though not better than those in the most similar observed group.
This dual assumption aligns with the Fallible Selection Assumption (FSA) described by Alarcón-
Bustamante et al. (2025), where the system may fail to admit some applicants who would have
benefited from admission, but still captures the strongest effect within the selected group.

Under CA, the resulting bounds for the global effect are wide and do not allow sign identification
across most of the scale. In contrast, EA assumptions substantially narrow the bounds and enable sign
identification in nearly the entire score range, excluding only the region with the highest assignment
variability. Nevertheless, although ignorability yields similar numerical conclusions regarding
the sign of the effect, it relies on strong and unjustifiable assumptions. The partial identification
approach, by contrast, achieves similar interpretability through empirically grounded, transparent
restrictions—enhancing both credibility and contextual relevance.

The proposed approach not only enables the interpretation of the marginal effect under different
selection scenarios but also expands the partial identification framework to partitioned populations.
These results highlight the value of incorporating selection process information into the analysis of the
predictive validity of admission test scores. At its core, drawing conclusions from data always requires
the articulation of assumptions, as the logic of inference follows the principle: data + assumptions
= conclusions. Holding data fixed, different assumptions naturally lead to different conclusions
(Manski, 1993, 2003, 2013). Strong assumptions like ignorability may yield precise results, but
often lack contextual justification and weaken interpretability. In contrast, the partial identification
approach explicitly acknowledges uncertainty and derives conclusions from assumptions that are
substantively grounded in the problem at hand. This improves transparency and aligns the inferences
with real-world institutional features, making them more interpretable and credible. As articulated
in Manski’s Law of Decreasing Credibility, the credibility of inferences decreases with the strength of the
assumptions maintained.

It is important to note that the assumptions imposed are associated with desirable properties of
the admission system; however, other types of assumptions can be used when more information is
available. For instance, contextual assumptions could be incorporated—if the data corresponded to
the pandemic period, one could introduce assumptions about whether predictability increased or
decreased, or formulate year-by-year assumptions based on specific contextual factors. Additionally,
if information from other years is available, this could be explicitly incorporated into the modeling
process by analyzing the intersection of students who were not selected in one year but were in
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another. This would allow for the incorporation of assumptions regarding whether predictability
increases or decreases over time.
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Supplementary Material

Appendix 1. Derivation of the identification bounds for the marginal effect
Proof. If D0(X) ≤ dE(Y |X,G=0)

dX ≤ D1(X), thus

D0(X)P(G = 0 | X) +
3∑

g=1

dE(Y | X, G = g)
dX

P(G = g | X) ≤ dE(Y | X, G = 0)
dX

P(G = 0 | X)+

3∑
g=1

dE(Y | X, G = g)
dX

P(G = g | X) ≤

D1(X)P(G = 0 | X) +
3∑

g=1

dE(Y | X, G = g)
dX

P(G = g | X). (9)

Let d+λ(X)
dX and d–λ(X)

dX be the positive and negative part of dλ(X)
dX , respectively, such that:

d+λ(X)
dX

= max
{

0,
dλ(X)

dX

}
=


dλ(X)

dX if dλ(X)
dX > 0

0 otherwise,

and

d–λ(X)
dX

= max
{

0, –
dλ(X)

dX

}
=

 – dλ(X)
dX if dλ(X)

dX < 0

0 otherwise.

Where dλ(X)
dX = d+λ(X)

dX – d–λ(X)
dX , and

∣∣∣ dλ(X)
dX

∣∣∣ = d+λ(X)
dX + d–λ(X)

dX . Let us consider that y0(X) ≤ E(Y |

X, G = 0) ≤ y1(X). Thus, the positive part of E(Y | X, G = 0) dP(G=0|X)
dX is bounded as follows:

y0(X)
d+P(G = 0 | X)

dX
≤ E(Y | X, G = 0)

d+P(G = 0 | X)
dX

≤ y1(X)
d+P(G = 0 | X)

dX
. (10)

Analogously, the negative part is bounded as follows:

y0(X)
d–P(G = 0 | X)

dX
≤ E(Y | X, G = 0)

d–P(G = 0 | X)
dX

≤ y1(X)
d–P(G = 0 | X)

dX
(11)

By subtracting (11) from (10), it is obtained that

y0(X)
d+P(G = 0 | X)

dX
– y1(X)

d–P(G = 0 | X)
dX

≤ E(Y | X, G = 0)
dP(G = 0 | X)

dX
≤

y1(X)
d+P(G = 0 | X)

dX
– y0(X)

d–P(G = 0 | X)
dX

. (12)

Thus, if the term
3∑

g=1
E(Y | X, G = g) dP(G=g|X)

dX is added to (12), and the resultant inequality is added

to (9), then the interval in (5) holds.
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Appendix 2. Length of the identification interval for the marginal effect
Proof. Subtracting the lower bound from the upper one in (5), it is obtained that

L(X) = [D1(X) – D0(X)]P(G = 0 | X) +

[
y1(X)

d+P(G = 0 | X)
dX

– y0(X)
d–P(G = 0 | X)

dX

]
–

[
y0(X)

d+P(G = 0 | X)
dX

– y1(X)
d–P(G = 0 | X)

dX

]

= [D1(X) – D0(X)]P(G = 0 | X) + [y1(X) – y0(X)]
d+P(G = 0 | X)

dX
+

[y1(X) – y0(X)]
d–P(G = 0 | X)

dX

= [D1(X) – D0(X)]P(G = 0 | X) + [y1(X) – y0(X)]
∣∣∣∣dP(G = 0 | X)

dX

∣∣∣∣
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